1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include <cctype>
24
25using namespace llvm;
26
27#define DEBUG_TYPE "systemz-lower"
28
29namespace {
30// Represents a sequence for extracting a 0/1 value from an IPM result:
31// (((X ^ XORValue) + AddValue) >> Bit)
32struct IPMConversion {
33  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36  int64_t XORValue;
37  int64_t AddValue;
38  unsigned Bit;
39};
40
41// Represents information about a comparison.
42struct Comparison {
43  Comparison(SDValue Op0In, SDValue Op1In)
44    : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46  // The operands to the comparison.
47  SDValue Op0, Op1;
48
49  // The opcode that should be used to compare Op0 and Op1.
50  unsigned Opcode;
51
52  // A SystemZICMP value.  Only used for integer comparisons.
53  unsigned ICmpType;
54
55  // The mask of CC values that Opcode can produce.
56  unsigned CCValid;
57
58  // The mask of CC values for which the original condition is true.
59  unsigned CCMask;
60};
61} // end anonymous namespace
62
63// Classify VT as either 32 or 64 bit.
64static bool is32Bit(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  case MVT::i32:
67    return true;
68  case MVT::i64:
69    return false;
70  default:
71    llvm_unreachable("Unsupported type");
72  }
73}
74
75// Return a version of MachineOperand that can be safely used before the
76// final use.
77static MachineOperand earlyUseOperand(MachineOperand Op) {
78  if (Op.isReg())
79    Op.setIsKill(false);
80  return Op;
81}
82
83SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
84    : TargetLowering(tm, new TargetLoweringObjectFileELF()),
85      Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
86  MVT PtrVT = getPointerTy();
87
88  // Set up the register classes.
89  if (Subtarget.hasHighWord())
90    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91  else
92    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
94  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
95  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
96  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98  // Compute derived properties from the register classes
99  computeRegisterProperties();
100
101  // Set up special registers.
102  setExceptionPointerRegister(SystemZ::R6D);
103  setExceptionSelectorRegister(SystemZ::R7D);
104  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106  // TODO: It may be better to default to latency-oriented scheduling, however
107  // LLVM's current latency-oriented scheduler can't handle physreg definitions
108  // such as SystemZ has with CC, so set this to the register-pressure
109  // scheduler, because it can.
110  setSchedulingPreference(Sched::RegPressure);
111
112  setBooleanContents(ZeroOrOneBooleanContent);
113  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115  // Instructions are strings of 2-byte aligned 2-byte values.
116  setMinFunctionAlignment(2);
117
118  // Handle operations that are handled in a similar way for all types.
119  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120       I <= MVT::LAST_FP_VALUETYPE;
121       ++I) {
122    MVT VT = MVT::SimpleValueType(I);
123    if (isTypeLegal(VT)) {
124      // Lower SET_CC into an IPM-based sequence.
125      setOperationAction(ISD::SETCC, VT, Custom);
126
127      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128      setOperationAction(ISD::SELECT, VT, Expand);
129
130      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131      setOperationAction(ISD::SELECT_CC, VT, Custom);
132      setOperationAction(ISD::BR_CC,     VT, Custom);
133    }
134  }
135
136  // Expand jump table branches as address arithmetic followed by an
137  // indirect jump.
138  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140  // Expand BRCOND into a BR_CC (see above).
141  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143  // Handle integer types.
144  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145       I <= MVT::LAST_INTEGER_VALUETYPE;
146       ++I) {
147    MVT VT = MVT::SimpleValueType(I);
148    if (isTypeLegal(VT)) {
149      // Expand individual DIV and REMs into DIVREMs.
150      setOperationAction(ISD::SDIV, VT, Expand);
151      setOperationAction(ISD::UDIV, VT, Expand);
152      setOperationAction(ISD::SREM, VT, Expand);
153      setOperationAction(ISD::UREM, VT, Expand);
154      setOperationAction(ISD::SDIVREM, VT, Custom);
155      setOperationAction(ISD::UDIVREM, VT, Custom);
156
157      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158      // stores, putting a serialization instruction after the stores.
159      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
160      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
161
162      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163      // available, or if the operand is constant.
164      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
166      // No special instructions for these.
167      setOperationAction(ISD::CTPOP,           VT, Expand);
168      setOperationAction(ISD::CTTZ,            VT, Expand);
169      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171      setOperationAction(ISD::ROTR,            VT, Expand);
172
173      // Use *MUL_LOHI where possible instead of MULH*.
174      setOperationAction(ISD::MULHS, VT, Expand);
175      setOperationAction(ISD::MULHU, VT, Expand);
176      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
178
179      // Only z196 and above have native support for conversions to unsigned.
180      if (!Subtarget.hasFPExtension())
181        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182    }
183  }
184
185  // Type legalization will convert 8- and 16-bit atomic operations into
186  // forms that operate on i32s (but still keeping the original memory VT).
187  // Lower them into full i32 operations.
188  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
189  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
190  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
191  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
192  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
193  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
194  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
196  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
197  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
200
201  // z10 has instructions for signed but not unsigned FP conversion.
202  // Handle unsigned 32-bit types as signed 64-bit types.
203  if (!Subtarget.hasFPExtension()) {
204    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206  }
207
208  // We have native support for a 64-bit CTLZ, via FLOGR.
209  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213  setOperationAction(ISD::OR, MVT::i64, Custom);
214
215  // FIXME: Can we support these natively?
216  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220  // We have native instructions for i8, i16 and i32 extensions, but not i1.
221  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
222  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
223  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
224  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
225
226  // Handle the various types of symbolic address.
227  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
228  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
229  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
230  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
231  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
232
233  // We need to handle dynamic allocations specially because of the
234  // 160-byte area at the bottom of the stack.
235  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
236
237  // Use custom expanders so that we can force the function to use
238  // a frame pointer.
239  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
240  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
241
242  // Handle prefetches with PFD or PFDRL.
243  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
244
245  // Handle floating-point types.
246  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
247       I <= MVT::LAST_FP_VALUETYPE;
248       ++I) {
249    MVT VT = MVT::SimpleValueType(I);
250    if (isTypeLegal(VT)) {
251      // We can use FI for FRINT.
252      setOperationAction(ISD::FRINT, VT, Legal);
253
254      // We can use the extended form of FI for other rounding operations.
255      if (Subtarget.hasFPExtension()) {
256        setOperationAction(ISD::FNEARBYINT, VT, Legal);
257        setOperationAction(ISD::FFLOOR, VT, Legal);
258        setOperationAction(ISD::FCEIL, VT, Legal);
259        setOperationAction(ISD::FTRUNC, VT, Legal);
260        setOperationAction(ISD::FROUND, VT, Legal);
261      }
262
263      // No special instructions for these.
264      setOperationAction(ISD::FSIN, VT, Expand);
265      setOperationAction(ISD::FCOS, VT, Expand);
266      setOperationAction(ISD::FREM, VT, Expand);
267    }
268  }
269
270  // We have fused multiply-addition for f32 and f64 but not f128.
271  setOperationAction(ISD::FMA, MVT::f32,  Legal);
272  setOperationAction(ISD::FMA, MVT::f64,  Legal);
273  setOperationAction(ISD::FMA, MVT::f128, Expand);
274
275  // Needed so that we don't try to implement f128 constant loads using
276  // a load-and-extend of a f80 constant (in cases where the constant
277  // would fit in an f80).
278  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
279
280  // Floating-point truncation and stores need to be done separately.
281  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
282  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
283  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
284
285  // We have 64-bit FPR<->GPR moves, but need special handling for
286  // 32-bit forms.
287  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
288  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
289
290  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
291  // structure, but VAEND is a no-op.
292  setOperationAction(ISD::VASTART, MVT::Other, Custom);
293  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
294  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
295
296  // Codes for which we want to perform some z-specific combinations.
297  setTargetDAGCombine(ISD::SIGN_EXTEND);
298
299  // We want to use MVC in preference to even a single load/store pair.
300  MaxStoresPerMemcpy = 0;
301  MaxStoresPerMemcpyOptSize = 0;
302
303  // The main memset sequence is a byte store followed by an MVC.
304  // Two STC or MV..I stores win over that, but the kind of fused stores
305  // generated by target-independent code don't when the byte value is
306  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
307  // than "STC;MVC".  Handle the choice in target-specific code instead.
308  MaxStoresPerMemset = 0;
309  MaxStoresPerMemsetOptSize = 0;
310}
311
312EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
313  if (!VT.isVector())
314    return MVT::i32;
315  return VT.changeVectorElementTypeToInteger();
316}
317
318bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
319  VT = VT.getScalarType();
320
321  if (!VT.isSimple())
322    return false;
323
324  switch (VT.getSimpleVT().SimpleTy) {
325  case MVT::f32:
326  case MVT::f64:
327    return true;
328  case MVT::f128:
329    return false;
330  default:
331    break;
332  }
333
334  return false;
335}
336
337bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
338  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
339  return Imm.isZero() || Imm.isNegZero();
340}
341
342bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
343                                                          unsigned,
344                                                          bool *Fast) const {
345  // Unaligned accesses should never be slower than the expanded version.
346  // We check specifically for aligned accesses in the few cases where
347  // they are required.
348  if (Fast)
349    *Fast = true;
350  return true;
351}
352
353bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
354                                                  Type *Ty) const {
355  // Punt on globals for now, although they can be used in limited
356  // RELATIVE LONG cases.
357  if (AM.BaseGV)
358    return false;
359
360  // Require a 20-bit signed offset.
361  if (!isInt<20>(AM.BaseOffs))
362    return false;
363
364  // Indexing is OK but no scale factor can be applied.
365  return AM.Scale == 0 || AM.Scale == 1;
366}
367
368bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
369  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
370    return false;
371  unsigned FromBits = FromType->getPrimitiveSizeInBits();
372  unsigned ToBits = ToType->getPrimitiveSizeInBits();
373  return FromBits > ToBits;
374}
375
376bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
377  if (!FromVT.isInteger() || !ToVT.isInteger())
378    return false;
379  unsigned FromBits = FromVT.getSizeInBits();
380  unsigned ToBits = ToVT.getSizeInBits();
381  return FromBits > ToBits;
382}
383
384//===----------------------------------------------------------------------===//
385// Inline asm support
386//===----------------------------------------------------------------------===//
387
388TargetLowering::ConstraintType
389SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
390  if (Constraint.size() == 1) {
391    switch (Constraint[0]) {
392    case 'a': // Address register
393    case 'd': // Data register (equivalent to 'r')
394    case 'f': // Floating-point register
395    case 'h': // High-part register
396    case 'r': // General-purpose register
397      return C_RegisterClass;
398
399    case 'Q': // Memory with base and unsigned 12-bit displacement
400    case 'R': // Likewise, plus an index
401    case 'S': // Memory with base and signed 20-bit displacement
402    case 'T': // Likewise, plus an index
403    case 'm': // Equivalent to 'T'.
404      return C_Memory;
405
406    case 'I': // Unsigned 8-bit constant
407    case 'J': // Unsigned 12-bit constant
408    case 'K': // Signed 16-bit constant
409    case 'L': // Signed 20-bit displacement (on all targets we support)
410    case 'M': // 0x7fffffff
411      return C_Other;
412
413    default:
414      break;
415    }
416  }
417  return TargetLowering::getConstraintType(Constraint);
418}
419
420TargetLowering::ConstraintWeight SystemZTargetLowering::
421getSingleConstraintMatchWeight(AsmOperandInfo &info,
422                               const char *constraint) const {
423  ConstraintWeight weight = CW_Invalid;
424  Value *CallOperandVal = info.CallOperandVal;
425  // If we don't have a value, we can't do a match,
426  // but allow it at the lowest weight.
427  if (!CallOperandVal)
428    return CW_Default;
429  Type *type = CallOperandVal->getType();
430  // Look at the constraint type.
431  switch (*constraint) {
432  default:
433    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
434    break;
435
436  case 'a': // Address register
437  case 'd': // Data register (equivalent to 'r')
438  case 'h': // High-part register
439  case 'r': // General-purpose register
440    if (CallOperandVal->getType()->isIntegerTy())
441      weight = CW_Register;
442    break;
443
444  case 'f': // Floating-point register
445    if (type->isFloatingPointTy())
446      weight = CW_Register;
447    break;
448
449  case 'I': // Unsigned 8-bit constant
450    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
451      if (isUInt<8>(C->getZExtValue()))
452        weight = CW_Constant;
453    break;
454
455  case 'J': // Unsigned 12-bit constant
456    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
457      if (isUInt<12>(C->getZExtValue()))
458        weight = CW_Constant;
459    break;
460
461  case 'K': // Signed 16-bit constant
462    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
463      if (isInt<16>(C->getSExtValue()))
464        weight = CW_Constant;
465    break;
466
467  case 'L': // Signed 20-bit displacement (on all targets we support)
468    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
469      if (isInt<20>(C->getSExtValue()))
470        weight = CW_Constant;
471    break;
472
473  case 'M': // 0x7fffffff
474    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
475      if (C->getZExtValue() == 0x7fffffff)
476        weight = CW_Constant;
477    break;
478  }
479  return weight;
480}
481
482// Parse a "{tNNN}" register constraint for which the register type "t"
483// has already been verified.  MC is the class associated with "t" and
484// Map maps 0-based register numbers to LLVM register numbers.
485static std::pair<unsigned, const TargetRegisterClass *>
486parseRegisterNumber(const std::string &Constraint,
487                    const TargetRegisterClass *RC, const unsigned *Map) {
488  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
489  if (isdigit(Constraint[2])) {
490    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
491    unsigned Index = atoi(Suffix.c_str());
492    if (Index < 16 && Map[Index])
493      return std::make_pair(Map[Index], RC);
494  }
495  return std::make_pair(0U, nullptr);
496}
497
498std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
499getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
500  if (Constraint.size() == 1) {
501    // GCC Constraint Letters
502    switch (Constraint[0]) {
503    default: break;
504    case 'd': // Data register (equivalent to 'r')
505    case 'r': // General-purpose register
506      if (VT == MVT::i64)
507        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
508      else if (VT == MVT::i128)
509        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
510      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
511
512    case 'a': // Address register
513      if (VT == MVT::i64)
514        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
515      else if (VT == MVT::i128)
516        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
517      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
518
519    case 'h': // High-part register (an LLVM extension)
520      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
521
522    case 'f': // Floating-point register
523      if (VT == MVT::f64)
524        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
525      else if (VT == MVT::f128)
526        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
527      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
528    }
529  }
530  if (Constraint[0] == '{') {
531    // We need to override the default register parsing for GPRs and FPRs
532    // because the interpretation depends on VT.  The internal names of
533    // the registers are also different from the external names
534    // (F0D and F0S instead of F0, etc.).
