SystemZISelLowering.cpp revision 2a2a323488a31fbdb3524f7f288b8e5c3fc3b7c3
15d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
25d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
35d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
55d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// License. See LICENSE.TXT for details.
75c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//
85c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//===----------------------------------------------------------------------===//
95d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// This file implements the SystemZTargetLowering class.
115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
125d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===----------------------------------------------------------------------===//
135d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
145d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#define DEBUG_TYPE "systemz-lower"
155d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
165d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "SystemZISelLowering.h"
175d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "SystemZCallingConv.h"
185d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "SystemZConstantPoolValue.h"
195d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "SystemZMachineFunctionInfo.h"
205d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "SystemZTargetMachine.h"
215d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/CallingConvLower.h"
225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineInstrBuilder.h"
235d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineRegisterInfo.h"
245d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)
265d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include <cctype>
275d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
285c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liuusing namespace llvm;
295d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
305d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)namespace {
315d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// Represents a sequence for extracting a 0/1 value from an IPM result:
325d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// (((X ^ XORValue) + AddValue) >> Bit)
335d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)struct IPMConversion {
345d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
355d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
375d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  int64_t XORValue;
385d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  int64_t AddValue;
395d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  unsigned Bit;
405d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)};
415d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)}
425d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
435d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// Classify VT as either 32 or 64 bit.
445d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)static bool is32Bit(EVT VT) {
455d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  switch (VT.getSimpleVT().SimpleTy) {
465d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  case MVT::i32:
475d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    return true;
485d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  case MVT::i64:
495d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    return false;
505d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  default:
515d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    llvm_unreachable("Unsupported type");
525d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  }
535c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu}
545c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
555c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu// Return a version of MachineOperand that can be safely used before the
565c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu// final use.
575c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liustatic MachineOperand earlyUseOperand(MachineOperand Op) {
585c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  if (Op.isReg())
595c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    Op.setIsKill(false);
605d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  return Op;
615d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)}
625d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
635d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
645d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
655d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
665d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  MVT PtrVT = getPointerTy();
675d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
685d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Set up the register classes.
695d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  if (Subtarget.hasHighWord())
705d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
715d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  else
725c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
735c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
745c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
755c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
765c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
775c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
785c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // Compute derived properties from the register classes
795c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  computeRegisterProperties();
805c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
815c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // Set up special registers.
825d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setExceptionPointerRegister(SystemZ::R6D);
835d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setExceptionSelectorRegister(SystemZ::R7D);
845d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
855d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
865d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // TODO: It may be better to default to latency-oriented scheduling, however
875d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // LLVM's current latency-oriented scheduler can't handle physreg definitions
885c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // such as SystemZ has with CC, so set this to the register-pressure
895d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // scheduler, because it can.
905c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  setSchedulingPreference(Sched::RegPressure);
915c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
925d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setBooleanContents(ZeroOrOneBooleanContent);
935d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
945d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
955d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Instructions are strings of 2-byte aligned 2-byte values.
965d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setMinFunctionAlignment(2);
975d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
985d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Handle operations that are handled in a similar way for all types.
99010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
100010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)       I <= MVT::LAST_FP_VALUETYPE;
101010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)       ++I) {
102010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)    MVT VT = MVT::SimpleValueType(I);
1035d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    if (isTypeLegal(VT)) {
1045d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Lower SET_CC into an IPM-based sequence.
1055c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::SETCC, VT, Custom);
1065d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1075d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
1085d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SELECT, VT, Expand);
1095d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
1115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SELECT_CC, VT, Custom);
1125d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::BR_CC,     VT, Custom);
1135d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    }
1145d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  }
1155d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1165d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Expand jump table branches as address arithmetic followed by an
1175d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // indirect jump.
1185d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1195d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1205d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Expand BRCOND into a BR_CC (see above).
1215d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
123010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)  // Handle integer types.
124010d83a9304c5a91596085d917d248abff47903aTorne (Richard Coles)  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
1255d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)       I <= MVT::LAST_INTEGER_VALUETYPE;
1265d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)       ++I) {
1275d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    MVT VT = MVT::SimpleValueType(I);
1285d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    if (isTypeLegal(VT)) {
1295d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Expand individual DIV and REMs into DIVREMs.
1305d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SDIV, VT, Expand);
1315d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::UDIV, VT, Expand);
1325d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SREM, VT, Expand);
1335d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::UREM, VT, Expand);
1345d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SDIVREM, VT, Custom);
1355d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::UDIVREM, VT, Custom);
1365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1375d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
1385d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // FIXME: probably much too conservative.
1395d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
1405d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
1415c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
1425c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      // No special instructions for these.
1435c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::CTPOP,           VT, Expand);
1445c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::CTTZ,            VT, Expand);
1455c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
1465c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
1475c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu      setOperationAction(ISD::ROTR,            VT, Expand);
1485c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
1495d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // Use *MUL_LOHI where possible instead of MULH*.
1505d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::MULHS, VT, Expand);
1515d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::MULHU, VT, Expand);
1525d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
1535d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
1545d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1555d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // We have instructions for signed but not unsigned FP conversion.
1565d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
1575d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    }
1585d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  }
1595d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1605d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Type legalization will convert 8- and 16-bit atomic operations into
1615d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // forms that operate on i32s (but still keeping the original memory VT).
1625d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Lower them into full i32 operations.
1635d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
164a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
165a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
166a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
167a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
168a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
169a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
170a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
171a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
172a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
173a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
174a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
175a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
1765d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We have instructions for signed but not unsigned FP conversion.
1775d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Handle unsigned 32-bit types as signed 64-bit types.
1785d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
1795d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
1805d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1815d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We have native support for a 64-bit CTLZ, via FLOGR.
1825d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
1835d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
1845d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1855d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
1865d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::OR, MVT::i64, Custom);
1875d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1885d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // FIXME: Can we support these natively?
1895d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1905d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1915d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1925d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1935d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We have native instructions for i8, i16 and i32 extensions, but not i1.
1945d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1955d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
1965d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
1975d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1985d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1995d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Handle the various types of symbolic address.
2005d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
2015d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
2025d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
2035d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
2045d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
2055d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2065d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We need to handle dynamic allocations specially because of the
2075d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // 160-byte area at the bottom of the stack.
2085d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
2095d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Use custom expanders so that we can force the function to use
2115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // a frame pointer.
2125d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
2135d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
2145d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2155d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Handle prefetches with PFD or PFDRL.
2165d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
2175d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2185d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Handle floating-point types.
2195d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
2205d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)       I <= MVT::LAST_FP_VALUETYPE;
2215d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)       ++I) {
2225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    MVT VT = MVT::SimpleValueType(I);
2235d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    if (isTypeLegal(VT)) {
2245d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // We can use FI for FRINT.
2255d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::FRINT, VT, Legal);
2265d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2275d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // We can use the extended form of FI for other rounding operations.
2285d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      if (Subtarget.hasFPExtension()) {
2295d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)        setOperationAction(ISD::FNEARBYINT, VT, Legal);
2305d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)        setOperationAction(ISD::FFLOOR, VT, Legal);
2315d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)        setOperationAction(ISD::FCEIL, VT, Legal);
2325d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)        setOperationAction(ISD::FTRUNC, VT, Legal);
2335d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)        setOperationAction(ISD::FROUND, VT, Legal);
2345d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      }
2355d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      // No special instructions for these.
2375d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::FSIN, VT, Expand);
2385d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::FCOS, VT, Expand);
2395d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)      setOperationAction(ISD::FREM, VT, Expand);
2405d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    }
2415d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  }
2425d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2435d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We have fused multiply-addition for f32 and f64 but not f128.
2445d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::FMA, MVT::f32,  Legal);
2455d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::FMA, MVT::f64,  Legal);
2465d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::FMA, MVT::f128, Expand);
2475d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2485d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Needed so that we don't try to implement f128 constant loads using
2495d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // a load-and-extend of a f80 constant (in cases where the constant
2505d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // would fit in an f80).
2515d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
2525d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2535d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Floating-point truncation and stores need to be done separately.
2545c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
2555c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
2565c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
2575c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
2585c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // We have 64-bit FPR<->GPR moves, but need special handling for
2595c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // 32-bit forms.
2605c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
2615d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
2625d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2635d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
2645d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // structure, but VAEND is a no-op.
2655d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::VASTART, MVT::Other, Custom);
2665d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
2675d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
2685d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2695d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // We want to use MVC in preference to even a single load/store pair.
2705d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  MaxStoresPerMemcpy = 0;
2715d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  MaxStoresPerMemcpyOptSize = 0;
2725d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2735d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // The main memset sequence is a byte store followed by an MVC.
2745d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // Two STC or MV..I stores win over that, but the kind of fused stores
2755d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // generated by target-independent code don't when the byte value is
2765d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
2775d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // than "STC;MVC".  Handle the choice in target-specific code instead.
2785d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  MaxStoresPerMemset = 0;
2795d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  MaxStoresPerMemsetOptSize = 0;
2805d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)}
2815d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2825d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
2835d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  if (!VT.isVector())
2845d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    return MVT::i32;
2855d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  return VT.changeVectorElementTypeToInteger();
2865d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)}
2875d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
2885d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
289  VT = VT.getScalarType();
290
291  if (!VT.isSimple())
292    return false;
293
294  switch (VT.getSimpleVT().SimpleTy) {
295  case MVT::f32:
296  case MVT::f64:
297    return true;
298  case MVT::f128:
299    return false;
300  default:
301    break;
302  }
303
304  return false;
305}
306
307bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
308  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
309  return Imm.isZero() || Imm.isNegZero();
310}
311
312bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
313                                                          bool *Fast) const {
314  // Unaligned accesses should never be slower than the expanded version.
315  // We check specifically for aligned accesses in the few cases where
316  // they are required.
317  if (Fast)
318    *Fast = true;
319  return true;
320}
321
322bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
323                                                  Type *Ty) const {
324  // Punt on globals for now, although they can be used in limited
325  // RELATIVE LONG cases.
326  if (AM.BaseGV)
327    return false;
328
329  // Require a 20-bit signed offset.
330  if (!isInt<20>(AM.BaseOffs))
331    return false;
332
333  // Indexing is OK but no scale factor can be applied.
334  return AM.Scale == 0 || AM.Scale == 1;
335}
336
337bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
338  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
339    return false;
340  unsigned FromBits = FromType->getPrimitiveSizeInBits();
341  unsigned ToBits = ToType->getPrimitiveSizeInBits();
342  return FromBits > ToBits;
343}
344
345bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
346  if (!FromVT.isInteger() || !ToVT.isInteger())
347    return false;
348  unsigned FromBits = FromVT.getSizeInBits();
349  unsigned ToBits = ToVT.getSizeInBits();
350  return FromBits > ToBits;
351}
352
353//===----------------------------------------------------------------------===//
354// Inline asm support
355//===----------------------------------------------------------------------===//
356
357TargetLowering::ConstraintType
358SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
359  if (Constraint.size() == 1) {
360    switch (Constraint[0]) {
361    case 'a': // Address register
362    case 'd': // Data register (equivalent to 'r')
363    case 'f': // Floating-point register
364    case 'h': // High-part register
365    case 'r': // General-purpose register
366      return C_RegisterClass;
367
368    case 'Q': // Memory with base and unsigned 12-bit displacement
369    case 'R': // Likewise, plus an index
370    case 'S': // Memory with base and signed 20-bit displacement
371    case 'T': // Likewise, plus an index
372    case 'm': // Equivalent to 'T'.
373      return C_Memory;
374
375    case 'I': // Unsigned 8-bit constant
376    case 'J': // Unsigned 12-bit constant
377    case 'K': // Signed 16-bit constant
378    case 'L': // Signed 20-bit displacement (on all targets we support)
379    case 'M': // 0x7fffffff
380      return C_Other;
381
382    default:
383      break;
384    }
385  }
386  return TargetLowering::getConstraintType(Constraint);
387}
388
389TargetLowering::ConstraintWeight SystemZTargetLowering::
390getSingleConstraintMatchWeight(AsmOperandInfo &info,
391                               const char *constraint) const {
392  ConstraintWeight weight = CW_Invalid;
393  Value *CallOperandVal = info.CallOperandVal;
394  // If we don't have a value, we can't do a match,
395  // but allow it at the lowest weight.
396  if (CallOperandVal == NULL)
397    return CW_Default;
398  Type *type = CallOperandVal->getType();
399  // Look at the constraint type.
