SparcInstrInfo.td revision ef596e1a80a9790efbc905c57b4e06ba6addb95a
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// UseDeprecatedInsts - This predicate is true when the target processor is a
43// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
44// to use when appropriate.  In either of these cases, the instruction selector
45// will pick deprecated instructions.
46def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
47
48//===----------------------------------------------------------------------===//
49// Instruction Pattern Stuff
50//===----------------------------------------------------------------------===//
51
52def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
53
54def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
58                                   MVT::i32);
59}]>;
60
61def HI22 : SDNodeXForm<imm, [{
62  // Transformation function: shift the immediate value down into the low bits.
63  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
64}]>;
65
66def SETHIimm : PatLeaf<(imm), [{
67  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
68         (unsigned)N->getZExtValue();
69}], HI22>;
70
71// Addressing modes.
72def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
73def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
74
75// Address operands
76def MEMrr : Operand<iPTR> {
77  let PrintMethod = "printMemOperand";
78  let MIOperandInfo = (ops ptr_rc, ptr_rc);
79}
80def MEMri : Operand<iPTR> {
81  let PrintMethod = "printMemOperand";
82  let MIOperandInfo = (ops ptr_rc, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91  def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc : 
94SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
95def SDTSPbrcc : 
96SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
97def SDTSPselectcc :
98SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
99def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
107def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
108def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
109
110def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
111def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
112
113def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
114def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
115
116def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
117def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
118def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
119
120//  These are target-independent nodes, but have target-specific formats.
121def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
122def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
123                                        SDTCisVT<1, i32> ]>;
124
125def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
126                           [SDNPHasChain, SDNPOutGlue]>;
127def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
128                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
129
130def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
131def call          : SDNode<"SPISD::CALL", SDT_SPCall,
132                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
133                            SDNPVariadic]>;
134
135def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
136def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
137                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
138
139def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
140                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
141
142def getPCX        : Operand<i32> {
143  let PrintMethod = "printGetPCX";
144}
145
146//===----------------------------------------------------------------------===//
147// SPARC Flag Conditions
148//===----------------------------------------------------------------------===//
149
150// Note that these values must be kept in sync with the CCOp::CondCode enum
151// values.
152class ICC_VAL<int N> : PatLeaf<(i32 N)>;
153def ICC_NE  : ICC_VAL< 9>;  // Not Equal
154def ICC_E   : ICC_VAL< 1>;  // Equal
155def ICC_G   : ICC_VAL<10>;  // Greater
156def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
157def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
158def ICC_L   : ICC_VAL< 3>;  // Less
159def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
160def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
161def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
162def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
163def ICC_POS : ICC_VAL<14>;  // Positive
164def ICC_NEG : ICC_VAL< 6>;  // Negative
165def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
166def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
167
168class FCC_VAL<int N> : PatLeaf<(i32 N)>;
169def FCC_U   : FCC_VAL<23>;  // Unordered
170def FCC_G   : FCC_VAL<22>;  // Greater
171def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
172def FCC_L   : FCC_VAL<20>;  // Less
173def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
174def FCC_LG  : FCC_VAL<18>;  // Less or Greater
175def FCC_NE  : FCC_VAL<17>;  // Not Equal
176def FCC_E   : FCC_VAL<25>;  // Equal
177def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
178def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
179def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
180def FCC_LE  : FCC_VAL<27>;  // Less or Equal
181def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
182def FCC_O   : FCC_VAL<29>;  // Ordered
183
184//===----------------------------------------------------------------------===//
185// Instruction Class Templates
186//===----------------------------------------------------------------------===//
187
188/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
189multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
190  def rr  : F3_1<2, Op3Val, 
191                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"),
193                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
194  def ri  : F3_2<2, Op3Val,
195                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"),
197                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
198}
199
200/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
201/// pattern.
202multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
203  def rr  : F3_1<2, Op3Val, 
204                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
205                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
206  def ri  : F3_2<2, Op3Val,
207                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
208                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
209}
210
211//===----------------------------------------------------------------------===//
212// Instructions
213//===----------------------------------------------------------------------===//
214
215// Pseudo instructions.
