SystemZISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include <cctype>
24
25using namespace llvm;
26
27#define DEBUG_TYPE "systemz-lower"
28
29namespace {
30// Represents a sequence for extracting a 0/1 value from an IPM result:
31// (((X ^ XORValue) + AddValue) >> Bit)
32struct IPMConversion {
33  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36  int64_t XORValue;
37  int64_t AddValue;
38  unsigned Bit;
39};
40
41// Represents information about a comparison.
42struct Comparison {
43  Comparison(SDValue Op0In, SDValue Op1In)
44    : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46  // The operands to the comparison.
47  SDValue Op0, Op1;
48
49  // The opcode that should be used to compare Op0 and Op1.
50  unsigned Opcode;
51
52  // A SystemZICMP value.  Only used for integer comparisons.
53  unsigned ICmpType;
54
55  // The mask of CC values that Opcode can produce.
56  unsigned CCValid;
57
58  // The mask of CC values for which the original condition is true.
59  unsigned CCMask;
60};
61} // end anonymous namespace
62
63// Classify VT as either 32 or 64 bit.
64static bool is32Bit(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  case MVT::i32:
67    return true;
68  case MVT::i64:
69    return false;
70  default:
71    llvm_unreachable("Unsupported type");
72  }
73}
74
75// Return a version of MachineOperand that can be safely used before the
76// final use.
77static MachineOperand earlyUseOperand(MachineOperand Op) {
78  if (Op.isReg())
79    Op.setIsKill(false);
80  return Op;
81}
82
83SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
84  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
85    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
86  MVT PtrVT = getPointerTy();
87
88  // Set up the register classes.
89  if (Subtarget.hasHighWord())
90    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91  else
92    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
94  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
95  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
96  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98  // Compute derived properties from the register classes
99  computeRegisterProperties();
100
101  // Set up special registers.
102  setExceptionPointerRegister(SystemZ::R6D);
103  setExceptionSelectorRegister(SystemZ::R7D);
104  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106  // TODO: It may be better to default to latency-oriented scheduling, however
107  // LLVM's current latency-oriented scheduler can't handle physreg definitions
108  // such as SystemZ has with CC, so set this to the register-pressure
109  // scheduler, because it can.
110  setSchedulingPreference(Sched::RegPressure);
111
112  setBooleanContents(ZeroOrOneBooleanContent);
113  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115  // Instructions are strings of 2-byte aligned 2-byte values.
116  setMinFunctionAlignment(2);
117
118  // Handle operations that are handled in a similar way for all types.
119  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120       I <= MVT::LAST_FP_VALUETYPE;
121       ++I) {
122    MVT VT = MVT::SimpleValueType(I);
123    if (isTypeLegal(VT)) {
124      // Lower SET_CC into an IPM-based sequence.
125      setOperationAction(ISD::SETCC, VT, Custom);
126
127      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128      setOperationAction(ISD::SELECT, VT, Expand);
129
130      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131      setOperationAction(ISD::SELECT_CC, VT, Custom);
132      setOperationAction(ISD::BR_CC,     VT, Custom);
133    }
134  }
135
136  // Expand jump table branches as address arithmetic followed by an
137  // indirect jump.
138  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140  // Expand BRCOND into a BR_CC (see above).
141  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143  // Handle integer types.
144  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145       I <= MVT::LAST_INTEGER_VALUETYPE;
146       ++I) {
147    MVT VT = MVT::SimpleValueType(I);
148    if (isTypeLegal(VT)) {
149      // Expand individual DIV and REMs into DIVREMs.
150      setOperationAction(ISD::SDIV, VT, Expand);
151      setOperationAction(ISD::UDIV, VT, Expand);
152      setOperationAction(ISD::SREM, VT, Expand);
153      setOperationAction(ISD::UREM, VT, Expand);
154      setOperationAction(ISD::SDIVREM, VT, Custom);
155      setOperationAction(ISD::UDIVREM, VT, Custom);
156
157      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158      // stores, putting a serialization instruction after the stores.
159      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
160      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
161
162      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163      // available, or if the operand is constant.
164      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
166      // No special instructions for these.
167      setOperationAction(ISD::CTPOP,           VT, Expand);
168      setOperationAction(ISD::CTTZ,            VT, Expand);
169      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171      setOperationAction(ISD::ROTR,            VT, Expand);
172
173      // Use *MUL_LOHI where possible instead of MULH*.
174      setOperationAction(ISD::MULHS, VT, Expand);
175      setOperationAction(ISD::MULHU, VT, Expand);
176      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
178
179      // Only z196 and above have native support for conversions to unsigned.
180      if (!Subtarget.hasFPExtension())
181        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182    }
183  }
184
185  // Type legalization will convert 8- and 16-bit atomic operations into
186  // forms that operate on i32s (but still keeping the original memory VT).
187  // Lower them into full i32 operations.
188  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
189  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
190  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
191  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
192  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
193  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
194  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
196  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
197  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
200
201  // z10 has instructions for signed but not unsigned FP conversion.
202  // Handle unsigned 32-bit types as signed 64-bit types.
203  if (!Subtarget.hasFPExtension()) {
204    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206  }
207
208  // We have native support for a 64-bit CTLZ, via FLOGR.
209  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213  setOperationAction(ISD::OR, MVT::i64, Custom);
214
215  // FIXME: Can we support these natively?
216  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220  // We have native instructions for i8, i16 and i32 extensions, but not i1.
221  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
222  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
223  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
224  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
225
226  // Handle the various types of symbolic address.
227  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
228  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
229  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
230  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
231  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
232
233  // We need to handle dynamic allocations specially because of the
234  // 160-byte area at the bottom of the stack.
235  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
236
237  // Use custom expanders so that we can force the function to use
238  // a frame pointer.
239  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
240  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
241
242  // Handle prefetches with PFD or PFDRL.
243  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
244
245  // Handle floating-point types.
246  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
247       I <= MVT::LAST_FP_VALUETYPE;
248       ++I) {
249    MVT VT = MVT::SimpleValueType(I);
250    if (isTypeLegal(VT)) {
251      // We can use FI for FRINT.
252      setOperationAction(ISD::FRINT, VT, Legal);
253
254      // We can use the extended form of FI for other rounding operations.
255      if (Subtarget.hasFPExtension()) {
256        setOperationAction(ISD::FNEARBYINT, VT, Legal);
257        setOperationAction(ISD::FFLOOR, VT, Legal);
258        setOperationAction(ISD::FCEIL, VT, Legal);
259        setOperationAction(ISD::FTRUNC, VT, Legal);
260        setOperationAction(ISD::FROUND, VT, Legal);
261      }
262
263      // No special instructions for these.
264      setOperationAction(ISD::FSIN, VT, Expand);
265      setOperationAction(ISD::FCOS, VT, Expand);
266      setOperationAction(ISD::FREM, VT, Expand);
267    }
268  }
269
270  // We have fused multiply-addition for f32 and f64 but not f128.
271  setOperationAction(ISD::FMA, MVT::f32,  Legal);
272  setOperationAction(ISD::FMA, MVT::f64,  Legal);
273  setOperationAction(ISD::FMA, MVT::f128, Expand);
274
275  // Needed so that we don't try to implement f128 constant loads using
276  // a load-and-extend of a f80 constant (in cases where the constant
277  // would fit in an f80).