400  switch (*constraint) {
401  default:
402    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
403    break;
404
405  case 'a': // Address register
406  case 'd': // Data register (equivalent to 'r')
407  case 'h': // High-part register
408  case 'r': // General-purpose register
409    if (CallOperandVal->getType()->isIntegerTy())
410      weight = CW_Register;
411    break;
412
413  case 'f': // Floating-point register
414    if (type->isFloatingPointTy())
415      weight = CW_Register;
416    break;
417
418  case 'I': // Unsigned 8-bit constant
419    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
420      if (isUInt<8>(C->getZExtValue()))
421        weight = CW_Constant;
422    break;
423
424  case 'J': // Unsigned 12-bit constant
425    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
426      if (isUInt<12>(C->getZExtValue()))
427        weight = CW_Constant;
428    break;
429
430  case 'K': // Signed 16-bit constant
431    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
432      if (isInt<16>(C->getSExtValue()))
433        weight = CW_Constant;
434    break;
435
436  case 'L': // Signed 20-bit displacement (on all targets we support)
437    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
438      if (isInt<20>(C->getSExtValue()))
439        weight = CW_Constant;
440    break;
441
442  case 'M': // 0x7fffffff
443    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
444      if (C->getZExtValue() == 0x7fffffff)
445        weight = CW_Constant;
446    break;
447  }
448  return weight;
449}
450
451// Parse a "{tNNN}" register constraint for which the register type "t"
452// has already been verified.  MC is the class associated with "t" and
453// Map maps 0-based register numbers to LLVM register numbers.
454static std::pair<unsigned, const TargetRegisterClass *>
455parseRegisterNumber(const std::string &Constraint,
456                    const TargetRegisterClass *RC, const unsigned *Map) {
457  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
458  if (isdigit(Constraint[2])) {
459    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
460    unsigned Index = atoi(Suffix.c_str());
461    if (Index < 16 && Map[Index])
462      return std::make_pair(Map[Index], RC);
463  }
464  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
465}
466
467std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
468getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
469  if (Constraint.size() == 1) {
470    // GCC Constraint Letters
471    switch (Constraint[0]) {
472    default: break;
473    case 'd': // Data register (equivalent to 'r')
474    case 'r': // General-purpose register
475      if (VT == MVT::i64)
476        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
477      else if (VT == MVT::i128)
478        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
479      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
480
481    case 'a': // Address register
482      if (VT == MVT::i64)
483        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
484      else if (VT == MVT::i128)
485        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
486      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
487
488    case 'h': // High-part register (an LLVM extension)
489      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
490
491    case 'f': // Floating-point register
492      if (VT == MVT::f64)
493        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
494      else if (VT == MVT::f128)
495        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
496      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
497    }
498  }
499  if (Constraint[0] == '{') {
500    // We need to override the default register parsing for GPRs and FPRs
501    // because the interpretation depends on VT.  The internal names of
502    // the registers are also different from the external names
503    // (F0D and F0S instead of F0, etc.).
504    if (Constraint[1] == 'r') {
505      if (VT == MVT::i32)
506        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
507                                   SystemZMC::GR32Regs);
508      if (VT == MVT::i128)
509        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
510                                   SystemZMC::GR128Regs);
511      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
512                                 SystemZMC::GR64Regs);
513    }
514    if (Constraint[1] == 'f') {
515      if (VT == MVT::f32)
516        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
517                                   SystemZMC::FP32Regs);
518      if (VT == MVT::f128)
519        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
520                                   SystemZMC::FP128Regs);
521      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
522                                 SystemZMC::FP64Regs);
523    }
524  }
525  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
526}
527
528void SystemZTargetLowering::
529LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
530                             std::vector<SDValue> &Ops,
531                             SelectionDAG &DAG) const {
532  // Only support length 1 constraints for now.
533  if (Constraint.length() == 1) {
534    switch (Constraint[0]) {
535    case 'I': // Unsigned 8-bit constant
536      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
537        if (isUInt<8>(C->getZExtValue()))
538          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
539                                              Op.getValueType()));
540      return;
541
542    case 'J': // Unsigned 12-bit constant
543      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
544        if (isUInt<12>(C->getZExtValue()))
545          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
546                                              Op.getValueType()));
547      return;
548
549    case 'K': // Signed 16-bit constant
550      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
551        if (isInt<16>(C->getSExtValue()))
552          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
553                                              Op.getValueType()));
554      return;
555
556    case 'L': // Signed 20-bit displacement (on all targets we support)
557      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
558        if (isInt<20>(C->getSExtValue()))
559          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
560                                              Op.getValueType()));
561      return;
562
563    case 'M': // 0x7fffffff
564      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
565        if (C->getZExtValue() == 0x7fffffff)
566          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
567                                              Op.getValueType()));
568      return;
569    }
570  }
571  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
572}
573
574//===----------------------------------------------------------------------===//
575// Calling conventions
576//===----------------------------------------------------------------------===//
577
578#include "SystemZGenCallingConv.inc"
579
580bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
581                                                     Type *ToType) const {
582  return isTruncateFree(FromType, ToType);
583}
584
585bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
586  if (!CI->isTailCall())
587    return false;
588  return true;
589}
590
591// Value is a value that has been passed to us in the location described by VA
592// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
593// any loads onto Chain.
594static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
595                                   CCValAssign &VA, SDValue Chain,
596                                   SDValue Value) {
597  // If the argument has been promoted from a smaller type, insert an
598  // assertion to capture this.
599  if (VA.getLocInfo() == CCValAssign::SExt)
600    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
601                        DAG.getValueType(VA.getValVT()));
602  else if (VA.getLocInfo() == CCValAssign::ZExt)
603    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
604                        DAG.getValueType(VA.getValVT()));
605
606  if (VA.isExtInLoc())
607    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
608  else if (VA.getLocInfo() == CCValAssign::Indirect)
609    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
610                        MachinePointerInfo(), false, false, false, 0);
611  else
612    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
613  return Value;
614}
615
616// Value is a value of type VA.getValVT() that we need to copy into
617// the location described by VA.  Return a copy of Value converted to
618// VA.getValVT().  The caller is responsible for handling indirect values.
619static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
620                                   CCValAssign &VA, SDValue Value) {
621  switch (VA.getLocInfo()) {
622  case CCValAssign::SExt:
623    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
624  case CCValAssign::ZExt:
625    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
626  case CCValAssign::AExt:
627    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
628  case CCValAssign::Full:
629    return Value;
630  default:
631    llvm_unreachable("Unhandled getLocInfo()");
632  }
633}
634
635SDValue SystemZTargetLowering::
636LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
637                     const SmallVectorImpl<ISD::InputArg> &Ins,
638                     SDLoc DL, SelectionDAG &DAG,
639                     SmallVectorImpl<SDValue> &InVals) const {
640  MachineFunction &MF = DAG.getMachineFunction();
641  MachineFrameInfo *MFI = MF.getFrameInfo();
642  MachineRegisterInfo &MRI = MF.getRegInfo();
643  SystemZMachineFunctionInfo *FuncInfo =
644    MF.getInfo<SystemZMachineFunctionInfo>();
645  const SystemZFrameLowering *TFL =
646    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
647
648  // Assign locations to all of the incoming arguments.
649  SmallVector<CCValAssign, 16> ArgLocs;
650  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
651  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
652
653  unsigned NumFixedGPRs = 0;
654  unsigned NumFixedFPRs = 0;
655  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
656    SDValue ArgValue;
657    CCValAssign &VA = ArgLocs[I];
658    EVT LocVT = VA.getLocVT();
659    if (VA.isRegLoc()) {
660      // Arguments passed in registers
661      const TargetRegisterClass *RC;
662      switch (LocVT.getSimpleVT().SimpleTy) {
663      default:
664        // Integers smaller than i64 should be promoted to i64.
665        llvm_unreachable("Unexpected argument type");
666      case MVT::i32:
667        NumFixedGPRs += 1;
668        RC = &SystemZ::GR32BitRegClass;
669        break;
670      case MVT::i64:
671        NumFixedGPRs += 1;
672        RC = &SystemZ::GR64BitRegClass;
673        break;
674      case MVT::f32:
675        NumFixedFPRs += 1;
676        RC = &SystemZ::FP32BitRegClass;
677        break;
678      case MVT::f64:
679        NumFixedFPRs += 1;
680        RC = &SystemZ::FP64BitRegClass;
681        break;
682      }
683
684      unsigned VReg = MRI.createVirtualRegister(RC);
685      MRI.addLiveIn(VA.getLocReg(), VReg);
686      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
687    } else {
688      assert(VA.isMemLoc() && "Argument not register or memory");
689
690      // Create the frame index object for this incoming parameter.
691      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
692                                      VA.getLocMemOffset(), true);
693
694      // Create the SelectionDAG nodes corresponding to a load
695      // from this parameter.  Unpromoted ints and floats are
696      // passed as right-justified 8-byte values.
697      EVT PtrVT = getPointerTy();
698      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
699      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
700        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
701      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
702                             MachinePointerInfo::getFixedStack(FI),
703                             false, false, false, 0);
704    }
705
706    // Convert the value of the argument register into the value that's
707    // being passed.
708    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
709  }
710
711  if (IsVarArg) {
712    // Save the number of non-varargs registers for later use by va_start, etc.
713    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
714    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
715
716    // Likewise the address (in the form of a frame index) of where the
717    // first stack vararg would be.  The 1-byte size here is arbitrary.
718    int64_t StackSize = CCInfo.getNextStackOffset();
719    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
720
721    // ...and a similar frame index for the caller-allocated save area
722    // that will be used to store the incoming registers.
723    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
724    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
725    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
726
727    // Store the FPR varargs in the reserved frame slots.  (We store the
728    // GPRs as part of the prologue.)
729    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
730      SDValue MemOps[SystemZ::NumArgFPRs];
731      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
732        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
733        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
734        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
735        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
736                                     &SystemZ::FP64BitRegClass);
737        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
738        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
739                                 MachinePointerInfo::getFixedStack(FI),
740                                 false, false, 0);
741
742      }
743      // Join the stores, which are independent of one another.
744      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
745                          &MemOps[NumFixedFPRs],
746                          SystemZ::NumArgFPRs - NumFixedFPRs);
747    }
748  }
749
750  return Chain;
751}
752
753static bool canUseSiblingCall(CCState ArgCCInfo,
754                              SmallVectorImpl<CCValAssign> &ArgLocs) {
755  // Punt if there are any indirect or stack arguments, or if the call
756  // needs the call-saved argument register R6.
757  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
758    CCValAssign &VA = ArgLocs[I];
759    if (VA.getLocInfo() == CCValAssign::Indirect)
760      return false;
761    if (!VA.isRegLoc())
762      return false;
763    unsigned Reg = VA.getLocReg();
764    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
765      return false;
766  }
767  return true;
768}
769
770SDValue
771SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
772                                 SmallVectorImpl<SDValue> &InVals) const {
773  SelectionDAG &DAG = CLI.DAG;
774  SDLoc &DL = CLI.DL;
775  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
776  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
777  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
778  SDValue Chain = CLI.Chain;
779  SDValue Callee = CLI.Callee;
780  bool &IsTailCall = CLI.IsTailCall;
781  CallingConv::ID CallConv = CLI.CallConv;
782  bool IsVarArg = CLI.IsVarArg;
783  MachineFunction &MF = DAG.getMachineFunction();
784  EVT PtrVT = getPointerTy();
785
786  // Analyze the operands of the call, assigning locations to each operand.
787  SmallVector<CCValAssign, 16> ArgLocs;
788  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
789  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
790
791  // We don't support GuaranteedTailCallOpt, only automatically-detected
792  // sibling calls.
793  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
794    IsTailCall = false;
795
796  // Get a count of how many bytes are to be pushed on the stack.
797  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
798
799  // Mark the start of the call.
800  if (!IsTailCall)
801    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
802                                 DL);
803
804  // Copy argument values to their designated locations.
805  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
806  SmallVector<SDValue, 8> MemOpChains;
807  SDValue StackPtr;
808  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
809    CCValAssign &VA = ArgLocs[I];
810    SDValue ArgValue = OutVals[I];
811
812    if (VA.getLocInfo() == CCValAssign::Indirect) {
813      // Store the argument in a stack slot and pass its address.
814      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
815      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
816      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
817                                         MachinePointerInfo::getFixedStack(FI),
818                                         false, false, 0));
819      ArgValue = SpillSlot;
820    } else
821      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
822
823    if (VA.isRegLoc())
824      // Queue up the argument copies and emit them at the end.
825      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
826    else {
827      assert(VA.isMemLoc() && "Argument not register or memory");
828
829      // Work out the address of the stack slot.  Unpromoted ints and
830      // floats are passed as right-justified 8-byte values.
831      if (!StackPtr.getNode())
832        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
833      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
834      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
835        Offset += 4;
836      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
837                                    DAG.getIntPtrConstant(Offset));
838
839      // Emit the store.
840      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
841                                         MachinePointerInfo(),
842                                         false, false, 0));
843    }
844  }
845
846  // Join the stores, which are independent of one another.
847  if (!MemOpChains.empty())
848    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
849                        &MemOpChains[0], MemOpChains.size());
850
851  // Accept direct calls by converting symbolic call addresses to the
852  // associated Target* opcodes.  Force %r1 to be used for indirect
853  // tail calls.
854  SDValue Glue;
855  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
856    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
857    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
858  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
859    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
860    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
861  } else if (IsTailCall) {
862    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
863    Glue = Chain.getValue(1);
864    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
865  }
866
867  // Build a sequence of copy-to-reg nodes, chained and glued together.
868  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
869    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
870                             RegsToPass[I].second, Glue);
871    Glue = Chain.getValue(1);
872  }
873
874  // The first call operand is the chain and the second is the target address.