216class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
217   : InstSP<outs, ins, asmstr, pattern>;
218
219// GETPCX for PIC
220let Defs = [O7] in {
221  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
222}
223
224let Defs = [O6], Uses = [O6] in {
225def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
226                               "!ADJCALLSTACKDOWN $amt",
227                               [(callseq_start timm:$amt)]>;
228def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
229                            "!ADJCALLSTACKUP $amt1",
230                            [(callseq_end timm:$amt1, timm:$amt2)]>;
231}
232
233let hasSideEffects = 1, mayStore = 1 in {
234  let rd = 0, rs1 = 0, rs2 = 0 in
235    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
236                      "flushw",
237                      [(flushw)]>, Requires<[HasV9]>;
238  let rd = 0, rs1 = 1, simm13 = 3 in
239    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
240                   "ta 3",
241                   [(flushw)]>;
242}
243
244def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
245                "unimp $val", []>;
246
247// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
248// fpmover pass.
249let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
250  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
251                      "!FpMOVD $src, $dst", []>;
252  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
253                      "!FpNEGD $src, $dst",
254                      [(set f64:$dst, (fneg f64:$src))]>;
255  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
256                      "!FpABSD $src, $dst",
257                      [(set f64:$dst, (fabs f64:$src))]>;
258}
259
260// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
261// instruction selection into a branch sequence.  This has to handle all
262// permutations of selection between i32/f32/f64 on ICC and FCC.
263  // Expanded after instruction selection.
264let Uses = [ICC], usesCustomInserter = 1 in { 
265  def SELECT_CC_Int_ICC
266   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
267            "; SELECT_CC_Int_ICC PSEUDO!",
268            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
269  def SELECT_CC_FP_ICC
270   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
271            "; SELECT_CC_FP_ICC PSEUDO!",
272            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
273
274  def SELECT_CC_DFP_ICC
275   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
276            "; SELECT_CC_DFP_ICC PSEUDO!",
277            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
278}
279
280let usesCustomInserter = 1, Uses = [FCC] in {
281
282  def SELECT_CC_Int_FCC
283   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
284            "; SELECT_CC_Int_FCC PSEUDO!",
285            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
286
287  def SELECT_CC_FP_FCC
288   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
289            "; SELECT_CC_FP_FCC PSEUDO!",
290            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
291  def SELECT_CC_DFP_FCC
292   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
293            "; SELECT_CC_DFP_FCC PSEUDO!",
294            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
295}
296
297
298// Section A.3 - Synthetic Instructions, p. 85
299// special cases of JMPL:
300let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
301  let rd = O7.Num, rs1 = G0.Num in
302    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
303                   "jmp %o7+$val", [(retflag simm13:$val)]>;
304
305  let rd = I7.Num, rs1 = G0.Num in
306    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
307                  "jmp %i7+$val", []>;
308}
309
310// Section B.1 - Load Integer Instructions, p. 90
311def LDSBrr : F3_1<3, 0b001001,
312                  (outs IntRegs:$dst), (ins MEMrr:$addr),
313                  "ldsb [$addr], $dst",
314                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
315def LDSBri : F3_2<3, 0b001001,
316                  (outs IntRegs:$dst), (ins MEMri:$addr),
317                  "ldsb [$addr], $dst",
318                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
319def LDSHrr : F3_1<3, 0b001010,
320                  (outs IntRegs:$dst), (ins MEMrr:$addr),
321                  "ldsh [$addr], $dst",
322                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
323def LDSHri : F3_2<3, 0b001010,
324                  (outs IntRegs:$dst), (ins MEMri:$addr),
325                  "ldsh [$addr], $dst",
326                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
327def LDUBrr : F3_1<3, 0b000001,
328                  (outs IntRegs:$dst), (ins MEMrr:$addr),
329                  "ldub [$addr], $dst",
330                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
331def LDUBri : F3_2<3, 0b000001,
332                  (outs IntRegs:$dst), (ins MEMri:$addr),
333                  "ldub [$addr], $dst",
334                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
