SparcInstrInfo.td revision ff96efee98f8a06e8fdf29d34843659932a83e95
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// HasHardQuad - This is true when the target processor supports quad floating
43// point instructions.
44def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
45
46// UseDeprecatedInsts - This predicate is true when the target processor is a
47// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
48// to use when appropriate.  In either of these cases, the instruction selector
49// will pick deprecated instructions.
50def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
51
52//===----------------------------------------------------------------------===//
53// Instruction Pattern Stuff
54//===----------------------------------------------------------------------===//
55
56def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
57
58def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
59
60def LO10 : SDNodeXForm<imm, [{
61  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
62                                   MVT::i32);
63}]>;
64
65def HI22 : SDNodeXForm<imm, [{
66  // Transformation function: shift the immediate value down into the low bits.
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
68}]>;
69
70def SETHIimm : PatLeaf<(imm), [{
71  return isShiftedUInt<22, 10>(N->getZExtValue());
72}], HI22>;
73
74// Addressing modes.
75def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
76def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
77
78// Address operands
79def MEMrr : Operand<iPTR> {
80  let PrintMethod = "printMemOperand";
81  let MIOperandInfo = (ops ptr_rc, ptr_rc);
82}
83def MEMri : Operand<iPTR> {
84  let PrintMethod = "printMemOperand";
85  let MIOperandInfo = (ops ptr_rc, i32imm);
86}
87
88def TLSSym : Operand<iPTR>;
89
90// Branch targets have OtherVT type.
91def brtarget : Operand<OtherVT>;
92def calltarget : Operand<i32>;
93
94// Operand for printing out a condition code.
95let PrintMethod = "printCCOperand" in
96  def CCOp : Operand<i32>;
97
98def SDTSPcmpicc :
99SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
100def SDTSPcmpfcc :
101SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
102def SDTSPbrcc :
103SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
104def SDTSPselectcc :
105SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
106def SDTSPFTOI :
107SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
108def SDTSPITOF :
109SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
110
111def SDTSPtlsadd :
112SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
113def SDTSPtlsld :
114SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
115
116def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
117def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
118def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
119def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
120def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
121
122def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
123def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
124
125def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
126def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
127
128def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
129def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
130def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
131
132//  These are target-independent nodes, but have target-specific formats.
133def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
134def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
135                                        SDTCisVT<1, i32> ]>;
136
137def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
138                           [SDNPHasChain, SDNPOutGlue]>;
139def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
140                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
141
142def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
143def call          : SDNode<"SPISD::CALL", SDT_SPCall,
144                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
145                            SDNPVariadic]>;
146
147def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
148def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
149                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
150
151def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
152                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
153
154def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
155def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
156def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
157                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
158                             SDNPVariadic]>;
159
160def getPCX        : Operand<i32> {
161  let PrintMethod = "printGetPCX";
162}
163
164//===----------------------------------------------------------------------===//
165// SPARC Flag Conditions
166//===----------------------------------------------------------------------===//
167
168// Note that these values must be kept in sync with the CCOp::CondCode enum
169// values.
170class ICC_VAL<int N> : PatLeaf<(i32 N)>;
171def ICC_NE  : ICC_VAL< 9>;  // Not Equal
172def ICC_E   : ICC_VAL< 1>;  // Equal
173def ICC_G   : ICC_VAL<10>;  // Greater
174def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
175def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
176def ICC_L   : ICC_VAL< 3>;  // Less
177def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
178def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
179def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
180def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
181def ICC_POS : ICC_VAL<14>;  // Positive
182def ICC_NEG : ICC_VAL< 6>;  // Negative
183def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
184def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
185
186class FCC_VAL<int N> : PatLeaf<(i32 N)>;
187def FCC_U   : FCC_VAL<23>;  // Unordered
188def FCC_G   : FCC_VAL<22>;  // Greater
189def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
190def FCC_L   : FCC_VAL<20>;  // Less
191def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
192def FCC_LG  : FCC_VAL<18>;  // Less or Greater
193def FCC_NE  : FCC_VAL<17>;  // Not Equal
194def FCC_E   : FCC_VAL<25>;  // Equal
195def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
196def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
197def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
198def FCC_LE  : FCC_VAL<27>;  // Less or Equal
199def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
200def FCC_O   : FCC_VAL<29>;  // Ordered
201
202//===----------------------------------------------------------------------===//
203// Instruction Class Templates
204//===----------------------------------------------------------------------===//
205
206/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
207multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
208  def rr  : F3_1<2, Op3Val,
209                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
210                 !strconcat(OpcStr, " $b, $c, $dst"),
211                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
212  def ri  : F3_2<2, Op3Val,
213                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
214                 !strconcat(OpcStr, " $b, $c, $dst"),
215                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
216}
217
218/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
219/// pattern.
220multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
221  def rr  : F3_1<2, Op3Val,
222                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
223                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
224  def ri  : F3_2<2, Op3Val,
225                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
226                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
227}
228
229//===----------------------------------------------------------------------===//
230// Instructions
231//===----------------------------------------------------------------------===//
232
233// Pseudo instructions.
234class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
235   : InstSP<outs, ins, asmstr, pattern>;
236
237// GETPCX for PIC
238let Defs = [O7] in {
239  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
240}
241
242let Defs = [O6], Uses = [O6] in {
243def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
244                               "!ADJCALLSTACKDOWN $amt",
245                               [(callseq_start timm:$amt)]>;
246def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
247                            "!ADJCALLSTACKUP $amt1",
248                            [(callseq_end timm:$amt1, timm:$amt2)]>;
249}
250
251let hasSideEffects = 1, mayStore = 1 in {
252  let rd = 0, rs1 = 0, rs2 = 0 in
253    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
254                      "flushw",
255                      [(flushw)]>, Requires<[HasV9]>;
256  let rd = 0, rs1 = 1, simm13 = 3 in
257    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
258                   "ta 3",
259                   [(flushw)]>;
260}
261
262let rd = 0 in
263  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
264                  "unimp $val", []>;
265
266// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
267// instruction selection into a branch sequence.  This has to handle all
268// permutations of selection between i32/f32/f64 on ICC and FCC.
269// Expanded after instruction selection.
270let Uses = [ICC], usesCustomInserter = 1 in {
271  def SELECT_CC_Int_ICC
272   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
273            "; SELECT_CC_Int_ICC PSEUDO!",
274            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
275  def SELECT_CC_FP_ICC
276   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
277            "; SELECT_CC_FP_ICC PSEUDO!",
278            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
279
280  def SELECT_CC_DFP_ICC
281   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
282            "; SELECT_CC_DFP_ICC PSEUDO!",
283            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
284
285  def SELECT_CC_QFP_ICC
286   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
287            "; SELECT_CC_QFP_ICC PSEUDO!",
288            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
289}
290
291let usesCustomInserter = 1, Uses = [FCC] in {
292
293  def SELECT_CC_Int_FCC
294   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
295            "; SELECT_CC_Int_FCC PSEUDO!",
296            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
297
298  def SELECT_CC_FP_FCC
299   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
300            "; SELECT_CC_FP_FCC PSEUDO!",
301            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
302  def SELECT_CC_DFP_FCC
303   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
304            "; SELECT_CC_DFP_FCC PSEUDO!",
305            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
306  def SELECT_CC_QFP_FCC
307   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
308            "; SELECT_CC_QFP_FCC PSEUDO!",
309            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
310}
311
312
313// Section A.3 - Synthetic Instructions, p. 85
314// special cases of JMPL:
315let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
316  let rd = 0, rs1 = 15 in
317    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
318                   "jmp %o7+$val", [(retflag simm13:$val)]>;
319
320  let rd = 0, rs1 = 31 in
321    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
322                  "jmp %i7+$val", []>;
323}
324
325// Section B.1 - Load Integer Instructions, p. 90
326def LDSBrr : F3_1<3, 0b001001,
327                  (outs IntRegs:$dst), (ins MEMrr:$addr),
328                  "ldsb [$addr], $dst",
329                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
330def LDSBri : F3_2<3, 0b001001,
331                  (outs IntRegs:$dst), (ins MEMri:$addr),
332                  "ldsb [$addr], $dst",
333                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
334def LDSHrr : F3_1<3, 0b001010,
335                  (outs IntRegs:$dst), (ins MEMrr:$addr),