875  SmallVector<SDValue, 8> Ops;
876  Ops.push_back(Chain);
877  Ops.push_back(Callee);
878
879  // Add argument registers to the end of the list so that they are
880  // known live into the call.
881  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
882    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
883                                  RegsToPass[I].second.getValueType()));
884
885  // Glue the call to the argument copies, if any.
886  if (Glue.getNode())
887    Ops.push_back(Glue);
888
889  // Emit the call.
890  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
891  if (IsTailCall)
892    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
893  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
894  Glue = Chain.getValue(1);
895
896  // Mark the end of the call, which is glued to the call itself.
897  Chain = DAG.getCALLSEQ_END(Chain,
898                             DAG.getConstant(NumBytes, PtrVT, true),
899                             DAG.getConstant(0, PtrVT, true),
900                             Glue, DL);
901  Glue = Chain.getValue(1);
902
903  // Assign locations to each value returned by this call.
904  SmallVector<CCValAssign, 16> RetLocs;
905  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
906  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
907
908  // Copy all of the result registers out of their specified physreg.
909  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
910    CCValAssign &VA = RetLocs[I];
911
912    // Copy the value out, gluing the copy to the end of the call sequence.
913    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
914                                          VA.getLocVT(), Glue);
915    Chain = RetValue.getValue(1);
916    Glue = RetValue.getValue(2);
917
918    // Convert the value of the return register into the value that's
919    // being returned.
920    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
921  }
922
923  return Chain;
924}
925
926SDValue
927SystemZTargetLowering::LowerReturn(SDValue Chain,
928                                   CallingConv::ID CallConv, bool IsVarArg,
929                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
930                                   const SmallVectorImpl<SDValue> &OutVals,
931                                   SDLoc DL, SelectionDAG &DAG) const {
932  MachineFunction &MF = DAG.getMachineFunction();
933
934  // Assign locations to each returned value.
935  SmallVector<CCValAssign, 16> RetLocs;
936  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
937  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
938
939  // Quick exit for void returns
940  if (RetLocs.empty())
941    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
942
943  // Copy the result values into the output registers.
944  SDValue Glue;
945  SmallVector<SDValue, 4> RetOps;
946  RetOps.push_back(Chain);
947  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
948    CCValAssign &VA = RetLocs[I];
949    SDValue RetValue = OutVals[I];
950
951    // Make the return register live on exit.
952    assert(VA.isRegLoc() && "Can only return in registers!");
953
954    // Promote the value as required.
955    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
956
957    // Chain and glue the copies together.
958    unsigned Reg = VA.getLocReg();
959    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
960    Glue = Chain.getValue(1);
961    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
962  }
963
964  // Update chain and glue.
965  RetOps[0] = Chain;
966  if (Glue.getNode())
967    RetOps.push_back(Glue);
968
969  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
970                     RetOps.data(), RetOps.size());
971}
972
973// CC is a comparison that will be implemented using an integer or
974// floating-point comparison.  Return the condition code mask for
975// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
976// unsigned comparisons and clear for signed ones.  In the floating-point
977// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
978static unsigned CCMaskForCondCode(ISD::CondCode CC) {
979#define CONV(X) \
980  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
981  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
982  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
983
984  switch (CC) {
985  default:
986    llvm_unreachable("Invalid integer condition!");
987
988  CONV(EQ);
989  CONV(NE);
990  CONV(GT);
991  CONV(GE);
992  CONV(LT);
993  CONV(LE);
994
995  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
996  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
997  }
998#undef CONV
999}
1000
1001// Return a sequence for getting a 1 from an IPM result when CC has a
1002// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1003// The handling of CC values outside CCValid doesn't matter.
1004static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1005  // Deal with cases where the result can be taken directly from a bit
1006  // of the IPM result.
1007  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1008    return IPMConversion(0, 0, SystemZ::IPM_CC);
1009  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1010    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1011
1012  // Deal with cases where we can add a value to force the sign bit
1013  // to contain the right value.  Putting the bit in 31 means we can
1014  // use SRL rather than RISBG(L), and also makes it easier to get a
1015  // 0/-1 value, so it has priority over the other tests below.
1016  //
1017  // These sequences rely on the fact that the upper two bits of the
1018  // IPM result are zero.
1019  uint64_t TopBit = uint64_t(1) << 31;
1020  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1021    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1022  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1023    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1024  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1025                            | SystemZ::CCMASK_1
1026                            | SystemZ::CCMASK_2)))
1027    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1028  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1029    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1030  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1031                            | SystemZ::CCMASK_2
1032                            | SystemZ::CCMASK_3)))
1033    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1034
1035  // Next try inverting the value and testing a bit.  0/1 could be
1036  // handled this way too, but we dealt with that case above.
1037  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1038    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1039
1040  // Handle cases where adding a value forces a non-sign bit to contain
1041  // the right value.
1042  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1043    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1044  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1045    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1046
1047  // The remaing cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1048  // can be done by inverting the low CC bit and applying one of the
1049  // sign-based extractions above.
1050  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1051    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1052  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1053    return IPMConversion(1 << SystemZ::IPM_CC,
1054                         TopBit - (3 << SystemZ::IPM_CC), 31);
1055  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1056                            | SystemZ::CCMASK_1
1057                            | SystemZ::CCMASK_3)))
1058    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1059  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1060                            | SystemZ::CCMASK_2
1061                            | SystemZ::CCMASK_3)))
1062    return IPMConversion(1 << SystemZ::IPM_CC,
1063                         TopBit - (1 << SystemZ::IPM_CC), 31);
1064
1065  llvm_unreachable("Unexpected CC combination");
1066}
1067
1068// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
1069// can be converted to a comparison against zero, adjust the operands
1070// as necessary.
1071static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
1072                          SDValue &CmpOp0, SDValue &CmpOp1,
1073                          unsigned &CCMask) {
1074  if (IsUnsigned)
1075    return;
1076
1077  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
1078  if (!ConstOp1)
1079    return;
1080
1081  int64_t Value = ConstOp1->getSExtValue();
1082  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
1083      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
1084      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
1085      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
1086    CCMask ^= SystemZ::CCMASK_CMP_EQ;
1087    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
1088  }
1089}
1090
1091// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
1092// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
1093static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
1094                             SDValue &CmpOp0, SDValue &CmpOp1,
1095                             unsigned &CCMask) {
1096  // For us to make any changes, it must a comparison between a single-use
1097  // load and a constant.
1098  if (!CmpOp0.hasOneUse() ||
1099      CmpOp0.getOpcode() != ISD::LOAD ||
1100      CmpOp1.getOpcode() != ISD::Constant)
1101    return;
1102
1103  // We must have an 8- or 16-bit load.
1104  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1105  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1106  if (NumBits != 8 && NumBits != 16)
1107    return;
1108
1109  // The load must be an extending one and the constant must be within the
1110  // range of the unextended value.
1111  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1112  uint64_t Value = Constant->getZExtValue();
1113  uint64_t Mask = (1 << NumBits) - 1;
1114  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1115    int64_t SignedValue = Constant->getSExtValue();
1116    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1117      return;
1118    // Unsigned comparison between two sign-extended values is equivalent
1119    // to unsigned comparison between two zero-extended values.
1120    if (IsUnsigned)
1121      Value &= Mask;
1122    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1123             CCMask == SystemZ::CCMASK_CMP_NE)
1124      // Any choice of IsUnsigned is OK for equality comparisons.
1125      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1126      // but since we use CLHHSI for zero extensions, it seems better
1127      // to be consistent and do the same here.
1128      Value &= Mask, IsUnsigned = true;
1129    else if (NumBits == 8) {
1130      // Try to treat the comparison as unsigned, so that we can use CLI.
1131      // Adjust CCMask and Value as necessary.
1132      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1133        // Test whether the high bit of the byte is set.
1134        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1135      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1136        // Test whether the high bit of the byte is clear.
1137        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1138      else
1139        // No instruction exists for this combination.
1140        return;
1141    }
1142  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1143    if (Value > Mask)
1144      return;
1145    // Signed comparison between two zero-extended values is equivalent
1146    // to unsigned comparison.
1147    IsUnsigned = true;
1148  } else
1149    return;
1150
1151  // Make sure that the first operand is an i32 of the right extension type.
1152  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1153  if (CmpOp0.getValueType() != MVT::i32 ||
1154      Load->getExtensionType() != ExtType)
1155    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1156                            Load->getChain(), Load->getBasePtr(),
1157                            Load->getPointerInfo(), Load->getMemoryVT(),
1158                            Load->isVolatile(), Load->isNonTemporal(),
1159                            Load->getAlignment());
1160
1161  // Make sure that the second operand is an i32 with the right value.
1162  if (CmpOp1.getValueType() != MVT::i32 ||
1163      Value != Constant->getZExtValue())
1164    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1165}
1166
1167// Return true if Op is either an unextended load, or a load suitable
1168// for integer register-memory comparisons of type ICmpType.
1169static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1170  LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
1171  if (Load) {
1172    // There are no instructions to compare a register with a memory byte.
1173    if (Load->getMemoryVT() == MVT::i8)
1174      return false;
1175    // Otherwise decide on extension type.
1176    switch (Load->getExtensionType()) {
1177    case ISD::NON_EXTLOAD:
1178      return true;
1179    case ISD::SEXTLOAD:
1180      return ICmpType != SystemZICMP::UnsignedOnly;
1181    case ISD::ZEXTLOAD:
1182      return ICmpType != SystemZICMP::SignedOnly;
1183    default:
1184      break;
1185    }
1186  }
1187  return false;
1188}
1189
1190// Return true if it is better to swap comparison operands Op0 and Op1.
1191// ICmpType is the type of an integer comparison.
1192static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
1193                                  unsigned ICmpType) {
1194  // Leave f128 comparisons alone, since they have no memory forms.
1195  if (Op0.getValueType() == MVT::f128)
1196    return false;
1197
1198  // Always keep a floating-point constant second, since comparisons with
1199  // zero can use LOAD TEST and comparisons with other constants make a
1200  // natural memory operand.
1201  if (isa<ConstantFPSDNode>(Op1))
1202    return false;
1203
1204  // Never swap comparisons with zero since there are many ways to optimize
1205  // those later.
1206  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1207  if (COp1 && COp1->getZExtValue() == 0)
1208    return false;
1209
1210  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1211  // In that case we generally prefer the memory to be second.
1212  if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) &&
1213      !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) {
1214    // The only exceptions are when the second operand is a constant and
1215    // we can use things like CHHSI.
1216    if (!COp1)
1217      return true;
1218    // The unsigned memory-immediate instructions can handle 16-bit
1219    // unsigned integers.
1220    if (ICmpType != SystemZICMP::SignedOnly &&
1221        isUInt<16>(COp1->getZExtValue()))
1222      return false;
1223    // The signed memory-immediate instructions can handle 16-bit
1224    // signed integers.
1225    if (ICmpType != SystemZICMP::UnsignedOnly &&
1226        isInt<16>(COp1->getSExtValue()))
1227      return false;
1228    return true;
1229  }
1230  return false;
1231}
1232
1233// Return true if shift operation N has an in-range constant shift value.
1234// Store it in ShiftVal if so.
1235static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1236  ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1237  if (!Shift)
1238    return false;
1239
1240  uint64_t Amount = Shift->getZExtValue();
1241  if (Amount >= N.getValueType().getSizeInBits())
1242    return false;
1243
1244  ShiftVal = Amount;
1245  return true;
1246}
1247
1248// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1249// instruction and whether the CC value is descriptive enough to handle
1250// a comparison of type Opcode between the AND result and CmpVal.
1251// CCMask says which comparison result is being tested and BitSize is
1252// the number of bits in the operands.  If TEST UNDER MASK can be used,
1253// return the corresponding CC mask, otherwise return 0.
1254static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1255                                     uint64_t Mask, uint64_t CmpVal,
1256                                     unsigned ICmpType) {
1257  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1258
1259  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1260  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1261      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1262    return 0;
1263
1264  // Work out the masks for the lowest and highest bits.
1265  unsigned HighShift = 63 - countLeadingZeros(Mask);
1266  uint64_t High = uint64_t(1) << HighShift;
1267  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1268
1269  // Signed ordered comparisons are effectively unsigned if the sign
1270  // bit is dropped.
1271  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1272
1273  // Check for equality comparisons with 0, or the equivalent.
1274  if (CmpVal == 0) {
1275    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1276      return SystemZ::CCMASK_TM_ALL_0;
1277    if (CCMask == SystemZ::CCMASK_CMP_NE)
1278      return SystemZ::CCMASK_TM_SOME_1;
1279  }
1280  if (EffectivelyUnsigned && CmpVal <= Low) {
1281    if (CCMask == SystemZ::CCMASK_CMP_LT)
1282      return SystemZ::CCMASK_TM_ALL_0;
1283    if (CCMask == SystemZ::CCMASK_CMP_GE)
1284      return SystemZ::CCMASK_TM_SOME_1;
1285  }
1286  if (EffectivelyUnsigned && CmpVal < Low) {
1287    if (CCMask == SystemZ::CCMASK_CMP_LE)
1288      return SystemZ::CCMASK_TM_ALL_0;
1289    if (CCMask == SystemZ::CCMASK_CMP_GT)
1290      return SystemZ::CCMASK_TM_SOME_1;
1291  }
1292
1293  // Check for equality comparisons with the mask, or the equivalent.