335def LDUHrr : F3_1<3, 0b000010,
336                  (outs IntRegs:$dst), (ins MEMrr:$addr),
337                  "lduh [$addr], $dst",
338                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
339def LDUHri : F3_2<3, 0b000010,
340                  (outs IntRegs:$dst), (ins MEMri:$addr),
341                  "lduh [$addr], $dst",
342                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
343def LDrr   : F3_1<3, 0b000000,
344                  (outs IntRegs:$dst), (ins MEMrr:$addr),
345                  "ld [$addr], $dst",
346                  [(set i32:$dst, (load ADDRrr:$addr))]>;
347def LDri   : F3_2<3, 0b000000,
348                  (outs IntRegs:$dst), (ins MEMri:$addr),
349                  "ld [$addr], $dst",
350                  [(set i32:$dst, (load ADDRri:$addr))]>;
351
352// Section B.2 - Load Floating-point Instructions, p. 92
353def LDFrr  : F3_1<3, 0b100000,
354                  (outs FPRegs:$dst), (ins MEMrr:$addr),
355                  "ld [$addr], $dst",
356                  [(set f32:$dst, (load ADDRrr:$addr))]>;
357def LDFri  : F3_2<3, 0b100000,
358                  (outs FPRegs:$dst), (ins MEMri:$addr),
359                  "ld [$addr], $dst",
360                  [(set f32:$dst, (load ADDRri:$addr))]>;
361def LDDFrr : F3_1<3, 0b100011,
362                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
363                  "ldd [$addr], $dst",
364                  [(set f64:$dst, (load ADDRrr:$addr))]>;
365def LDDFri : F3_2<3, 0b100011,
366                  (outs DFPRegs:$dst), (ins MEMri:$addr),
367                  "ldd [$addr], $dst",
368                  [(set f64:$dst, (load ADDRri:$addr))]>;
369
370// Section B.4 - Store Integer Instructions, p. 95
371def STBrr : F3_1<3, 0b000101,
372                 (outs), (ins MEMrr:$addr, IntRegs:$src),
373                 "stb $src, [$addr]",
374                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
375def STBri : F3_2<3, 0b000101,
376                 (outs), (ins MEMri:$addr, IntRegs:$src),
377                 "stb $src, [$addr]",
378                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
379def STHrr : F3_1<3, 0b000110,
380                 (outs), (ins MEMrr:$addr, IntRegs:$src),
381                 "sth $src, [$addr]",
382                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
383def STHri : F3_2<3, 0b000110,
384                 (outs), (ins MEMri:$addr, IntRegs:$src),
385                 "sth $src, [$addr]",
386                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
387def STrr  : F3_1<3, 0b000100,
388                 (outs), (ins MEMrr:$addr, IntRegs:$src),
389                 "st $src, [$addr]",
390                 [(store i32:$src, ADDRrr:$addr)]>;
391def STri  : F3_2<3, 0b000100,
392                 (outs), (ins MEMri:$addr, IntRegs:$src),
393                 "st $src, [$addr]",
394                 [(store i32:$src, ADDRri:$addr)]>;
395
396// Section B.5 - Store Floating-point Instructions, p. 97
397def STFrr   : F3_1<3, 0b100100,
398                   (outs), (ins MEMrr:$addr, FPRegs:$src),
399                   "st $src, [$addr]",
400                   [(store f32:$src, ADDRrr:$addr)]>;
401def STFri   : F3_2<3, 0b100100,
402                   (outs), (ins MEMri:$addr, FPRegs:$src),
403                   "st $src, [$addr]",
404                   [(store f32:$src, ADDRri:$addr)]>;
405def STDFrr  : F3_1<3, 0b100111,
406                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
407                   "std  $src, [$addr]",
408                   [(store f64:$src, ADDRrr:$addr)]>;
409def STDFri  : F3_2<3, 0b100111,
410                   (outs), (ins MEMri:$addr, DFPRegs:$src),
411                   "std $src, [$addr]",
412                   [(store f64:$src, ADDRri:$addr)]>;
413
414// Section B.9 - SETHI Instruction, p. 104
415def SETHIi: F2_1<0b100,
416                 (outs IntRegs:$dst), (ins i32imm:$src),
417                 "sethi $src, $dst",
418                 [(set i32:$dst, SETHIimm:$src)]>;
419
420// Section B.10 - NOP Instruction, p. 105
421// (It's a special case of SETHI)
422let rd = 0, imm22 = 0 in
423  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
424
425// Section B.11 - Logical Instructions, p. 106
426defm AND    : F3_12<"and", 0b000001, and>;
427
428def ANDNrr  : F3_1<2, 0b000101,
429                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
430                   "andn $b, $c, $dst",
431                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
432def ANDNri  : F3_2<2, 0b000101,
433                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
434                   "andn $b, $c, $dst", []>;
435
436defm OR     : F3_12<"or", 0b000010, or>;
437
438def ORNrr   : F3_1<2, 0b000110,
439                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
440                   "orn $b, $c, $dst",
441                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
442def ORNri   : F3_2<2, 0b000110,
443                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
444                   "orn $b, $c, $dst", []>;