278  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
279
280  // Floating-point truncation and stores need to be done separately.
281  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
282  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
283  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
284
285  // We have 64-bit FPR<->GPR moves, but need special handling for
286  // 32-bit forms.
287  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
288  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
289
290  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
291  // structure, but VAEND is a no-op.
292  setOperationAction(ISD::VASTART, MVT::Other, Custom);
293  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
294  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
295
296  // Codes for which we want to perform some z-specific combinations.
297  setTargetDAGCombine(ISD::SIGN_EXTEND);
298
299  // We want to use MVC in preference to even a single load/store pair.
300  MaxStoresPerMemcpy = 0;
301  MaxStoresPerMemcpyOptSize = 0;
302
303  // The main memset sequence is a byte store followed by an MVC.
304  // Two STC or MV..I stores win over that, but the kind of fused stores
305  // generated by target-independent code don't when the byte value is
306  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
307  // than "STC;MVC".  Handle the choice in target-specific code instead.
308  MaxStoresPerMemset = 0;
309  MaxStoresPerMemsetOptSize = 0;
310}
311
312EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
313  if (!VT.isVector())
314    return MVT::i32;
315  return VT.changeVectorElementTypeToInteger();
316}
317
318bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
319  VT = VT.getScalarType();
320
321  if (!VT.isSimple())
322    return false;
323
324  switch (VT.getSimpleVT().SimpleTy) {
325  case MVT::f32:
326  case MVT::f64:
327    return true;
328  case MVT::f128:
329    return false;
330  default:
331    break;
332  }
333
334  return false;
335}
336
337bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
338  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
339  return Imm.isZero() || Imm.isNegZero();
340}
341
342bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
343                                                          unsigned,
344                                                          bool *Fast) const {
345  // Unaligned accesses should never be slower than the expanded version.
346  // We check specifically for aligned accesses in the few cases where
347  // they are required.
348  if (Fast)
349    *Fast = true;
350  return true;
351}
352
353bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
354                                                  Type *Ty) const {
355  // Punt on globals for now, although they can be used in limited
356  // RELATIVE LONG cases.
357  if (AM.BaseGV)
358    return false;
359
360  // Require a 20-bit signed offset.
361  if (!isInt<20>(AM.BaseOffs))
362    return false;
363
364  // Indexing is OK but no scale factor can be applied.
365  return AM.Scale == 0 || AM.Scale == 1;
366}
367
368bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
369  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
370    return false;
371  unsigned FromBits = FromType->getPrimitiveSizeInBits();
372  unsigned ToBits = ToType->getPrimitiveSizeInBits();
373  return FromBits > ToBits;
374}
375
376bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
377  if (!FromVT.isInteger() || !ToVT.isInteger())
378    return false;
379  unsigned FromBits = FromVT.getSizeInBits();
380  unsigned ToBits = ToVT.getSizeInBits();
381  return FromBits > ToBits;
382}
383
384//===----------------------------------------------------------------------===//
385// Inline asm support
386//===----------------------------------------------------------------------===//
387
388TargetLowering::ConstraintType
389SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
390  if (Constraint.size() == 1) {
391    switch (Constraint[0]) {
392    case 'a': // Address register
393    case 'd': // Data register (equivalent to 'r')
394    case 'f': // Floating-point register
395    case 'h': // High-part register
396    case 'r': // General-purpose register
397      return C_RegisterClass;
398
399    case 'Q': // Memory with base and unsigned 12-bit displacement
400    case 'R': // Likewise, plus an index
401    case 'S': // Memory with base and signed 20-bit displacement
402    case 'T': // Likewise, plus an index
403    case 'm': // Equivalent to 'T'.
404      return C_Memory;
405
406    case 'I': // Unsigned 8-bit constant
407    case 'J': // Unsigned 12-bit constant
408    case 'K': // Signed 16-bit constant
409    case 'L': // Signed 20-bit displacement (on all targets we support)
410    case 'M': // 0x7fffffff
411      return C_Other;
412
413    default:
414      break;
415    }
416  }
417  return TargetLowering::getConstraintType(Constraint);
418}
419
420TargetLowering::ConstraintWeight SystemZTargetLowering::
421getSingleConstraintMatchWeight(AsmOperandInfo &info,
422                               const char *constraint) const {
423  ConstraintWeight weight = CW_Invalid;
424  Value *CallOperandVal = info.CallOperandVal;
425  // If we don't have a value, we can't do a match,
426  // but allow it at the lowest weight.
427  if (!CallOperandVal)
428    return CW_Default;
429  Type *type = CallOperandVal->getType();
430  // Look at the constraint type.
431  switch (*constraint) {
432  default:
433    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
434    break;
435
436  case 'a': // Address register
437  case 'd': // Data register (equivalent to 'r')
438  case 'h': // High-part register
439  case 'r': // General-purpose register
440    if (CallOperandVal->getType()->isIntegerTy())
441      weight = CW_Register;
442    break;
443
444  case 'f': // Floating-point register
445    if (type->isFloatingPointTy())
446      weight = CW_Register;
447    break;
448
449  case 'I': // Unsigned 8-bit constant
450    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
451      if (isUInt<8>(C->getZExtValue()))
452        weight = CW_Constant;
453    break;
454
455  case 'J': // Unsigned 12-bit constant
456    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
457      if (isUInt<12>(C->getZExtValue()))
458        weight = CW_Constant;
459    break;
460
461  case 'K': // Signed 16-bit constant
462    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
463      if (isInt<16>(C->getSExtValue()))
464        weight = CW_Constant;
465    break;
466
467  case 'L': // Signed 20-bit displacement (on all targets we support)
468    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
469      if (isInt<20>(C->getSExtValue()))
470        weight = CW_Constant;
471    break;
472
473  case 'M': // 0x7fffffff
474    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
475      if (C->getZExtValue() == 0x7fffffff)
476        weight = CW_Constant;
477    break;
478  }
479  return weight;
480}
481
482// Parse a "{tNNN}" register constraint for which the register type "t"
483// has already been verified.  MC is the class associated with "t" and
484// Map maps 0-based register numbers to LLVM register numbers.
485static std::pair<unsigned, const TargetRegisterClass *>
486parseRegisterNumber(const std::string &Constraint,
487                    const TargetRegisterClass *RC, const unsigned *Map) {
488  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
489  if (isdigit(Constraint[2])) {
490    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
491    unsigned Index = atoi(Suffix.c_str());
492    if (Index < 16 && Map[Index])
493      return std::make_pair(Map[Index], RC);
494  }
495  return std::make_pair(0U, nullptr);
496}
497
498std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
499getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
500  if (Constraint.size() == 1) {
501    // GCC Constraint Letters
502    switch (Constraint[0]) {
503    default: break;
504    case 'd': // Data register (equivalent to 'r')
505    case 'r': // General-purpose register
506      if (VT == MVT::i64)
507        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
508      else if (VT == MVT::i128)
509        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
510      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
511
512    case 'a': // Address register
513      if (VT == MVT::i64)
514        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
515      else if (VT == MVT::i128)
516        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
517      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
518
519    case 'h': // High-part register (an LLVM extension)
520      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
521
522    case 'f': // Floating-point register
523      if (VT == MVT::f64)
524        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
525      else if (VT == MVT::f128)
526        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
527      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
528    }
529  }
530  if (Constraint[0] == '{') {
531    // We need to override the default register parsing for GPRs and FPRs
532    // because the interpretation depends on VT.  The internal names of
533    // the registers are also different from the external names
534    // (F0D and F0S instead of F0, etc.).