1294  if (CmpVal == Mask) {
1295    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1296      return SystemZ::CCMASK_TM_ALL_1;
1297    if (CCMask == SystemZ::CCMASK_CMP_NE)
1298      return SystemZ::CCMASK_TM_SOME_0;
1299  }
1300  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1301    if (CCMask == SystemZ::CCMASK_CMP_GT)
1302      return SystemZ::CCMASK_TM_ALL_1;
1303    if (CCMask == SystemZ::CCMASK_CMP_LE)
1304      return SystemZ::CCMASK_TM_SOME_0;
1305  }
1306  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1307    if (CCMask == SystemZ::CCMASK_CMP_GE)
1308      return SystemZ::CCMASK_TM_ALL_1;
1309    if (CCMask == SystemZ::CCMASK_CMP_LT)
1310      return SystemZ::CCMASK_TM_SOME_0;
1311  }
1312
1313  // Check for ordered comparisons with the top bit.
1314  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1315    if (CCMask == SystemZ::CCMASK_CMP_LE)
1316      return SystemZ::CCMASK_TM_MSB_0;
1317    if (CCMask == SystemZ::CCMASK_CMP_GT)
1318      return SystemZ::CCMASK_TM_MSB_1;
1319  }
1320  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1321    if (CCMask == SystemZ::CCMASK_CMP_LT)
1322      return SystemZ::CCMASK_TM_MSB_0;
1323    if (CCMask == SystemZ::CCMASK_CMP_GE)
1324      return SystemZ::CCMASK_TM_MSB_1;
1325  }
1326
1327  // If there are just two bits, we can do equality checks for Low and High
1328  // as well.
1329  if (Mask == Low + High) {
1330    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1331      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1332    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1333      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1334    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1335      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1336    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1337      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1338  }
1339
1340  // Looks like we've exhausted our options.
1341  return 0;
1342}
1343
1344// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1345// implemented as a TEST UNDER MASK instruction when the condition being
1346// tested is as described by CCValid and CCMask.  Update the arguments
1347// with the TM version if so.
1348static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode,
1349                                   SDValue &CmpOp0, SDValue &CmpOp1,
1350                                   unsigned &CCValid, unsigned &CCMask,
1351                                   unsigned &ICmpType) {
1352  // Check that we have a comparison with a constant.
1353  ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
1354  if (!ConstCmpOp1)
1355    return;
1356  uint64_t CmpVal = ConstCmpOp1->getZExtValue();
1357
1358  // Check whether the nonconstant input is an AND with a constant mask.
1359  if (CmpOp0.getOpcode() != ISD::AND)
1360    return;
1361  SDValue AndOp0 = CmpOp0.getOperand(0);
1362  SDValue AndOp1 = CmpOp0.getOperand(1);
1363  ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1364  if (!Mask)
1365    return;
1366  uint64_t MaskVal = Mask->getZExtValue();
1367
1368  // Check whether the combination of mask, comparison value and comparison
1369  // type are suitable.
1370  unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
1371  unsigned NewCCMask, ShiftVal;
1372  if (ICmpType != SystemZICMP::SignedOnly &&
1373      AndOp0.getOpcode() == ISD::SHL &&
1374      isSimpleShift(AndOp0, ShiftVal) &&
1375      (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal,
1376                                        CmpVal >> ShiftVal,
1377                                        SystemZICMP::Any))) {
1378    AndOp0 = AndOp0.getOperand(0);
1379    AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType());
1380  } else if (ICmpType != SystemZICMP::SignedOnly &&
1381             AndOp0.getOpcode() == ISD::SRL &&
1382             isSimpleShift(AndOp0, ShiftVal) &&
1383             (NewCCMask = getTestUnderMaskCond(BitSize, CCMask,
1384                                               MaskVal << ShiftVal,
1385                                               CmpVal << ShiftVal,
1386                                               SystemZICMP::UnsignedOnly))) {
1387    AndOp0 = AndOp0.getOperand(0);
1388    AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType());
1389  } else {
1390    NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal,
1391                                     ICmpType);
1392    if (!NewCCMask)
1393      return;
1394  }
1395
1396  // Go ahead and make the change.
1397  Opcode = SystemZISD::TM;
1398  CmpOp0 = AndOp0;
1399  CmpOp1 = AndOp1;
1400  ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1401              bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1402  CCValid = SystemZ::CCMASK_TM;
1403  CCMask = NewCCMask;
1404}
1405
1406// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1407// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1408// 2-bit results and CCMask to the subset of those results that are
1409// associated with Cond.
1410static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1411                       SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1412                       ISD::CondCode Cond, unsigned &CCValid,
1413                       unsigned &CCMask) {
1414  bool IsUnsigned = false;
1415  CCMask = CCMaskForCondCode(Cond);
1416  unsigned Opcode, ICmpType = 0;
1417  if (CmpOp0.getValueType().isFloatingPoint()) {
1418    CCValid = SystemZ::CCMASK_FCMP;
1419    Opcode = SystemZISD::FCMP;
1420  } else {
1421    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1422    CCValid = SystemZ::CCMASK_ICMP;
1423    CCMask &= CCValid;
1424    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1425    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1426    Opcode = SystemZISD::ICMP;
1427    // Choose the type of comparison.  Equality and inequality tests can
1428    // use either signed or unsigned comparisons.  The choice also doesn't
1429    // matter if both sign bits are known to be clear.  In those cases we
1430    // want to give the main isel code the freedom to choose whichever
1431    // form fits best.
1432    if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1433        CCMask == SystemZ::CCMASK_CMP_NE ||
1434        (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1435      ICmpType = SystemZICMP::Any;
1436    else if (IsUnsigned)
1437      ICmpType = SystemZICMP::UnsignedOnly;
1438    else
1439      ICmpType = SystemZICMP::SignedOnly;
1440  }
1441
1442  if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
1443    std::swap(CmpOp0, CmpOp1);
1444    CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1445              (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1446              (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1447              (CCMask & SystemZ::CCMASK_CMP_UO));
1448  }
1449
1450  adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask,
1451                         ICmpType);
1452  if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
1453    return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1454                       DAG.getConstant(ICmpType, MVT::i32));
1455  return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
1456}
1457
1458// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1459// 64 bits.  Extend is the extension type to use.  Store the high part
1460// in Hi and the low part in Lo.
1461static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1462                            unsigned Extend, SDValue Op0, SDValue Op1,
1463                            SDValue &Hi, SDValue &Lo) {
1464  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1465  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1466  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1467  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1468  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1469  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1470}
1471
1472// Lower a binary operation that produces two VT results, one in each
1473// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1474// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1475// on the extended Op0 and (unextended) Op1.  Store the even register result
1476// in Even and the odd register result in Odd.
1477static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1478                             unsigned Extend, unsigned Opcode,
1479                             SDValue Op0, SDValue Op1,
1480                             SDValue &Even, SDValue &Odd) {
1481  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1482  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1483                               SDValue(In128, 0), Op1);
1484  bool Is32Bit = is32Bit(VT);
1485  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1486  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1487}
1488
1489SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1490                                          SelectionDAG &DAG) const {
1491  SDValue CmpOp0   = Op.getOperand(0);
1492  SDValue CmpOp1   = Op.getOperand(1);
1493  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1494  SDLoc DL(Op);
1495
1496  unsigned CCValid, CCMask;
1497  SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1498
1499  IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1500  SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1501
1502  if (Conversion.XORValue)
1503    Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1504                         DAG.getConstant(Conversion.XORValue, MVT::i32));
1505
1506  if (Conversion.AddValue)
1507    Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1508                         DAG.getConstant(Conversion.AddValue, MVT::i32));
1509
1510  // The SHR/AND sequence should get optimized to an RISBG.
1511  Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1512                       DAG.getConstant(Conversion.Bit, MVT::i32));
1513  if (Conversion.Bit != 31)
1514    Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1515                         DAG.getConstant(1, MVT::i32));
1516  return Result;
1517}
1518
1519SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1520  SDValue Chain    = Op.getOperand(0);
1521  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1522  SDValue CmpOp0   = Op.getOperand(2);
1523  SDValue CmpOp1   = Op.getOperand(3);
1524  SDValue Dest     = Op.getOperand(4);
1525  SDLoc DL(Op);
1526
1527  unsigned CCValid, CCMask;
1528  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1529  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1530                     Chain, DAG.getConstant(CCValid, MVT::i32),
1531                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1532}
1533
1534SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1535                                              SelectionDAG &DAG) const {
1536  SDValue CmpOp0   = Op.getOperand(0);
1537  SDValue CmpOp1   = Op.getOperand(1);
1538  SDValue TrueOp   = Op.getOperand(2);
1539  SDValue FalseOp  = Op.getOperand(3);
1540  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1541  SDLoc DL(Op);
1542
1543  unsigned CCValid, CCMask;
1544  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1545
1546  SmallVector<SDValue, 5> Ops;
1547  Ops.push_back(TrueOp);
1548  Ops.push_back(FalseOp);
1549  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1550  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1551  Ops.push_back(Flags);
1552
1553  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1554  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1555}
1556
1557SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1558                                                  SelectionDAG &DAG) const {
1559  SDLoc DL(Node);
1560  const GlobalValue *GV = Node->getGlobal();
1561  int64_t Offset = Node->getOffset();
1562  EVT PtrVT = getPointerTy();
1563  Reloc::Model RM = TM.getRelocationModel();
1564  CodeModel::Model CM = TM.getCodeModel();
1565
1566  SDValue Result;
1567  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1568    // Assign anchors at 1<<12 byte boundaries.
1569    uint64_t Anchor = Offset & ~uint64_t(0xfff);
1570    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1571    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1572
1573    // The offset can be folded into the address if it is aligned to a halfword.
1574    Offset -= Anchor;
1575    if (Offset != 0 && (Offset & 1) == 0) {
1576      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1577      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1578      Offset = 0;
1579    }
1580  } else {
1581    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1582    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1583    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1584                         MachinePointerInfo::getGOT(), false, false, false, 0);
1585  }
1586
1587  // If there was a non-zero offset that we didn't fold, create an explicit
1588  // addition for it.
1589  if (Offset != 0)
1590    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1591                         DAG.getConstant(Offset, PtrVT));
1592
1593  return Result;
1594}
1595
1596SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1597						     SelectionDAG &DAG) const {
1598  SDLoc DL(Node);
1599  const GlobalValue *GV = Node->getGlobal();
1600  EVT PtrVT = getPointerTy();
1601  TLSModel::Model model = TM.getTLSModel(GV);
1602
1603  if (model != TLSModel::LocalExec)
1604    llvm_unreachable("only local-exec TLS mode supported");
1605
1606  // The high part of the thread pointer is in access register 0.
1607  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1608                             DAG.getConstant(0, MVT::i32));
1609  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1610
1611  // The low part of the thread pointer is in access register 1.
1612  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1613                             DAG.getConstant(1, MVT::i32));
1614  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1615
1616  // Merge them into a single 64-bit address.
1617  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1618				    DAG.getConstant(32, PtrVT));
1619  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1620
1621  // Get the offset of GA from the thread pointer.
1622  SystemZConstantPoolValue *CPV =
1623    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1624
1625  // Force the offset into the constant pool and load it from there.
1626  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1627  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1628			       CPAddr, MachinePointerInfo::getConstantPool(),
1629			       false, false, false, 0);
1630
1631  // Add the base and offset together.
1632  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1633}
1634
1635SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1636                                                 SelectionDAG &DAG) const {
1637  SDLoc DL(Node);
1638  const BlockAddress *BA = Node->getBlockAddress();
1639  int64_t Offset = Node->getOffset();
1640  EVT PtrVT = getPointerTy();
1641
1642  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1643  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1644  return Result;
1645}
1646
1647SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1648                                              SelectionDAG &DAG) const {
1649  SDLoc DL(JT);
1650  EVT PtrVT = getPointerTy();
1651  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1652
1653  // Use LARL to load the address of the table.
1654  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1655}
1656
1657SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1658                                                 SelectionDAG &DAG) const {
1659  SDLoc DL(CP);
1660  EVT PtrVT = getPointerTy();
1661
1662  SDValue Result;
1663  if (CP->isMachineConstantPoolEntry())
1664    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1665				       CP->getAlignment());
1666  else
1667    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1668				       CP->getAlignment(), CP->getOffset());
1669
1670  // Use LARL to load the address of the constant pool entry.