535    if (Constraint[1] == 'r') {
536      if (VT == MVT::i32)
537        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
538                                   SystemZMC::GR32Regs);
539      if (VT == MVT::i128)
540        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
541                                   SystemZMC::GR128Regs);
542      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
543                                 SystemZMC::GR64Regs);
544    }
545    if (Constraint[1] == 'f') {
546      if (VT == MVT::f32)
547        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
548                                   SystemZMC::FP32Regs);
549      if (VT == MVT::f128)
550        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
551                                   SystemZMC::FP128Regs);
552      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
553                                 SystemZMC::FP64Regs);
554    }
555  }
556  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
557}
558
559void SystemZTargetLowering::
560LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
561                             std::vector<SDValue> &Ops,
562                             SelectionDAG &DAG) const {
563  // Only support length 1 constraints for now.
564  if (Constraint.length() == 1) {
565    switch (Constraint[0]) {
566    case 'I': // Unsigned 8-bit constant
567      if (auto *C = dyn_cast<ConstantSDNode>(Op))
568        if (isUInt<8>(C->getZExtValue()))
569          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
570                                              Op.getValueType()));
571      return;
572
573    case 'J': // Unsigned 12-bit constant
574      if (auto *C = dyn_cast<ConstantSDNode>(Op))
575        if (isUInt<12>(C->getZExtValue()))
576          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
577                                              Op.getValueType()));
578      return;
579
580    case 'K': // Signed 16-bit constant
581      if (auto *C = dyn_cast<ConstantSDNode>(Op))
582        if (isInt<16>(C->getSExtValue()))
583          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
584                                              Op.getValueType()));
585      return;
586
587    case 'L': // Signed 20-bit displacement (on all targets we support)
588      if (auto *C = dyn_cast<ConstantSDNode>(Op))
589        if (isInt<20>(C->getSExtValue()))
590          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
591                                              Op.getValueType()));
592      return;
593
594    case 'M': // 0x7fffffff
595      if (auto *C = dyn_cast<ConstantSDNode>(Op))
596        if (C->getZExtValue() == 0x7fffffff)
597          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
598                                              Op.getValueType()));
599      return;
600    }
601  }
602  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
603}
604
605//===----------------------------------------------------------------------===//
606// Calling conventions
607//===----------------------------------------------------------------------===//
608
609#include "SystemZGenCallingConv.inc"
610
611bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
612                                                     Type *ToType) const {
613  return isTruncateFree(FromType, ToType);
614}
615
616bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
617  if (!CI->isTailCall())
618    return false;
619  return true;
620}
621
622// Value is a value that has been passed to us in the location described by VA
623// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
624// any loads onto Chain.
625static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
626                                   CCValAssign &VA, SDValue Chain,
627                                   SDValue Value) {
628  // If the argument has been promoted from a smaller type, insert an
629  // assertion to capture this.
630  if (VA.getLocInfo() == CCValAssign::SExt)
631    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
632                        DAG.getValueType(VA.getValVT()));
633  else if (VA.getLocInfo() == CCValAssign::ZExt)
634    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
635                        DAG.getValueType(VA.getValVT()));
636
637  if (VA.isExtInLoc())
638    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
639  else if (VA.getLocInfo() == CCValAssign::Indirect)
640    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
641                        MachinePointerInfo(), false, false, false, 0);
642  else
643    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
644  return Value;
645}
646
647// Value is a value of type VA.getValVT() that we need to copy into
648// the location described by VA.  Return a copy of Value converted to
649// VA.getValVT().  The caller is responsible for handling indirect values.
650static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
651                                   CCValAssign &VA, SDValue Value) {
652  switch (VA.getLocInfo()) {
653  case CCValAssign::SExt:
654    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
655  case CCValAssign::ZExt:
656    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
657  case CCValAssign::AExt:
658    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
659  case CCValAssign::Full:
660    return Value;
661  default:
662    llvm_unreachable("Unhandled getLocInfo()");
663  }
664}
665
666SDValue SystemZTargetLowering::
667LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
668                     const SmallVectorImpl<ISD::InputArg> &Ins,
669                     SDLoc DL, SelectionDAG &DAG,
670                     SmallVectorImpl<SDValue> &InVals) const {
671  MachineFunction &MF = DAG.getMachineFunction();
672  MachineFrameInfo *MFI = MF.getFrameInfo();
673  MachineRegisterInfo &MRI = MF.getRegInfo();
674  SystemZMachineFunctionInfo *FuncInfo =
675    MF.getInfo<SystemZMachineFunctionInfo>();
676  auto *TFL = static_cast<const SystemZFrameLowering *>(
677      DAG.getTarget().getFrameLowering());
678
679  // Assign locations to all of the incoming arguments.
680  SmallVector<CCValAssign, 16> ArgLocs;
681  CCState CCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
682                 *DAG.getContext());
683  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
684
685  unsigned NumFixedGPRs = 0;
686  unsigned NumFixedFPRs = 0;
687  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
688    SDValue ArgValue;
689    CCValAssign &VA = ArgLocs[I];
690    EVT LocVT = VA.getLocVT();
691    if (VA.isRegLoc()) {
692      // Arguments passed in registers
693      const TargetRegisterClass *RC;
694      switch (LocVT.getSimpleVT().SimpleTy) {
695      default:
696        // Integers smaller than i64 should be promoted to i64.
697        llvm_unreachable("Unexpected argument type");
698      case MVT::i32:
699        NumFixedGPRs += 1;
700        RC = &SystemZ::GR32BitRegClass;
701        break;
702      case MVT::i64:
703        NumFixedGPRs += 1;
704        RC = &SystemZ::GR64BitRegClass;
705        break;
706      case MVT::f32:
707        NumFixedFPRs += 1;
708        RC = &SystemZ::FP32BitRegClass;
709        break;
710      case MVT::f64:
711        NumFixedFPRs += 1;
712        RC = &SystemZ::FP64BitRegClass;
713        break;
714      }
715
716      unsigned VReg = MRI.createVirtualRegister(RC);
717      MRI.addLiveIn(VA.getLocReg(), VReg);
718      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
719    } else {
720      assert(VA.isMemLoc() && "Argument not register or memory");
721
722      // Create the frame index object for this incoming parameter.
723      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
724                                      VA.getLocMemOffset(), true);
725
726      // Create the SelectionDAG nodes corresponding to a load
727      // from this parameter.  Unpromoted ints and floats are
728      // passed as right-justified 8-byte values.
729      EVT PtrVT = getPointerTy();
730      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
731      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
732        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
733      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
734                             MachinePointerInfo::getFixedStack(FI),
735                             false, false, false, 0);
736    }
737
738    // Convert the value of the argument register into the value that's
739    // being passed.
740    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
741  }
742
743  if (IsVarArg) {
744    // Save the number of non-varargs registers for later use by va_start, etc.
745    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
746    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
747
748    // Likewise the address (in the form of a frame index) of where the
749    // first stack vararg would be.  The 1-byte size here is arbitrary.
750    int64_t StackSize = CCInfo.getNextStackOffset();
751    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
752
753    // ...and a similar frame index for the caller-allocated save area
754    // that will be used to store the incoming registers.
755    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
756    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
757    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
758
759    // Store the FPR varargs in the reserved frame slots.  (We store the
760    // GPRs as part of the prologue.)
761    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
762      SDValue MemOps[SystemZ::NumArgFPRs];
763      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
764        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
765        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
766        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
767        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
768                                     &SystemZ::FP64BitRegClass);
769        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
770        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
771                                 MachinePointerInfo::getFixedStack(FI),
772                                 false, false, 0);
773
774      }
775      // Join the stores, which are independent of one another.
776      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
777                          makeArrayRef(&MemOps[NumFixedFPRs],
778                                       SystemZ::NumArgFPRs-NumFixedFPRs));
779    }
780  }
781
782  return Chain;
783}
784
785static bool canUseSiblingCall(CCState ArgCCInfo,
786                              SmallVectorImpl<CCValAssign> &ArgLocs) {
787  // Punt if there are any indirect or stack arguments, or if the call
788  // needs the call-saved argument register R6.
789  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
790    CCValAssign &VA = ArgLocs[I];
791    if (VA.getLocInfo() == CCValAssign::Indirect)
792      return false;
793    if (!VA.isRegLoc())
794      return false;
795    unsigned Reg = VA.getLocReg();
796    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
797      return false;
798  }
799  return true;
800}
801
802SDValue
803SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
804                                 SmallVectorImpl<SDValue> &InVals) const {
805  SelectionDAG &DAG = CLI.DAG;
806  SDLoc &DL = CLI.DL;
807  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
808  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
809  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
810  SDValue Chain = CLI.Chain;
811  SDValue Callee = CLI.Callee;
812  bool &IsTailCall = CLI.IsTailCall;
813  CallingConv::ID CallConv = CLI.CallConv;
814  bool IsVarArg = CLI.IsVarArg;
815  MachineFunction &MF = DAG.getMachineFunction();
816  EVT PtrVT = getPointerTy();
817
818  // Analyze the operands of the call, assigning locations to each operand.
819  SmallVector<CCValAssign, 16> ArgLocs;
820  CCState ArgCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
821                    *DAG.getContext());
822  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
823
824  // We don't support GuaranteedTailCallOpt, only automatically-detected
825  // sibling calls.
826  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
827    IsTailCall = false;
828
829  // Get a count of how many bytes are to be pushed on the stack.
830  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
831
832  // Mark the start of the call.
833  if (!IsTailCall)
834    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
835                                 DL);
836
837  // Copy argument values to their designated locations.
838  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
839  SmallVector<SDValue, 8> MemOpChains;
840  SDValue StackPtr;
841  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
842    CCValAssign &VA = ArgLocs[I];
843    SDValue ArgValue = OutVals[I];
844
845    if (VA.getLocInfo() == CCValAssign::Indirect) {
846      // Store the argument in a stack slot and pass its address.
847      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
848      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
849      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
850                                         MachinePointerInfo::getFixedStack(FI),
851                                         false, false, 0));
852      ArgValue = SpillSlot;
853    } else
854      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
855
856    if (VA.isRegLoc())
857      // Queue up the argument copies and emit them at the end.
858      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
859    else {
860      assert(VA.isMemLoc() && "Argument not register or memory");
861
862      // Work out the address of the stack slot.  Unpromoted ints and
863      // floats are passed as right-justified 8-byte values.
864      if (!StackPtr.getNode())
865        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
866      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
867      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
868        Offset += 4;
869      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
870                                    DAG.getIntPtrConstant(Offset));
871
872      // Emit the store.
873      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
874                                         MachinePointerInfo(),
875                                         false, false, 0));
876    }
877  }
878
879  // Join the stores, which are independent of one another.
880  if (!MemOpChains.empty())
881    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
882
883  // Accept direct calls by converting symbolic call addresses to the
884  // associated Target* opcodes.  Force %r1 to be used for indirect
885  // tail calls.
886  SDValue Glue;
887  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
888    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
889    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
890  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
891    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
892    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
893  } else if (IsTailCall) {
894    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
895    Glue = Chain.getValue(1);
896    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
897  }
898
899  // Build a sequence of copy-to-reg nodes, chained and glued together.
900  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
901    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
902                             RegsToPass[I].second, Glue);
903    Glue = Chain.getValue(1);
904  }
905
906  // The first call operand is the chain and the second is the target address.
907  SmallVector<SDValue, 8> Ops;
908  Ops.push_back(Chain);
909  Ops.push_back(Callee);
910
911  // Add argument registers to the end of the list so that they are
912  // known live into the call.
913  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
914    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
915                                  RegsToPass[I].second.getValueType()));
916
917  // Add a register mask operand representing the call-preserved registers.
918  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
919  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
920  assert(Mask && "Missing call preserved mask for calling convention");
921  Ops.push_back(DAG.getRegisterMask(Mask));
922
923  // Glue the call to the argument copies, if any.
924  if (Glue.getNode())
925    Ops.push_back(Glue);
926
927  // Emit the call.
928  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
929  if (IsTailCall)
930    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
931  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
932  Glue = Chain.getValue(1);
933
934  // Mark the end of the call, which is glued to the call itself.
935  Chain = DAG.getCALLSEQ_END(Chain,
936                             DAG.getConstant(NumBytes, PtrVT, true),
937                             DAG.getConstant(0, PtrVT, true),
938                             Glue, DL);
939  Glue = Chain.getValue(1);
940
941  // Assign locations to each value returned by this call.
942  SmallVector<CCValAssign, 16> RetLocs;
943  CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
944                    *DAG.getContext());
945  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
946
947  // Copy all of the result registers out of their specified physreg.
948  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
949    CCValAssign &VA = RetLocs[I];
950
951    // Copy the value out, gluing the copy to the end of the call sequence.
952    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
953                                          VA.getLocVT(), Glue);
954    Chain = RetValue.getValue(1);
955    Glue = RetValue.getValue(2);
956
957    // Convert the value of the return register into the value that's
958    // being returned.
959    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
960  }
961
962  return Chain;
963}
964
965SDValue
966SystemZTargetLowering::LowerReturn(SDValue Chain,
967                                   CallingConv::ID CallConv, bool IsVarArg,
968                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
969                                   const SmallVectorImpl<SDValue> &OutVals,
970                                   SDLoc DL, SelectionDAG &DAG) const {
971  MachineFunction &MF = DAG.getMachineFunction();
972
973  // Assign locations to each returned value.
974  SmallVector<CCValAssign, 16> RetLocs;
975  CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
976                    *DAG.getContext());
977  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
978
979  // Quick exit for void returns
980  if (RetLocs.empty())
981    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
982
983  // Copy the result values into the output registers.
984  SDValue Glue;
985  SmallVector<SDValue, 4> RetOps;
986  RetOps.push_back(Chain);
987  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
988    CCValAssign &VA = RetLocs[I];
989    SDValue RetValue = OutVals[I];
990
991    // Make the return register live on exit.
992    assert(VA.isRegLoc() && "Can only return in registers!");
993
994    // Promote the value as required.
995    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
996
997    // Chain and glue the copies together.
998    unsigned Reg = VA.getLocReg();
999    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1000    Glue = Chain.getValue(1);
1001    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1002  }
1003
1004  // Update chain and glue.