535    if (Constraint[1] == 'r') {
536      if (VT == MVT::i32)
537        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
538                                   SystemZMC::GR32Regs);
539      if (VT == MVT::i128)
540        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
541                                   SystemZMC::GR128Regs);
542      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
543                                 SystemZMC::GR64Regs);
544    }
545    if (Constraint[1] == 'f') {
546      if (VT == MVT::f32)
547        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
548                                   SystemZMC::FP32Regs);
549      if (VT == MVT::f128)
550        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
551                                   SystemZMC::FP128Regs);
552      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
553                                 SystemZMC::FP64Regs);
554    }
555  }
556  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
557}
558
559void SystemZTargetLowering::
560LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
561                             std::vector<SDValue> &Ops,
562                             SelectionDAG &DAG) const {
563  // Only support length 1 constraints for now.
564  if (Constraint.length() == 1) {
565    switch (Constraint[0]) {
566    case 'I': // Unsigned 8-bit constant
567      if (auto *C = dyn_cast<ConstantSDNode>(Op))
568        if (isUInt<8>(C->getZExtValue()))
569          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
570                                              Op.getValueType()));
571      return;
572
573    case 'J': // Unsigned 12-bit constant
574      if (auto *C = dyn_cast<ConstantSDNode>(Op))
575        if (isUInt<12>(C->getZExtValue()))
576          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
577                                              Op.getValueType()));
578      return;
579
580    case 'K': // Signed 16-bit constant
581      if (auto *C = dyn_cast<ConstantSDNode>(Op))
582        if (isInt<16>(C->getSExtValue()))
583          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
584                                              Op.getValueType()));
585      return;
586
587    case 'L': // Signed 20-bit displacement (on all targets we support)
588      if (auto *C = dyn_cast<ConstantSDNode>(Op))
589        if (isInt<20>(C->getSExtValue()))
590          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
591                                              Op.getValueType()));
592      return;
593
594    case 'M': // 0x7fffffff
595      if (auto *C = dyn_cast<ConstantSDNode>(Op))
596        if (C->getZExtValue() == 0x7fffffff)
597          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
598                                              Op.getValueType()));
599      return;
600    }
601  }
602  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
603}
604
605//===----------------------------------------------------------------------===//
606// Calling conventions
607//===----------------------------------------------------------------------===//
608
609#include "SystemZGenCallingConv.inc"
610
611bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
612                                                     Type *ToType) const {
613  return isTruncateFree(FromType, ToType);
614}
615
616bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
617  if (!CI->isTailCall())
618    return false;
619  return true;
620}
621
622// Value is a value that has been passed to us in the location described by VA
623// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
624// any loads onto Chain.
625static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
626                                   CCValAssign &VA, SDValue Chain,
627                                   SDValue Value) {
628  // If the argument has been promoted from a smaller type, insert an
629  // assertion to capture this.
630  if (VA.getLocInfo() == CCValAssign::SExt)
631    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
632                        DAG.getValueType(VA.getValVT()));
633  else if (VA.getLocInfo() == CCValAssign::ZExt)
634    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
635                        DAG.getValueType(VA.getValVT()));
636
637  if (VA.isExtInLoc())
638    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
639  else if (VA.getLocInfo() == CCValAssign::Indirect)
640    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
641                        MachinePointerInfo(), false, false, false, 0);
642  else
643    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
644  return Value;
645}
646
647// Value is a value of type VA.getValVT() that we need to copy into
648// the location described by VA.  Return a copy of Value converted to
649// VA.getValVT().  The caller is responsible for handling indirect values.
650static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
651                                   CCValAssign &VA, SDValue Value) {
652  switch (VA.getLocInfo()) {
653  case CCValAssign::SExt:
654    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
655  case CCValAssign::ZExt:
656    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
657  case CCValAssign::AExt:
658    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
659  case CCValAssign::Full:
660    return Value;
661  default:
662    llvm_unreachable("Unhandled getLocInfo()");
663  }
664}
665
666SDValue SystemZTargetLowering::
667LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
668                     const SmallVectorImpl<ISD::InputArg> &Ins,
669                     SDLoc DL, SelectionDAG &DAG,
670                     SmallVectorImpl<SDValue> &InVals) const {
671  MachineFunction &MF = DAG.getMachineFunction();
672  MachineFrameInfo *MFI = MF.getFrameInfo();
673  MachineRegisterInfo &MRI = MF.getRegInfo();
674  SystemZMachineFunctionInfo *FuncInfo =
675    MF.getInfo<SystemZMachineFunctionInfo>();
676  auto *TFL = static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
677
678  // Assign locations to all of the incoming arguments.
679  SmallVector<CCValAssign, 16> ArgLocs;
680  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
681  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
682
683  unsigned NumFixedGPRs = 0;
684  unsigned NumFixedFPRs = 0;
685  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
686    SDValue ArgValue;
687    CCValAssign &VA = ArgLocs[I];
688    EVT LocVT = VA.getLocVT();
689    if (VA.isRegLoc()) {
690      // Arguments passed in registers
691      const TargetRegisterClass *RC;
692      switch (LocVT.getSimpleVT().SimpleTy) {
693      default:
694        // Integers smaller than i64 should be promoted to i64.
695        llvm_unreachable("Unexpected argument type");
696      case MVT::i32:
697        NumFixedGPRs += 1;
698        RC = &SystemZ::GR32BitRegClass;
699        break;
700      case MVT::i64:
701        NumFixedGPRs += 1;
702        RC = &SystemZ::GR64BitRegClass;
703        break;
704      case MVT::f32:
705        NumFixedFPRs += 1;
706        RC = &SystemZ::FP32BitRegClass;
707        break;
708      case MVT::f64:
709        NumFixedFPRs += 1;
710        RC = &SystemZ::FP64BitRegClass;
711        break;
712      }
713
714      unsigned VReg = MRI.createVirtualRegister(RC);
715      MRI.addLiveIn(VA.getLocReg(), VReg);
716      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
717    } else {
718      assert(VA.isMemLoc() && "Argument not register or memory");
719
720      // Create the frame index object for this incoming parameter.
721      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
722                                      VA.getLocMemOffset(), true);
723
724      // Create the SelectionDAG nodes corresponding to a load
725      // from this parameter.  Unpromoted ints and floats are
726      // passed as right-justified 8-byte values.
727      EVT PtrVT = getPointerTy();
728      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
729      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
730        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
731      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
732                             MachinePointerInfo::getFixedStack(FI),
733                             false, false, false, 0);
734    }
735
736    // Convert the value of the argument register into the value that's
737    // being passed.
738    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
739  }
740
741  if (IsVarArg) {
742    // Save the number of non-varargs registers for later use by va_start, etc.