445defm XOR    : F3_12<"xor", 0b000011, xor>;
446
447def XNORrr  : F3_1<2, 0b000111,
448                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
449                   "xnor $b, $c, $dst",
450                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
451def XNORri  : F3_2<2, 0b000111,
452                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
453                   "xnor $b, $c, $dst", []>;
454
455// Section B.12 - Shift Instructions, p. 107
456defm SLL : F3_12<"sll", 0b100101, shl>;
457defm SRL : F3_12<"srl", 0b100110, srl>;
458defm SRA : F3_12<"sra", 0b100111, sra>;
459
460// Section B.13 - Add Instructions, p. 108
461defm ADD   : F3_12<"add", 0b000000, add>;
462
463// "LEA" forms of add (patterns to make tblgen happy)
464def LEA_ADDri   : F3_2<2, 0b000000,
465                   (outs IntRegs:$dst), (ins MEMri:$addr),
466                   "add ${addr:arith}, $dst",
467                   [(set i32:$dst, ADDRri:$addr)]>;
468
469let Defs = [ICC] in                   
470  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
471
472let Uses = [ICC] in
473  defm ADDX  : F3_12<"addx", 0b001000, adde>;
474
475// Section B.15 - Subtract Instructions, p. 110
476defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
477let Uses = [ICC] in 
478  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
479
480let Defs = [ICC] in 
481  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
482
483let Uses = [ICC], Defs = [ICC] in
484  def SUBXCCrr: F3_1<2, 0b011100, 
485                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
486                "subxcc $b, $c, $dst", []>;
487
488
489// Section B.18 - Multiply Instructions, p. 113
490let Defs = [Y] in {
491  defm UMUL : F3_12np<"umul", 0b001010>;
492  defm SMUL : F3_12  <"smul", 0b001011, mul>;
493}
494
495// Section B.19 - Divide Instructions, p. 115
496let Defs = [Y] in {
497  defm UDIV : F3_12np<"udiv", 0b001110>;
498  defm SDIV : F3_12np<"sdiv", 0b001111>;
499}
500
501// Section B.20 - SAVE and RESTORE, p. 117
502defm SAVE    : F3_12np<"save"   , 0b111100>;
503defm RESTORE : F3_12np<"restore", 0b111101>;
504
505// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
506
507// conditional branch class:
508class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
509 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
510  let isBranch = 1;
511  let isTerminator = 1;
512  let hasDelaySlot = 1;
513}
514
515let isBarrier = 1 in
516  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
517                      "ba $dst",
518                      [(br bb:$dst)]>;
519
520// FIXME: the encoding for the JIT should look at the condition field.
521let Uses = [ICC] in
522  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
523                         "b$cc $dst",
524                        [(SPbricc bb:$dst, imm:$cc)]>;
525
526
527// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
528
529// floating-point conditional branch class:
530class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
531 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
532  let isBranch = 1;
533  let isTerminator = 1;
534  let hasDelaySlot = 1;
535}
536
537// FIXME: the encoding for the JIT should look at the condition field.
538let Uses = [FCC] in
539  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
540                              "fb$cc $dst",
541                              [(SPbrfcc bb:$dst, imm:$cc)]>;
542
543
544// Section B.24 - Call and Link Instruction, p. 125
545// This is the only Format 1 instruction
546let Uses = [O6],
547    hasDelaySlot = 1, isCall = 1,
548    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
549    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
550        ICC, FCC, Y] in {
551  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
552                    "call $dst", []> {
553    bits<30> disp;
554    let op = 1;
555    let Inst{29-0} = disp;
556  }
557  
558  // indirect calls
559  def JMPLrr : F3_1<2, 0b111000,
560                    (outs), (ins MEMrr:$ptr, variable_ops),
561                    "call $ptr",
562                    [(call ADDRrr:$ptr)]>;
563  def JMPLri : F3_2<2, 0b111000,
564                    (outs), (ins MEMri:$ptr, variable_ops),
565                    "call $ptr",
566                    [(call ADDRri:$ptr)]>;
567}
568
569// Section B.28 - Read State Register Instructions
570let Uses = [Y] in 
571  def RDY : F3_1<2, 0b101000,
572                 (outs IntRegs:$dst), (ins),
573                 "rd %y, $dst", []>;
574
575// Section B.29 - Write State Register Instructions
576let Defs = [Y] in {
577  def WRYrr : F3_1<2, 0b110000,
578                   (outs), (ins IntRegs:$b, IntRegs:$c),
579                   "wr $b, $c, %y", []>;
580  def WRYri : F3_2<2, 0b110000,
581                   (outs), (ins IntRegs:$b, i32imm:$c),
582                   "wr $b, $c, %y", []>;
583}
584// Convert Integer to Floating-point Instructions, p. 141
585def FITOS : F3_3<2, 0b110100, 0b011000100,
586                 (outs FPRegs:$dst), (ins FPRegs:$src),