1005  RetOps[0] = Chain;
1006  if (Glue.getNode())
1007    RetOps.push_back(Glue);
1008
1009  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1010}
1011
1012SDValue SystemZTargetLowering::
1013prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1014  return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1015}
1016
1017// CC is a comparison that will be implemented using an integer or
1018// floating-point comparison.  Return the condition code mask for
1019// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1020// unsigned comparisons and clear for signed ones.  In the floating-point
1021// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1022static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1023#define CONV(X) \
1024  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1025  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1026  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1027
1028  switch (CC) {
1029  default:
1030    llvm_unreachable("Invalid integer condition!");
1031
1032  CONV(EQ);
1033  CONV(NE);
1034  CONV(GT);
1035  CONV(GE);
1036  CONV(LT);
1037  CONV(LE);
1038
1039  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1040  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1041  }
1042#undef CONV
1043}
1044
1045// Return a sequence for getting a 1 from an IPM result when CC has a
1046// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1047// The handling of CC values outside CCValid doesn't matter.
1048static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1049  // Deal with cases where the result can be taken directly from a bit
1050  // of the IPM result.
1051  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1052    return IPMConversion(0, 0, SystemZ::IPM_CC);
1053  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1054    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1055
1056  // Deal with cases where we can add a value to force the sign bit
1057  // to contain the right value.  Putting the bit in 31 means we can
1058  // use SRL rather than RISBG(L), and also makes it easier to get a
1059  // 0/-1 value, so it has priority over the other tests below.
1060  //
1061  // These sequences rely on the fact that the upper two bits of the
1062  // IPM result are zero.
1063  uint64_t TopBit = uint64_t(1) << 31;
1064  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1065    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1066  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1067    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1068  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1069                            | SystemZ::CCMASK_1
1070                            | SystemZ::CCMASK_2)))
1071    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1072  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1073    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1074  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1075                            | SystemZ::CCMASK_2
1076                            | SystemZ::CCMASK_3)))
1077    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1078
1079  // Next try inverting the value and testing a bit.  0/1 could be
1080  // handled this way too, but we dealt with that case above.
1081  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1082    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1083
1084  // Handle cases where adding a value forces a non-sign bit to contain
1085  // the right value.
1086  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1087    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1088  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1089    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1090
1091  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1092  // can be done by inverting the low CC bit and applying one of the
1093  // sign-based extractions above.
1094  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1095    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1096  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1097    return IPMConversion(1 << SystemZ::IPM_CC,
1098                         TopBit - (3 << SystemZ::IPM_CC), 31);
1099  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1100                            | SystemZ::CCMASK_1
1101                            | SystemZ::CCMASK_3)))
1102    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1103  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1104                            | SystemZ::CCMASK_2
1105                            | SystemZ::CCMASK_3)))
1106    return IPMConversion(1 << SystemZ::IPM_CC,
1107                         TopBit - (1 << SystemZ::IPM_CC), 31);
1108
1109  llvm_unreachable("Unexpected CC combination");
1110}
1111
1112// If C can be converted to a comparison against zero, adjust the operands
1113// as necessary.
1114static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1115  if (C.ICmpType == SystemZICMP::UnsignedOnly)
1116    return;
1117
1118  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1119  if (!ConstOp1)
1120    return;
1121
1122  int64_t Value = ConstOp1->getSExtValue();
1123  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1124      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1125      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1126      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1127    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1128    C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
1129  }
1130}
1131
1132// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1133// adjust the operands as necessary.
1134static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
1135  // For us to make any changes, it must a comparison between a single-use
1136  // load and a constant.
1137  if (!C.Op0.hasOneUse() ||
1138      C.Op0.getOpcode() != ISD::LOAD ||
1139      C.Op1.getOpcode() != ISD::Constant)
1140    return;
1141
1142  // We must have an 8- or 16-bit load.
1143  auto *Load = cast<LoadSDNode>(C.Op0);
1144  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1145  if (NumBits != 8 && NumBits != 16)
1146    return;
1147
1148  // The load must be an extending one and the constant must be within the
1149  // range of the unextended value.
1150  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1151  uint64_t Value = ConstOp1->getZExtValue();
1152  uint64_t Mask = (1 << NumBits) - 1;
1153  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1154    // Make sure that ConstOp1 is in range of C.Op0.
1155    int64_t SignedValue = ConstOp1->getSExtValue();
1156    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1157      return;
1158    if (C.ICmpType != SystemZICMP::SignedOnly) {
1159      // Unsigned comparison between two sign-extended values is equivalent
1160      // to unsigned comparison between two zero-extended values.
1161      Value &= Mask;
1162    } else if (NumBits == 8) {
1163      // Try to treat the comparison as unsigned, so that we can use CLI.
1164      // Adjust CCMask and Value as necessary.
1165      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1166        // Test whether the high bit of the byte is set.
1167        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1168      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1169        // Test whether the high bit of the byte is clear.
1170        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1171      else
1172        // No instruction exists for this combination.
1173        return;
1174      C.ICmpType = SystemZICMP::UnsignedOnly;
1175    }
1176  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1177    if (Value > Mask)
1178      return;
1179    assert(C.ICmpType == SystemZICMP::Any &&
1180           "Signedness shouldn't matter here.");
1181  } else
1182    return;
1183
1184  // Make sure that the first operand is an i32 of the right extension type.
1185  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1186                              ISD::SEXTLOAD :
1187                              ISD::ZEXTLOAD);
1188  if (C.Op0.getValueType() != MVT::i32 ||
1189      Load->getExtensionType() != ExtType)
1190    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1191                           Load->getChain(), Load->getBasePtr(),
1192                           Load->getPointerInfo(), Load->getMemoryVT(),
1193                           Load->isVolatile(), Load->isNonTemporal(),
1194                           Load->getAlignment());
1195
1196  // Make sure that the second operand is an i32 with the right value.
1197  if (C.Op1.getValueType() != MVT::i32 ||
1198      Value != ConstOp1->getZExtValue())
1199    C.Op1 = DAG.getConstant(Value, MVT::i32);
1200}
1201
1202// Return true if Op is either an unextended load, or a load suitable
1203// for integer register-memory comparisons of type ICmpType.
1204static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1205  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1206  if (Load) {
1207    // There are no instructions to compare a register with a memory byte.
1208    if (Load->getMemoryVT() == MVT::i8)
1209      return false;
1210    // Otherwise decide on extension type.
1211    switch (Load->getExtensionType()) {
1212    case ISD::NON_EXTLOAD:
1213      return true;
1214    case ISD::SEXTLOAD:
1215      return ICmpType != SystemZICMP::UnsignedOnly;
1216    case ISD::ZEXTLOAD:
1217      return ICmpType != SystemZICMP::SignedOnly;
1218    default:
1219      break;
1220    }
1221  }
1222  return false;
1223}
1224
1225// Return true if it is better to swap the operands of C.
1226static bool shouldSwapCmpOperands(const Comparison &C) {
1227  // Leave f128 comparisons alone, since they have no memory forms.
1228  if (C.Op0.getValueType() == MVT::f128)
1229    return false;
1230
1231  // Always keep a floating-point constant second, since comparisons with
1232  // zero can use LOAD TEST and comparisons with other constants make a
1233  // natural memory operand.
1234  if (isa<ConstantFPSDNode>(C.Op1))
1235    return false;
1236
1237  // Never swap comparisons with zero since there are many ways to optimize
1238  // those later.
1239  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1240  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1241    return false;
1242
1243  // Also keep natural memory operands second if the loaded value is
1244  // only used here.  Several comparisons have memory forms.
1245  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1246    return false;
1247
1248  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1249  // In that case we generally prefer the memory to be second.
1250  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1251    // The only exceptions are when the second operand is a constant and
1252    // we can use things like CHHSI.
1253    if (!ConstOp1)
1254      return true;
1255    // The unsigned memory-immediate instructions can handle 16-bit
1256    // unsigned integers.
1257    if (C.ICmpType != SystemZICMP::SignedOnly &&
1258        isUInt<16>(ConstOp1->getZExtValue()))
1259      return false;
1260    // The signed memory-immediate instructions can handle 16-bit
1261    // signed integers.
1262    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1263        isInt<16>(ConstOp1->getSExtValue()))
1264      return false;
1265    return true;
1266  }
1267
1268  // Try to promote the use of CGFR and CLGFR.
1269  unsigned Opcode0 = C.Op0.getOpcode();
1270  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1271    return true;
1272  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1273    return true;
1274  if (C.ICmpType != SystemZICMP::SignedOnly &&
1275      Opcode0 == ISD::AND &&
1276      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1277      cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1278    return true;
1279
1280  return false;
1281}
1282
1283// Return a version of comparison CC mask CCMask in which the LT and GT
1284// actions are swapped.
1285static unsigned reverseCCMask(unsigned CCMask) {
1286  return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1287          (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1288          (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1289          (CCMask & SystemZ::CCMASK_CMP_UO));
1290}
1291
1292// Check whether C tests for equality between X and Y and whether X - Y
1293// or Y - X is also computed.  In that case it's better to compare the
1294// result of the subtraction against zero.
1295static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1296  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1297      C.CCMask == SystemZ::CCMASK_CMP_NE) {
1298    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1299      SDNode *N = *I;
1300      if (N->getOpcode() == ISD::SUB &&
1301          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1302           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1303        C.Op0 = SDValue(N, 0);
1304        C.Op1 = DAG.getConstant(0, N->getValueType(0));
1305        return;
1306      }
1307    }
1308  }
1309}
1310
1311// Check whether C compares a floating-point value with zero and if that
1312// floating-point value is also negated.  In this case we can use the
1313// negation to set CC, so avoiding separate LOAD AND TEST and
1314// LOAD (NEGATIVE/COMPLEMENT) instructions.
1315static void adjustForFNeg(Comparison &C) {
1316  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1317  if (C1 && C1->isZero()) {
1318    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1319      SDNode *N = *I;
1320      if (N->getOpcode() == ISD::FNEG) {
1321        C.Op0 = SDValue(N, 0);
1322        C.CCMask = reverseCCMask(C.CCMask);
1323        return;
1324      }
1325    }
1326  }
1327}
1328
1329// Check whether C compares (shl X, 32) with 0 and whether X is
1330// also sign-extended.  In that case it is better to test the result
1331// of the sign extension using LTGFR.
1332//
1333// This case is important because InstCombine transforms a comparison
1334// with (sext (trunc X)) into a comparison with (shl X, 32).
1335static void adjustForLTGFR(Comparison &C) {
1336  // Check for a comparison between (shl X, 32) and 0.
1337  if (C.Op0.getOpcode() == ISD::SHL &&
1338      C.Op0.getValueType() == MVT::i64 &&
1339      C.Op1.getOpcode() == ISD::Constant &&
1340      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1341    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1342    if (C1 && C1->getZExtValue() == 32) {
1343      SDValue ShlOp0 = C.Op0.getOperand(0);
1344      // See whether X has any SIGN_EXTEND_INREG uses.
1345      for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1346        SDNode *N = *I;
1347        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1348            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1349          C.Op0 = SDValue(N, 0);
1350          return;
1351        }
1352      }
1353    }
1354  }
1355}
1356
1357// If C compares the truncation of an extending load, try to compare
1358// the untruncated value instead.  This exposes more opportunities to
1359// reuse CC.
1360static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1361  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1362      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1363      C.Op1.getOpcode() == ISD::Constant &&
1364      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1365    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1366    if (L->getMemoryVT().getStoreSizeInBits()
1367        <= C.Op0.getValueType().getSizeInBits()) {
1368      unsigned Type = L->getExtensionType();
1369      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1370          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1371        C.Op0 = C.Op0.getOperand(0);
1372        C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1373      }
1374    }
1375  }
1376}
1377
1378// Return true if shift operation N has an in-range constant shift value.
1379// Store it in ShiftVal if so.
1380static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1381  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1382  if (!Shift)
1383    return false;
1384
1385  uint64_t Amount = Shift->getZExtValue();
1386  if (Amount >= N.getValueType().getSizeInBits())
1387    return false;
1388
1389  ShiftVal = Amount;
1390  return true;
1391}
1392
1393// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1394// instruction and whether the CC value is descriptive enough to handle
1395// a comparison of type Opcode between the AND result and CmpVal.
1396// CCMask says which comparison result is being tested and BitSize is
1397// the number of bits in the operands.  If TEST UNDER MASK can be used,
1398// return the corresponding CC mask, otherwise return 0.
1399static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1400                                     uint64_t Mask, uint64_t CmpVal,
1401                                     unsigned ICmpType) {
1402  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1403
1404  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1405  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1406      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1407    return 0;
1408
1409  // Work out the masks for the lowest and highest bits.
1410  unsigned HighShift = 63 - countLeadingZeros(Mask);
1411  uint64_t High = uint64_t(1) << HighShift;
1412  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1413
1414  // Signed ordered comparisons are effectively unsigned if the sign
1415  // bit is dropped.
1416  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1417
1418  // Check for equality comparisons with 0, or the equivalent.
1419  if (CmpVal == 0) {
1420    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1421      return SystemZ::CCMASK_TM_ALL_0;
1422    if (CCMask == SystemZ::CCMASK_CMP_NE)
1423      return SystemZ::CCMASK_TM_SOME_1;
1424  }
1425  if (EffectivelyUnsigned && CmpVal <= Low) {
1426    if (CCMask == SystemZ::CCMASK_CMP_LT)
1427      return SystemZ::CCMASK_TM_ALL_0;
1428    if (CCMask == SystemZ::CCMASK_CMP_GE)
1429      return SystemZ::CCMASK_TM_SOME_1;
1430  }
1431  if (EffectivelyUnsigned && CmpVal < Low) {
1432    if (CCMask == SystemZ::CCMASK_CMP_LE)
1433      return SystemZ::CCMASK_TM_ALL_0;
1434    if (CCMask == SystemZ::CCMASK_CMP_GT)
1435      return SystemZ::CCMASK_TM_SOME_1;
1436  }
1437
1438  // Check for equality comparisons with the mask, or the equivalent.