743    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
744    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
745
746    // Likewise the address (in the form of a frame index) of where the
747    // first stack vararg would be.  The 1-byte size here is arbitrary.
748    int64_t StackSize = CCInfo.getNextStackOffset();
749    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
750
751    // ...and a similar frame index for the caller-allocated save area
752    // that will be used to store the incoming registers.
753    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
754    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
755    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
756
757    // Store the FPR varargs in the reserved frame slots.  (We store the
758    // GPRs as part of the prologue.)
759    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
760      SDValue MemOps[SystemZ::NumArgFPRs];
761      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
762        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
763        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
764        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
765        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
766                                     &SystemZ::FP64BitRegClass);
767        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
768        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
769                                 MachinePointerInfo::getFixedStack(FI),
770                                 false, false, 0);
771
772      }
773      // Join the stores, which are independent of one another.
774      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
775                          makeArrayRef(&MemOps[NumFixedFPRs],
776                                       SystemZ::NumArgFPRs-NumFixedFPRs));
777    }
778  }
779
780  return Chain;
781}
782
783static bool canUseSiblingCall(CCState ArgCCInfo,
784                              SmallVectorImpl<CCValAssign> &ArgLocs) {
785  // Punt if there are any indirect or stack arguments, or if the call
786  // needs the call-saved argument register R6.
787  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
788    CCValAssign &VA = ArgLocs[I];
789    if (VA.getLocInfo() == CCValAssign::Indirect)
790      return false;
791    if (!VA.isRegLoc())
792      return false;
793    unsigned Reg = VA.getLocReg();
794    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
795      return false;
796  }
797  return true;
798}
799
800SDValue
801SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
802                                 SmallVectorImpl<SDValue> &InVals) const {
803  SelectionDAG &DAG = CLI.DAG;
804  SDLoc &DL = CLI.DL;
805  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
806  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
807  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
808  SDValue Chain = CLI.Chain;
809  SDValue Callee = CLI.Callee;
810  bool &IsTailCall = CLI.IsTailCall;
811  CallingConv::ID CallConv = CLI.CallConv;
812  bool IsVarArg = CLI.IsVarArg;
813  MachineFunction &MF = DAG.getMachineFunction();
814  EVT PtrVT = getPointerTy();
815
816  // Analyze the operands of the call, assigning locations to each operand.
817  SmallVector<CCValAssign, 16> ArgLocs;
818  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
819  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
820
821  // We don't support GuaranteedTailCallOpt, only automatically-detected
822  // sibling calls.
823  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
824    IsTailCall = false;
825
826  // Get a count of how many bytes are to be pushed on the stack.
827  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
828
829  // Mark the start of the call.
830  if (!IsTailCall)
831    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
832                                 DL);
833
834  // Copy argument values to their designated locations.
835  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
836  SmallVector<SDValue, 8> MemOpChains;
837  SDValue StackPtr;
838  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
839    CCValAssign &VA = ArgLocs[I];
840    SDValue ArgValue = OutVals[I];
841
842    if (VA.getLocInfo() == CCValAssign::Indirect) {
843      // Store the argument in a stack slot and pass its address.
844      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
845      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
846      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
847                                         MachinePointerInfo::getFixedStack(FI),
848                                         false, false, 0));
849      ArgValue = SpillSlot;
850    } else
851      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
852
853    if (VA.isRegLoc())
854      // Queue up the argument copies and emit them at the end.
855      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
856    else {
857      assert(VA.isMemLoc() && "Argument not register or memory");
858
859      // Work out the address of the stack slot.  Unpromoted ints and
860      // floats are passed as right-justified 8-byte values.
861      if (!StackPtr.getNode())
862        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
863      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
864      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
865        Offset += 4;
866      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
867                                    DAG.getIntPtrConstant(Offset));
868
869      // Emit the store.
870      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
871                                         MachinePointerInfo(),
872                                         false, false, 0));
873    }
874  }
875
876  // Join the stores, which are independent of one another.
877  if (!MemOpChains.empty())
878    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
879
880  // Accept direct calls by converting symbolic call addresses to the
881  // associated Target* opcodes.  Force %r1 to be used for indirect
882  // tail calls.
883  SDValue Glue;
884  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
885    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
886    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
887  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
888    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
889    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
890  } else if (IsTailCall) {
891    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
892    Glue = Chain.getValue(1);
893    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
894  }
895
896  // Build a sequence of copy-to-reg nodes, chained and glued together.
897  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
898    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
899                             RegsToPass[I].second, Glue);
900    Glue = Chain.getValue(1);
901  }
902
903  // The first call operand is the chain and the second is the target address.
904  SmallVector<SDValue, 8> Ops;
905  Ops.push_back(Chain);
906  Ops.push_back(Callee);
907
908  // Add argument registers to the end of the list so that they are
909  // known live into the call.
910  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
911    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
912                                  RegsToPass[I].second.getValueType()));
913
914  // Glue the call to the argument copies, if any.
915  if (Glue.getNode())
916    Ops.push_back(Glue);
917
918  // Emit the call.
919  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
920  if (IsTailCall)
921    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
922  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
923  Glue = Chain.getValue(1);
924
925  // Mark the end of the call, which is glued to the call itself.
926  Chain = DAG.getCALLSEQ_END(Chain,
927                             DAG.getConstant(NumBytes, PtrVT, true),
928                             DAG.getConstant(0, PtrVT, true),
929                             Glue, DL);
930  Glue = Chain.getValue(1);
931
932  // Assign locations to each value returned by this call.
933  SmallVector<CCValAssign, 16> RetLocs;
934  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
935  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
936
937  // Copy all of the result registers out of their specified physreg.
938  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
939    CCValAssign &VA = RetLocs[I];
940
941    // Copy the value out, gluing the copy to the end of the call sequence.
942    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
943                                          VA.getLocVT(), Glue);
944    Chain = RetValue.getValue(1);
945    Glue = RetValue.getValue(2);
946
947    // Convert the value of the return register into the value that's
948    // being returned.
949    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
950  }
951
952  return Chain;
953}
954
955SDValue
956SystemZTargetLowering::LowerReturn(SDValue Chain,
957                                   CallingConv::ID CallConv, bool IsVarArg,
958                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
959                                   const SmallVectorImpl<SDValue> &OutVals,
960                                   SDLoc DL, SelectionDAG &DAG) const {
961  MachineFunction &MF = DAG.getMachineFunction();
962
963  // Assign locations to each returned value.
964  SmallVector<CCValAssign, 16> RetLocs;
965  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
966  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
967
968  // Quick exit for void returns
969  if (RetLocs.empty())
970    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
971
972  // Copy the result values into the output registers.
973  SDValue Glue;
974  SmallVector<SDValue, 4> RetOps;
975  RetOps.push_back(Chain);
976  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
977    CCValAssign &VA = RetLocs[I];
978    SDValue RetValue = OutVals[I];
979
980    // Make the return register live on exit.
981    assert(VA.isRegLoc() && "Can only return in registers!");
982
983    // Promote the value as required.
984    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
985
986    // Chain and glue the copies together.