1671  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1672}
1673
1674SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1675                                            SelectionDAG &DAG) const {
1676  SDLoc DL(Op);
1677  SDValue In = Op.getOperand(0);
1678  EVT InVT = In.getValueType();
1679  EVT ResVT = Op.getValueType();
1680
1681  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1682    SDValue In64;
1683    if (Subtarget.hasHighWord()) {
1684      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1685                                       MVT::i64);
1686      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1687                                       MVT::i64, SDValue(U64, 0), In);
1688    } else {
1689      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1690      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1691                         DAG.getConstant(32, MVT::i64));
1692    }
1693    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1694    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1695                                      DL, MVT::f32, Out64);
1696  }
1697  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1698    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1699    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1700                                             MVT::f64, SDValue(U64, 0), In);
1701    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1702    if (Subtarget.hasHighWord())
1703      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1704                                        MVT::i32, Out64);
1705    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1706                                DAG.getConstant(32, MVT::i64));
1707    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1708  }
1709  llvm_unreachable("Unexpected bitcast combination");
1710}
1711
1712SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1713                                            SelectionDAG &DAG) const {
1714  MachineFunction &MF = DAG.getMachineFunction();
1715  SystemZMachineFunctionInfo *FuncInfo =
1716    MF.getInfo<SystemZMachineFunctionInfo>();
1717  EVT PtrVT = getPointerTy();
1718
1719  SDValue Chain   = Op.getOperand(0);
1720  SDValue Addr    = Op.getOperand(1);
1721  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1722  SDLoc DL(Op);
1723
1724  // The initial values of each field.
1725  const unsigned NumFields = 4;
1726  SDValue Fields[NumFields] = {
1727    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1728    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1729    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1730    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1731  };
1732
1733  // Store each field into its respective slot.
1734  SDValue MemOps[NumFields];
1735  unsigned Offset = 0;
1736  for (unsigned I = 0; I < NumFields; ++I) {
1737    SDValue FieldAddr = Addr;
1738    if (Offset != 0)
1739      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1740                              DAG.getIntPtrConstant(Offset));
1741    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1742                             MachinePointerInfo(SV, Offset),
1743                             false, false, 0);
1744    Offset += 8;
1745  }
1746  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1747}
1748
1749SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1750                                           SelectionDAG &DAG) const {
1751  SDValue Chain      = Op.getOperand(0);
1752  SDValue DstPtr     = Op.getOperand(1);
1753  SDValue SrcPtr     = Op.getOperand(2);
1754  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1755  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1756  SDLoc DL(Op);
1757
1758  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1759                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1760                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1761}
1762
1763SDValue SystemZTargetLowering::
1764lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1765  SDValue Chain = Op.getOperand(0);
1766  SDValue Size  = Op.getOperand(1);
1767  SDLoc DL(Op);
1768
1769  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1770
1771  // Get a reference to the stack pointer.
1772  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1773
1774  // Get the new stack pointer value.
1775  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1776
1777  // Copy the new stack pointer back.
1778  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1779
1780  // The allocated data lives above the 160 bytes allocated for the standard
1781  // frame, plus any outgoing stack arguments.  We don't know how much that
1782  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1783  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1784  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1785
1786  SDValue Ops[2] = { Result, Chain };
1787  return DAG.getMergeValues(Ops, 2, DL);
1788}
1789
1790SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1791                                              SelectionDAG &DAG) const {
1792  EVT VT = Op.getValueType();
1793  SDLoc DL(Op);
1794  SDValue Ops[2];
1795  if (is32Bit(VT))
1796    // Just do a normal 64-bit multiplication and extract the results.
1797    // We define this so that it can be used for constant division.
1798    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1799                    Op.getOperand(1), Ops[1], Ops[0]);
1800  else {
1801    // Do a full 128-bit multiplication based on UMUL_LOHI64:
1802    //
1803    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1804    //
1805    // but using the fact that the upper halves are either all zeros
1806    // or all ones:
1807    //
1808    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1809    //
1810    // and grouping the right terms together since they are quicker than the
1811    // multiplication:
1812    //
1813    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1814    SDValue C63 = DAG.getConstant(63, MVT::i64);
1815    SDValue LL = Op.getOperand(0);
1816    SDValue RL = Op.getOperand(1);
1817    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1818    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1819    // UMUL_LOHI64 returns the low result in the odd register and the high
1820    // result in the even register.  SMUL_LOHI is defined to return the
1821    // low half first, so the results are in reverse order.
1822    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1823                     LL, RL, Ops[1], Ops[0]);
1824    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1825    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1826    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1827    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1828  }
1829  return DAG.getMergeValues(Ops, 2, DL);
1830}
1831
1832SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1833                                              SelectionDAG &DAG) const {
1834  EVT VT = Op.getValueType();
1835  SDLoc DL(Op);
1836  SDValue Ops[2];
1837  if (is32Bit(VT))
1838    // Just do a normal 64-bit multiplication and extract the results.
1839    // We define this so that it can be used for constant division.
1840    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1841                    Op.getOperand(1), Ops[1], Ops[0]);
1842  else
1843    // UMUL_LOHI64 returns the low result in the odd register and the high
1844    // result in the even register.  UMUL_LOHI is defined to return the
1845    // low half first, so the results are in reverse order.
1846    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1847                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1848  return DAG.getMergeValues(Ops, 2, DL);
1849}
1850
1851SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1852                                            SelectionDAG &DAG) const {
1853  SDValue Op0 = Op.getOperand(0);
1854  SDValue Op1 = Op.getOperand(1);
1855  EVT VT = Op.getValueType();
1856  SDLoc DL(Op);
1857  unsigned Opcode;
1858
1859  // We use DSGF for 32-bit division.
1860  if (is32Bit(VT)) {
1861    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1862    Opcode = SystemZISD::SDIVREM32;
1863  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1864    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1865    Opcode = SystemZISD::SDIVREM32;
1866  } else
1867    Opcode = SystemZISD::SDIVREM64;
1868
1869  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1870  // input is "don't care".  The instruction returns the remainder in
1871  // the even register and the quotient in the odd register.
1872  SDValue Ops[2];
1873  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1874                   Op0, Op1, Ops[1], Ops[0]);
1875  return DAG.getMergeValues(Ops, 2, DL);
1876}
1877
1878SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1879                                            SelectionDAG &DAG) const {
1880  EVT VT = Op.getValueType();
1881  SDLoc DL(Op);
1882
1883  // DL(G) uses a double-width dividend, so we need to clear the even
1884  // register in the GR128 input.  The instruction returns the remainder
1885  // in the even register and the quotient in the odd register.
1886  SDValue Ops[2];
1887  if (is32Bit(VT))
1888    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1889                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1890  else
1891    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1892                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1893  return DAG.getMergeValues(Ops, 2, DL);
1894}
1895
1896SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1897  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1898
1899  // Get the known-zero masks for each operand.
1900  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1901  APInt KnownZero[2], KnownOne[2];
1902  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1903  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1904
1905  // See if the upper 32 bits of one operand and the lower 32 bits of the
1906  // other are known zero.  They are the low and high operands respectively.
1907  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1908                       KnownZero[1].getZExtValue() };
1909  unsigned High, Low;
1910  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1911    High = 1, Low = 0;
1912  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1913    High = 0, Low = 1;
1914  else
1915    return Op;
1916
1917  SDValue LowOp = Ops[Low];
1918  SDValue HighOp = Ops[High];
1919
1920  // If the high part is a constant, we're better off using IILH.
1921  if (HighOp.getOpcode() == ISD::Constant)
1922    return Op;
1923
1924  // If the low part is a constant that is outside the range of LHI,
1925  // then we're better off using IILF.
1926  if (LowOp.getOpcode() == ISD::Constant) {
1927    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1928    if (!isInt<16>(Value))
1929      return Op;
1930  }
1931
1932  // Check whether the high part is an AND that doesn't change the
1933  // high 32 bits and just masks out low bits.  We can skip it if so.
1934  if (HighOp.getOpcode() == ISD::AND &&
1935      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1936    SDValue HighOp0 = HighOp.getOperand(0);
1937    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
1938    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
1939      HighOp = HighOp0;
1940  }
1941
1942  // Take advantage of the fact that all GR32 operations only change the
1943  // low 32 bits by truncating Low to an i32 and inserting it directly
1944  // using a subreg.  The interesting cases are those where the truncation
1945  // can be folded.
1946  SDLoc DL(Op);
1947  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1948  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
1949                                   MVT::i64, HighOp, Low32);
1950}
1951
1952// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1953// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1954SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1955                                                SelectionDAG &DAG,
1956                                                unsigned Opcode) const {
1957  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1958
1959  // 32-bit operations need no code outside the main loop.
1960  EVT NarrowVT = Node->getMemoryVT();
1961  EVT WideVT = MVT::i32;
1962  if (NarrowVT == WideVT)
1963    return Op;
1964
1965  int64_t BitSize = NarrowVT.getSizeInBits();
1966  SDValue ChainIn = Node->getChain();
1967  SDValue Addr = Node->getBasePtr();
1968  SDValue Src2 = Node->getVal();
1969  MachineMemOperand *MMO = Node->getMemOperand();
1970  SDLoc DL(Node);
1971  EVT PtrVT = Addr.getValueType();
1972
1973  // Convert atomic subtracts of constants into additions.
1974  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1975    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1976      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1977      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1978    }
1979
1980  // Get the address of the containing word.
1981  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1982                                    DAG.getConstant(-4, PtrVT));
1983
1984  // Get the number of bits that the word must be rotated left in order
1985  // to bring the field to the top bits of a GR32.
1986  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1987                                 DAG.getConstant(3, PtrVT));
1988  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1989
1990  // Get the complementing shift amount, for rotating a field in the top
1991  // bits back to its proper position.
1992  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1993                                    DAG.getConstant(0, WideVT), BitShift);
1994
1995  // Extend the source operand to 32 bits and prepare it for the inner loop.
1996  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1997  // operations require the source to be shifted in advance.  (This shift
1998  // can be folded if the source is constant.)  For AND and NAND, the lower
1999  // bits must be set, while for other opcodes they should be left clear.
2000  if (Opcode != SystemZISD::ATOMIC_SWAPW)
2001    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2002                       DAG.getConstant(32 - BitSize, WideVT));
2003  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2004      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2005    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2006                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2007
2008  // Construct the ATOMIC_LOADW_* node.
2009  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2010  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2011                    DAG.getConstant(BitSize, WideVT) };
2012  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2013                                             array_lengthof(Ops),
2014                                             NarrowVT, MMO);
2015
2016  // Rotate the result of the final CS so that the field is in the lower
2017  // bits of a GR32, then truncate it.
2018  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2019                                    DAG.getConstant(BitSize, WideVT));
2020  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2021
2022  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2023  return DAG.getMergeValues(RetOps, 2, DL);
2024}
2025
2026// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
2027// into a fullword ATOMIC_CMP_SWAPW operation.
2028SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2029                                                    SelectionDAG &DAG) const {
2030  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2031
2032  // We have native support for 32-bit compare and swap.
2033  EVT NarrowVT = Node->getMemoryVT();
2034  EVT WideVT = MVT::i32;
2035  if (NarrowVT == WideVT)
2036    return Op;
2037
2038  int64_t BitSize = NarrowVT.getSizeInBits();
2039  SDValue ChainIn = Node->getOperand(0);
2040  SDValue Addr = Node->getOperand(1);
2041  SDValue CmpVal = Node->getOperand(2);
2042  SDValue SwapVal = Node->getOperand(3);
2043  MachineMemOperand *MMO = Node->getMemOperand();
2044  SDLoc DL(Node);
2045  EVT PtrVT = Addr.getValueType();
2046
2047  // Get the address of the containing word.
2048  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2049                                    DAG.getConstant(-4, PtrVT));
2050
2051  // Get the number of bits that the word must be rotated left in order
2052  // to bring the field to the top bits of a GR32.
2053  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2054                                 DAG.getConstant(3, PtrVT));
2055  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2056
2057  // Get the complementing shift amount, for rotating a field in the top
2058  // bits back to its proper position.
2059  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2060                                    DAG.getConstant(0, WideVT), BitShift);
2061
2062  // Construct the ATOMIC_CMP_SWAPW node.
2063  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2064  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2065                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
2066  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2067                                             VTList, Ops, array_lengthof(Ops),
2068                                             NarrowVT, MMO);
2069  return AtomicOp;
2070}
2071
2072SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2073                                              SelectionDAG &DAG) const {
2074  MachineFunction &MF = DAG.getMachineFunction();
2075  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2076  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2077                            SystemZ::R15D, Op.getValueType());
2078}
2079
2080SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2081                                                 SelectionDAG &DAG) const {
2082  MachineFunction &MF = DAG.getMachineFunction();
2083  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2084  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2085                          SystemZ::R15D, Op.getOperand(1));
2086}
2087
2088SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2089                                             SelectionDAG &DAG) const {
2090  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2091  if (!IsData)
2092    // Just preserve the chain.