1439  if (CmpVal == Mask) {
1440    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1441      return SystemZ::CCMASK_TM_ALL_1;
1442    if (CCMask == SystemZ::CCMASK_CMP_NE)
1443      return SystemZ::CCMASK_TM_SOME_0;
1444  }
1445  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1446    if (CCMask == SystemZ::CCMASK_CMP_GT)
1447      return SystemZ::CCMASK_TM_ALL_1;
1448    if (CCMask == SystemZ::CCMASK_CMP_LE)
1449      return SystemZ::CCMASK_TM_SOME_0;
1450  }
1451  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1452    if (CCMask == SystemZ::CCMASK_CMP_GE)
1453      return SystemZ::CCMASK_TM_ALL_1;
1454    if (CCMask == SystemZ::CCMASK_CMP_LT)
1455      return SystemZ::CCMASK_TM_SOME_0;
1456  }
1457
1458  // Check for ordered comparisons with the top bit.
1459  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1460    if (CCMask == SystemZ::CCMASK_CMP_LE)
1461      return SystemZ::CCMASK_TM_MSB_0;
1462    if (CCMask == SystemZ::CCMASK_CMP_GT)
1463      return SystemZ::CCMASK_TM_MSB_1;
1464  }
1465  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1466    if (CCMask == SystemZ::CCMASK_CMP_LT)
1467      return SystemZ::CCMASK_TM_MSB_0;
1468    if (CCMask == SystemZ::CCMASK_CMP_GE)
1469      return SystemZ::CCMASK_TM_MSB_1;
1470  }
1471
1472  // If there are just two bits, we can do equality checks for Low and High
1473  // as well.
1474  if (Mask == Low + High) {
1475    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1476      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1477    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1478      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1479    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1480      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1481    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1482      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1483  }
1484
1485  // Looks like we've exhausted our options.
1486  return 0;
1487}
1488
1489// See whether C can be implemented as a TEST UNDER MASK instruction.
1490// Update the arguments with the TM version if so.
1491static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
1492  // Check that we have a comparison with a constant.
1493  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1494  if (!ConstOp1)
1495    return;
1496  uint64_t CmpVal = ConstOp1->getZExtValue();
1497
1498  // Check whether the nonconstant input is an AND with a constant mask.
1499  Comparison NewC(C);
1500  uint64_t MaskVal;
1501  ConstantSDNode *Mask = nullptr;
1502  if (C.Op0.getOpcode() == ISD::AND) {
1503    NewC.Op0 = C.Op0.getOperand(0);
1504    NewC.Op1 = C.Op0.getOperand(1);
1505    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1506    if (!Mask)
1507      return;
1508    MaskVal = Mask->getZExtValue();
1509  } else {
1510    // There is no instruction to compare with a 64-bit immediate
1511    // so use TMHH instead if possible.  We need an unsigned ordered
1512    // comparison with an i64 immediate.
1513    if (NewC.Op0.getValueType() != MVT::i64 ||
1514        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1515        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1516        NewC.ICmpType == SystemZICMP::SignedOnly)
1517      return;
1518    // Convert LE and GT comparisons into LT and GE.
1519    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1520        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1521      if (CmpVal == uint64_t(-1))
1522        return;
1523      CmpVal += 1;
1524      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1525    }
1526    // If the low N bits of Op1 are zero than the low N bits of Op0 can
1527    // be masked off without changing the result.
1528    MaskVal = -(CmpVal & -CmpVal);
1529    NewC.ICmpType = SystemZICMP::UnsignedOnly;
1530  }
1531
1532  // Check whether the combination of mask, comparison value and comparison
1533  // type are suitable.
1534  unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1535  unsigned NewCCMask, ShiftVal;
1536  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1537      NewC.Op0.getOpcode() == ISD::SHL &&
1538      isSimpleShift(NewC.Op0, ShiftVal) &&
1539      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1540                                        MaskVal >> ShiftVal,
1541                                        CmpVal >> ShiftVal,
1542                                        SystemZICMP::Any))) {
1543    NewC.Op0 = NewC.Op0.getOperand(0);
1544    MaskVal >>= ShiftVal;
1545  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1546             NewC.Op0.getOpcode() == ISD::SRL &&
1547             isSimpleShift(NewC.Op0, ShiftVal) &&
1548             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1549                                               MaskVal << ShiftVal,
1550                                               CmpVal << ShiftVal,
1551                                               SystemZICMP::UnsignedOnly))) {
1552    NewC.Op0 = NewC.Op0.getOperand(0);
1553    MaskVal <<= ShiftVal;
1554  } else {
1555    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1556                                     NewC.ICmpType);
1557    if (!NewCCMask)
1558      return;
1559  }
1560
1561  // Go ahead and make the change.
1562  C.Opcode = SystemZISD::TM;
1563  C.Op0 = NewC.Op0;
1564  if (Mask && Mask->getZExtValue() == MaskVal)
1565    C.Op1 = SDValue(Mask, 0);
1566  else
1567    C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
1568  C.CCValid = SystemZ::CCMASK_TM;
1569  C.CCMask = NewCCMask;
1570}
1571
1572// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1573static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1574                         ISD::CondCode Cond) {
1575  Comparison C(CmpOp0, CmpOp1);
1576  C.CCMask = CCMaskForCondCode(Cond);
1577  if (C.Op0.getValueType().isFloatingPoint()) {
1578    C.CCValid = SystemZ::CCMASK_FCMP;
1579    C.Opcode = SystemZISD::FCMP;
1580    adjustForFNeg(C);
1581  } else {
1582    C.CCValid = SystemZ::CCMASK_ICMP;
1583    C.Opcode = SystemZISD::ICMP;
1584    // Choose the type of comparison.  Equality and inequality tests can
1585    // use either signed or unsigned comparisons.  The choice also doesn't
1586    // matter if both sign bits are known to be clear.  In those cases we
1587    // want to give the main isel code the freedom to choose whichever
1588    // form fits best.
1589    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1590        C.CCMask == SystemZ::CCMASK_CMP_NE ||
1591        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1592      C.ICmpType = SystemZICMP::Any;
1593    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1594      C.ICmpType = SystemZICMP::UnsignedOnly;
1595    else
1596      C.ICmpType = SystemZICMP::SignedOnly;
1597    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1598    adjustZeroCmp(DAG, C);
1599    adjustSubwordCmp(DAG, C);
1600    adjustForSubtraction(DAG, C);
1601    adjustForLTGFR(C);
1602    adjustICmpTruncate(DAG, C);
1603  }
1604
1605  if (shouldSwapCmpOperands(C)) {
1606    std::swap(C.Op0, C.Op1);
1607    C.CCMask = reverseCCMask(C.CCMask);
1608  }
1609
1610  adjustForTestUnderMask(DAG, C);
1611  return C;
1612}
1613
1614// Emit the comparison instruction described by C.
1615static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1616  if (C.Opcode == SystemZISD::ICMP)
1617    return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1618                       DAG.getConstant(C.ICmpType, MVT::i32));
1619  if (C.Opcode == SystemZISD::TM) {
1620    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1621                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1622    return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1623                       DAG.getConstant(RegisterOnly, MVT::i32));
1624  }
1625  return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
1626}
1627
1628// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1629// 64 bits.  Extend is the extension type to use.  Store the high part
1630// in Hi and the low part in Lo.
1631static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1632                            unsigned Extend, SDValue Op0, SDValue Op1,
1633                            SDValue &Hi, SDValue &Lo) {
1634  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1635  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1636  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1637  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1638  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1639  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1640}
1641
1642// Lower a binary operation that produces two VT results, one in each
1643// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1644// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1645// on the extended Op0 and (unextended) Op1.  Store the even register result
1646// in Even and the odd register result in Odd.
1647static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1648                             unsigned Extend, unsigned Opcode,
1649                             SDValue Op0, SDValue Op1,
1650                             SDValue &Even, SDValue &Odd) {
1651  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1652  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1653                               SDValue(In128, 0), Op1);
1654  bool Is32Bit = is32Bit(VT);
1655  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1656  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1657}
1658
1659// Return an i32 value that is 1 if the CC value produced by Glue is
1660// in the mask CCMask and 0 otherwise.  CC is known to have a value
1661// in CCValid, so other values can be ignored.
1662static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1663                         unsigned CCValid, unsigned CCMask) {
1664  IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1665  SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1666
1667  if (Conversion.XORValue)
1668    Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1669                         DAG.getConstant(Conversion.XORValue, MVT::i32));
1670
1671  if (Conversion.AddValue)
1672    Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1673                         DAG.getConstant(Conversion.AddValue, MVT::i32));
1674
1675  // The SHR/AND sequence should get optimized to an RISBG.
1676  Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1677                       DAG.getConstant(Conversion.Bit, MVT::i32));
1678  if (Conversion.Bit != 31)
1679    Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1680                         DAG.getConstant(1, MVT::i32));
1681  return Result;
1682}
1683
1684SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1685                                          SelectionDAG &DAG) const {
1686  SDValue CmpOp0   = Op.getOperand(0);
1687  SDValue CmpOp1   = Op.getOperand(1);
1688  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1689  SDLoc DL(Op);
1690
1691  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1692  SDValue Glue = emitCmp(DAG, DL, C);
1693  return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1694}
1695
1696SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1697  SDValue Chain    = Op.getOperand(0);
1698  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1699  SDValue CmpOp0   = Op.getOperand(2);
1700  SDValue CmpOp1   = Op.getOperand(3);
1701  SDValue Dest     = Op.getOperand(4);
1702  SDLoc DL(Op);
1703
1704  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1705  SDValue Glue = emitCmp(DAG, DL, C);
1706  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1707                     Chain, DAG.getConstant(C.CCValid, MVT::i32),
1708                     DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
1709}
1710
1711// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1712// allowing Pos and Neg to be wider than CmpOp.
1713static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1714  return (Neg.getOpcode() == ISD::SUB &&
1715          Neg.getOperand(0).getOpcode() == ISD::Constant &&
1716          cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1717          Neg.getOperand(1) == Pos &&
1718          (Pos == CmpOp ||
1719           (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1720            Pos.getOperand(0) == CmpOp)));
1721}
1722
1723// Return the absolute or negative absolute of Op; IsNegative decides which.
1724static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1725                           bool IsNegative) {
1726  Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1727  if (IsNegative)
1728    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1729                     DAG.getConstant(0, Op.getValueType()), Op);
1730  return Op;
1731}
1732
1733SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1734                                              SelectionDAG &DAG) const {
1735  SDValue CmpOp0   = Op.getOperand(0);
1736  SDValue CmpOp1   = Op.getOperand(1);
1737  SDValue TrueOp   = Op.getOperand(2);
1738  SDValue FalseOp  = Op.getOperand(3);
1739  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1740  SDLoc DL(Op);
1741
1742  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1743
1744  // Check for absolute and negative-absolute selections, including those
1745  // where the comparison value is sign-extended (for LPGFR and LNGFR).
1746  // This check supplements the one in DAGCombiner.
1747  if (C.Opcode == SystemZISD::ICMP &&
1748      C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1749      C.CCMask != SystemZ::CCMASK_CMP_NE &&
1750      C.Op1.getOpcode() == ISD::Constant &&
1751      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1752    if (isAbsolute(C.Op0, TrueOp, FalseOp))
1753      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1754    if (isAbsolute(C.Op0, FalseOp, TrueOp))
1755      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1756  }
1757
1758  SDValue Glue = emitCmp(DAG, DL, C);
1759
1760  // Special case for handling -1/0 results.  The shifts we use here
1761  // should get optimized with the IPM conversion sequence.
1762  auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1763  auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1764  if (TrueC && FalseC) {
1765    int64_t TrueVal = TrueC->getSExtValue();
1766    int64_t FalseVal = FalseC->getSExtValue();
1767    if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1768      // Invert the condition if we want -1 on false.
1769      if (TrueVal == 0)
1770        C.CCMask ^= C.CCValid;
1771      SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1772      EVT VT = Op.getValueType();
1773      // Extend the result to VT.  Upper bits are ignored.
1774      if (!is32Bit(VT))
1775        Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1776      // Sign-extend from the low bit.
1777      SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1778      SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1779      return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1780    }
1781  }
1782
1783  SmallVector<SDValue, 5> Ops;
1784  Ops.push_back(TrueOp);
1785  Ops.push_back(FalseOp);
1786  Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1787  Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
1788  Ops.push_back(Glue);
1789
1790  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1791  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
1792}
1793
1794SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1795                                                  SelectionDAG &DAG) const {
1796  SDLoc DL(Node);
1797  const GlobalValue *GV = Node->getGlobal();
1798  int64_t Offset = Node->getOffset();
1799  EVT PtrVT = getPointerTy();
1800  Reloc::Model RM = DAG.getTarget().getRelocationModel();
1801  CodeModel::Model CM = DAG.getTarget().getCodeModel();
1802
1803  SDValue Result;
1804  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1805    // Assign anchors at 1<<12 byte boundaries.
1806    uint64_t Anchor = Offset & ~uint64_t(0xfff);
1807    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1808    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1809
1810    // The offset can be folded into the address if it is aligned to a halfword.
1811    Offset -= Anchor;
1812    if (Offset != 0 && (Offset & 1) == 0) {
1813      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1814      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1815      Offset = 0;
1816    }
1817  } else {
1818    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1819    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1820    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1821                         MachinePointerInfo::getGOT(), false, false, false, 0);
1822  }
1823
1824  // If there was a non-zero offset that we didn't fold, create an explicit
1825  // addition for it.
1826  if (Offset != 0)
1827    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1828                         DAG.getConstant(Offset, PtrVT));
1829
1830  return Result;
1831}
1832
1833SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1834						     SelectionDAG &DAG) const {
1835  SDLoc DL(Node);
1836  const GlobalValue *GV = Node->getGlobal();
1837  EVT PtrVT = getPointerTy();
1838  TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
1839
1840  if (model != TLSModel::LocalExec)
1841    llvm_unreachable("only local-exec TLS mode supported");
1842
1843  // The high part of the thread pointer is in access register 0.
1844  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1845                             DAG.getConstant(0, MVT::i32));
1846  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1847
1848  // The low part of the thread pointer is in access register 1.
1849  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1850                             DAG.getConstant(1, MVT::i32));
1851  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1852
1853  // Merge them into a single 64-bit address.
1854  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1855				    DAG.getConstant(32, PtrVT));
1856  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1857
1858  // Get the offset of GA from the thread pointer.
1859  SystemZConstantPoolValue *CPV =
1860    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1861
1862  // Force the offset into the constant pool and load it from there.
1863  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1864  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1865			       CPAddr, MachinePointerInfo::getConstantPool(),
1866			       false, false, false, 0);
1867
1868  // Add the base and offset together.
