SparcInstrInfo.td revision f27df33b02a85a030aaa4476aee7d1e8fe5921b2
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutGlue]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
121
122def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
125
126def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
127                           [SDNPHasChain, SDNPOptInGlue]>;
128
129def getPCX        : Operand<i32> {
130  let PrintMethod = "printGetPCX";
131}  
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177  def rr  : F3_1<2, Op3Val, 
178                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
179                 !strconcat(OpcStr, " $b, $c, $dst"),
180                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181  def ri  : F3_2<2, Op3Val,
182                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190  def rr  : F3_1<2, Op3Val, 
191                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193  def ri  : F3_2<2, Op3Val,
194                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
204   : InstSP<outs, ins, asmstr, pattern>;
205
206// GETPCX for PIC
207let Defs = [O7], Uses = [O7] in {
208  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
209}
210
211let Defs = [O6], Uses = [O6] in {
212def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
213                               "!ADJCALLSTACKDOWN $amt",
214                               [(callseq_start timm:$amt)]>;
215def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
216                            "!ADJCALLSTACKUP $amt1",
217                            [(callseq_end timm:$amt1, timm:$amt2)]>;
218}
219
220// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
221// fpmover pass.
222let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
223  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
224                      "!FpMOVD $src, $dst", []>;
225  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
226                      "!FpNEGD $src, $dst",
227                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
228  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
229                      "!FpABSD $src, $dst",
230                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
231}
232
233// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
234// instruction selection into a branch sequence.  This has to handle all
235// permutations of selection between i32/f32/f64 on ICC and FCC.
236  // Expanded after instruction selection.
237let Uses = [ICC], usesCustomInserter = 1 in { 
238  def SELECT_CC_Int_ICC
239   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
240            "; SELECT_CC_Int_ICC PSEUDO!",
241            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
242                                             imm:$Cond))]>;
243  def SELECT_CC_FP_ICC
244   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
245            "; SELECT_CC_FP_ICC PSEUDO!",
246            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
247                                            imm:$Cond))]>;
248
249  def SELECT_CC_DFP_ICC
250   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
251            "; SELECT_CC_DFP_ICC PSEUDO!",
252            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
253                                             imm:$Cond))]>;
254}
255
256let usesCustomInserter = 1, Uses = [FCC] in {
257
258  def SELECT_CC_Int_FCC
259   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
260            "; SELECT_CC_Int_FCC PSEUDO!",
261            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
262                                             imm:$Cond))]>;
263
264  def SELECT_CC_FP_FCC
265   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
266            "; SELECT_CC_FP_FCC PSEUDO!",
267            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
268                                            imm:$Cond))]>;
269  def SELECT_CC_DFP_FCC
270   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
271            "; SELECT_CC_DFP_FCC PSEUDO!",
272            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
273                                             imm:$Cond))]>;
274}
275
276
277// Section A.3 - Synthetic Instructions, p. 85
278// special cases of JMPL:
279let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
280  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
281    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
282}
283
284// Section B.1 - Load Integer Instructions, p. 90
285def LDSBrr : F3_1<3, 0b001001,
286                  (outs IntRegs:$dst), (ins MEMrr:$addr),
287                  "ldsb [$addr], $dst",
288                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