987    unsigned Reg = VA.getLocReg();
988    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
989    Glue = Chain.getValue(1);
990    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
991  }
992
993  // Update chain and glue.
994  RetOps[0] = Chain;
995  if (Glue.getNode())
996    RetOps.push_back(Glue);
997
998  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
999}
1000
1001SDValue SystemZTargetLowering::
1002prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1003  return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1004}
1005
1006// CC is a comparison that will be implemented using an integer or
1007// floating-point comparison.  Return the condition code mask for
1008// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1009// unsigned comparisons and clear for signed ones.  In the floating-point
1010// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1011static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1012#define CONV(X) \
1013  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1014  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1015  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1016
1017  switch (CC) {
1018  default:
1019    llvm_unreachable("Invalid integer condition!");
1020
1021  CONV(EQ);
1022  CONV(NE);
1023  CONV(GT);
1024  CONV(GE);
1025  CONV(LT);
1026  CONV(LE);
1027
1028  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1029  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1030  }
1031#undef CONV
1032}
1033
1034// Return a sequence for getting a 1 from an IPM result when CC has a
1035// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1036// The handling of CC values outside CCValid doesn't matter.
1037static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1038  // Deal with cases where the result can be taken directly from a bit
1039  // of the IPM result.
1040  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1041    return IPMConversion(0, 0, SystemZ::IPM_CC);
1042  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1043    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1044
1045  // Deal with cases where we can add a value to force the sign bit
1046  // to contain the right value.  Putting the bit in 31 means we can
1047  // use SRL rather than RISBG(L), and also makes it easier to get a
1048  // 0/-1 value, so it has priority over the other tests below.
1049  //
1050  // These sequences rely on the fact that the upper two bits of the
1051  // IPM result are zero.
1052  uint64_t TopBit = uint64_t(1) << 31;
1053  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1054    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1055  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1056    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1057  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1058                            | SystemZ::CCMASK_1
1059                            | SystemZ::CCMASK_2)))
1060    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1061  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1062    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1063  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1064                            | SystemZ::CCMASK_2
1065                            | SystemZ::CCMASK_3)))
1066    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1067
1068  // Next try inverting the value and testing a bit.  0/1 could be
1069  // handled this way too, but we dealt with that case above.
1070  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1071    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1072
1073  // Handle cases where adding a value forces a non-sign bit to contain
1074  // the right value.
1075  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1076    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1077  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1078    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1079
1080  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1081  // can be done by inverting the low CC bit and applying one of the
1082  // sign-based extractions above.
1083  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1084    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1085  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1086    return IPMConversion(1 << SystemZ::IPM_CC,
1087                         TopBit - (3 << SystemZ::IPM_CC), 31);
1088  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1089                            | SystemZ::CCMASK_1
1090                            | SystemZ::CCMASK_3)))
1091    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1092  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1093                            | SystemZ::CCMASK_2
1094                            | SystemZ::CCMASK_3)))
1095    return IPMConversion(1 << SystemZ::IPM_CC,
1096                         TopBit - (1 << SystemZ::IPM_CC), 31);
1097
1098  llvm_unreachable("Unexpected CC combination");
1099}
1100
1101// If C can be converted to a comparison against zero, adjust the operands
1102// as necessary.
1103static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1104  if (C.ICmpType == SystemZICMP::UnsignedOnly)
1105    return;
1106
1107  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1108  if (!ConstOp1)
1109    return;
1110
1111  int64_t Value = ConstOp1->getSExtValue();
1112  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1113      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1114      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1115      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1116    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1117    C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
1118  }
1119}
1120
1121// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1122// adjust the operands as necessary.
1123static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
1124  // For us to make any changes, it must a comparison between a single-use
1125  // load and a constant.
1126  if (!C.Op0.hasOneUse() ||
1127      C.Op0.getOpcode() != ISD::LOAD ||
1128      C.Op1.getOpcode() != ISD::Constant)
1129    return;
1130
1131  // We must have an 8- or 16-bit load.
1132  auto *Load = cast<LoadSDNode>(C.Op0);
1133  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1134  if (NumBits != 8 && NumBits != 16)
1135    return;
1136
1137  // The load must be an extending one and the constant must be within the
1138  // range of the unextended value.
1139  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1140  uint64_t Value = ConstOp1->getZExtValue();
1141  uint64_t Mask = (1 << NumBits) - 1;
1142  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1143    // Make sure that ConstOp1 is in range of C.Op0.
1144    int64_t SignedValue = ConstOp1->getSExtValue();
1145    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1146      return;
1147    if (C.ICmpType != SystemZICMP::SignedOnly) {
1148      // Unsigned comparison between two sign-extended values is equivalent
1149      // to unsigned comparison between two zero-extended values.
1150      Value &= Mask;
1151    } else if (NumBits == 8) {
1152      // Try to treat the comparison as unsigned, so that we can use CLI.
1153      // Adjust CCMask and Value as necessary.
1154      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1155        // Test whether the high bit of the byte is set.
1156        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1157      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1158        // Test whether the high bit of the byte is clear.
1159        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1160      else
1161        // No instruction exists for this combination.
1162        return;
1163      C.ICmpType = SystemZICMP::UnsignedOnly;
1164    }
1165  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1166    if (Value > Mask)
1167      return;
1168    assert(C.ICmpType == SystemZICMP::Any &&
1169           "Signedness shouldn't matter here.");
1170  } else
1171    return;
1172
1173  // Make sure that the first operand is an i32 of the right extension type.
1174  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1175                              ISD::SEXTLOAD :
1176                              ISD::ZEXTLOAD);
1177  if (C.Op0.getValueType() != MVT::i32 ||
1178      Load->getExtensionType() != ExtType)
1179    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1180                           Load->getChain(), Load->getBasePtr(),
1181                           Load->getPointerInfo(), Load->getMemoryVT(),
1182                           Load->isVolatile(), Load->isNonTemporal(),
1183                           Load->getAlignment());
1184
1185  // Make sure that the second operand is an i32 with the right value.
1186  if (C.Op1.getValueType() != MVT::i32 ||
1187      Value != ConstOp1->getZExtValue())
1188    C.Op1 = DAG.getConstant(Value, MVT::i32);
1189}
1190
1191// Return true if Op is either an unextended load, or a load suitable
1192// for integer register-memory comparisons of type ICmpType.
1193static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1194  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1195  if (Load) {
1196    // There are no instructions to compare a register with a memory byte.
1197    if (Load->getMemoryVT() == MVT::i8)
1198      return false;
1199    // Otherwise decide on extension type.
1200    switch (Load->getExtensionType()) {
1201    case ISD::NON_EXTLOAD:
1202      return true;
1203    case ISD::SEXTLOAD:
1204      return ICmpType != SystemZICMP::UnsignedOnly;
1205    case ISD::ZEXTLOAD:
1206      return ICmpType != SystemZICMP::SignedOnly;
1207    default:
1208      break;
1209    }
1210  }
1211  return false;
1212}
1213
1214// Return true if it is better to swap the operands of C.
1215static bool shouldSwapCmpOperands(const Comparison &C) {
1216  // Leave f128 comparisons alone, since they have no memory forms.