1869  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1870}
1871
1872SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1873                                                 SelectionDAG &DAG) const {
1874  SDLoc DL(Node);
1875  const BlockAddress *BA = Node->getBlockAddress();
1876  int64_t Offset = Node->getOffset();
1877  EVT PtrVT = getPointerTy();
1878
1879  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1880  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1881  return Result;
1882}
1883
1884SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1885                                              SelectionDAG &DAG) const {
1886  SDLoc DL(JT);
1887  EVT PtrVT = getPointerTy();
1888  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1889
1890  // Use LARL to load the address of the table.
1891  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1892}
1893
1894SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1895                                                 SelectionDAG &DAG) const {
1896  SDLoc DL(CP);
1897  EVT PtrVT = getPointerTy();
1898
1899  SDValue Result;
1900  if (CP->isMachineConstantPoolEntry())
1901    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1902				       CP->getAlignment());
1903  else
1904    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1905				       CP->getAlignment(), CP->getOffset());
1906
1907  // Use LARL to load the address of the constant pool entry.
1908  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1909}
1910
1911SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1912                                            SelectionDAG &DAG) const {
1913  SDLoc DL(Op);
1914  SDValue In = Op.getOperand(0);
1915  EVT InVT = In.getValueType();
1916  EVT ResVT = Op.getValueType();
1917
1918  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1919    SDValue In64;
1920    if (Subtarget.hasHighWord()) {
1921      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1922                                       MVT::i64);
1923      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1924                                       MVT::i64, SDValue(U64, 0), In);
1925    } else {
1926      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1927      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1928                         DAG.getConstant(32, MVT::i64));
1929    }
1930    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1931    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1932                                      DL, MVT::f32, Out64);
1933  }
1934  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1935    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1936    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1937                                             MVT::f64, SDValue(U64, 0), In);
1938    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1939    if (Subtarget.hasHighWord())
1940      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1941                                        MVT::i32, Out64);
1942    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1943                                DAG.getConstant(32, MVT::i64));
1944    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1945  }
1946  llvm_unreachable("Unexpected bitcast combination");
1947}
1948
1949SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1950                                            SelectionDAG &DAG) const {
1951  MachineFunction &MF = DAG.getMachineFunction();
1952  SystemZMachineFunctionInfo *FuncInfo =
1953    MF.getInfo<SystemZMachineFunctionInfo>();
1954  EVT PtrVT = getPointerTy();
1955
1956  SDValue Chain   = Op.getOperand(0);
1957  SDValue Addr    = Op.getOperand(1);
1958  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1959  SDLoc DL(Op);
1960
1961  // The initial values of each field.
1962  const unsigned NumFields = 4;
1963  SDValue Fields[NumFields] = {
1964    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1965    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1966    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1967    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1968  };
1969
1970  // Store each field into its respective slot.
1971  SDValue MemOps[NumFields];
1972  unsigned Offset = 0;
1973  for (unsigned I = 0; I < NumFields; ++I) {
1974    SDValue FieldAddr = Addr;
1975    if (Offset != 0)
1976      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1977                              DAG.getIntPtrConstant(Offset));
1978    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1979                             MachinePointerInfo(SV, Offset),
1980                             false, false, 0);
1981    Offset += 8;
1982  }
1983  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1984}
1985
1986SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1987                                           SelectionDAG &DAG) const {
1988  SDValue Chain      = Op.getOperand(0);
1989  SDValue DstPtr     = Op.getOperand(1);
1990  SDValue SrcPtr     = Op.getOperand(2);
1991  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1992  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1993  SDLoc DL(Op);
1994
1995  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1996                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1997                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1998}
1999
2000SDValue SystemZTargetLowering::
2001lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2002  SDValue Chain = Op.getOperand(0);
2003  SDValue Size  = Op.getOperand(1);
2004  SDLoc DL(Op);
2005
2006  unsigned SPReg = getStackPointerRegisterToSaveRestore();
2007
2008  // Get a reference to the stack pointer.
2009  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2010
2011  // Get the new stack pointer value.
2012  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2013
2014  // Copy the new stack pointer back.
2015  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2016
2017  // The allocated data lives above the 160 bytes allocated for the standard
2018  // frame, plus any outgoing stack arguments.  We don't know how much that
2019  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2020  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2021  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2022
2023  SDValue Ops[2] = { Result, Chain };
2024  return DAG.getMergeValues(Ops, DL);
2025}
2026
2027SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2028                                              SelectionDAG &DAG) const {
2029  EVT VT = Op.getValueType();
2030  SDLoc DL(Op);
2031  SDValue Ops[2];
2032  if (is32Bit(VT))
2033    // Just do a normal 64-bit multiplication and extract the results.
2034    // We define this so that it can be used for constant division.
2035    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2036                    Op.getOperand(1), Ops[1], Ops[0]);
2037  else {
2038    // Do a full 128-bit multiplication based on UMUL_LOHI64:
2039    //
2040    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2041    //
2042    // but using the fact that the upper halves are either all zeros
2043    // or all ones:
2044    //
2045    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2046    //
2047    // and grouping the right terms together since they are quicker than the
2048    // multiplication:
2049    //
2050    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2051    SDValue C63 = DAG.getConstant(63, MVT::i64);
2052    SDValue LL = Op.getOperand(0);
2053    SDValue RL = Op.getOperand(1);
2054    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2055    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2056    // UMUL_LOHI64 returns the low result in the odd register and the high
2057    // result in the even register.  SMUL_LOHI is defined to return the
2058    // low half first, so the results are in reverse order.
2059    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2060                     LL, RL, Ops[1], Ops[0]);
2061    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2062    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2063    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2064    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2065  }
2066  return DAG.getMergeValues(Ops, DL);
2067}
2068
2069SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2070                                              SelectionDAG &DAG) const {
2071  EVT VT = Op.getValueType();
2072  SDLoc DL(Op);
2073  SDValue Ops[2];
2074  if (is32Bit(VT))
2075    // Just do a normal 64-bit multiplication and extract the results.
2076    // We define this so that it can be used for constant division.
2077    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2078                    Op.getOperand(1), Ops[1], Ops[0]);
2079  else
2080    // UMUL_LOHI64 returns the low result in the odd register and the high
2081    // result in the even register.  UMUL_LOHI is defined to return the
2082    // low half first, so the results are in reverse order.
2083    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2084                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2085  return DAG.getMergeValues(Ops, DL);
2086}
2087
2088SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2089                                            SelectionDAG &DAG) const {
2090  SDValue Op0 = Op.getOperand(0);
2091  SDValue Op1 = Op.getOperand(1);
2092  EVT VT = Op.getValueType();
2093  SDLoc DL(Op);
2094  unsigned Opcode;
2095
2096  // We use DSGF for 32-bit division.
2097  if (is32Bit(VT)) {
2098    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2099    Opcode = SystemZISD::SDIVREM32;
2100  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2101    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2102    Opcode = SystemZISD::SDIVREM32;
2103  } else
2104    Opcode = SystemZISD::SDIVREM64;
2105
2106  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2107  // input is "don't care".  The instruction returns the remainder in
2108  // the even register and the quotient in the odd register.
2109  SDValue Ops[2];
2110  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2111                   Op0, Op1, Ops[1], Ops[0]);
2112  return DAG.getMergeValues(Ops, DL);
2113}
2114
2115SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2116                                            SelectionDAG &DAG) const {
2117  EVT VT = Op.getValueType();
2118  SDLoc DL(Op);
2119
2120  // DL(G) uses a double-width dividend, so we need to clear the even
2121  // register in the GR128 input.  The instruction returns the remainder
2122  // in the even register and the quotient in the odd register.
2123  SDValue Ops[2];
2124  if (is32Bit(VT))
2125    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2126                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2127  else
2128    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2129                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2130  return DAG.getMergeValues(Ops, DL);
2131}
2132
2133SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2134  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2135
2136  // Get the known-zero masks for each operand.
2137  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2138  APInt KnownZero[2], KnownOne[2];
2139  DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2140  DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2141
2142  // See if the upper 32 bits of one operand and the lower 32 bits of the
2143  // other are known zero.  They are the low and high operands respectively.
2144  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2145                       KnownZero[1].getZExtValue() };
2146  unsigned High, Low;
2147  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2148    High = 1, Low = 0;
2149  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2150    High = 0, Low = 1;
2151  else
2152    return Op;
2153
2154  SDValue LowOp = Ops[Low];
2155  SDValue HighOp = Ops[High];
2156
2157  // If the high part is a constant, we're better off using IILH.
2158  if (HighOp.getOpcode() == ISD::Constant)
2159    return Op;
2160
2161  // If the low part is a constant that is outside the range of LHI,
2162  // then we're better off using IILF.
2163  if (LowOp.getOpcode() == ISD::Constant) {
2164    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2165    if (!isInt<16>(Value))
2166      return Op;
2167  }
2168
2169  // Check whether the high part is an AND that doesn't change the
2170  // high 32 bits and just masks out low bits.  We can skip it if so.
2171  if (HighOp.getOpcode() == ISD::AND &&
2172      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2173    SDValue HighOp0 = HighOp.getOperand(0);
2174    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2175    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2176      HighOp = HighOp0;
2177  }
2178
2179  // Take advantage of the fact that all GR32 operations only change the
2180  // low 32 bits by truncating Low to an i32 and inserting it directly
2181  // using a subreg.  The interesting cases are those where the truncation
2182  // can be folded.
2183  SDLoc DL(Op);
2184  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2185  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2186                                   MVT::i64, HighOp, Low32);
2187}
2188
2189// Op is an atomic load.  Lower it into a normal volatile load.
2190SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2191                                                SelectionDAG &DAG) const {
2192  auto *Node = cast<AtomicSDNode>(Op.getNode());
2193  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2194                        Node->getChain(), Node->getBasePtr(),
2195                        Node->getMemoryVT(), Node->getMemOperand());
2196}
2197
2198// Op is an atomic store.  Lower it into a normal volatile store followed
2199// by a serialization.
2200SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2201                                                 SelectionDAG &DAG) const {
2202  auto *Node = cast<AtomicSDNode>(Op.getNode());
2203  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2204                                    Node->getBasePtr(), Node->getMemoryVT(),
2205                                    Node->getMemOperand());
2206  return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2207                                    Chain), 0);
2208}
2209
2210// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
2211// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
2212SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2213                                                   SelectionDAG &DAG,
2214                                                   unsigned Opcode) const {
2215  auto *Node = cast<AtomicSDNode>(Op.getNode());
2216
2217  // 32-bit operations need no code outside the main loop.
2218  EVT NarrowVT = Node->getMemoryVT();
2219  EVT WideVT = MVT::i32;
2220  if (NarrowVT == WideVT)
2221    return Op;
2222
2223  int64_t BitSize = NarrowVT.getSizeInBits();
2224  SDValue ChainIn = Node->getChain();
2225  SDValue Addr = Node->getBasePtr();
2226  SDValue Src2 = Node->getVal();
2227  MachineMemOperand *MMO = Node->getMemOperand();
2228  SDLoc DL(Node);
2229  EVT PtrVT = Addr.getValueType();
2230
2231  // Convert atomic subtracts of constants into additions.
2232  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2233    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
2234      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2235      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2236    }
2237
2238  // Get the address of the containing word.
2239  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2240                                    DAG.getConstant(-4, PtrVT));
2241
2242  // Get the number of bits that the word must be rotated left in order
2243  // to bring the field to the top bits of a GR32.
2244  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2245                                 DAG.getConstant(3, PtrVT));
2246  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2247
2248  // Get the complementing shift amount, for rotating a field in the top
2249  // bits back to its proper position.
2250  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2251                                    DAG.getConstant(0, WideVT), BitShift);
2252
2253  // Extend the source operand to 32 bits and prepare it for the inner loop.
2254  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2255  // operations require the source to be shifted in advance.  (This shift
2256  // can be folded if the source is constant.)  For AND and NAND, the lower
2257  // bits must be set, while for other opcodes they should be left clear.
2258  if (Opcode != SystemZISD::ATOMIC_SWAPW)
2259    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2260                       DAG.getConstant(32 - BitSize, WideVT));
2261  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2262      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2263    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2264                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2265
2266  // Construct the ATOMIC_LOADW_* node.
2267  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2268  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2269                    DAG.getConstant(BitSize, WideVT) };
2270  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2271                                             NarrowVT, MMO);
2272
2273  // Rotate the result of the final CS so that the field is in the lower
2274  // bits of a GR32, then truncate it.
2275  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2276                                    DAG.getConstant(BitSize, WideVT));
2277  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2278
2279  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2280  return DAG.getMergeValues(RetOps, DL);
2281}
2282
2283// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
2284// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
2285// operations into additions.
2286SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2287                                                    SelectionDAG &DAG) const {
2288  auto *Node = cast<AtomicSDNode>(Op.getNode());
2289  EVT MemVT = Node->getMemoryVT();
2290  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2291    // A full-width operation.
2292    assert(Op.getValueType() == MemVT && "Mismatched VTs");
2293    SDValue Src2 = Node->getVal();
2294    SDValue NegSrc2;
2295    SDLoc DL(Src2);
2296
2297    if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2298      // Use an addition if the operand is constant and either LAA(G) is
2299      // available or the negative value is in the range of A(G)FHI.
2300      int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2301      if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
2302        NegSrc2 = DAG.getConstant(Value, MemVT);
2303    } else if (Subtarget.hasInterlockedAccess1())
2304      // Use LAA(G) if available.
2305      NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2306                            Src2);
2307
2308    if (NegSrc2.getNode())
2309      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2310                           Node->getChain(), Node->getBasePtr(), NegSrc2,
2311                           Node->getMemOperand(), Node->getOrdering(),
2312                           Node->getSynchScope());
2313
2314    // Use the node as-is.
2315    return Op;
2316  }
2317
2318  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2319}
2320
2321// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
2322// into a fullword ATOMIC_CMP_SWAPW operation.
2323SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2324                                                    SelectionDAG &DAG) const {
2325  auto *Node = cast<AtomicSDNode>(Op.getNode());
2326
2327  // We have native support for 32-bit compare and swap.