289def LDSBri : F3_2<3, 0b001001,
290                  (outs IntRegs:$dst), (ins MEMri:$addr),
291                  "ldsb [$addr], $dst",
292                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
293def LDSHrr : F3_1<3, 0b001010,
294                  (outs IntRegs:$dst), (ins MEMrr:$addr),
295                  "ldsh [$addr], $dst",
296                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
297def LDSHri : F3_2<3, 0b001010,
298                  (outs IntRegs:$dst), (ins MEMri:$addr),
299                  "ldsh [$addr], $dst",
300                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
301def LDUBrr : F3_1<3, 0b000001,
302                  (outs IntRegs:$dst), (ins MEMrr:$addr),
303                  "ldub [$addr], $dst",
304                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
305def LDUBri : F3_2<3, 0b000001,
306                  (outs IntRegs:$dst), (ins MEMri:$addr),
307                  "ldub [$addr], $dst",
308                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
309def LDUHrr : F3_1<3, 0b000010,
310                  (outs IntRegs:$dst), (ins MEMrr:$addr),
311                  "lduh [$addr], $dst",
312                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
313def LDUHri : F3_2<3, 0b000010,
314                  (outs IntRegs:$dst), (ins MEMri:$addr),
315                  "lduh [$addr], $dst",
316                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
317def LDrr   : F3_1<3, 0b000000,
318                  (outs IntRegs:$dst), (ins MEMrr:$addr),
319                  "ld [$addr], $dst",
320                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
321def LDri   : F3_2<3, 0b000000,
322                  (outs IntRegs:$dst), (ins MEMri:$addr),
323                  "ld [$addr], $dst",
324                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
325
326// Section B.2 - Load Floating-point Instructions, p. 92
327def LDFrr  : F3_1<3, 0b100000,
328                  (outs FPRegs:$dst), (ins MEMrr:$addr),
329                  "ld [$addr], $dst",
330                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
331def LDFri  : F3_2<3, 0b100000,
332                  (outs FPRegs:$dst), (ins MEMri:$addr),
333                  "ld [$addr], $dst",
334                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
335def LDDFrr : F3_1<3, 0b100011,
336                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
337                  "ldd [$addr], $dst",
338                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
339def LDDFri : F3_2<3, 0b100011,
340                  (outs DFPRegs:$dst), (ins MEMri:$addr),
341                  "ldd [$addr], $dst",
342                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
343
344// Section B.4 - Store Integer Instructions, p. 95
345def STBrr : F3_1<3, 0b000101,
346                 (outs), (ins MEMrr:$addr, IntRegs:$src),
347                 "stb $src, [$addr]",
348                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
349def STBri : F3_2<3, 0b000101,
350                 (outs), (ins MEMri:$addr, IntRegs:$src),
351                 "stb $src, [$addr]",
352                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
353def STHrr : F3_1<3, 0b000110,
354                 (outs), (ins MEMrr:$addr, IntRegs:$src),
355                 "sth $src, [$addr]",
356                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
357def STHri : F3_2<3, 0b000110,
358                 (outs), (ins MEMri:$addr, IntRegs:$src),
359                 "sth $src, [$addr]",
360                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
361def STrr  : F3_1<3, 0b000100,
362                 (outs), (ins MEMrr:$addr, IntRegs:$src),
363                 "st $src, [$addr]",
364                 [(store IntRegs:$src, ADDRrr:$addr)]>;
365def STri  : F3_2<3, 0b000100,
366                 (outs), (ins MEMri:$addr, IntRegs:$src),
367                 "st $src, [$addr]",
368                 [(store IntRegs:$src, ADDRri:$addr)]>;
369
370// Section B.5 - Store Floating-point Instructions, p. 97
371def STFrr   : F3_1<3, 0b100100,
372                   (outs), (ins MEMrr:$addr, FPRegs:$src),
373                   "st $src, [$addr]",
374                   [(store FPRegs:$src, ADDRrr:$addr)]>;
375def STFri   : F3_2<3, 0b100100,
376                   (outs), (ins MEMri:$addr, FPRegs:$src),
377                   "st $src, [$addr]",
378                   [(store FPRegs:$src, ADDRri:$addr)]>;
379def STDFrr  : F3_1<3, 0b100111,
380                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
381                   "std  $src, [$addr]",
382                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