587                 "fitos $src, $dst",
588                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
589def FITOD : F3_3<2, 0b110100, 0b011001000, 
590                 (outs DFPRegs:$dst), (ins FPRegs:$src),
591                 "fitod $src, $dst",
592                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
593
594// Convert Floating-point to Integer Instructions, p. 142
595def FSTOI : F3_3<2, 0b110100, 0b011010001,
596                 (outs FPRegs:$dst), (ins FPRegs:$src),
597                 "fstoi $src, $dst",
598                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
599def FDTOI : F3_3<2, 0b110100, 0b011010010,
600                 (outs FPRegs:$dst), (ins DFPRegs:$src),
601                 "fdtoi $src, $dst",
602                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
603
604// Convert between Floating-point Formats Instructions, p. 143
605def FSTOD : F3_3<2, 0b110100, 0b011001001, 
606                 (outs DFPRegs:$dst), (ins FPRegs:$src),
607                 "fstod $src, $dst",
608                 [(set f64:$dst, (fextend f32:$src))]>;
609def FDTOS : F3_3<2, 0b110100, 0b011000110,
610                 (outs FPRegs:$dst), (ins DFPRegs:$src),
611                 "fdtos $src, $dst",
612                 [(set f32:$dst, (fround f64:$src))]>;
613
614// Floating-point Move Instructions, p. 144
615def FMOVS : F3_3<2, 0b110100, 0b000000001,
616                 (outs FPRegs:$dst), (ins FPRegs:$src),
617                 "fmovs $src, $dst", []>;
618def FNEGS : F3_3<2, 0b110100, 0b000000101, 
619                 (outs FPRegs:$dst), (ins FPRegs:$src),
620                 "fnegs $src, $dst",
621                 [(set f32:$dst, (fneg f32:$src))]>;
622def FABSS : F3_3<2, 0b110100, 0b000001001, 
623                 (outs FPRegs:$dst), (ins FPRegs:$src),
624                 "fabss $src, $dst",
625                 [(set f32:$dst, (fabs f32:$src))]>;
626
627
628// Floating-point Square Root Instructions, p.145
629def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
630                  (outs FPRegs:$dst), (ins FPRegs:$src),
631                  "fsqrts $src, $dst",
632                  [(set f32:$dst, (fsqrt f32:$src))]>;
633def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
634                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
635                  "fsqrtd $src, $dst",
636                  [(set f64:$dst, (fsqrt f64:$src))]>;
637
638
639
640// Floating-point Add and Subtract Instructions, p. 146
641def FADDS  : F3_3<2, 0b110100, 0b001000001,
642                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
643                  "fadds $src1, $src2, $dst",
644                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
645def FADDD  : F3_3<2, 0b110100, 0b001000010,
646                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
647                  "faddd $src1, $src2, $dst",
648                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
649def FSUBS  : F3_3<2, 0b110100, 0b001000101,
650                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
651                  "fsubs $src1, $src2, $dst",
652                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
653def FSUBD  : F3_3<2, 0b110100, 0b001000110,
654                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
655                  "fsubd $src1, $src2, $dst",
656                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
657
658// Floating-point Multiply and Divide Instructions, p. 147
659def FMULS  : F3_3<2, 0b110100, 0b001001001,
660                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
661                  "fmuls $src1, $src2, $dst",
662                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
663def FMULD  : F3_3<2, 0b110100, 0b001001010,
664                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
665                  "fmuld $src1, $src2, $dst",
666                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
667def FSMULD : F3_3<2, 0b110100, 0b001101001,
668                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
669                  "fsmuld $src1, $src2, $dst",
670                  [(set f64:$dst, (fmul (fextend f32:$src1),
671                                        (fextend f32:$src2)))]>;
672def FDIVS  : F3_3<2, 0b110100, 0b001001101,
673                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
674                 "fdivs $src1, $src2, $dst",
675                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
676def FDIVD  : F3_3<2, 0b110100, 0b001001110,
677                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
678                 "fdivd $src1, $src2, $dst",
679                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
680
681// Floating-point Compare Instructions, p. 148
682// Note: the 2nd template arg is different for these guys.
683// Note 2: the result of a FCMP is not available until the 2nd cycle
684// after the instr is retired, but there is no interlock. This behavior
685// is modelled with a forced noop after the instruction.