2093    return Op.getOperand(0);
2094
2095  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2096  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2097  MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2098  SDValue Ops[] = {
2099    Op.getOperand(0),
2100    DAG.getConstant(Code, MVT::i32),
2101    Op.getOperand(1)
2102  };
2103  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2104                                 Node->getVTList(), Ops, array_lengthof(Ops),
2105                                 Node->getMemoryVT(), Node->getMemOperand());
2106}
2107
2108SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2109                                              SelectionDAG &DAG) const {
2110  switch (Op.getOpcode()) {
2111  case ISD::BR_CC:
2112    return lowerBR_CC(Op, DAG);
2113  case ISD::SELECT_CC:
2114    return lowerSELECT_CC(Op, DAG);
2115  case ISD::SETCC:
2116    return lowerSETCC(Op, DAG);
2117  case ISD::GlobalAddress:
2118    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2119  case ISD::GlobalTLSAddress:
2120    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2121  case ISD::BlockAddress:
2122    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2123  case ISD::JumpTable:
2124    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2125  case ISD::ConstantPool:
2126    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2127  case ISD::BITCAST:
2128    return lowerBITCAST(Op, DAG);
2129  case ISD::VASTART:
2130    return lowerVASTART(Op, DAG);
2131  case ISD::VACOPY:
2132    return lowerVACOPY(Op, DAG);
2133  case ISD::DYNAMIC_STACKALLOC:
2134    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2135  case ISD::SMUL_LOHI:
2136    return lowerSMUL_LOHI(Op, DAG);
2137  case ISD::UMUL_LOHI:
2138    return lowerUMUL_LOHI(Op, DAG);
2139  case ISD::SDIVREM:
2140    return lowerSDIVREM(Op, DAG);
2141  case ISD::UDIVREM:
2142    return lowerUDIVREM(Op, DAG);
2143  case ISD::OR:
2144    return lowerOR(Op, DAG);
2145  case ISD::ATOMIC_SWAP:
2146    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2147  case ISD::ATOMIC_LOAD_ADD:
2148    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2149  case ISD::ATOMIC_LOAD_SUB:
2150    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2151  case ISD::ATOMIC_LOAD_AND:
2152    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2153  case ISD::ATOMIC_LOAD_OR:
2154    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2155  case ISD::ATOMIC_LOAD_XOR:
2156    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2157  case ISD::ATOMIC_LOAD_NAND:
2158    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2159  case ISD::ATOMIC_LOAD_MIN:
2160    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2161  case ISD::ATOMIC_LOAD_MAX:
2162    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2163  case ISD::ATOMIC_LOAD_UMIN:
2164    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2165  case ISD::ATOMIC_LOAD_UMAX:
2166    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2167  case ISD::ATOMIC_CMP_SWAP:
2168    return lowerATOMIC_CMP_SWAP(Op, DAG);
2169  case ISD::STACKSAVE:
2170    return lowerSTACKSAVE(Op, DAG);
2171  case ISD::STACKRESTORE:
2172    return lowerSTACKRESTORE(Op, DAG);
2173  case ISD::PREFETCH:
2174    return lowerPREFETCH(Op, DAG);
2175  default:
2176    llvm_unreachable("Unexpected node to lower");
2177  }
2178}
2179
2180const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2181#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2182  switch (Opcode) {
2183    OPCODE(RET_FLAG);
2184    OPCODE(CALL);
2185    OPCODE(SIBCALL);
2186    OPCODE(PCREL_WRAPPER);
2187    OPCODE(PCREL_OFFSET);
2188    OPCODE(ICMP);
2189    OPCODE(FCMP);
2190    OPCODE(TM);
2191    OPCODE(BR_CCMASK);
2192    OPCODE(SELECT_CCMASK);
2193    OPCODE(ADJDYNALLOC);
2194    OPCODE(EXTRACT_ACCESS);
2195    OPCODE(UMUL_LOHI64);
2196    OPCODE(SDIVREM64);
2197    OPCODE(UDIVREM32);
2198    OPCODE(UDIVREM64);
2199    OPCODE(MVC);
2200    OPCODE(MVC_LOOP);
2201    OPCODE(NC);
2202    OPCODE(NC_LOOP);
2203    OPCODE(OC);
2204    OPCODE(OC_LOOP);
2205    OPCODE(XC);
2206    OPCODE(XC_LOOP);
2207    OPCODE(CLC);
2208    OPCODE(CLC_LOOP);
2209    OPCODE(STRCMP);
2210    OPCODE(STPCPY);
2211    OPCODE(SEARCH_STRING);
2212    OPCODE(IPM);
2213    OPCODE(ATOMIC_SWAPW);
2214    OPCODE(ATOMIC_LOADW_ADD);
2215    OPCODE(ATOMIC_LOADW_SUB);
2216    OPCODE(ATOMIC_LOADW_AND);
2217    OPCODE(ATOMIC_LOADW_OR);
2218    OPCODE(ATOMIC_LOADW_XOR);
2219    OPCODE(ATOMIC_LOADW_NAND);
2220    OPCODE(ATOMIC_LOADW_MIN);
2221    OPCODE(ATOMIC_LOADW_MAX);
2222    OPCODE(ATOMIC_LOADW_UMIN);
2223    OPCODE(ATOMIC_LOADW_UMAX);
2224    OPCODE(ATOMIC_CMP_SWAPW);
2225    OPCODE(PREFETCH);
2226  }
2227  return NULL;
2228#undef OPCODE
2229}
2230
2231//===----------------------------------------------------------------------===//
2232// Custom insertion
2233//===----------------------------------------------------------------------===//
2234
2235// Create a new basic block after MBB.
2236static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2237  MachineFunction &MF = *MBB->getParent();
2238  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2239  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2240  return NewMBB;
2241}
2242
2243// Split MBB after MI and return the new block (the one that contains
2244// instructions after MI).
2245static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2246                                          MachineBasicBlock *MBB) {
2247  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2248  NewMBB->splice(NewMBB->begin(), MBB,
2249                 llvm::next(MachineBasicBlock::iterator(MI)),
2250                 MBB->end());
2251  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2252  return NewMBB;
2253}
2254
2255// Split MBB before MI and return the new block (the one that contains MI).
2256static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2257                                           MachineBasicBlock *MBB) {
2258  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2259  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2260  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2261  return NewMBB;
2262}
2263
2264// Force base value Base into a register before MI.  Return the register.
2265static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2266                         const SystemZInstrInfo *TII) {
2267  if (Base.isReg())
2268    return Base.getReg();
2269
2270  MachineBasicBlock *MBB = MI->getParent();
2271  MachineFunction &MF = *MBB->getParent();
2272  MachineRegisterInfo &MRI = MF.getRegInfo();
2273
2274  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2275  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2276    .addOperand(Base).addImm(0).addReg(0);
2277  return Reg;
2278}
2279
2280// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2281MachineBasicBlock *
2282SystemZTargetLowering::emitSelect(MachineInstr *MI,
2283                                  MachineBasicBlock *MBB) const {
2284  const SystemZInstrInfo *TII = TM.getInstrInfo();
2285
2286  unsigned DestReg  = MI->getOperand(0).getReg();
2287  unsigned TrueReg  = MI->getOperand(1).getReg();
2288  unsigned FalseReg = MI->getOperand(2).getReg();
2289  unsigned CCValid  = MI->getOperand(3).getImm();
2290  unsigned CCMask   = MI->getOperand(4).getImm();
2291  DebugLoc DL       = MI->getDebugLoc();
2292
2293  MachineBasicBlock *StartMBB = MBB;
2294  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2295  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2296
2297  //  StartMBB:
2298  //   BRC CCMask, JoinMBB
2299  //   # fallthrough to FalseMBB
2300  MBB = StartMBB;
2301  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2302    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2303  MBB->addSuccessor(JoinMBB);
2304  MBB->addSuccessor(FalseMBB);
2305
2306  //  FalseMBB:
2307  //   # fallthrough to JoinMBB
2308  MBB = FalseMBB;
2309  MBB->addSuccessor(JoinMBB);
2310
2311  //  JoinMBB:
2312  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2313  //  ...
2314  MBB = JoinMBB;
2315  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2316    .addReg(TrueReg).addMBB(StartMBB)
2317    .addReg(FalseReg).addMBB(FalseMBB);
2318
2319  MI->eraseFromParent();
2320  return JoinMBB;
2321}
2322
2323// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2324// StoreOpcode is the store to use and Invert says whether the store should
2325// happen when the condition is false rather than true.  If a STORE ON
2326// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2327MachineBasicBlock *
2328SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2329                                     MachineBasicBlock *MBB,
2330                                     unsigned StoreOpcode, unsigned STOCOpcode,
2331                                     bool Invert) const {
2332  const SystemZInstrInfo *TII = TM.getInstrInfo();
2333
2334  unsigned SrcReg     = MI->getOperand(0).getReg();
2335  MachineOperand Base = MI->getOperand(1);
2336  int64_t Disp        = MI->getOperand(2).getImm();
2337  unsigned IndexReg   = MI->getOperand(3).getReg();
2338  unsigned CCValid    = MI->getOperand(4).getImm();
2339  unsigned CCMask     = MI->getOperand(5).getImm();
2340  DebugLoc DL         = MI->getDebugLoc();
2341
2342  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2343
2344  // Use STOCOpcode if possible.  We could use different store patterns in
2345  // order to avoid matching the index register, but the performance trade-offs
2346  // might be more complicated in that case.
2347  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2348    if (Invert)
2349      CCMask ^= CCValid;
2350    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2351      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2352      .addImm(CCValid).addImm(CCMask);
2353    MI->eraseFromParent();
2354    return MBB;
2355  }
2356
2357  // Get the condition needed to branch around the store.
2358  if (!Invert)
2359    CCMask ^= CCValid;
2360
2361  MachineBasicBlock *StartMBB = MBB;
2362  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2363  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2364
2365  //  StartMBB:
2366  //   BRC CCMask, JoinMBB
2367  //   # fallthrough to FalseMBB
2368  MBB = StartMBB;
2369  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2370    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2371  MBB->addSuccessor(JoinMBB);
2372  MBB->addSuccessor(FalseMBB);
2373
2374  //  FalseMBB:
2375  //   store %SrcReg, %Disp(%Index,%Base)
2376  //   # fallthrough to JoinMBB
2377  MBB = FalseMBB;
2378  BuildMI(MBB, DL, TII->get(StoreOpcode))
2379    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2380  MBB->addSuccessor(JoinMBB);
2381
2382  MI->eraseFromParent();
2383  return JoinMBB;
2384}
2385
2386// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2387// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2388// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2389// BitSize is the width of the field in bits, or 0 if this is a partword
2390// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2391// is one of the operands.  Invert says whether the field should be
2392// inverted after performing BinOpcode (e.g. for NAND).
2393MachineBasicBlock *
2394SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2395                                            MachineBasicBlock *MBB,
2396                                            unsigned BinOpcode,
2397                                            unsigned BitSize,
2398                                            bool Invert) const {
2399  const SystemZInstrInfo *TII = TM.getInstrInfo();
2400  MachineFunction &MF = *MBB->getParent();
2401  MachineRegisterInfo &MRI = MF.getRegInfo();
2402  bool IsSubWord = (BitSize < 32);
2403
2404  // Extract the operands.  Base can be a register or a frame index.
2405  // Src2 can be a register or immediate.
2406  unsigned Dest        = MI->getOperand(0).getReg();
2407  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2408  int64_t Disp         = MI->getOperand(2).getImm();
2409  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2410  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2411  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2412  DebugLoc DL          = MI->getDebugLoc();
2413  if (IsSubWord)
2414    BitSize = MI->getOperand(6).getImm();
2415
2416  // Subword operations use 32-bit registers.
2417  const TargetRegisterClass *RC = (BitSize <= 32 ?
2418                                   &SystemZ::GR32BitRegClass :
2419                                   &SystemZ::GR64BitRegClass);
2420  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2421  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2422
2423  // Get the right opcodes for the displacement.
2424  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2425  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2426  assert(LOpcode && CSOpcode && "Displacement out of range");
2427
2428  // Create virtual registers for temporary results.
2429  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2430  unsigned OldVal        = MRI.createVirtualRegister(RC);
2431  unsigned NewVal        = (BinOpcode || IsSubWord ?
2432                            MRI.createVirtualRegister(RC) : Src2.getReg());
2433  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2434  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2435
2436  // Insert a basic block for the main loop.
2437  MachineBasicBlock *StartMBB = MBB;
2438  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2439  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2440
2441  //  StartMBB:
2442  //   ...
2443  //   %OrigVal = L Disp(%Base)
2444  //   # fall through to LoopMMB
2445  MBB = StartMBB;
2446  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2447    .addOperand(Base).addImm(Disp).addReg(0);
2448  MBB->addSuccessor(LoopMBB);
2449
2450  //  LoopMBB:
2451  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2452  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2453  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2454  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2455  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2456  //   JNE LoopMBB
2457  //   # fall through to DoneMMB
2458  MBB = LoopMBB;
2459  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2460    .addReg(OrigVal).addMBB(StartMBB)
2461    .addReg(Dest).addMBB(LoopMBB);
2462  if (IsSubWord)
2463    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2464      .addReg(OldVal).addReg(BitShift).addImm(0);
2465  if (Invert) {
2466    // Perform the operation normally and then invert every bit of the field.
2467    unsigned Tmp = MRI.createVirtualRegister(RC);
2468    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2469      .addReg(RotatedOldVal).addOperand(Src2);
2470    if (BitSize < 32)
2471      // XILF with the upper BitSize bits set.
2472      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2473        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2474    else if (BitSize == 32)
2475      // XILF with every bit set.
2476      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2477        .addReg(Tmp).addImm(~uint32_t(0));
2478    else {
2479      // Use LCGR and add -1 to the result, which is more compact than
2480      // an XILF, XILH pair.
2481      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2482      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2483      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2484        .addReg(Tmp2).addImm(-1);
2485    }
2486  } else if (BinOpcode)
2487    // A simply binary operation.