1217  if (C.Op0.getValueType() == MVT::f128)
1218    return false;
1219
1220  // Always keep a floating-point constant second, since comparisons with
1221  // zero can use LOAD TEST and comparisons with other constants make a
1222  // natural memory operand.
1223  if (isa<ConstantFPSDNode>(C.Op1))
1224    return false;
1225
1226  // Never swap comparisons with zero since there are many ways to optimize
1227  // those later.
1228  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1229  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1230    return false;
1231
1232  // Also keep natural memory operands second if the loaded value is
1233  // only used here.  Several comparisons have memory forms.
1234  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1235    return false;
1236
1237  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1238  // In that case we generally prefer the memory to be second.
1239  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1240    // The only exceptions are when the second operand is a constant and
1241    // we can use things like CHHSI.
1242    if (!ConstOp1)
1243      return true;
1244    // The unsigned memory-immediate instructions can handle 16-bit
1245    // unsigned integers.
1246    if (C.ICmpType != SystemZICMP::SignedOnly &&
1247        isUInt<16>(ConstOp1->getZExtValue()))
1248      return false;
1249    // The signed memory-immediate instructions can handle 16-bit
1250    // signed integers.
1251    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1252        isInt<16>(ConstOp1->getSExtValue()))
1253      return false;
1254    return true;
1255  }
1256
1257  // Try to promote the use of CGFR and CLGFR.
1258  unsigned Opcode0 = C.Op0.getOpcode();
1259  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1260    return true;
1261  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1262    return true;
1263  if (C.ICmpType != SystemZICMP::SignedOnly &&
1264      Opcode0 == ISD::AND &&
1265      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1266      cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1267    return true;
1268
1269  return false;
1270}
1271
1272// Return a version of comparison CC mask CCMask in which the LT and GT
1273// actions are swapped.
1274static unsigned reverseCCMask(unsigned CCMask) {
1275  return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1276          (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1277          (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1278          (CCMask & SystemZ::CCMASK_CMP_UO));
1279}
1280
1281// Check whether C tests for equality between X and Y and whether X - Y
1282// or Y - X is also computed.  In that case it's better to compare the
1283// result of the subtraction against zero.
1284static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1285  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1286      C.CCMask == SystemZ::CCMASK_CMP_NE) {
1287    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1288      SDNode *N = *I;
1289      if (N->getOpcode() == ISD::SUB &&
1290          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1291           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1292        C.Op0 = SDValue(N, 0);
1293        C.Op1 = DAG.getConstant(0, N->getValueType(0));
1294        return;
1295      }
1296    }
1297  }
1298}
1299
1300// Check whether C compares a floating-point value with zero and if that
1301// floating-point value is also negated.  In this case we can use the
1302// negation to set CC, so avoiding separate LOAD AND TEST and
1303// LOAD (NEGATIVE/COMPLEMENT) instructions.
1304static void adjustForFNeg(Comparison &C) {
1305  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1306  if (C1 && C1->isZero()) {
1307    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1308      SDNode *N = *I;
1309      if (N->getOpcode() == ISD::FNEG) {
1310        C.Op0 = SDValue(N, 0);
1311        C.CCMask = reverseCCMask(C.CCMask);
1312        return;
1313      }
1314    }
1315  }
1316}
1317
1318// Check whether C compares (shl X, 32) with 0 and whether X is
1319// also sign-extended.  In that case it is better to test the result
1320// of the sign extension using LTGFR.
1321//
1322// This case is important because InstCombine transforms a comparison
1323// with (sext (trunc X)) into a comparison with (shl X, 32).
1324static void adjustForLTGFR(Comparison &C) {
1325  // Check for a comparison between (shl X, 32) and 0.
1326  if (C.Op0.getOpcode() == ISD::SHL &&
1327      C.Op0.getValueType() == MVT::i64 &&
1328      C.Op1.getOpcode() == ISD::Constant &&
1329      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1330    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1331    if (C1 && C1->getZExtValue() == 32) {
1332      SDValue ShlOp0 = C.Op0.getOperand(0);
1333      // See whether X has any SIGN_EXTEND_INREG uses.
1334      for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1335        SDNode *N = *I;
1336        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1337            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1338          C.Op0 = SDValue(N, 0);
1339          return;
1340        }
1341      }
1342    }
1343  }
1344}
1345
1346// If C compares the truncation of an extending load, try to compare
1347// the untruncated value instead.  This exposes more opportunities to
1348// reuse CC.
1349static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1350  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1351      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1352      C.Op1.getOpcode() == ISD::Constant &&
1353      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1354    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1355    if (L->getMemoryVT().getStoreSizeInBits()
1356        <= C.Op0.getValueType().getSizeInBits()) {
1357      unsigned Type = L->getExtensionType();
1358      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1359          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1360        C.Op0 = C.Op0.getOperand(0);
1361        C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1362      }
1363    }
1364  }
1365}
1366
1367// Return true if shift operation N has an in-range constant shift value.
1368// Store it in ShiftVal if so.
1369static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1370  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1371  if (!Shift)
1372    return false;
1373
1374  uint64_t Amount = Shift->getZExtValue();
1375  if (Amount >= N.getValueType().getSizeInBits())
1376    return false;
1377
1378  ShiftVal = Amount;
1379  return true;
1380}
1381
1382// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1383// instruction and whether the CC value is descriptive enough to handle
1384// a comparison of type Opcode between the AND result and CmpVal.
1385// CCMask says which comparison result is being tested and BitSize is
1386// the number of bits in the operands.  If TEST UNDER MASK can be used,
1387// return the corresponding CC mask, otherwise return 0.
1388static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1389                                     uint64_t Mask, uint64_t CmpVal,
1390                                     unsigned ICmpType) {
1391  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1392
1393  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1394  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1395      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1396    return 0;
1397
1398  // Work out the masks for the lowest and highest bits.
1399  unsigned HighShift = 63 - countLeadingZeros(Mask);
1400  uint64_t High = uint64_t(1) << HighShift;
1401  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1402
1403  // Signed ordered comparisons are effectively unsigned if the sign
1404  // bit is dropped.
1405  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1406
1407  // Check for equality comparisons with 0, or the equivalent.
1408  if (CmpVal == 0) {
1409    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1410      return SystemZ::CCMASK_TM_ALL_0;
1411    if (CCMask == SystemZ::CCMASK_CMP_NE)
1412      return SystemZ::CCMASK_TM_SOME_1;
1413  }
1414  if (EffectivelyUnsigned && CmpVal <= Low) {
1415    if (CCMask == SystemZ::CCMASK_CMP_LT)
1416      return SystemZ::CCMASK_TM_ALL_0;
1417    if (CCMask == SystemZ::CCMASK_CMP_GE)
1418      return SystemZ::CCMASK_TM_SOME_1;
1419  }
1420  if (EffectivelyUnsigned && CmpVal < Low) {
1421    if (CCMask == SystemZ::CCMASK_CMP_LE)
1422      return SystemZ::CCMASK_TM_ALL_0;
1423    if (CCMask == SystemZ::CCMASK_CMP_GT)
1424      return SystemZ::CCMASK_TM_SOME_1;
1425  }
1426
1427  // Check for equality comparisons with the mask, or the equivalent.