686let Defs = [FCC] in {
687  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
688                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
689                   "fcmps $src1, $src2\n\tnop",
690                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
691  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
692                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
693                   "fcmpd $src1, $src2\n\tnop",
694                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
695}
696
697//===----------------------------------------------------------------------===//
698// V9 Instructions
699//===----------------------------------------------------------------------===//
700
701// V9 Conditional Moves.
702let Predicates = [HasV9], Constraints = "$T = $dst" in {
703  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
704  // FIXME: Add instruction encodings for the JIT some day.
705  let Uses = [ICC] in {
706    def MOVICCrr
707      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
708               "mov$cc %icc, $F, $dst",
709               [(set i32:$dst, (SPselecticc i32:$F, i32:$T, imm:$cc))]>;
710    def MOVICCri
711      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
712               "mov$cc %icc, $F, $dst",
713               [(set i32:$dst, (SPselecticc simm11:$F, i32:$T, imm:$cc))]>;
714  }
715
716  let Uses = [FCC] in {
717    def MOVFCCrr
718      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
719               "mov$cc %fcc0, $F, $dst",
720               [(set i32:$dst, (SPselectfcc i32:$F, i32:$T, imm:$cc))]>;
721    def MOVFCCri
722      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
723               "mov$cc %fcc0, $F, $dst",
724               [(set i32:$dst, (SPselectfcc simm11:$F, i32:$T, imm:$cc))]>;
725  }
726
727  let Uses = [ICC] in {
728    def FMOVS_ICC
729      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
730               "fmovs$cc %icc, $F, $dst",
731               [(set f32:$dst,
732                           (SPselecticc f32:$F, f32:$T, imm:$cc))]>;
733    def FMOVD_ICC
734      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
735               "fmovd$cc %icc, $F, $dst",
736               [(set f64:$dst, (SPselecticc f64:$F, f64:$T, imm:$cc))]>;
737  }
738
739  let Uses = [FCC] in {
740    def FMOVS_FCC
741      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
742               "fmovs$cc %fcc0, $F, $dst",
743               [(set f32:$dst, (SPselectfcc f32:$F, f32:$T, imm:$cc))]>;
744    def FMOVD_FCC
745      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
746               "fmovd$cc %fcc0, $F, $dst",
747               [(set f64:$dst, (SPselectfcc f64:$F, f64:$T, imm:$cc))]>;
748  }
749
750}
751
752// Floating-Point Move Instructions, p. 164 of the V9 manual.
753let Predicates = [HasV9] in {
754  def FMOVD : F3_3<2, 0b110100, 0b000000010,
755                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
756                   "fmovd $src, $dst", []>;
757  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
758                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
759                   "fnegd $src, $dst",
760                   [(set f64:$dst, (fneg f64:$src))]>;
761  def FABSD : F3_3<2, 0b110100, 0b000001010, 
762                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
763                   "fabsd $src, $dst",
764                   [(set f64:$dst, (fabs f64:$src))]>;
765}
766
767// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
768// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
769def POPCrr : F3_1<2, 0b101110, 
770                  (outs IntRegs:$dst), (ins IntRegs:$src),
771                  "popc $src, $dst", []>, Requires<[HasV9]>;
772def : Pat<(ctpop i32:$src),
773          (POPCrr (SLLri $src, 0))>;
774
775//===----------------------------------------------------------------------===//
776// Non-Instruction Patterns
777//===----------------------------------------------------------------------===//
778
779// Small immediates.
780def : Pat<(i32 simm13:$val),
781          (ORri (i32 G0), imm:$val)>;
782// Arbitrary immediates.
783def : Pat<(i32 imm:$val),
784          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
785
786// subc
787def : Pat<(subc i32:$b, i32:$c),
788          (SUBCCrr $b, $c)>;
789def : Pat<(subc i32:$b, simm13:$val),
790          (SUBCCri $b, imm:$val)>;
791
792// Global addresses, constant pool entries
793def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
794def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
795def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
796def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
797
798// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
799def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
800def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
801
802// Calls: 
803def : Pat<(call tglobaladdr:$dst),
804          (CALL tglobaladdr:$dst)>;
805def : Pat<(call texternalsym:$dst),
806          (CALL texternalsym:$dst)>;
807
808// Map integer extload's to zextloads.
809def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
810def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
811def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
812def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
813def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
814def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
815
816// zextload bool -> zextload byte
817def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
818def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
819
820include "SparcInstr64Bit.td"
821