2328  EVT NarrowVT = Node->getMemoryVT();
2329  EVT WideVT = MVT::i32;
2330  if (NarrowVT == WideVT)
2331    return Op;
2332
2333  int64_t BitSize = NarrowVT.getSizeInBits();
2334  SDValue ChainIn = Node->getOperand(0);
2335  SDValue Addr = Node->getOperand(1);
2336  SDValue CmpVal = Node->getOperand(2);
2337  SDValue SwapVal = Node->getOperand(3);
2338  MachineMemOperand *MMO = Node->getMemOperand();
2339  SDLoc DL(Node);
2340  EVT PtrVT = Addr.getValueType();
2341
2342  // Get the address of the containing word.
2343  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2344                                    DAG.getConstant(-4, PtrVT));
2345
2346  // Get the number of bits that the word must be rotated left in order
2347  // to bring the field to the top bits of a GR32.
2348  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2349                                 DAG.getConstant(3, PtrVT));
2350  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2351
2352  // Get the complementing shift amount, for rotating a field in the top
2353  // bits back to its proper position.
2354  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2355                                    DAG.getConstant(0, WideVT), BitShift);
2356
2357  // Construct the ATOMIC_CMP_SWAPW node.
2358  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2359  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2360                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
2361  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2362                                             VTList, Ops, NarrowVT, MMO);
2363  return AtomicOp;
2364}
2365
2366SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2367                                              SelectionDAG &DAG) const {
2368  MachineFunction &MF = DAG.getMachineFunction();
2369  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2370  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2371                            SystemZ::R15D, Op.getValueType());
2372}
2373
2374SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2375                                                 SelectionDAG &DAG) const {
2376  MachineFunction &MF = DAG.getMachineFunction();
2377  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2378  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2379                          SystemZ::R15D, Op.getOperand(1));
2380}
2381
2382SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2383                                             SelectionDAG &DAG) const {
2384  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2385  if (!IsData)
2386    // Just preserve the chain.
2387    return Op.getOperand(0);
2388
2389  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2390  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2391  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2392  SDValue Ops[] = {
2393    Op.getOperand(0),
2394    DAG.getConstant(Code, MVT::i32),
2395    Op.getOperand(1)
2396  };
2397  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2398                                 Node->getVTList(), Ops,
2399                                 Node->getMemoryVT(), Node->getMemOperand());
2400}
2401
2402SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2403                                              SelectionDAG &DAG) const {
2404  switch (Op.getOpcode()) {
2405  case ISD::BR_CC:
2406    return lowerBR_CC(Op, DAG);
2407  case ISD::SELECT_CC:
2408    return lowerSELECT_CC(Op, DAG);
2409  case ISD::SETCC:
2410    return lowerSETCC(Op, DAG);
2411  case ISD::GlobalAddress:
2412    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2413  case ISD::GlobalTLSAddress:
2414    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2415  case ISD::BlockAddress:
2416    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2417  case ISD::JumpTable:
2418    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2419  case ISD::ConstantPool:
2420    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2421  case ISD::BITCAST:
2422    return lowerBITCAST(Op, DAG);
2423  case ISD::VASTART:
2424    return lowerVASTART(Op, DAG);
2425  case ISD::VACOPY:
2426    return lowerVACOPY(Op, DAG);
2427  case ISD::DYNAMIC_STACKALLOC:
2428    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2429  case ISD::SMUL_LOHI:
2430    return lowerSMUL_LOHI(Op, DAG);
2431  case ISD::UMUL_LOHI:
2432    return lowerUMUL_LOHI(Op, DAG);
2433  case ISD::SDIVREM:
2434    return lowerSDIVREM(Op, DAG);
2435  case ISD::UDIVREM:
2436    return lowerUDIVREM(Op, DAG);
2437  case ISD::OR:
2438    return lowerOR(Op, DAG);
2439  case ISD::ATOMIC_SWAP:
2440    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2441  case ISD::ATOMIC_STORE:
2442    return lowerATOMIC_STORE(Op, DAG);
2443  case ISD::ATOMIC_LOAD:
2444    return lowerATOMIC_LOAD(Op, DAG);
2445  case ISD::ATOMIC_LOAD_ADD:
2446    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2447  case ISD::ATOMIC_LOAD_SUB:
2448    return lowerATOMIC_LOAD_SUB(Op, DAG);
2449  case ISD::ATOMIC_LOAD_AND:
2450    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2451  case ISD::ATOMIC_LOAD_OR:
2452    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2453  case ISD::ATOMIC_LOAD_XOR:
2454    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2455  case ISD::ATOMIC_LOAD_NAND:
2456    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2457  case ISD::ATOMIC_LOAD_MIN:
2458    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2459  case ISD::ATOMIC_LOAD_MAX:
2460    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2461  case ISD::ATOMIC_LOAD_UMIN:
2462    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2463  case ISD::ATOMIC_LOAD_UMAX:
2464    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2465  case ISD::ATOMIC_CMP_SWAP:
2466    return lowerATOMIC_CMP_SWAP(Op, DAG);
2467  case ISD::STACKSAVE:
2468    return lowerSTACKSAVE(Op, DAG);
2469  case ISD::STACKRESTORE:
2470    return lowerSTACKRESTORE(Op, DAG);
2471  case ISD::PREFETCH:
2472    return lowerPREFETCH(Op, DAG);
2473  default:
2474    llvm_unreachable("Unexpected node to lower");
2475  }
2476}
2477
2478const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2479#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2480  switch (Opcode) {
2481    OPCODE(RET_FLAG);
2482    OPCODE(CALL);
2483    OPCODE(SIBCALL);
2484    OPCODE(PCREL_WRAPPER);
2485    OPCODE(PCREL_OFFSET);
2486    OPCODE(IABS);
2487    OPCODE(ICMP);
2488    OPCODE(FCMP);
2489    OPCODE(TM);
2490    OPCODE(BR_CCMASK);
2491    OPCODE(SELECT_CCMASK);
2492    OPCODE(ADJDYNALLOC);
2493    OPCODE(EXTRACT_ACCESS);
2494    OPCODE(UMUL_LOHI64);
2495    OPCODE(SDIVREM64);
2496    OPCODE(UDIVREM32);
2497    OPCODE(UDIVREM64);
2498    OPCODE(MVC);
2499    OPCODE(MVC_LOOP);
2500    OPCODE(NC);
2501    OPCODE(NC_LOOP);
2502    OPCODE(OC);
2503    OPCODE(OC_LOOP);
2504    OPCODE(XC);
2505    OPCODE(XC_LOOP);
2506    OPCODE(CLC);
2507    OPCODE(CLC_LOOP);
2508    OPCODE(STRCMP);
2509    OPCODE(STPCPY);
2510    OPCODE(SEARCH_STRING);
2511    OPCODE(IPM);
2512    OPCODE(SERIALIZE);
2513    OPCODE(ATOMIC_SWAPW);
2514    OPCODE(ATOMIC_LOADW_ADD);
2515    OPCODE(ATOMIC_LOADW_SUB);
2516    OPCODE(ATOMIC_LOADW_AND);
2517    OPCODE(ATOMIC_LOADW_OR);
2518    OPCODE(ATOMIC_LOADW_XOR);
2519    OPCODE(ATOMIC_LOADW_NAND);
2520    OPCODE(ATOMIC_LOADW_MIN);
2521    OPCODE(ATOMIC_LOADW_MAX);
2522    OPCODE(ATOMIC_LOADW_UMIN);
2523    OPCODE(ATOMIC_LOADW_UMAX);
2524    OPCODE(ATOMIC_CMP_SWAPW);
2525    OPCODE(PREFETCH);
2526  }
2527  return nullptr;
2528#undef OPCODE
2529}
2530
2531SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2532                                                 DAGCombinerInfo &DCI) const {
2533  SelectionDAG &DAG = DCI.DAG;
2534  unsigned Opcode = N->getOpcode();
2535  if (Opcode == ISD::SIGN_EXTEND) {
2536    // Convert (sext (ashr (shl X, C1), C2)) to
2537    // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2538    // cheap as narrower ones.
2539    SDValue N0 = N->getOperand(0);
2540    EVT VT = N->getValueType(0);
2541    if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2542      auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2543      SDValue Inner = N0.getOperand(0);
2544      if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2545        if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2546          unsigned Extra = (VT.getSizeInBits() -
2547                            N0.getValueType().getSizeInBits());
2548          unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2549          unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2550          EVT ShiftVT = N0.getOperand(1).getValueType();
2551          SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2552                                    Inner.getOperand(0));
2553          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2554                                    DAG.getConstant(NewShlAmt, ShiftVT));
2555          return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2556                             DAG.getConstant(NewSraAmt, ShiftVT));
2557        }
2558      }
2559    }
2560  }
2561  return SDValue();
2562}
2563
2564//===----------------------------------------------------------------------===//
2565// Custom insertion
2566//===----------------------------------------------------------------------===//
2567
2568// Create a new basic block after MBB.
2569static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2570  MachineFunction &MF = *MBB->getParent();
2571  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2572  MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2573  return NewMBB;
2574}
2575
2576// Split MBB after MI and return the new block (the one that contains
2577// instructions after MI).
2578static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2579                                          MachineBasicBlock *MBB) {
2580  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2581  NewMBB->splice(NewMBB->begin(), MBB,
2582                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2583  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2584  return NewMBB;
2585}
2586
2587// Split MBB before MI and return the new block (the one that contains MI).
2588static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2589                                           MachineBasicBlock *MBB) {
2590  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2591  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2592  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2593  return NewMBB;
2594}
2595
2596// Force base value Base into a register before MI.  Return the register.
2597static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2598                         const SystemZInstrInfo *TII) {
2599  if (Base.isReg())
2600    return Base.getReg();
2601
2602  MachineBasicBlock *MBB = MI->getParent();
2603  MachineFunction &MF = *MBB->getParent();
2604  MachineRegisterInfo &MRI = MF.getRegInfo();
2605
2606  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2607  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2608    .addOperand(Base).addImm(0).addReg(0);
2609  return Reg;
2610}
2611
2612// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2613MachineBasicBlock *
2614SystemZTargetLowering::emitSelect(MachineInstr *MI,
2615                                  MachineBasicBlock *MBB) const {
2616  const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2617      MBB->getParent()->getTarget().getInstrInfo());
2618
2619  unsigned DestReg  = MI->getOperand(0).getReg();
2620  unsigned TrueReg  = MI->getOperand(1).getReg();
2621  unsigned FalseReg = MI->getOperand(2).getReg();
2622  unsigned CCValid  = MI->getOperand(3).getImm();
2623  unsigned CCMask   = MI->getOperand(4).getImm();
2624  DebugLoc DL       = MI->getDebugLoc();
2625
2626  MachineBasicBlock *StartMBB = MBB;
2627  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2628  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2629
2630  //  StartMBB:
2631  //   BRC CCMask, JoinMBB
2632  //   # fallthrough to FalseMBB
2633  MBB = StartMBB;
2634  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2635    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2636  MBB->addSuccessor(JoinMBB);
2637  MBB->addSuccessor(FalseMBB);
2638
2639  //  FalseMBB:
2640  //   # fallthrough to JoinMBB
2641  MBB = FalseMBB;
2642  MBB->addSuccessor(JoinMBB);
2643
2644  //  JoinMBB:
2645  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2646  //  ...
2647  MBB = JoinMBB;
2648  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2649    .addReg(TrueReg).addMBB(StartMBB)
2650    .addReg(FalseReg).addMBB(FalseMBB);
2651
2652  MI->eraseFromParent();
2653  return JoinMBB;
2654}
2655
2656// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2657// StoreOpcode is the store to use and Invert says whether the store should
2658// happen when the condition is false rather than true.  If a STORE ON
2659// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2660MachineBasicBlock *
2661SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2662                                     MachineBasicBlock *MBB,
2663                                     unsigned StoreOpcode, unsigned STOCOpcode,
2664                                     bool Invert) const {
2665  const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2666      MBB->getParent()->getTarget().getInstrInfo());
2667
2668  unsigned SrcReg     = MI->getOperand(0).getReg();
2669  MachineOperand Base = MI->getOperand(1);
2670  int64_t Disp        = MI->getOperand(2).getImm();
2671  unsigned IndexReg   = MI->getOperand(3).getReg();
2672  unsigned CCValid    = MI->getOperand(4).getImm();
2673  unsigned CCMask     = MI->getOperand(5).getImm();
2674  DebugLoc DL         = MI->getDebugLoc();
2675
2676  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2677
2678  // Use STOCOpcode if possible.  We could use different store patterns in
2679  // order to avoid matching the index register, but the performance trade-offs
2680  // might be more complicated in that case.
2681  if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
2682    if (Invert)
2683      CCMask ^= CCValid;
2684    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2685      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2686      .addImm(CCValid).addImm(CCMask);
2687    MI->eraseFromParent();
2688    return MBB;
2689  }
2690
2691  // Get the condition needed to branch around the store.
2692  if (!Invert)
2693    CCMask ^= CCValid;
2694
2695  MachineBasicBlock *StartMBB = MBB;
2696  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2697  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2698
2699  //  StartMBB:
2700  //   BRC CCMask, JoinMBB
2701  //   # fallthrough to FalseMBB
2702  MBB = StartMBB;
2703  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2704    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2705  MBB->addSuccessor(JoinMBB);
2706  MBB->addSuccessor(FalseMBB);
2707
2708  //  FalseMBB:
2709  //   store %SrcReg, %Disp(%Index,%Base)
2710  //   # fallthrough to JoinMBB
2711  MBB = FalseMBB;
2712  BuildMI(MBB, DL, TII->get(StoreOpcode))
2713    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2714  MBB->addSuccessor(JoinMBB);
2715
2716  MI->eraseFromParent();
2717  return JoinMBB;
2718}
2719
2720// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2721// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2722// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2723// BitSize is the width of the field in bits, or 0 if this is a partword
2724// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2725// is one of the operands.  Invert says whether the field should be
2726// inverted after performing BinOpcode (e.g. for NAND).
2727MachineBasicBlock *
2728SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2729                                            MachineBasicBlock *MBB,
2730                                            unsigned BinOpcode,
2731                                            unsigned BitSize,
2732                                            bool Invert) const {
2733  MachineFunction &MF = *MBB->getParent();
2734  const SystemZInstrInfo *TII =
2735      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2736  MachineRegisterInfo &MRI = MF.getRegInfo();
2737  bool IsSubWord = (BitSize < 32);
2738
2739  // Extract the operands.  Base can be a register or a frame index.
2740  // Src2 can be a register or immediate.