1428  if (CmpVal == Mask) {
1429    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1430      return SystemZ::CCMASK_TM_ALL_1;
1431    if (CCMask == SystemZ::CCMASK_CMP_NE)
1432      return SystemZ::CCMASK_TM_SOME_0;
1433  }
1434  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1435    if (CCMask == SystemZ::CCMASK_CMP_GT)
1436      return SystemZ::CCMASK_TM_ALL_1;
1437    if (CCMask == SystemZ::CCMASK_CMP_LE)
1438      return SystemZ::CCMASK_TM_SOME_0;
1439  }
1440  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1441    if (CCMask == SystemZ::CCMASK_CMP_GE)
1442      return SystemZ::CCMASK_TM_ALL_1;
1443    if (CCMask == SystemZ::CCMASK_CMP_LT)
1444      return SystemZ::CCMASK_TM_SOME_0;
1445  }
1446
1447  // Check for ordered comparisons with the top bit.
1448  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1449    if (CCMask == SystemZ::CCMASK_CMP_LE)
1450      return SystemZ::CCMASK_TM_MSB_0;
1451    if (CCMask == SystemZ::CCMASK_CMP_GT)
1452      return SystemZ::CCMASK_TM_MSB_1;
1453  }
1454  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1455    if (CCMask == SystemZ::CCMASK_CMP_LT)
1456      return SystemZ::CCMASK_TM_MSB_0;
1457    if (CCMask == SystemZ::CCMASK_CMP_GE)
1458      return SystemZ::CCMASK_TM_MSB_1;
1459  }
1460
1461  // If there are just two bits, we can do equality checks for Low and High
1462  // as well.
1463  if (Mask == Low + High) {
1464    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1465      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1466    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1467      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1468    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1469      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1470    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1471      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1472  }
1473
1474  // Looks like we've exhausted our options.
1475  return 0;
1476}
1477
1478// See whether C can be implemented as a TEST UNDER MASK instruction.
1479// Update the arguments with the TM version if so.
1480static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
1481  // Check that we have a comparison with a constant.
1482  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1483  if (!ConstOp1)
1484    return;
1485  uint64_t CmpVal = ConstOp1->getZExtValue();
1486
1487  // Check whether the nonconstant input is an AND with a constant mask.
1488  Comparison NewC(C);
1489  uint64_t MaskVal;
1490  ConstantSDNode *Mask = nullptr;
1491  if (C.Op0.getOpcode() == ISD::AND) {
1492    NewC.Op0 = C.Op0.getOperand(0);
1493    NewC.Op1 = C.Op0.getOperand(1);
1494    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1495    if (!Mask)
1496      return;
1497    MaskVal = Mask->getZExtValue();
1498  } else {
1499    // There is no instruction to compare with a 64-bit immediate
1500    // so use TMHH instead if possible.  We need an unsigned ordered
1501    // comparison with an i64 immediate.
1502    if (NewC.Op0.getValueType() != MVT::i64 ||
1503        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1504        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1505        NewC.ICmpType == SystemZICMP::SignedOnly)
1506      return;
1507    // Convert LE and GT comparisons into LT and GE.
1508    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1509        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1510      if (CmpVal == uint64_t(-1))
1511        return;
1512      CmpVal += 1;
1513      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1514    }
1515    // If the low N bits of Op1 are zero than the low N bits of Op0 can
1516    // be masked off without changing the result.
1517    MaskVal = -(CmpVal & -CmpVal);
1518    NewC.ICmpType = SystemZICMP::UnsignedOnly;
1519  }
1520
1521  // Check whether the combination of mask, comparison value and comparison
1522  // type are suitable.
1523  unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1524  unsigned NewCCMask, ShiftVal;
1525  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1526      NewC.Op0.getOpcode() == ISD::SHL &&
1527      isSimpleShift(NewC.Op0, ShiftVal) &&
1528      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1529                                        MaskVal >> ShiftVal,
1530                                        CmpVal >> ShiftVal,
1531                                        SystemZICMP::Any))) {
1532    NewC.Op0 = NewC.Op0.getOperand(0);
1533    MaskVal >>= ShiftVal;
1534  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1535             NewC.Op0.getOpcode() == ISD::SRL &&
1536             isSimpleShift(NewC.Op0, ShiftVal) &&
1537             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1538                                               MaskVal << ShiftVal,
1539                                               CmpVal << ShiftVal,
1540                                               SystemZICMP::UnsignedOnly))) {
1541    NewC.Op0 = NewC.Op0.getOperand(0);
1542    MaskVal <<= ShiftVal;
1543  } else {
1544    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1545                                     NewC.ICmpType);
1546    if (!NewCCMask)
1547      return;
1548  }
1549
1550  // Go ahead and make the change.
1551  C.Opcode = SystemZISD::TM;
1552  C.Op0 = NewC.Op0;
1553  if (Mask && Mask->getZExtValue() == MaskVal)
1554    C.Op1 = SDValue(Mask, 0);
1555  else
1556    C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
1557  C.CCValid = SystemZ::CCMASK_TM;
1558  C.CCMask = NewCCMask;
1559}
1560
1561// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1562static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1563                         ISD::CondCode Cond) {
1564  Comparison C(CmpOp0, CmpOp1);
1565  C.CCMask = CCMaskForCondCode(Cond);
1566  if (C.Op0.getValueType().isFloatingPoint()) {
1567    C.CCValid = SystemZ::CCMASK_FCMP;
1568    C.Opcode = SystemZISD::FCMP;
1569    adjustForFNeg(C);
1570  } else {
1571    C.CCValid = SystemZ::CCMASK_ICMP;
1572    C.Opcode = SystemZISD::ICMP;
1573    // Choose the type of comparison.  Equality and inequality tests can
1574    // use either signed or unsigned comparisons.  The choice also doesn't
1575    // matter if both sign bits are known to be clear.  In those cases we
1576    // want to give the main isel code the freedom to choose whichever
1577    // form fits best.
1578    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1579        C.CCMask == SystemZ::CCMASK_CMP_NE ||
1580        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1581      C.ICmpType = SystemZICMP::Any;
1582    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1583      C.ICmpType = SystemZICMP::UnsignedOnly;
1584    else
1585      C.ICmpType = SystemZICMP::SignedOnly;
1586    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1587    adjustZeroCmp(DAG, C);
1588    adjustSubwordCmp(DAG, C);
1589    adjustForSubtraction(DAG, C);
1590    adjustForLTGFR(C);
1591    adjustICmpTruncate(DAG, C);
1592  }
1593
1594  if (shouldSwapCmpOperands(C)) {
1595    std::swap(C.Op0, C.Op1);
1596    C.CCMask = reverseCCMask(C.CCMask);
1597  }
1598
1599  adjustForTestUnderMask(DAG, C);
1600  return C;
1601}
1602
1603// Emit the comparison instruction described by C.
1604static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1605  if (C.Opcode == SystemZISD::ICMP)
1606    return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1607                       DAG.getConstant(C.ICmpType, MVT::i32));
1608  if (C.Opcode == SystemZISD::TM) {
1609    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1610                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1611    return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1612                       DAG.getConstant(RegisterOnly, MVT::i32));
1613  }
1614  return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
1615}
1616
1617// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1618// 64 bits.  Extend is the extension type to use.  Store the high part
1619// in Hi and the low part in Lo.