383def STDFri  : F3_2<3, 0b100111,
384                   (outs), (ins MEMri:$addr, DFPRegs:$src),
385                   "std $src, [$addr]",
386                   [(store DFPRegs:$src, ADDRri:$addr)]>;
387
388// Section B.9 - SETHI Instruction, p. 104
389def SETHIi: F2_1<0b100,
390                 (outs IntRegs:$dst), (ins i32imm:$src),
391                 "sethi $src, $dst",
392                 [(set IntRegs:$dst, SETHIimm:$src)]>;
393
394// Section B.10 - NOP Instruction, p. 105
395// (It's a special case of SETHI)
396let rd = 0, imm22 = 0 in
397  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
398
399// Section B.11 - Logical Instructions, p. 106
400defm AND    : F3_12<"and", 0b000001, and>;
401
402def ANDNrr  : F3_1<2, 0b000101,
403                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
404                   "andn $b, $c, $dst",
405                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
406def ANDNri  : F3_2<2, 0b000101,
407                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
408                   "andn $b, $c, $dst", []>;
409
410defm OR     : F3_12<"or", 0b000010, or>;
411
412def ORNrr   : F3_1<2, 0b000110,
413                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
414                   "orn $b, $c, $dst",
415                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
416def ORNri   : F3_2<2, 0b000110,
417                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
418                   "orn $b, $c, $dst", []>;
419defm XOR    : F3_12<"xor", 0b000011, xor>;
420
421def XNORrr  : F3_1<2, 0b000111,
422                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
423                   "xnor $b, $c, $dst",
424                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
425def XNORri  : F3_2<2, 0b000111,
426                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
427                   "xnor $b, $c, $dst", []>;
428
429// Section B.12 - Shift Instructions, p. 107
430defm SLL : F3_12<"sll", 0b100101, shl>;
431defm SRL : F3_12<"srl", 0b100110, srl>;
432defm SRA : F3_12<"sra", 0b100111, sra>;
433
434// Section B.13 - Add Instructions, p. 108
435defm ADD   : F3_12<"add", 0b000000, add>;
436
437// "LEA" forms of add (patterns to make tblgen happy)
438def LEA_ADDri   : F3_2<2, 0b000000,
439                   (outs IntRegs:$dst), (ins MEMri:$addr),
440                   "add ${addr:arith}, $dst",
441                   [(set IntRegs:$dst, ADDRri:$addr)]>;
442
443let Defs = [ICC] in                   
444  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
445
446let Uses = [ICC] in
447  defm ADDX  : F3_12<"addx", 0b001000, adde>;
448
449// Section B.15 - Subtract Instructions, p. 110
450defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
451let Uses = [ICC] in 
452  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
453
454let Defs = [ICC] in 
455  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
456
457let Uses = [ICC], Defs = [ICC] in
458  def SUBXCCrr: F3_1<2, 0b011100, 
459                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
460                "subxcc $b, $c, $dst", []>;
461
462
463// Section B.18 - Multiply Instructions, p. 113
464let Defs = [Y] in {
465  defm UMUL : F3_12np<"umul", 0b001010>;
466  defm SMUL : F3_12  <"smul", 0b001011, mul>;
467}
468
469// Section B.19 - Divide Instructions, p. 115
470let Defs = [Y] in {
471  defm UDIV : F3_12np<"udiv", 0b001110>;
472  defm SDIV : F3_12np<"sdiv", 0b001111>;
473}
474
475// Section B.20 - SAVE and RESTORE, p. 117
476defm SAVE    : F3_12np<"save"   , 0b111100>;
477defm RESTORE : F3_12np<"restore", 0b111101>;
478
479// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
480
481// conditional branch class:
482class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
483 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
484  let isBranch = 1;
485  let isTerminator = 1;
486  let hasDelaySlot = 1;
487}
488
489let isBarrier = 1 in
490  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
491                      "ba $dst",
492                      [(br bb:$dst)]>;
493
494// FIXME: the encoding for the JIT should look at the condition field.
495let Uses = [ICC] in
496  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
497                         "b$cc $dst",
498                        [(SPbricc bb:$dst, imm:$cc)]>;
499
500
501// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
502
503// floating-point conditional branch class:
504class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
505 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
506  let isBranch = 1;
507  let isTerminator = 1;
508  let hasDelaySlot = 1;
509}
510
511// FIXME: the encoding for the JIT should look at the condition field.