2741  unsigned Dest        = MI->getOperand(0).getReg();
2742  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2743  int64_t Disp         = MI->getOperand(2).getImm();
2744  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2745  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2746  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2747  DebugLoc DL          = MI->getDebugLoc();
2748  if (IsSubWord)
2749    BitSize = MI->getOperand(6).getImm();
2750
2751  // Subword operations use 32-bit registers.
2752  const TargetRegisterClass *RC = (BitSize <= 32 ?
2753                                   &SystemZ::GR32BitRegClass :
2754                                   &SystemZ::GR64BitRegClass);
2755  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2756  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2757
2758  // Get the right opcodes for the displacement.
2759  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2760  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2761  assert(LOpcode && CSOpcode && "Displacement out of range");
2762
2763  // Create virtual registers for temporary results.
2764  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2765  unsigned OldVal        = MRI.createVirtualRegister(RC);
2766  unsigned NewVal        = (BinOpcode || IsSubWord ?
2767                            MRI.createVirtualRegister(RC) : Src2.getReg());
2768  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2769  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2770
2771  // Insert a basic block for the main loop.
2772  MachineBasicBlock *StartMBB = MBB;
2773  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2774  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2775
2776  //  StartMBB:
2777  //   ...
2778  //   %OrigVal = L Disp(%Base)
2779  //   # fall through to LoopMMB
2780  MBB = StartMBB;
2781  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2782    .addOperand(Base).addImm(Disp).addReg(0);
2783  MBB->addSuccessor(LoopMBB);
2784
2785  //  LoopMBB:
2786  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2787  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2788  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2789  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2790  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2791  //   JNE LoopMBB
2792  //   # fall through to DoneMMB
2793  MBB = LoopMBB;
2794  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2795    .addReg(OrigVal).addMBB(StartMBB)
2796    .addReg(Dest).addMBB(LoopMBB);
2797  if (IsSubWord)
2798    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2799      .addReg(OldVal).addReg(BitShift).addImm(0);
2800  if (Invert) {
2801    // Perform the operation normally and then invert every bit of the field.
2802    unsigned Tmp = MRI.createVirtualRegister(RC);
2803    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2804      .addReg(RotatedOldVal).addOperand(Src2);
2805    if (BitSize < 32)
2806      // XILF with the upper BitSize bits set.
2807      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2808        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2809    else if (BitSize == 32)
2810      // XILF with every bit set.
2811      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2812        .addReg(Tmp).addImm(~uint32_t(0));
2813    else {
2814      // Use LCGR and add -1 to the result, which is more compact than
2815      // an XILF, XILH pair.
2816      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2817      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2818      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2819        .addReg(Tmp2).addImm(-1);
2820    }
2821  } else if (BinOpcode)
2822    // A simply binary operation.
2823    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2824      .addReg(RotatedOldVal).addOperand(Src2);
2825  else if (IsSubWord)
2826    // Use RISBG to rotate Src2 into position and use it to replace the
2827    // field in RotatedOldVal.
2828    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2829      .addReg(RotatedOldVal).addReg(Src2.getReg())
2830      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2831  if (IsSubWord)
2832    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2833      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2834  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2835    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2836  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2837    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2838  MBB->addSuccessor(LoopMBB);
2839  MBB->addSuccessor(DoneMBB);
2840
2841  MI->eraseFromParent();
2842  return DoneMBB;
2843}
2844
2845// Implement EmitInstrWithCustomInserter for pseudo
2846// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2847// instruction that should be used to compare the current field with the
2848// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2849// for when the current field should be kept.  BitSize is the width of
2850// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2851MachineBasicBlock *
2852SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2853                                            MachineBasicBlock *MBB,
2854                                            unsigned CompareOpcode,
2855                                            unsigned KeepOldMask,
2856                                            unsigned BitSize) const {
2857  MachineFunction &MF = *MBB->getParent();
2858  const SystemZInstrInfo *TII =
2859      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2860  MachineRegisterInfo &MRI = MF.getRegInfo();
2861  bool IsSubWord = (BitSize < 32);
2862
2863  // Extract the operands.  Base can be a register or a frame index.
2864  unsigned Dest        = MI->getOperand(0).getReg();
2865  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2866  int64_t  Disp        = MI->getOperand(2).getImm();
2867  unsigned Src2        = MI->getOperand(3).getReg();
2868  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2869  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2870  DebugLoc DL          = MI->getDebugLoc();
2871  if (IsSubWord)
2872    BitSize = MI->getOperand(6).getImm();
2873
2874  // Subword operations use 32-bit registers.
2875  const TargetRegisterClass *RC = (BitSize <= 32 ?
2876                                   &SystemZ::GR32BitRegClass :
2877                                   &SystemZ::GR64BitRegClass);
2878  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2879  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2880
2881  // Get the right opcodes for the displacement.
2882  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2883  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2884  assert(LOpcode && CSOpcode && "Displacement out of range");
2885
2886  // Create virtual registers for temporary results.
2887  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2888  unsigned OldVal        = MRI.createVirtualRegister(RC);
2889  unsigned NewVal        = MRI.createVirtualRegister(RC);
2890  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2891  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2892  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2893
2894  // Insert 3 basic blocks for the loop.
2895  MachineBasicBlock *StartMBB  = MBB;
2896  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2897  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2898  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2899  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2900
2901  //  StartMBB:
2902  //   ...
2903  //   %OrigVal     = L Disp(%Base)
2904  //   # fall through to LoopMMB
2905  MBB = StartMBB;
2906  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2907    .addOperand(Base).addImm(Disp).addReg(0);
2908  MBB->addSuccessor(LoopMBB);
2909
2910  //  LoopMBB:
2911  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2912  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2913  //   CompareOpcode %RotatedOldVal, %Src2
2914  //   BRC KeepOldMask, UpdateMBB
2915  MBB = LoopMBB;
2916  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2917    .addReg(OrigVal).addMBB(StartMBB)
2918    .addReg(Dest).addMBB(UpdateMBB);
2919  if (IsSubWord)
2920    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2921      .addReg(OldVal).addReg(BitShift).addImm(0);
2922  BuildMI(MBB, DL, TII->get(CompareOpcode))
2923    .addReg(RotatedOldVal).addReg(Src2);
2924  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2925    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2926  MBB->addSuccessor(UpdateMBB);
2927  MBB->addSuccessor(UseAltMBB);
2928
2929  //  UseAltMBB:
2930  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2931  //   # fall through to UpdateMMB
2932  MBB = UseAltMBB;
2933  if (IsSubWord)
2934    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2935      .addReg(RotatedOldVal).addReg(Src2)
2936      .addImm(32).addImm(31 + BitSize).addImm(0);
2937  MBB->addSuccessor(UpdateMBB);
2938
2939  //  UpdateMBB:
2940  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2941  //                        [ %RotatedAltVal, UseAltMBB ]
2942  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2943  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2944  //   JNE LoopMBB
2945  //   # fall through to DoneMMB
2946  MBB = UpdateMBB;
2947  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2948    .addReg(RotatedOldVal).addMBB(LoopMBB)
2949    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2950  if (IsSubWord)
2951    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2952      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2953  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2954    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2955  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2956    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2957  MBB->addSuccessor(LoopMBB);
2958  MBB->addSuccessor(DoneMBB);
2959
2960  MI->eraseFromParent();
2961  return DoneMBB;
2962}
2963
2964// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2965// instruction MI.
2966MachineBasicBlock *
2967SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2968                                          MachineBasicBlock *MBB) const {
2969  MachineFunction &MF = *MBB->getParent();
2970  const SystemZInstrInfo *TII =
2971      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
2972  MachineRegisterInfo &MRI = MF.getRegInfo();
2973
2974  // Extract the operands.  Base can be a register or a frame index.
2975  unsigned Dest        = MI->getOperand(0).getReg();
2976  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2977  int64_t  Disp        = MI->getOperand(2).getImm();
2978  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2979  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2980  unsigned BitShift    = MI->getOperand(5).getReg();
2981  unsigned NegBitShift = MI->getOperand(6).getReg();
2982  int64_t  BitSize     = MI->getOperand(7).getImm();
2983  DebugLoc DL          = MI->getDebugLoc();
2984
2985  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2986
2987  // Get the right opcodes for the displacement.
2988  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2989  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2990  assert(LOpcode && CSOpcode && "Displacement out of range");
2991
2992  // Create virtual registers for temporary results.
2993  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2994  unsigned OldVal       = MRI.createVirtualRegister(RC);
2995  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2996  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2997  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2998  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2999  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
3000  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
3001
3002  // Insert 2 basic blocks for the loop.
3003  MachineBasicBlock *StartMBB = MBB;
3004  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
3005  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
3006  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
3007
3008  //  StartMBB:
3009  //   ...
3010  //   %OrigOldVal     = L Disp(%Base)
3011  //   # fall through to LoopMMB
3012  MBB = StartMBB;
3013  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3014    .addOperand(Base).addImm(Disp).addReg(0);
3015  MBB->addSuccessor(LoopMBB);
3016
3017  //  LoopMBB:
3018  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3019  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3020  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3021  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
3022  //                      ^^ The low BitSize bits contain the field
3023  //                         of interest.
3024  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3025  //                      ^^ Replace the upper 32-BitSize bits of the
3026  //                         comparison value with those that we loaded,
3027  //                         so that we can use a full word comparison.
3028  //   CR %Dest, %RetryCmpVal
3029  //   JNE DoneMBB
3030  //   # Fall through to SetMBB
3031  MBB = LoopMBB;
3032  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3033    .addReg(OrigOldVal).addMBB(StartMBB)
3034    .addReg(RetryOldVal).addMBB(SetMBB);
3035  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3036    .addReg(OrigCmpVal).addMBB(StartMBB)
3037    .addReg(RetryCmpVal).addMBB(SetMBB);
3038  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3039    .addReg(OrigSwapVal).addMBB(StartMBB)
3040    .addReg(RetrySwapVal).addMBB(SetMBB);
3041  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3042    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3043  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3044    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3045  BuildMI(MBB, DL, TII->get(SystemZ::CR))
3046    .addReg(Dest).addReg(RetryCmpVal);
3047  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3048    .addImm(SystemZ::CCMASK_ICMP)
3049    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
3050  MBB->addSuccessor(DoneMBB);
3051  MBB->addSuccessor(SetMBB);
3052
3053  //  SetMBB:
3054  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3055  //                      ^^ Replace the upper 32-BitSize bits of the new
3056  //                         value with those that we loaded.
3057  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3058  //                      ^^ Rotate the new field to its proper position.
3059  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3060  //   JNE LoopMBB
3061  //   # fall through to ExitMMB
3062  MBB = SetMBB;
3063  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3064    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3065  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3066    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3067  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3068    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
3069  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3070    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
3071  MBB->addSuccessor(LoopMBB);
3072  MBB->addSuccessor(DoneMBB);
3073
3074  MI->eraseFromParent();
3075  return DoneMBB;
3076}
3077
3078// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
3079// if the high register of the GR128 value must be cleared or false if
3080// it's "don't care".  SubReg is subreg_l32 when extending a GR32
3081// and subreg_l64 when extending a GR64.
3082MachineBasicBlock *
3083SystemZTargetLowering::emitExt128(MachineInstr *MI,
3084                                  MachineBasicBlock *MBB,
3085                                  bool ClearEven, unsigned SubReg) const {
3086  MachineFunction &MF = *MBB->getParent();
3087  const SystemZInstrInfo *TII =
3088      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3089  MachineRegisterInfo &MRI = MF.getRegInfo();
3090  DebugLoc DL = MI->getDebugLoc();
3091
3092  unsigned Dest  = MI->getOperand(0).getReg();
3093  unsigned Src   = MI->getOperand(1).getReg();
3094  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3095
3096  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3097  if (ClearEven) {
3098    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3099    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3100
3101    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3102      .addImm(0);
3103    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
3104      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
3105    In128 = NewIn128;
3106  }
3107  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3108    .addReg(In128).addReg(Src).addImm(SubReg);
3109
3110  MI->eraseFromParent();
3111  return MBB;
3112}
3113
3114MachineBasicBlock *
3115SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3116                                         MachineBasicBlock *MBB,
3117                                         unsigned Opcode) const {
3118  MachineFunction &MF = *MBB->getParent();
3119  const SystemZInstrInfo *TII =
3120      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3121  MachineRegisterInfo &MRI = MF.getRegInfo();
3122  DebugLoc DL = MI->getDebugLoc();
3123
3124  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
3125  uint64_t       DestDisp = MI->getOperand(1).getImm();
3126  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
3127  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
3128  uint64_t       Length   = MI->getOperand(4).getImm();
3129
3130  // When generating more than one CLC, all but the last will need to
3131  // branch to the end when a difference is found.
3132  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3133                               splitBlockAfter(MI, MBB) : nullptr);
3134
3135  // Check for the loop form, in which operand 5 is the trip count.
3136  if (MI->getNumExplicitOperands() > 5) {
3137    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3138
3139    uint64_t StartCountReg = MI->getOperand(5).getReg();
3140    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
3141    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
3142                              forceReg(MI, DestBase, TII));
3143
3144    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3145    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
3146    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3147                            MRI.createVirtualRegister(RC));
3148    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
3149    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3150                            MRI.createVirtualRegister(RC));
3151
3152    RC = &SystemZ::GR64BitRegClass;
3153    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3154    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3155
3156    MachineBasicBlock *StartMBB = MBB;
3157    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3158    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3159    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
3160
3161    //  StartMBB:
3162    //   # fall through to LoopMMB
3163    MBB->addSuccessor(LoopMBB);
3164
3165    //  LoopMBB:
3166    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
3167    //                      [ %NextDestReg, NextMBB ]
3168    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
3169    //                     [ %NextSrcReg, NextMBB ]
3170    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
3171    //                       [ %NextCountReg, NextMBB ]
3172    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
3173    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
3174    //   ( JLH EndMBB )
3175    //
3176    // The prefetch is used only for MVC.  The JLH is used only for CLC.