336                  "ldsh [$addr], $dst",
337                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
338def LDSHri : F3_2<3, 0b001010,
339                  (outs IntRegs:$dst), (ins MEMri:$addr),
340                  "ldsh [$addr], $dst",
341                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
342def LDUBrr : F3_1<3, 0b000001,
343                  (outs IntRegs:$dst), (ins MEMrr:$addr),
344                  "ldub [$addr], $dst",
345                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
346def LDUBri : F3_2<3, 0b000001,
347                  (outs IntRegs:$dst), (ins MEMri:$addr),
348                  "ldub [$addr], $dst",
349                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
350def LDUHrr : F3_1<3, 0b000010,
351                  (outs IntRegs:$dst), (ins MEMrr:$addr),
352                  "lduh [$addr], $dst",
353                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
354def LDUHri : F3_2<3, 0b000010,
355                  (outs IntRegs:$dst), (ins MEMri:$addr),
356                  "lduh [$addr], $dst",
357                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
358def LDrr   : F3_1<3, 0b000000,
359                  (outs IntRegs:$dst), (ins MEMrr:$addr),
360                  "ld [$addr], $dst",
361                  [(set i32:$dst, (load ADDRrr:$addr))]>;
362def LDri   : F3_2<3, 0b000000,
363                  (outs IntRegs:$dst), (ins MEMri:$addr),
364                  "ld [$addr], $dst",
365                  [(set i32:$dst, (load ADDRri:$addr))]>;
366
367// Section B.2 - Load Floating-point Instructions, p. 92
368def LDFrr  : F3_1<3, 0b100000,
369                  (outs FPRegs:$dst), (ins MEMrr:$addr),
370                  "ld [$addr], $dst",
371                  [(set f32:$dst, (load ADDRrr:$addr))]>;
372def LDFri  : F3_2<3, 0b100000,
373                  (outs FPRegs:$dst), (ins MEMri:$addr),
374                  "ld [$addr], $dst",
375                  [(set f32:$dst, (load ADDRri:$addr))]>;
376def LDDFrr : F3_1<3, 0b100011,
377                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
378                  "ldd [$addr], $dst",
379                  [(set f64:$dst, (load ADDRrr:$addr))]>;
380def LDDFri : F3_2<3, 0b100011,
381                  (outs DFPRegs:$dst), (ins MEMri:$addr),
382                  "ldd [$addr], $dst",
383                  [(set f64:$dst, (load ADDRri:$addr))]>;
384def LDQFrr : F3_1<3, 0b100010,
385                  (outs QFPRegs:$dst), (ins MEMrr:$addr),
386                  "ldq [$addr], $dst",
387                  [(set f128:$dst, (load ADDRrr:$addr))]>,
388                  Requires<[HasV9, HasHardQuad]>;
389def LDQFri : F3_2<3, 0b100010,
390                  (outs QFPRegs:$dst), (ins MEMri:$addr),
391                  "ldq [$addr], $dst",
392                  [(set f128:$dst, (load ADDRri:$addr))]>,
393                  Requires<[HasV9, HasHardQuad]>;
394
395// Section B.4 - Store Integer Instructions, p. 95
396def STBrr : F3_1<3, 0b000101,
397                 (outs), (ins MEMrr:$addr, IntRegs:$src),
398                 "stb $src, [$addr]",
399                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
400def STBri : F3_2<3, 0b000101,
401                 (outs), (ins MEMri:$addr, IntRegs:$src),
402                 "stb $src, [$addr]",
403                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
404def STHrr : F3_1<3, 0b000110,
405                 (outs), (ins MEMrr:$addr, IntRegs:$src),
406                 "sth $src, [$addr]",
407                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
408def STHri : F3_2<3, 0b000110,
409                 (outs), (ins MEMri:$addr, IntRegs:$src),
410                 "sth $src, [$addr]",
411                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
412def STrr  : F3_1<3, 0b000100,
413                 (outs), (ins MEMrr:$addr, IntRegs:$src),
414                 "st $src, [$addr]",
415                 [(store i32:$src, ADDRrr:$addr)]>;
416def STri  : F3_2<3, 0b000100,
417                 (outs), (ins MEMri:$addr, IntRegs:$src),
418                 "st $src, [$addr]",
419                 [(store i32:$src, ADDRri:$addr)]>;
420
421// Section B.5 - Store Floating-point Instructions, p. 97
422def STFrr   : F3_1<3, 0b100100,
423                   (outs), (ins MEMrr:$addr, FPRegs:$src),
424                   "st $src, [$addr]",
425                   [(store f32:$src, ADDRrr:$addr)]>;
426def STFri   : F3_2<3, 0b100100,
427                   (outs), (ins MEMri:$addr, FPRegs:$src),
428                   "st $src, [$addr]",
429                   [(store f32:$src, ADDRri:$addr)]>;
430def STDFrr  : F3_1<3, 0b100111,
431                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