512let Uses = [FCC] in
513  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
514                              "fb$cc $dst",
515                              [(SPbrfcc bb:$dst, imm:$cc)]>;
516
517
518// Section B.24 - Call and Link Instruction, p. 125
519// This is the only Format 1 instruction
520let Uses = [O0, O1, O2, O3, O4, O5],
521    hasDelaySlot = 1, isCall = 1,
522    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
523    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
524  def CALL : InstSP<(outs), (ins calltarget:$dst),
525                    "call $dst", []> {
526    bits<30> disp;
527    let op = 1;
528    let Inst{29-0} = disp;
529  }
530  
531  // indirect calls
532  def JMPLrr : F3_1<2, 0b111000,
533                    (outs), (ins MEMrr:$ptr),
534                    "call $ptr",
535                    [(call ADDRrr:$ptr)]>;
536  def JMPLri : F3_2<2, 0b111000,
537                    (outs), (ins MEMri:$ptr),
538                    "call $ptr",
539                    [(call ADDRri:$ptr)]>;
540}
541
542// Section B.28 - Read State Register Instructions
543let Uses = [Y] in 
544  def RDY : F3_1<2, 0b101000,
545                 (outs IntRegs:$dst), (ins),
546                 "rd %y, $dst", []>;
547
548// Section B.29 - Write State Register Instructions
549let Defs = [Y] in {
550  def WRYrr : F3_1<2, 0b110000,
551                   (outs), (ins IntRegs:$b, IntRegs:$c),
552                   "wr $b, $c, %y", []>;
553  def WRYri : F3_2<2, 0b110000,
554                   (outs), (ins IntRegs:$b, i32imm:$c),
555                   "wr $b, $c, %y", []>;
556}
557// Convert Integer to Floating-point Instructions, p. 141
558def FITOS : F3_3<2, 0b110100, 0b011000100,
559                 (outs FPRegs:$dst), (ins FPRegs:$src),
560                 "fitos $src, $dst",
561                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
562def FITOD : F3_3<2, 0b110100, 0b011001000, 
563                 (outs DFPRegs:$dst), (ins FPRegs:$src),
564                 "fitod $src, $dst",
565                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
566
567// Convert Floating-point to Integer Instructions, p. 142
568def FSTOI : F3_3<2, 0b110100, 0b011010001,
569                 (outs FPRegs:$dst), (ins FPRegs:$src),
570                 "fstoi $src, $dst",
571                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
572def FDTOI : F3_3<2, 0b110100, 0b011010010,
573                 (outs FPRegs:$dst), (ins DFPRegs:$src),
574                 "fdtoi $src, $dst",
575                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
576
577// Convert between Floating-point Formats Instructions, p. 143
578def FSTOD : F3_3<2, 0b110100, 0b011001001, 
579                 (outs DFPRegs:$dst), (ins FPRegs:$src),
580                 "fstod $src, $dst",
581                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
582def FDTOS : F3_3<2, 0b110100, 0b011000110,
583                 (outs FPRegs:$dst), (ins DFPRegs:$src),
584                 "fdtos $src, $dst",
585                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
586
587// Floating-point Move Instructions, p. 144
588def FMOVS : F3_3<2, 0b110100, 0b000000001,
589                 (outs FPRegs:$dst), (ins FPRegs:$src),
590                 "fmovs $src, $dst", []>;
591def FNEGS : F3_3<2, 0b110100, 0b000000101, 
592                 (outs FPRegs:$dst), (ins FPRegs:$src),
593                 "fnegs $src, $dst",
594                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
595def FABSS : F3_3<2, 0b110100, 0b000001001, 
596                 (outs FPRegs:$dst), (ins FPRegs:$src),
597                 "fabss $src, $dst",
598                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
599
600
601// Floating-point Square Root Instructions, p.145
602def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
603                  (outs FPRegs:$dst), (ins FPRegs:$src),
604                  "fsqrts $src, $dst",
605                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
606def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
607                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
608                  "fsqrtd $src, $dst",
609                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
610
611
612
613// Floating-point Add and Subtract Instructions, p. 146
614def FADDS  : F3_3<2, 0b110100, 0b001000001,
615                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
616                  "fadds $src1, $src2, $dst",
617                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
618def FADDD  : F3_3<2, 0b110100, 0b001000010,
619                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
620                  "faddd $src1, $src2, $dst",
621                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
622def FSUBS  : F3_3<2, 0b110100, 0b001000101,
623                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
624                  "fsubs $src1, $src2, $dst",
625                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
626def FSUBD  : F3_3<2, 0b110100, 0b001000110,
627                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
628                  "fsubd $src1, $src2, $dst",
629                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
630
631// Floating-point Multiply and Divide Instructions, p. 147
632def FMULS  : F3_3<2, 0b110100, 0b001001001,
633                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
634                  "fmuls $src1, $src2, $dst",
635                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
636def FMULD  : F3_3<2, 0b110100, 0b001001010,
637                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
638                  "fmuld $src1, $src2, $dst",
639                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
640def FSMULD : F3_3<2, 0b110100, 0b001101001,
641                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
642                  "fsmuld $src1, $src2, $dst",
643                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
644                                            (fextend FPRegs:$src2)))]>;
645def FDIVS  : F3_3<2, 0b110100, 0b001001101,
646                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
647                 "fdivs $src1, $src2, $dst",
648                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
649def FDIVD  : F3_3<2, 0b110100, 0b001001110,
650                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
651                 "fdivd $src1, $src2, $dst",
652                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
653
654// Floating-point Compare Instructions, p. 148
655// Note: the 2nd template arg is different for these guys.