3177    MBB = LoopMBB;
3178
3179    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3180      .addReg(StartDestReg).addMBB(StartMBB)
3181      .addReg(NextDestReg).addMBB(NextMBB);
3182    if (!HaveSingleBase)
3183      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3184        .addReg(StartSrcReg).addMBB(StartMBB)
3185        .addReg(NextSrcReg).addMBB(NextMBB);
3186    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3187      .addReg(StartCountReg).addMBB(StartMBB)
3188      .addReg(NextCountReg).addMBB(NextMBB);
3189    if (Opcode == SystemZ::MVC)
3190      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3191        .addImm(SystemZ::PFD_WRITE)
3192        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3193    BuildMI(MBB, DL, TII->get(Opcode))
3194      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3195      .addReg(ThisSrcReg).addImm(SrcDisp);
3196    if (EndMBB) {
3197      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3198        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3199        .addMBB(EndMBB);
3200      MBB->addSuccessor(EndMBB);
3201      MBB->addSuccessor(NextMBB);
3202    }
3203
3204    // NextMBB:
3205    //   %NextDestReg = LA 256(%ThisDestReg)
3206    //   %NextSrcReg = LA 256(%ThisSrcReg)
3207    //   %NextCountReg = AGHI %ThisCountReg, -1
3208    //   CGHI %NextCountReg, 0
3209    //   JLH LoopMBB
3210    //   # fall through to DoneMMB
3211    //
3212    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
3213    MBB = NextMBB;
3214
3215    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3216      .addReg(ThisDestReg).addImm(256).addReg(0);
3217    if (!HaveSingleBase)
3218      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3219        .addReg(ThisSrcReg).addImm(256).addReg(0);
3220    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3221      .addReg(ThisCountReg).addImm(-1);
3222    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3223      .addReg(NextCountReg).addImm(0);
3224    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3225      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3226      .addMBB(LoopMBB);
3227    MBB->addSuccessor(LoopMBB);
3228    MBB->addSuccessor(DoneMBB);
3229
3230    DestBase = MachineOperand::CreateReg(NextDestReg, false);
3231    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3232    Length &= 255;
3233    MBB = DoneMBB;
3234  }
3235  // Handle any remaining bytes with straight-line code.
3236  while (Length > 0) {
3237    uint64_t ThisLength = std::min(Length, uint64_t(256));
3238    // The previous iteration might have created out-of-range displacements.
3239    // Apply them using LAY if so.
3240    if (!isUInt<12>(DestDisp)) {
3241      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3242      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3243        .addOperand(DestBase).addImm(DestDisp).addReg(0);
3244      DestBase = MachineOperand::CreateReg(Reg, false);
3245      DestDisp = 0;
3246    }
3247    if (!isUInt<12>(SrcDisp)) {
3248      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3249      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3250        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3251      SrcBase = MachineOperand::CreateReg(Reg, false);
3252      SrcDisp = 0;
3253    }
3254    BuildMI(*MBB, MI, DL, TII->get(Opcode))
3255      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3256      .addOperand(SrcBase).addImm(SrcDisp);
3257    DestDisp += ThisLength;
3258    SrcDisp += ThisLength;
3259    Length -= ThisLength;
3260    // If there's another CLC to go, branch to the end if a difference
3261    // was found.
3262    if (EndMBB && Length > 0) {
3263      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3264      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3265        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3266        .addMBB(EndMBB);
3267      MBB->addSuccessor(EndMBB);
3268      MBB->addSuccessor(NextMBB);
3269      MBB = NextMBB;
3270    }
3271  }
3272  if (EndMBB) {
3273    MBB->addSuccessor(EndMBB);
3274    MBB = EndMBB;
3275    MBB->addLiveIn(SystemZ::CC);
3276  }
3277
3278  MI->eraseFromParent();
3279  return MBB;
3280}
3281
3282// Decompose string pseudo-instruction MI into a loop that continually performs
3283// Opcode until CC != 3.
3284MachineBasicBlock *
3285SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3286                                         MachineBasicBlock *MBB,
3287                                         unsigned Opcode) const {
3288  MachineFunction &MF = *MBB->getParent();
3289  const SystemZInstrInfo *TII =
3290      static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
3291  MachineRegisterInfo &MRI = MF.getRegInfo();
3292  DebugLoc DL = MI->getDebugLoc();
3293
3294  uint64_t End1Reg   = MI->getOperand(0).getReg();
3295  uint64_t Start1Reg = MI->getOperand(1).getReg();
3296  uint64_t Start2Reg = MI->getOperand(2).getReg();
3297  uint64_t CharReg   = MI->getOperand(3).getReg();
3298
3299  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3300  uint64_t This1Reg = MRI.createVirtualRegister(RC);
3301  uint64_t This2Reg = MRI.createVirtualRegister(RC);
3302  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
3303
3304  MachineBasicBlock *StartMBB = MBB;
3305  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3306  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3307
3308  //  StartMBB:
3309  //   # fall through to LoopMMB
3310  MBB->addSuccessor(LoopMBB);
3311
3312  //  LoopMBB:
3313  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3314  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3315  //   R0L = %CharReg
3316  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3317  //   JO LoopMBB
3318  //   # fall through to DoneMMB
3319  //
3320  // The load of R0L can be hoisted by post-RA LICM.
3321  MBB = LoopMBB;
3322
3323  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3324    .addReg(Start1Reg).addMBB(StartMBB)
3325    .addReg(End1Reg).addMBB(LoopMBB);
3326  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3327    .addReg(Start2Reg).addMBB(StartMBB)
3328    .addReg(End2Reg).addMBB(LoopMBB);
3329  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3330  BuildMI(MBB, DL, TII->get(Opcode))
3331    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3332    .addReg(This1Reg).addReg(This2Reg);
3333  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3334    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3335  MBB->addSuccessor(LoopMBB);
3336  MBB->addSuccessor(DoneMBB);
3337
3338  DoneMBB->addLiveIn(SystemZ::CC);
3339
3340  MI->eraseFromParent();
3341  return DoneMBB;
3342}
3343
3344MachineBasicBlock *SystemZTargetLowering::
3345EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3346  switch (MI->getOpcode()) {
3347  case SystemZ::Select32Mux:
3348  case SystemZ::Select32:
3349  case SystemZ::SelectF32:
3350  case SystemZ::Select64:
3351  case SystemZ::SelectF64:
3352  case SystemZ::SelectF128:
3353    return emitSelect(MI, MBB);
3354
3355  case SystemZ::CondStore8Mux:
3356    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3357  case SystemZ::CondStore8MuxInv:
3358    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3359  case SystemZ::CondStore16Mux:
3360    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3361  case SystemZ::CondStore16MuxInv:
3362    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3363  case SystemZ::CondStore8:
3364    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3365  case SystemZ::CondStore8Inv:
3366    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3367  case SystemZ::CondStore16:
3368    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3369  case SystemZ::CondStore16Inv:
3370    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3371  case SystemZ::CondStore32:
3372    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3373  case SystemZ::CondStore32Inv:
3374    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3375  case SystemZ::CondStore64:
3376    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3377  case SystemZ::CondStore64Inv:
3378    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3379  case SystemZ::CondStoreF32:
3380    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3381  case SystemZ::CondStoreF32Inv:
3382    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3383  case SystemZ::CondStoreF64:
3384    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3385  case SystemZ::CondStoreF64Inv:
3386    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3387
3388  case SystemZ::AEXT128_64:
3389    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3390  case SystemZ::ZEXT128_32:
3391    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3392  case SystemZ::ZEXT128_64:
3393    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3394
3395  case SystemZ::ATOMIC_SWAPW:
3396    return emitAtomicLoadBinary(MI, MBB, 0, 0);
3397  case SystemZ::ATOMIC_SWAP_32:
3398    return emitAtomicLoadBinary(MI, MBB, 0, 32);
3399  case SystemZ::ATOMIC_SWAP_64:
3400    return emitAtomicLoadBinary(MI, MBB, 0, 64);
3401
3402  case SystemZ::ATOMIC_LOADW_AR:
3403    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3404  case SystemZ::ATOMIC_LOADW_AFI:
3405    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3406  case SystemZ::ATOMIC_LOAD_AR:
3407    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3408  case SystemZ::ATOMIC_LOAD_AHI:
3409    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3410  case SystemZ::ATOMIC_LOAD_AFI:
3411    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3412  case SystemZ::ATOMIC_LOAD_AGR:
3413    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3414  case SystemZ::ATOMIC_LOAD_AGHI:
3415    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3416  case SystemZ::ATOMIC_LOAD_AGFI:
3417    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3418
3419  case SystemZ::ATOMIC_LOADW_SR:
3420    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3421  case SystemZ::ATOMIC_LOAD_SR:
3422    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3423  case SystemZ::ATOMIC_LOAD_SGR:
3424    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3425
3426  case SystemZ::ATOMIC_LOADW_NR:
3427    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3428  case SystemZ::ATOMIC_LOADW_NILH:
3429    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3430  case SystemZ::ATOMIC_LOAD_NR:
3431    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3432  case SystemZ::ATOMIC_LOAD_NILL:
3433    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3434  case SystemZ::ATOMIC_LOAD_NILH:
3435    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3436  case SystemZ::ATOMIC_LOAD_NILF:
3437    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3438  case SystemZ::ATOMIC_LOAD_NGR:
3439    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3440  case SystemZ::ATOMIC_LOAD_NILL64:
3441    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3442  case SystemZ::ATOMIC_LOAD_NILH64:
3443    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3444  case SystemZ::ATOMIC_LOAD_NIHL64:
3445    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3446  case SystemZ::ATOMIC_LOAD_NIHH64:
3447    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3448  case SystemZ::ATOMIC_LOAD_NILF64:
3449    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3450  case SystemZ::ATOMIC_LOAD_NIHF64:
3451    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3452
3453  case SystemZ::ATOMIC_LOADW_OR:
3454    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3455  case SystemZ::ATOMIC_LOADW_OILH:
3456    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3457  case SystemZ::ATOMIC_LOAD_OR:
3458    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3459  case SystemZ::ATOMIC_LOAD_OILL:
3460    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3461  case SystemZ::ATOMIC_LOAD_OILH:
3462    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3463  case SystemZ::ATOMIC_LOAD_OILF:
3464    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3465  case SystemZ::ATOMIC_LOAD_OGR:
3466    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3467  case SystemZ::ATOMIC_LOAD_OILL64:
3468    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3469  case SystemZ::ATOMIC_LOAD_OILH64:
3470    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3471  case SystemZ::ATOMIC_LOAD_OIHL64:
3472    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3473  case SystemZ::ATOMIC_LOAD_OIHH64:
3474    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3475  case SystemZ::ATOMIC_LOAD_OILF64:
3476    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3477  case SystemZ::ATOMIC_LOAD_OIHF64:
3478    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3479
3480  case SystemZ::ATOMIC_LOADW_XR:
3481    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3482  case SystemZ::ATOMIC_LOADW_XILF:
3483    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3484  case SystemZ::ATOMIC_LOAD_XR:
3485    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3486  case SystemZ::ATOMIC_LOAD_XILF:
3487    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3488  case SystemZ::ATOMIC_LOAD_XGR:
3489    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3490  case SystemZ::ATOMIC_LOAD_XILF64:
3491    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3492  case SystemZ::ATOMIC_LOAD_XIHF64:
3493    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3494
3495  case SystemZ::ATOMIC_LOADW_NRi:
3496    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3497  case SystemZ::ATOMIC_LOADW_NILHi:
3498    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3499  case SystemZ::ATOMIC_LOAD_NRi:
3500    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3501  case SystemZ::ATOMIC_LOAD_NILLi:
3502    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3503  case SystemZ::ATOMIC_LOAD_NILHi:
3504    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3505  case SystemZ::ATOMIC_LOAD_NILFi:
3506    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3507  case SystemZ::ATOMIC_LOAD_NGRi:
3508    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3509  case SystemZ::ATOMIC_LOAD_NILL64i:
3510    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3511  case SystemZ::ATOMIC_LOAD_NILH64i:
3512    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3513  case SystemZ::ATOMIC_LOAD_NIHL64i:
3514    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3515  case SystemZ::ATOMIC_LOAD_NIHH64i:
3516    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3517  case SystemZ::ATOMIC_LOAD_NILF64i:
3518    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3519  case SystemZ::ATOMIC_LOAD_NIHF64i:
3520    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3521
3522  case SystemZ::ATOMIC_LOADW_MIN:
3523    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3524                                SystemZ::CCMASK_CMP_LE, 0);
3525  case SystemZ::ATOMIC_LOAD_MIN_32:
3526    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3527                                SystemZ::CCMASK_CMP_LE, 32);
3528  case SystemZ::ATOMIC_LOAD_MIN_64:
3529    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3530                                SystemZ::CCMASK_CMP_LE, 64);
3531
3532  case SystemZ::ATOMIC_LOADW_MAX:
3533    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3534                                SystemZ::CCMASK_CMP_GE, 0);
3535  case SystemZ::ATOMIC_LOAD_MAX_32:
3536    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3537                                SystemZ::CCMASK_CMP_GE, 32);
3538  case SystemZ::ATOMIC_LOAD_MAX_64:
3539    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3540                                SystemZ::CCMASK_CMP_GE, 64);
3541
3542  case SystemZ::ATOMIC_LOADW_UMIN:
3543    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3544                                SystemZ::CCMASK_CMP_LE, 0);
3545  case SystemZ::ATOMIC_LOAD_UMIN_32:
3546    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3547                                SystemZ::CCMASK_CMP_LE, 32);
3548  case SystemZ::ATOMIC_LOAD_UMIN_64:
3549    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3550                                SystemZ::CCMASK_CMP_LE, 64);
3551
3552  case SystemZ::ATOMIC_LOADW_UMAX:
3553    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3554                                SystemZ::CCMASK_CMP_GE, 0);
3555  case SystemZ::ATOMIC_LOAD_UMAX_32:
3556    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3557                                SystemZ::CCMASK_CMP_GE, 32);
3558  case SystemZ::ATOMIC_LOAD_UMAX_64:
3559    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3560                                SystemZ::CCMASK_CMP_GE, 64);
3561
3562  case SystemZ::ATOMIC_CMP_SWAPW:
3563    return emitAtomicCmpSwapW(MI, MBB);
3564  case SystemZ::MVCSequence:
3565  case SystemZ::MVCLoop:
3566    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3567  case SystemZ::NCSequence:
3568  case SystemZ::NCLoop:
3569    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3570  case SystemZ::OCSequence:
3571  case SystemZ::OCLoop:
3572    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3573  case SystemZ::XCSequence:
3574  case SystemZ::XCLoop:
3575    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3576  case SystemZ::CLCSequence:
3577  case SystemZ::CLCLoop:
3578    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3579  case SystemZ::CLSTLoop:
3580    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3581  case SystemZ::MVSTLoop:
3582    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3583  case SystemZ::SRSTLoop:
3584    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3585  default:
3586    llvm_unreachable("Unexpected instr type to insert");
3587  }
3588}
3589