432                   "std  $src, [$addr]",
433                   [(store f64:$src, ADDRrr:$addr)]>;
434def STDFri  : F3_2<3, 0b100111,
435                   (outs), (ins MEMri:$addr, DFPRegs:$src),
436                   "std $src, [$addr]",
437                   [(store f64:$src, ADDRri:$addr)]>;
438def STQFrr  : F3_1<3, 0b100110,
439                   (outs), (ins MEMrr:$addr, QFPRegs:$src),
440                   "stq  $src, [$addr]",
441                   [(store f128:$src, ADDRrr:$addr)]>,
442                   Requires<[HasV9, HasHardQuad]>;
443def STQFri  : F3_2<3, 0b100110,
444                   (outs), (ins MEMri:$addr, QFPRegs:$src),
445                   "stq $src, [$addr]",
446                   [(store f128:$src, ADDRri:$addr)]>,
447                   Requires<[HasV9, HasHardQuad]>;
448
449// Section B.9 - SETHI Instruction, p. 104
450def SETHIi: F2_1<0b100,
451                 (outs IntRegs:$dst), (ins i32imm:$src),
452                 "sethi $src, $dst",
453                 [(set i32:$dst, SETHIimm:$src)]>;
454
455// Section B.10 - NOP Instruction, p. 105
456// (It's a special case of SETHI)
457let rd = 0, imm22 = 0 in
458  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
459
460// Section B.11 - Logical Instructions, p. 106
461defm AND    : F3_12<"and", 0b000001, and>;
462
463def ANDNrr  : F3_1<2, 0b000101,
464                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
465                   "andn $b, $c, $dst",
466                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
467def ANDNri  : F3_2<2, 0b000101,
468                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
469                   "andn $b, $c, $dst", []>;
470
471defm OR     : F3_12<"or", 0b000010, or>;
472
473def ORNrr   : F3_1<2, 0b000110,
474                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
475                   "orn $b, $c, $dst",
476                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
477def ORNri   : F3_2<2, 0b000110,
478                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
479                   "orn $b, $c, $dst", []>;
480defm XOR    : F3_12<"xor", 0b000011, xor>;
481
482def XNORrr  : F3_1<2, 0b000111,
483                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
484                   "xnor $b, $c, $dst",
485                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
486def XNORri  : F3_2<2, 0b000111,
487                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
488                   "xnor $b, $c, $dst", []>;
489
490// Section B.12 - Shift Instructions, p. 107
491defm SLL : F3_12<"sll", 0b100101, shl>;
492defm SRL : F3_12<"srl", 0b100110, srl>;
493defm SRA : F3_12<"sra", 0b100111, sra>;
494
495// Section B.13 - Add Instructions, p. 108
496defm ADD   : F3_12<"add", 0b000000, add>;
497
498// "LEA" forms of add (patterns to make tblgen happy)
499def LEA_ADDri   : F3_2<2, 0b000000,
500                   (outs IntRegs:$dst), (ins MEMri:$addr),
501                   "add ${addr:arith}, $dst",
502                   [(set iPTR:$dst, ADDRri:$addr)]>;
503
504let Defs = [ICC] in
505  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
506
507let Uses = [ICC] in
508  defm ADDX  : F3_12<"addx", 0b001000, adde>;
509
510// Section B.15 - Subtract Instructions, p. 110
511defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
512let Uses = [ICC] in
513  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
514
515let Defs = [ICC] in
516  defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
517
518let Defs = [ICC], rd = 0 in {
519  def CMPrr   : F3_1<2, 0b010100,
520                     (outs), (ins IntRegs:$b, IntRegs:$c),
521                     "cmp $b, $c",
522                     [(SPcmpicc i32:$b, i32:$c)]>;
523  def CMPri   : F3_2<2, 0b010100,
524                     (outs), (ins IntRegs:$b, i32imm:$c),
525                     "cmp $b, $c",
526                     [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
527}
528
529let Uses = [ICC], Defs = [ICC] in
530  def SUBXCCrr: F3_1<2, 0b011100,
531                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
532                "subxcc $b, $c, $dst", []>;
533
534
535// Section B.18 - Multiply Instructions, p. 113
536let Defs = [Y] in {
537  defm UMUL : F3_12np<"umul", 0b001010>;
538  defm SMUL : F3_12  <"smul", 0b001011, mul>;
539}
540
541// Section B.19 - Divide Instructions, p. 115
542let Defs = [Y] in {
543  defm UDIV : F3_12np<"udiv", 0b001110>;
544  defm SDIV : F3_12np<"sdiv", 0b001111>;
545}
546
547// Section B.20 - SAVE and RESTORE, p. 117
548defm SAVE    : F3_12np<"save"   , 0b111100>;
549defm RESTORE : F3_12np<"restore", 0b111101>;
550
551// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
552
553// unconditional branch class.