656// Note 2: the result of a FCMP is not available until the 2nd cycle
657// after the instr is retired, but there is no interlock. This behavior
658// is modelled with a forced noop after the instruction.
659let Defs = [FCC] in {
660  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
661                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
662                   "fcmps $src1, $src2\n\tnop",
663                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
664  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
665                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
666                   "fcmpd $src1, $src2\n\tnop",
667                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
668}
669
670//===----------------------------------------------------------------------===//
671// V9 Instructions
672//===----------------------------------------------------------------------===//
673
674// V9 Conditional Moves.
675let Predicates = [HasV9], Constraints = "$T = $dst" in {
676  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
677  // FIXME: Add instruction encodings for the JIT some day.
678  def MOVICCrr
679    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
680             "mov$cc %icc, $F, $dst",
681             [(set IntRegs:$dst,
682                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
683  def MOVICCri
684    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
685             "mov$cc %icc, $F, $dst",
686             [(set IntRegs:$dst,
687                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
688
689  def MOVFCCrr
690    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
691             "mov$cc %fcc0, $F, $dst",
692             [(set IntRegs:$dst,
693                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
694  def MOVFCCri
695    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
696             "mov$cc %fcc0, $F, $dst",
697             [(set IntRegs:$dst,
698                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
699
700  def FMOVS_ICC
701    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
702             "fmovs$cc %icc, $F, $dst",
703             [(set FPRegs:$dst,
704                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
705  def FMOVD_ICC
706    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
707             "fmovd$cc %icc, $F, $dst",
708             [(set DFPRegs:$dst,
709                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
710  def FMOVS_FCC
711    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
712             "fmovs$cc %fcc0, $F, $dst",
713             [(set FPRegs:$dst,
714                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
715  def FMOVD_FCC
716    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
717             "fmovd$cc %fcc0, $F, $dst",
718             [(set DFPRegs:$dst,
719                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
720
721}
722
723// Floating-Point Move Instructions, p. 164 of the V9 manual.
724let Predicates = [HasV9] in {
725  def FMOVD : F3_3<2, 0b110100, 0b000000010,
726                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
727                   "fmovd $src, $dst", []>;
728  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
729                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
730                   "fnegd $src, $dst",
731                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
732  def FABSD : F3_3<2, 0b110100, 0b000001010, 
733                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
734                   "fabsd $src, $dst",
735                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
736}
737
738// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
739// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
740def POPCrr : F3_1<2, 0b101110, 
741                  (outs IntRegs:$dst), (ins IntRegs:$src),
742                  "popc $src, $dst", []>, Requires<[HasV9]>;
743def : Pat<(ctpop IntRegs:$src),
744          (POPCrr (SLLri IntRegs:$src, 0))>;
745
746//===----------------------------------------------------------------------===//
747// Non-Instruction Patterns
748//===----------------------------------------------------------------------===//
749
750// Small immediates.
751def : Pat<(i32 simm13:$val),
752          (ORri G0, imm:$val)>;
753// Arbitrary immediates.
754def : Pat<(i32 imm:$val),
755          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
756
757// subc
758def : Pat<(subc IntRegs:$b, IntRegs:$c),
759          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
760def : Pat<(subc IntRegs:$b, simm13:$val),
761          (SUBCCri IntRegs:$b, imm:$val)>;
762
763// Global addresses, constant pool entries
764def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
765def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
766def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
767def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
768
769// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
770def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
771          (ADDri IntRegs:$r, tglobaladdr:$in)>;
772def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
773          (ADDri IntRegs:$r, tconstpool:$in)>;
774
775// Calls: 
776def : Pat<(call tglobaladdr:$dst),
777          (CALL tglobaladdr:$dst)>;
778def : Pat<(call texternalsym:$dst),
779          (CALL texternalsym:$dst)>;
780
781// Map integer extload's to zextloads.
782def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
783def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
784def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
785def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
786def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
787def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
788
789// zextload bool -> zextload byte
790def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
791def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
792