2488    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2489      .addReg(RotatedOldVal).addOperand(Src2);
2490  else if (IsSubWord)
2491    // Use RISBG to rotate Src2 into position and use it to replace the
2492    // field in RotatedOldVal.
2493    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2494      .addReg(RotatedOldVal).addReg(Src2.getReg())
2495      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2496  if (IsSubWord)
2497    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2498      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2499  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2500    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2501  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2502    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2503  MBB->addSuccessor(LoopMBB);
2504  MBB->addSuccessor(DoneMBB);
2505
2506  MI->eraseFromParent();
2507  return DoneMBB;
2508}
2509
2510// Implement EmitInstrWithCustomInserter for pseudo
2511// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2512// instruction that should be used to compare the current field with the
2513// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2514// for when the current field should be kept.  BitSize is the width of
2515// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2516MachineBasicBlock *
2517SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2518                                            MachineBasicBlock *MBB,
2519                                            unsigned CompareOpcode,
2520                                            unsigned KeepOldMask,
2521                                            unsigned BitSize) const {
2522  const SystemZInstrInfo *TII = TM.getInstrInfo();
2523  MachineFunction &MF = *MBB->getParent();
2524  MachineRegisterInfo &MRI = MF.getRegInfo();
2525  bool IsSubWord = (BitSize < 32);
2526
2527  // Extract the operands.  Base can be a register or a frame index.
2528  unsigned Dest        = MI->getOperand(0).getReg();
2529  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2530  int64_t  Disp        = MI->getOperand(2).getImm();
2531  unsigned Src2        = MI->getOperand(3).getReg();
2532  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2533  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2534  DebugLoc DL          = MI->getDebugLoc();
2535  if (IsSubWord)
2536    BitSize = MI->getOperand(6).getImm();
2537
2538  // Subword operations use 32-bit registers.
2539  const TargetRegisterClass *RC = (BitSize <= 32 ?
2540                                   &SystemZ::GR32BitRegClass :
2541                                   &SystemZ::GR64BitRegClass);
2542  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2543  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2544
2545  // Get the right opcodes for the displacement.
2546  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2547  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2548  assert(LOpcode && CSOpcode && "Displacement out of range");
2549
2550  // Create virtual registers for temporary results.
2551  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2552  unsigned OldVal        = MRI.createVirtualRegister(RC);
2553  unsigned NewVal        = MRI.createVirtualRegister(RC);
2554  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2555  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2556  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2557
2558  // Insert 3 basic blocks for the loop.
2559  MachineBasicBlock *StartMBB  = MBB;
2560  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2561  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2562  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2563  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2564
2565  //  StartMBB:
2566  //   ...
2567  //   %OrigVal     = L Disp(%Base)
2568  //   # fall through to LoopMMB
2569  MBB = StartMBB;
2570  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2571    .addOperand(Base).addImm(Disp).addReg(0);
2572  MBB->addSuccessor(LoopMBB);
2573
2574  //  LoopMBB:
2575  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2576  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2577  //   CompareOpcode %RotatedOldVal, %Src2
2578  //   BRC KeepOldMask, UpdateMBB
2579  MBB = LoopMBB;
2580  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2581    .addReg(OrigVal).addMBB(StartMBB)
2582    .addReg(Dest).addMBB(UpdateMBB);
2583  if (IsSubWord)
2584    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2585      .addReg(OldVal).addReg(BitShift).addImm(0);
2586  BuildMI(MBB, DL, TII->get(CompareOpcode))
2587    .addReg(RotatedOldVal).addReg(Src2);
2588  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2589    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2590  MBB->addSuccessor(UpdateMBB);
2591  MBB->addSuccessor(UseAltMBB);
2592
2593  //  UseAltMBB:
2594  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2595  //   # fall through to UpdateMMB
2596  MBB = UseAltMBB;
2597  if (IsSubWord)
2598    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2599      .addReg(RotatedOldVal).addReg(Src2)
2600      .addImm(32).addImm(31 + BitSize).addImm(0);
2601  MBB->addSuccessor(UpdateMBB);
2602
2603  //  UpdateMBB:
2604  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2605  //                        [ %RotatedAltVal, UseAltMBB ]
2606  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2607  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2608  //   JNE LoopMBB
2609  //   # fall through to DoneMMB
2610  MBB = UpdateMBB;
2611  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2612    .addReg(RotatedOldVal).addMBB(LoopMBB)
2613    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2614  if (IsSubWord)
2615    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2616      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2617  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2618    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2619  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2620    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2621  MBB->addSuccessor(LoopMBB);
2622  MBB->addSuccessor(DoneMBB);
2623
2624  MI->eraseFromParent();
2625  return DoneMBB;
2626}
2627
2628// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2629// instruction MI.
2630MachineBasicBlock *
2631SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2632                                          MachineBasicBlock *MBB) const {
2633  const SystemZInstrInfo *TII = TM.getInstrInfo();
2634  MachineFunction &MF = *MBB->getParent();
2635  MachineRegisterInfo &MRI = MF.getRegInfo();
2636
2637  // Extract the operands.  Base can be a register or a frame index.
2638  unsigned Dest        = MI->getOperand(0).getReg();
2639  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2640  int64_t  Disp        = MI->getOperand(2).getImm();
2641  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2642  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2643  unsigned BitShift    = MI->getOperand(5).getReg();
2644  unsigned NegBitShift = MI->getOperand(6).getReg();
2645  int64_t  BitSize     = MI->getOperand(7).getImm();
2646  DebugLoc DL          = MI->getDebugLoc();
2647
2648  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2649
2650  // Get the right opcodes for the displacement.
2651  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2652  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2653  assert(LOpcode && CSOpcode && "Displacement out of range");
2654
2655  // Create virtual registers for temporary results.
2656  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2657  unsigned OldVal       = MRI.createVirtualRegister(RC);
2658  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2659  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2660  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2661  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2662  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2663  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2664
2665  // Insert 2 basic blocks for the loop.
2666  MachineBasicBlock *StartMBB = MBB;
2667  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2668  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2669  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2670
2671  //  StartMBB:
2672  //   ...
2673  //   %OrigOldVal     = L Disp(%Base)
2674  //   # fall through to LoopMMB
2675  MBB = StartMBB;
2676  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2677    .addOperand(Base).addImm(Disp).addReg(0);
2678  MBB->addSuccessor(LoopMBB);
2679
2680  //  LoopMBB:
2681  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2682  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2683  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2684  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2685  //                      ^^ The low BitSize bits contain the field
2686  //                         of interest.
2687  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2688  //                      ^^ Replace the upper 32-BitSize bits of the
2689  //                         comparison value with those that we loaded,
2690  //                         so that we can use a full word comparison.
2691  //   CR %Dest, %RetryCmpVal
2692  //   JNE DoneMBB
2693  //   # Fall through to SetMBB
2694  MBB = LoopMBB;
2695  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2696    .addReg(OrigOldVal).addMBB(StartMBB)
2697    .addReg(RetryOldVal).addMBB(SetMBB);
2698  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2699    .addReg(OrigCmpVal).addMBB(StartMBB)
2700    .addReg(RetryCmpVal).addMBB(SetMBB);
2701  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2702    .addReg(OrigSwapVal).addMBB(StartMBB)
2703    .addReg(RetrySwapVal).addMBB(SetMBB);
2704  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2705    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2706  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2707    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2708  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2709    .addReg(Dest).addReg(RetryCmpVal);
2710  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2711    .addImm(SystemZ::CCMASK_ICMP)
2712    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2713  MBB->addSuccessor(DoneMBB);
2714  MBB->addSuccessor(SetMBB);
2715
2716  //  SetMBB:
2717  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2718  //                      ^^ Replace the upper 32-BitSize bits of the new
2719  //                         value with those that we loaded.
2720  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2721  //                      ^^ Rotate the new field to its proper position.
2722  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2723  //   JNE LoopMBB
2724  //   # fall through to ExitMMB
2725  MBB = SetMBB;
2726  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2727    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2728  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2729    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2730  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2731    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2732  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2733    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2734  MBB->addSuccessor(LoopMBB);
2735  MBB->addSuccessor(DoneMBB);
2736
2737  MI->eraseFromParent();
2738  return DoneMBB;
2739}
2740
2741// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2742// if the high register of the GR128 value must be cleared or false if
2743// it's "don't care".  SubReg is subreg_l32 when extending a GR32
2744// and subreg_l64 when extending a GR64.
2745MachineBasicBlock *
2746SystemZTargetLowering::emitExt128(MachineInstr *MI,
2747                                  MachineBasicBlock *MBB,
2748                                  bool ClearEven, unsigned SubReg) const {
2749  const SystemZInstrInfo *TII = TM.getInstrInfo();
2750  MachineFunction &MF = *MBB->getParent();
2751  MachineRegisterInfo &MRI = MF.getRegInfo();
2752  DebugLoc DL = MI->getDebugLoc();
2753
2754  unsigned Dest  = MI->getOperand(0).getReg();
2755  unsigned Src   = MI->getOperand(1).getReg();
2756  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2757
2758  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2759  if (ClearEven) {
2760    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2761    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2762
2763    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2764      .addImm(0);
2765    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2766      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
2767    In128 = NewIn128;
2768  }
2769  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2770    .addReg(In128).addReg(Src).addImm(SubReg);
2771
2772  MI->eraseFromParent();
2773  return MBB;
2774}
2775
2776MachineBasicBlock *
2777SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2778                                         MachineBasicBlock *MBB,
2779                                         unsigned Opcode) const {
2780  const SystemZInstrInfo *TII = TM.getInstrInfo();
2781  MachineFunction &MF = *MBB->getParent();
2782  MachineRegisterInfo &MRI = MF.getRegInfo();
2783  DebugLoc DL = MI->getDebugLoc();
2784
2785  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
2786  uint64_t       DestDisp = MI->getOperand(1).getImm();
2787  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
2788  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2789  uint64_t       Length   = MI->getOperand(4).getImm();
2790
2791  // When generating more than one CLC, all but the last will need to
2792  // branch to the end when a difference is found.
2793  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2794                               splitBlockAfter(MI, MBB) : 0);
2795
2796  // Check for the loop form, in which operand 5 is the trip count.
2797  if (MI->getNumExplicitOperands() > 5) {
2798    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2799
2800    uint64_t StartCountReg = MI->getOperand(5).getReg();
2801    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
2802    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
2803                              forceReg(MI, DestBase, TII));
2804
2805    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2806    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
2807    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2808                            MRI.createVirtualRegister(RC));
2809    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
2810    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2811                            MRI.createVirtualRegister(RC));
2812
2813    RC = &SystemZ::GR64BitRegClass;
2814    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2815    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2816
2817    MachineBasicBlock *StartMBB = MBB;
2818    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2819    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2820    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
2821
2822    //  StartMBB:
2823    //   # fall through to LoopMMB
2824    MBB->addSuccessor(LoopMBB);
2825
2826    //  LoopMBB:
2827    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
2828    //                      [ %NextDestReg, NextMBB ]
2829    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
2830    //                     [ %NextSrcReg, NextMBB ]
2831    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
2832    //                       [ %NextCountReg, NextMBB ]
2833    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
2834    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
2835    //   ( JLH EndMBB )
2836    //
2837    // The prefetch is used only for MVC.  The JLH is used only for CLC.
2838    MBB = LoopMBB;
2839
2840    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2841      .addReg(StartDestReg).addMBB(StartMBB)
2842      .addReg(NextDestReg).addMBB(NextMBB);
2843    if (!HaveSingleBase)
2844      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2845        .addReg(StartSrcReg).addMBB(StartMBB)
2846        .addReg(NextSrcReg).addMBB(NextMBB);
2847    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2848      .addReg(StartCountReg).addMBB(StartMBB)
2849      .addReg(NextCountReg).addMBB(NextMBB);
2850    if (Opcode == SystemZ::MVC)
2851      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2852        .addImm(SystemZ::PFD_WRITE)
2853        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2854    BuildMI(MBB, DL, TII->get(Opcode))
2855      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2856      .addReg(ThisSrcReg).addImm(SrcDisp);
2857    if (EndMBB) {
2858      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2859        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2860        .addMBB(EndMBB);
2861      MBB->addSuccessor(EndMBB);
2862      MBB->addSuccessor(NextMBB);
2863    }
2864
2865    // NextMBB:
2866    //   %NextDestReg = LA 256(%ThisDestReg)
2867    //   %NextSrcReg = LA 256(%ThisSrcReg)
2868    //   %NextCountReg = AGHI %ThisCountReg, -1
2869    //   CGHI %NextCountReg, 0
2870    //   JLH LoopMBB
2871    //   # fall through to DoneMMB
2872    //
2873    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
2874    MBB = NextMBB;
2875
2876    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2877      .addReg(ThisDestReg).addImm(256).addReg(0);
2878    if (!HaveSingleBase)
2879      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2880        .addReg(ThisSrcReg).addImm(256).addReg(0);
2881    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2882      .addReg(ThisCountReg).addImm(-1);
2883    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2884      .addReg(NextCountReg).addImm(0);
2885    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2886      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2887      .addMBB(LoopMBB);
2888    MBB->addSuccessor(LoopMBB);
2889    MBB->addSuccessor(DoneMBB);
2890
2891    DestBase = MachineOperand::CreateReg(NextDestReg, false);
2892    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2893    Length &= 255;
2894    MBB = DoneMBB;
2895  }
2896  // Handle any remaining bytes with straight-line code.