554class BranchAlways<dag ins, string asmstr, list<dag> pattern>
555  : F2_2<0b010, (outs), ins, asmstr, pattern> {
556  let isBranch     = 1;
557  let isTerminator = 1;
558  let hasDelaySlot = 1;
559  let isBarrier    = 1;
560}
561
562let cond = 8 in
563  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
564
565// conditional branch class:
566class BranchSP<dag ins, string asmstr, list<dag> pattern>
567 : F2_2<0b010, (outs), ins, asmstr, pattern> {
568  let isBranch = 1;
569  let isTerminator = 1;
570  let hasDelaySlot = 1;
571}
572
573// Indirect branch instructions.
574let isTerminator = 1, isBarrier = 1,
575     hasDelaySlot = 1, isBranch =1,
576     isIndirectBranch = 1, rd = 0 in {
577  def BINDrr  : F3_1<2, 0b111000,
578                   (outs), (ins MEMrr:$ptr),
579                   "jmp $ptr",
580                   [(brind ADDRrr:$ptr)]>;
581  def BINDri  : F3_2<2, 0b111000,
582                   (outs), (ins MEMri:$ptr),
583                   "jmp $ptr",
584                   [(brind ADDRri:$ptr)]>;
585}
586
587let Uses = [ICC] in
588  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
589                         "b$cond $imm22",
590                        [(SPbricc bb:$imm22, imm:$cond)]>;
591
592// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
593
594// floating-point conditional branch class:
595class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
596 : F2_2<0b110, (outs), ins, asmstr, pattern> {
597  let isBranch = 1;
598  let isTerminator = 1;
599  let hasDelaySlot = 1;
600}
601
602let Uses = [FCC] in
603  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
604                              "fb$cond $imm22",
605                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
606
607
608// Section B.24 - Call and Link Instruction, p. 125
609// This is the only Format 1 instruction
610let Uses = [O6],
611    hasDelaySlot = 1, isCall = 1 in {
612  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
613                    "call $dst", []> {
614    bits<30> disp;
615    let op = 1;
616    let Inst{29-0} = disp;
617  }
618
619  // indirect calls
620  def JMPLrr : F3_1<2, 0b111000,
621                    (outs), (ins MEMrr:$ptr, variable_ops),
622                    "call $ptr",
623                    [(call ADDRrr:$ptr)]> { let rd = 15; }
624  def JMPLri : F3_2<2, 0b111000,
625                    (outs), (ins MEMri:$ptr, variable_ops),
626                    "call $ptr",
627                    [(call ADDRri:$ptr)]> { let rd = 15; }
628}
629
630// Section B.28 - Read State Register Instructions
631let Uses = [Y], rs1 = 0, rs2 = 0 in
632  def RDY : F3_1<2, 0b101000,
633                 (outs IntRegs:$dst), (ins),
634                 "rd %y, $dst", []>;
635
636// Section B.29 - Write State Register Instructions
637let Defs = [Y], rd = 0 in {
638  def WRYrr : F3_1<2, 0b110000,
639                   (outs), (ins IntRegs:$b, IntRegs:$c),
640                   "wr $b, $c, %y", []>;
641  def WRYri : F3_2<2, 0b110000,
642                   (outs), (ins IntRegs:$b, i32imm:$c),
643                   "wr $b, $c, %y", []>;
644}
645// Convert Integer to Floating-point Instructions, p. 141
646def FITOS : F3_3u<2, 0b110100, 0b011000100,
647                 (outs FPRegs:$dst), (ins FPRegs:$src),
648                 "fitos $src, $dst",
649                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
650def FITOD : F3_3u<2, 0b110100, 0b011001000,
651                 (outs DFPRegs:$dst), (ins FPRegs:$src),
652                 "fitod $src, $dst",
653                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
654def FITOQ : F3_3u<2, 0b110100, 0b011001100,
655                 (outs QFPRegs:$dst), (ins FPRegs:$src),
656                 "fitoq $src, $dst",
657                 [(set QFPRegs:$dst, (SPitof FPRegs:$src))]>,
658                 Requires<[HasHardQuad]>;
659
660// Convert Floating-point to Integer Instructions, p. 142
661def FSTOI : F3_3u<2, 0b110100, 0b011010001,
662                 (outs FPRegs:$dst), (ins FPRegs:$src),
663                 "fstoi $src, $dst",
664                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
665def FDTOI : F3_3u<2, 0b110100, 0b011010010,
666                 (outs FPRegs:$dst), (ins DFPRegs:$src),
667                 "fdtoi $src, $dst",
668                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
669def FQTOI : F3_3u<2, 0b110100, 0b011010011,
670                 (outs FPRegs:$dst), (ins QFPRegs:$src),
671                 "fqtoi $src, $dst",
672                 [(set FPRegs:$dst, (SPftoi QFPRegs:$src))]>,
673                 Requires<[HasHardQuad]>;
674
675// Convert between Floating-point Formats Instructions, p. 143
676def FSTOD : F3_3u<2, 0b110100, 0b011001001,
677                 (outs DFPRegs:$dst), (ins FPRegs:$src),
678                 "fstod $src, $dst",
679                 [(set f64:$dst, (fextend f32:$src))]>;
680def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
681                 (outs QFPRegs:$dst), (ins FPRegs:$src),
682                 "fstoq $src, $dst",
683                 [(set f128:$dst, (fextend f32:$src))]>,
684                 Requires<[HasHardQuad]>;
685def FDTOS : F3_3u<2, 0b110100, 0b011000110,
686                 (outs FPRegs:$dst), (ins DFPRegs:$src),
687                 "fdtos $src, $dst",
688                 [(set f32:$dst, (fround f64:$src))]>;
689def FDTOQ : F3_3u<2, 0b110100, 0b01101110,
690                 (outs QFPRegs:$dst), (ins DFPRegs:$src),
691                 "fdtoq $src, $dst",
692                 [(set f128:$dst, (fextend f64:$src))]>,
693                 Requires<[HasHardQuad]>;
694def FQTOS : F3_3u<2, 0b110100, 0b011000111,
695                 (outs FPRegs:$dst), (ins QFPRegs:$src),
696                 "fqtos $src, $dst",
697                 [(set f32:$dst, (fround f128:$src))]>,
698                 Requires<[HasHardQuad]>;
699def FQTOD : F3_3u<2, 0b110100, 0b011001011,
700                 (outs DFPRegs:$dst), (ins QFPRegs:$src),
701                 "fqtod $src, $dst",
702                 [(set f64:$dst, (fround f128:$src))]>,
703                 Requires<[HasHardQuad]>;
704
705// Floating-point Move Instructions, p. 144
706def FMOVS : F3_3u<2, 0b110100, 0b000000001,
707                 (outs FPRegs:$dst), (ins FPRegs:$src),
708                 "fmovs $src, $dst", []>;
709def FNEGS : F3_3u<2, 0b110100, 0b000000101,
710                 (outs FPRegs:$dst), (ins FPRegs:$src),
711                 "fnegs $src, $dst",
712                 [(set f32:$dst, (fneg f32:$src))]>;
713def FABSS : F3_3u<2, 0b110100, 0b000001001,
714                 (outs FPRegs:$dst), (ins FPRegs:$src),
715                 "fabss $src, $dst",
716                 [(set f32:$dst, (fabs f32:$src))]>;
717
718
719// Floating-point Square Root Instructions, p.145
720def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
721                  (outs FPRegs:$dst), (ins FPRegs:$src),
722                  "fsqrts $src, $dst",
723                  [(set f32:$dst, (fsqrt f32:$src))]>;
724def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
725                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
726                  "fsqrtd $src, $dst",
727                  [(set f64:$dst, (fsqrt f64:$src))]>;
728def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
729                  (outs QFPRegs:$dst), (ins QFPRegs:$src),
730                  "fsqrtq $src, $dst",
731                  [(set f128:$dst, (fsqrt f128:$src))]>,
732                  Requires<[HasHardQuad]>;
733
734
735
736// Floating-point Add and Subtract Instructions, p. 146
737def FADDS  : F3_3<2, 0b110100, 0b001000001,
738                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
739                  "fadds $src1, $src2, $dst",
740                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
741def FADDD  : F3_3<2, 0b110100, 0b001000010,
742                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
743                  "faddd $src1, $src2, $dst",
744                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
745def FADDQ  : F3_3<2, 0b110100, 0b001000011,
746                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
747                  "faddq $src1, $src2, $dst",
748                  [(set f128:$dst, (fadd f128:$src1, f128:$src2))]>,
749                  Requires<[HasHardQuad]>;
750
751def FSUBS  : F3_3<2, 0b110100, 0b001000101,
752                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
753                  "fsubs $src1, $src2, $dst",
754                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
755def FSUBD  : F3_3<2, 0b110100, 0b001000110,
756                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
757                  "fsubd $src1, $src2, $dst",
758                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
759def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
760                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
761                  "fsubq $src1, $src2, $dst",
762                  [(set f128:$dst, (fsub f128:$src1, f128:$src2))]>,
763                  Requires<[HasHardQuad]>;
764
765
766// Floating-point Multiply and Divide Instructions, p. 147
767def FMULS  : F3_3<2, 0b110100, 0b001001001,
768                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