2897  while (Length > 0) {
2898    uint64_t ThisLength = std::min(Length, uint64_t(256));
2899    // The previous iteration might have created out-of-range displacements.
2900    // Apply them using LAY if so.
2901    if (!isUInt<12>(DestDisp)) {
2902      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2903      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2904        .addOperand(DestBase).addImm(DestDisp).addReg(0);
2905      DestBase = MachineOperand::CreateReg(Reg, false);
2906      DestDisp = 0;
2907    }
2908    if (!isUInt<12>(SrcDisp)) {
2909      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2910      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2911        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2912      SrcBase = MachineOperand::CreateReg(Reg, false);
2913      SrcDisp = 0;
2914    }
2915    BuildMI(*MBB, MI, DL, TII->get(Opcode))
2916      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2917      .addOperand(SrcBase).addImm(SrcDisp);
2918    DestDisp += ThisLength;
2919    SrcDisp += ThisLength;
2920    Length -= ThisLength;
2921    // If there's another CLC to go, branch to the end if a difference
2922    // was found.
2923    if (EndMBB && Length > 0) {
2924      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
2925      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2926        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2927        .addMBB(EndMBB);
2928      MBB->addSuccessor(EndMBB);
2929      MBB->addSuccessor(NextMBB);
2930      MBB = NextMBB;
2931    }
2932  }
2933  if (EndMBB) {
2934    MBB->addSuccessor(EndMBB);
2935    MBB = EndMBB;
2936    MBB->addLiveIn(SystemZ::CC);
2937  }
2938
2939  MI->eraseFromParent();
2940  return MBB;
2941}
2942
2943// Decompose string pseudo-instruction MI into a loop that continually performs
2944// Opcode until CC != 3.
2945MachineBasicBlock *
2946SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2947                                         MachineBasicBlock *MBB,
2948                                         unsigned Opcode) const {
2949  const SystemZInstrInfo *TII = TM.getInstrInfo();
2950  MachineFunction &MF = *MBB->getParent();
2951  MachineRegisterInfo &MRI = MF.getRegInfo();
2952  DebugLoc DL = MI->getDebugLoc();
2953
2954  uint64_t End1Reg   = MI->getOperand(0).getReg();
2955  uint64_t Start1Reg = MI->getOperand(1).getReg();
2956  uint64_t Start2Reg = MI->getOperand(2).getReg();
2957  uint64_t CharReg   = MI->getOperand(3).getReg();
2958
2959  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2960  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2961  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2962  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2963
2964  MachineBasicBlock *StartMBB = MBB;
2965  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2966  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2967
2968  //  StartMBB:
2969  //   # fall through to LoopMMB
2970  MBB->addSuccessor(LoopMBB);
2971
2972  //  LoopMBB:
2973  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2974  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2975  //   R0L = %CharReg
2976  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
2977  //   JO LoopMBB
2978  //   # fall through to DoneMMB
2979  //
2980  // The load of R0L can be hoisted by post-RA LICM.
2981  MBB = LoopMBB;
2982
2983  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2984    .addReg(Start1Reg).addMBB(StartMBB)
2985    .addReg(End1Reg).addMBB(LoopMBB);
2986  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2987    .addReg(Start2Reg).addMBB(StartMBB)
2988    .addReg(End2Reg).addMBB(LoopMBB);
2989  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
2990  BuildMI(MBB, DL, TII->get(Opcode))
2991    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2992    .addReg(This1Reg).addReg(This2Reg);
2993  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2994    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2995  MBB->addSuccessor(LoopMBB);
2996  MBB->addSuccessor(DoneMBB);
2997
2998  DoneMBB->addLiveIn(SystemZ::CC);
2999
3000  MI->eraseFromParent();
3001  return DoneMBB;
3002}
3003
3004MachineBasicBlock *SystemZTargetLowering::
3005EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3006  switch (MI->getOpcode()) {
3007  case SystemZ::Select32Mux:
3008  case SystemZ::Select32:
3009  case SystemZ::SelectF32:
3010  case SystemZ::Select64:
3011  case SystemZ::SelectF64:
3012  case SystemZ::SelectF128:
3013    return emitSelect(MI, MBB);
3014
3015  case SystemZ::CondStore8Mux:
3016    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3017  case SystemZ::CondStore8MuxInv:
3018    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3019  case SystemZ::CondStore16Mux:
3020    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3021  case SystemZ::CondStore16MuxInv:
3022    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3023  case SystemZ::CondStore8:
3024    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3025  case SystemZ::CondStore8Inv:
3026    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3027  case SystemZ::CondStore16:
3028    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3029  case SystemZ::CondStore16Inv:
3030    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3031  case SystemZ::CondStore32:
3032    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3033  case SystemZ::CondStore32Inv:
3034    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3035  case SystemZ::CondStore64:
3036    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3037  case SystemZ::CondStore64Inv:
3038    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3039  case SystemZ::CondStoreF32:
3040    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3041  case SystemZ::CondStoreF32Inv:
3042    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3043  case SystemZ::CondStoreF64:
3044    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3045  case SystemZ::CondStoreF64Inv:
3046    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3047
3048  case SystemZ::AEXT128_64:
3049    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3050  case SystemZ::ZEXT128_32:
3051    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3052  case SystemZ::ZEXT128_64:
3053    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3054
3055  case SystemZ::ATOMIC_SWAPW:
3056    return emitAtomicLoadBinary(MI, MBB, 0, 0);
3057  case SystemZ::ATOMIC_SWAP_32:
3058    return emitAtomicLoadBinary(MI, MBB, 0, 32);
3059  case SystemZ::ATOMIC_SWAP_64:
3060    return emitAtomicLoadBinary(MI, MBB, 0, 64);
3061
3062  case SystemZ::ATOMIC_LOADW_AR:
3063    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3064  case SystemZ::ATOMIC_LOADW_AFI:
3065    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3066  case SystemZ::ATOMIC_LOAD_AR:
3067    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3068  case SystemZ::ATOMIC_LOAD_AHI:
3069    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3070  case SystemZ::ATOMIC_LOAD_AFI:
3071    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3072  case SystemZ::ATOMIC_LOAD_AGR:
3073    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3074  case SystemZ::ATOMIC_LOAD_AGHI:
3075    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3076  case SystemZ::ATOMIC_LOAD_AGFI:
3077    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3078
3079  case SystemZ::ATOMIC_LOADW_SR:
3080    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3081  case SystemZ::ATOMIC_LOAD_SR:
3082    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3083  case SystemZ::ATOMIC_LOAD_SGR:
3084    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3085
3086  case SystemZ::ATOMIC_LOADW_NR:
3087    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3088  case SystemZ::ATOMIC_LOADW_NILH:
3089    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3090  case SystemZ::ATOMIC_LOAD_NR:
3091    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3092  case SystemZ::ATOMIC_LOAD_NILL:
3093    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3094  case SystemZ::ATOMIC_LOAD_NILH:
3095    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3096  case SystemZ::ATOMIC_LOAD_NILF:
3097    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3098  case SystemZ::ATOMIC_LOAD_NGR:
3099    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3100  case SystemZ::ATOMIC_LOAD_NILL64:
3101    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3102  case SystemZ::ATOMIC_LOAD_NILH64:
3103    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3104  case SystemZ::ATOMIC_LOAD_NIHL64:
3105    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3106  case SystemZ::ATOMIC_LOAD_NIHH64:
3107    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3108  case SystemZ::ATOMIC_LOAD_NILF64:
3109    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3110  case SystemZ::ATOMIC_LOAD_NIHF64:
3111    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3112
3113  case SystemZ::ATOMIC_LOADW_OR:
3114    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3115  case SystemZ::ATOMIC_LOADW_OILH:
3116    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3117  case SystemZ::ATOMIC_LOAD_OR:
3118    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3119  case SystemZ::ATOMIC_LOAD_OILL:
3120    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3121  case SystemZ::ATOMIC_LOAD_OILH:
3122    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3123  case SystemZ::ATOMIC_LOAD_OILF:
3124    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3125  case SystemZ::ATOMIC_LOAD_OGR:
3126    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3127  case SystemZ::ATOMIC_LOAD_OILL64:
3128    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3129  case SystemZ::ATOMIC_LOAD_OILH64:
3130    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3131  case SystemZ::ATOMIC_LOAD_OIHL64:
3132    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3133  case SystemZ::ATOMIC_LOAD_OIHH64:
3134    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3135  case SystemZ::ATOMIC_LOAD_OILF64:
3136    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3137  case SystemZ::ATOMIC_LOAD_OIHF64:
3138    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3139
3140  case SystemZ::ATOMIC_LOADW_XR:
3141    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3142  case SystemZ::ATOMIC_LOADW_XILF:
3143    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3144  case SystemZ::ATOMIC_LOAD_XR:
3145    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3146  case SystemZ::ATOMIC_LOAD_XILF:
3147    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3148  case SystemZ::ATOMIC_LOAD_XGR:
3149    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3150  case SystemZ::ATOMIC_LOAD_XILF64:
3151    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3152  case SystemZ::ATOMIC_LOAD_XIHF64:
3153    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3154
3155  case SystemZ::ATOMIC_LOADW_NRi:
3156    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3157  case SystemZ::ATOMIC_LOADW_NILHi:
3158    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3159  case SystemZ::ATOMIC_LOAD_NRi:
3160    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3161  case SystemZ::ATOMIC_LOAD_NILLi:
3162    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3163  case SystemZ::ATOMIC_LOAD_NILHi:
3164    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3165  case SystemZ::ATOMIC_LOAD_NILFi:
3166    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3167  case SystemZ::ATOMIC_LOAD_NGRi:
3168    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3169  case SystemZ::ATOMIC_LOAD_NILL64i:
3170    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3171  case SystemZ::ATOMIC_LOAD_NILH64i:
3172    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3173  case SystemZ::ATOMIC_LOAD_NIHL64i:
3174    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3175  case SystemZ::ATOMIC_LOAD_NIHH64i:
3176    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3177  case SystemZ::ATOMIC_LOAD_NILF64i:
3178    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3179  case SystemZ::ATOMIC_LOAD_NIHF64i:
3180    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3181
3182  case SystemZ::ATOMIC_LOADW_MIN:
3183    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3184                                SystemZ::CCMASK_CMP_LE, 0);
3185  case SystemZ::ATOMIC_LOAD_MIN_32:
3186    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3187                                SystemZ::CCMASK_CMP_LE, 32);
3188  case SystemZ::ATOMIC_LOAD_MIN_64:
3189    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3190                                SystemZ::CCMASK_CMP_LE, 64);
3191
3192  case SystemZ::ATOMIC_LOADW_MAX:
3193    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3194                                SystemZ::CCMASK_CMP_GE, 0);
3195  case SystemZ::ATOMIC_LOAD_MAX_32:
3196    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3197                                SystemZ::CCMASK_CMP_GE, 32);
3198  case SystemZ::ATOMIC_LOAD_MAX_64:
3199    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3200                                SystemZ::CCMASK_CMP_GE, 64);
3201
3202  case SystemZ::ATOMIC_LOADW_UMIN:
3203    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3204                                SystemZ::CCMASK_CMP_LE, 0);
3205  case SystemZ::ATOMIC_LOAD_UMIN_32:
3206    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3207                                SystemZ::CCMASK_CMP_LE, 32);
3208  case SystemZ::ATOMIC_LOAD_UMIN_64:
3209    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3210                                SystemZ::CCMASK_CMP_LE, 64);
3211
3212  case SystemZ::ATOMIC_LOADW_UMAX:
3213    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3214                                SystemZ::CCMASK_CMP_GE, 0);
3215  case SystemZ::ATOMIC_LOAD_UMAX_32:
3216    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3217                                SystemZ::CCMASK_CMP_GE, 32);
3218  case SystemZ::ATOMIC_LOAD_UMAX_64:
3219    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3220                                SystemZ::CCMASK_CMP_GE, 64);
3221
3222  case SystemZ::ATOMIC_CMP_SWAPW:
3223    return emitAtomicCmpSwapW(MI, MBB);
3224  case SystemZ::MVCSequence:
3225  case SystemZ::MVCLoop:
3226    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3227  case SystemZ::NCSequence:
3228  case SystemZ::NCLoop:
3229    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3230  case SystemZ::OCSequence:
3231  case SystemZ::OCLoop:
3232    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3233  case SystemZ::XCSequence:
3234  case SystemZ::XCLoop:
3235    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3236  case SystemZ::CLCSequence:
3237  case SystemZ::CLCLoop:
3238    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3239  case SystemZ::CLSTLoop:
3240    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3241  case SystemZ::MVSTLoop:
3242    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3243  case SystemZ::SRSTLoop:
3244    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3245  default:
3246    llvm_unreachable("Unexpected instr type to insert");
3247  }
3248}
3249