769                  "fmuls $src1, $src2, $dst",
770                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
771def FMULD  : F3_3<2, 0b110100, 0b001001010,
772                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
773                  "fmuld $src1, $src2, $dst",
774                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
775def FMULQ  : F3_3<2, 0b110100, 0b001001011,
776                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
777                  "fmulq $src1, $src2, $dst",
778                  [(set f128:$dst, (fmul f128:$src1, f128:$src2))]>,
779                  Requires<[HasHardQuad]>;
780
781def FSMULD : F3_3<2, 0b110100, 0b001101001,
782                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
783                  "fsmuld $src1, $src2, $dst",
784                  [(set f64:$dst, (fmul (fextend f32:$src1),
785                                        (fextend f32:$src2)))]>;
786def FDMULQ : F3_3<2, 0b110100, 0b001101110,
787                  (outs QFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
788                  "fdmulq $src1, $src2, $dst",
789                  [(set f128:$dst, (fmul (fextend f64:$src1),
790                                         (fextend f64:$src2)))]>,
791                  Requires<[HasHardQuad]>;
792
793def FDIVS  : F3_3<2, 0b110100, 0b001001101,
794                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
795                 "fdivs $src1, $src2, $dst",
796                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
797def FDIVD  : F3_3<2, 0b110100, 0b001001110,
798                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
799                 "fdivd $src1, $src2, $dst",
800                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
801def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
802                 (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
803                 "fdivq $src1, $src2, $dst",
804                 [(set f128:$dst, (fdiv f128:$src1, f128:$src2))]>,
805                 Requires<[HasHardQuad]>;
806
807// Floating-point Compare Instructions, p. 148
808// Note: the 2nd template arg is different for these guys.
809// Note 2: the result of a FCMP is not available until the 2nd cycle
810// after the instr is retired, but there is no interlock. This behavior
811// is modelled with a forced noop after the instruction.
812let Defs = [FCC] in {
813  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
814                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
815                   "fcmps $src1, $src2\n\tnop",
816                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
817  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
818                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
819                   "fcmpd $src1, $src2\n\tnop",
820                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
821  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
822                   (outs), (ins QFPRegs:$src1, QFPRegs:$src2),
823                   "fcmpq $src1, $src2\n\tnop",
824                   [(SPcmpfcc f128:$src1, f128:$src2)]>,
825                   Requires<[HasHardQuad]>;
826}
827
828//===----------------------------------------------------------------------===//
829// Instructions for Thread Local Storage(TLS).
830//===----------------------------------------------------------------------===//
831
832def TLS_ADDrr : F3_1<2, 0b000000,
833                    (outs IntRegs:$rd),
834                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
835                    "add $rs1, $rs2, $rd, $sym",
836                    [(set i32:$rd,
837                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
838
839let mayLoad = 1 in
840  def TLS_LDrr : F3_1<3, 0b000000,
841                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
842                      "ld [$addr], $dst, $sym",
843                      [(set i32:$dst,
844                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
845
846let Uses = [O6], isCall = 1 in
847  def TLS_CALL : InstSP<(outs),
848                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
849                        "call $disp, $sym\n\tnop",
850                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
851  bits<30> disp;
852  let op = 1;
853  let Inst{29-0} = disp;
854}
855
856//===----------------------------------------------------------------------===//
857// V9 Instructions
858//===----------------------------------------------------------------------===//
859
860// V9 Conditional Moves.
861let Predicates = [HasV9], Constraints = "$f = $rd" in {
862  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
863  let Uses = [ICC], cc = 0b100 in {
864    def MOVICCrr
865      : F4_1<0b101100, (outs IntRegs:$rd),
866             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
867             "mov$cond %icc, $rs2, $rd",
868             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
869
870    def MOVICCri
871      : F4_2<0b101100, (outs IntRegs:$rd),
872             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
873             "mov$cond %icc, $simm11, $rd",
874             [(set i32:$rd,
875                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
876  }
877
878  let Uses = [FCC], cc = 0b000 in {
879    def MOVFCCrr
880      : F4_1<0b101100, (outs IntRegs:$rd),
881             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
882             "mov$cond %fcc0, $rs2, $rd",
883             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
884    def MOVFCCri
885      : F4_2<0b101100, (outs IntRegs:$rd),
886             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
887             "mov$cond %fcc0, $simm11, $rd",
888             [(set i32:$rd,
889                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
890  }
891
892  let Uses = [ICC], opf_cc = 0b100 in {
893    def FMOVS_ICC
894      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
895             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
896             "fmovs$cond %icc, $rs2, $rd",
897             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
898    def FMOVD_ICC
899      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
900               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
901               "fmovd$cond %icc, $rs2, $rd",
902               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
903    def FMOVQ_ICC
904      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
905               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
906               "fmovd$cond %icc, $rs2, $rd",
907               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>;
908  }
909
910  let Uses = [FCC], opf_cc = 0b000 in {
911    def FMOVS_FCC
912      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
913             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
914             "fmovs$cond %fcc0, $rs2, $rd",
915             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
916    def FMOVD_FCC
917      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
918             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
919             "fmovd$cond %fcc0, $rs2, $rd",
920             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
921    def FMOVQ_FCC
922      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
923             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
924             "fmovd$cond %fcc0, $rs2, $rd",
925             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>;
926  }
927
928}
929
930// Floating-Point Move Instructions, p. 164 of the V9 manual.
931let Predicates = [HasV9] in {
932  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
933                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
934                   "fmovd $src, $dst", []>;
935  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
936                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
937                   "fmovq $src, $dst", []>,
938                   Requires<[HasHardQuad]>;
939  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
940                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
941                   "fnegd $src, $dst",
942                   [(set f64:$dst, (fneg f64:$src))]>;
943  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
944                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
945                   "fnegq $src, $dst",
946                   [(set f128:$dst, (fneg f128:$src))]>,
947                   Requires<[HasHardQuad]>;
948  def FABSD : F3_3u<2, 0b110100, 0b000001010,
949                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
950                   "fabsd $src, $dst",
951                   [(set f64:$dst, (fabs f64:$src))]>;
952  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
953                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
954                   "fabsq $src, $dst",
955                   [(set f128:$dst, (fabs f128:$src))]>,
956                   Requires<[HasHardQuad]>;
957}
958
959// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
960// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
961let rs1 = 0 in
962  def POPCrr : F3_1<2, 0b101110,
963                    (outs IntRegs:$dst), (ins IntRegs:$src),
964                    "popc $src, $dst", []>, Requires<[HasV9]>;
965def : Pat<(ctpop i32:$src),
966          (POPCrr (SLLri $src, 0))>;
967
968//===----------------------------------------------------------------------===//
969// Non-Instruction Patterns
970//===----------------------------------------------------------------------===//
971
972// Small immediates.
973def : Pat<(i32 simm13:$val),
974          (ORri (i32 G0), imm:$val)>;
975// Arbitrary immediates.
976def : Pat<(i32 imm:$val),
977          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
978
979
980// Global addresses, constant pool entries
981def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
982def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
983def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
984def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
985
986// GlobalTLS addresses
987def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
988def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
989def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
990          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
991def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
992          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
993
994// Blockaddress
995def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
996def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
997
998// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
999def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1000def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1001def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1002                        (ADDri $r, tblockaddress:$in)>;
1003
1004// Calls:
1005def : Pat<(call tglobaladdr:$dst),
1006          (CALL tglobaladdr:$dst)>;
1007def : Pat<(call texternalsym:$dst),
1008          (CALL texternalsym:$dst)>;
1009
1010// Map integer extload's to zextloads.
1011def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1012def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1013def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1014def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1015def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1016def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1017
1018// zextload bool -> zextload byte
1019def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1020def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1021
1022// store 0, addr -> store %g0, addr
1023def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1024def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1025
1026include "SparcInstr64Bit.td"
1027