1620static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1621                            unsigned Extend, SDValue Op0, SDValue Op1,
1622                            SDValue &Hi, SDValue &Lo) {
1623  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1624  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1625  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1626  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1627  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1628  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1629}
1630
1631// Lower a binary operation that produces two VT results, one in each
1632// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1633// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1634// on the extended Op0 and (unextended) Op1.  Store the even register result
1635// in Even and the odd register result in Odd.
1636static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1637                             unsigned Extend, unsigned Opcode,
1638                             SDValue Op0, SDValue Op1,
1639                             SDValue &Even, SDValue &Odd) {
1640  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1641  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1642                               SDValue(In128, 0), Op1);
1643  bool Is32Bit = is32Bit(VT);
1644  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1645  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1646}
1647
1648// Return an i32 value that is 1 if the CC value produced by Glue is
1649// in the mask CCMask and 0 otherwise.  CC is known to have a value
1650// in CCValid, so other values can be ignored.
1651static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1652                         unsigned CCValid, unsigned CCMask) {
1653  IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1654  SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1655
1656  if (Conversion.XORValue)
1657    Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1658                         DAG.getConstant(Conversion.XORValue, MVT::i32));
1659
1660  if (Conversion.AddValue)
1661    Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1662                         DAG.getConstant(Conversion.AddValue, MVT::i32));
1663
1664  // The SHR/AND sequence should get optimized to an RISBG.
1665  Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1666                       DAG.getConstant(Conversion.Bit, MVT::i32));
1667  if (Conversion.Bit != 31)
1668    Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1669                         DAG.getConstant(1, MVT::i32));
1670  return Result;
1671}
1672
1673SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1674                                          SelectionDAG &DAG) const {
1675  SDValue CmpOp0   = Op.getOperand(0);
1676  SDValue CmpOp1   = Op.getOperand(1);
1677  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1678  SDLoc DL(Op);
1679
1680  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1681  SDValue Glue = emitCmp(DAG, DL, C);
1682  return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1683}
1684
1685SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1686  SDValue Chain    = Op.getOperand(0);
1687  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1688  SDValue CmpOp0   = Op.getOperand(2);
1689  SDValue CmpOp1   = Op.getOperand(3);
1690  SDValue Dest     = Op.getOperand(4);
1691  SDLoc DL(Op);
1692
1693  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1694  SDValue Glue = emitCmp(DAG, DL, C);
1695  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1696                     Chain, DAG.getConstant(C.CCValid, MVT::i32),
1697                     DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
1698}
1699
1700// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1701// allowing Pos and Neg to be wider than CmpOp.
1702static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1703  return (Neg.getOpcode() == ISD::SUB &&
1704          Neg.getOperand(0).getOpcode() == ISD::Constant &&
1705          cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1706          Neg.getOperand(1) == Pos &&
1707          (Pos == CmpOp ||
1708           (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1709            Pos.getOperand(0) == CmpOp)));
1710}
1711
1712// Return the absolute or negative absolute of Op; IsNegative decides which.
1713static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1714                           bool IsNegative) {
1715  Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1716  if (IsNegative)
1717    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1718                     DAG.getConstant(0, Op.getValueType()), Op);
1719  return Op;
1720}
1721
1722SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1723                                              SelectionDAG &DAG) const {
1724  SDValue CmpOp0   = Op.getOperand(0);
1725  SDValue CmpOp1   = Op.getOperand(1);
1726  SDValue TrueOp   = Op.getOperand(2);
1727  SDValue FalseOp  = Op.getOperand(3);
1728  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1729  SDLoc DL(Op);
1730
1731  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1732
1733  // Check for absolute and negative-absolute selections, including those
1734  // where the comparison value is sign-extended (for LPGFR and LNGFR).
1735  // This check supplements the one in DAGCombiner.
1736  if (C.Opcode == SystemZISD::ICMP &&
1737      C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1738      C.CCMask != SystemZ::CCMASK_CMP_NE &&
1739      C.Op1.getOpcode() == ISD::Constant &&
1740      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1741    if (isAbsolute(C.Op0, TrueOp, FalseOp))
1742      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1743    if (isAbsolute(C.Op0, FalseOp, TrueOp))
1744      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1745  }
1746
1747  SDValue Glue = emitCmp(DAG, DL, C);
1748
1749  // Special case for handling -1/0 results.  The shifts we use here
1750  // should get optimized with the IPM conversion sequence.
1751  auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1752  auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1753  if (TrueC && FalseC) {
1754    int64_t TrueVal = TrueC->getSExtValue();
1755    int64_t FalseVal = FalseC->getSExtValue();
1756    if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1757      // Invert the condition if we want -1 on false.
1758      if (TrueVal == 0)
1759        C.CCMask ^= C.CCValid;
1760      SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1761      EVT VT = Op.getValueType();
1762      // Extend the result to VT.  Upper bits are ignored.
1763      if (!is32Bit(VT))
1764        Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1765      // Sign-extend from the low bit.
1766      SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1767      SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1768      return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1769    }
1770  }
1771
1772  SmallVector<SDValue, 5> Ops;
1773  Ops.push_back(TrueOp);
1774  Ops.push_back(FalseOp);
1775  Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1776  Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
1777  Ops.push_back(Glue);
1778
1779  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1780  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
1781}
1782
1783SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1784                                                  SelectionDAG &DAG) const {
1785  SDLoc DL(Node);
1786  const GlobalValue *GV = Node->getGlobal();
1787  int64_t Offset = Node->getOffset();
1788  EVT PtrVT = getPointerTy();
1789  Reloc::Model RM = TM.getRelocationModel();
1790  CodeModel::Model CM = TM.getCodeModel();
1791
1792  SDValue Result;
1793  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1794    // Assign anchors at 1<<12 byte boundaries.
1795    uint64_t Anchor = Offset & ~uint64_t(0xfff);
1796    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1797    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1798
1799    // The offset can be folded into the address if it is aligned to a halfword.
1800    Offset -= Anchor;
1801    if (Offset != 0 && (Offset & 1) == 0) {
1802      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1803      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1804      Offset = 0;
1805    }
1806  } else {
1807    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1808    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1809    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1810                         MachinePointerInfo::getGOT(), false, false, false, 0);
1811  }
1812
1813  // If there was a non-zero offset that we didn't fold, create an explicit
1814  // addition for it.
1815  if (Offset != 0)
1816    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1817                         DAG.getConstant(Offset, PtrVT));
1818
1819  return Result;
1820}
1821
1822SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1823						     SelectionDAG &DAG) const {
1824  SDLoc DL(Node);
1825  const GlobalValue *GV = Node->getGlobal();
1826  EVT PtrVT = getPointerTy();
1827  TLSModel::Model model = TM.getTLSModel(GV);
1828
1829  if (model != TLSModel::LocalExec)
1830    llvm_unreachable("only local-exec TLS mode supported");
1831
1832  // The high part of the thread pointer is in access register 0.
1833  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1834                             DAG.getConstant(0, MVT::i32));
1835  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1836
1837  // The low part of the thread pointer is in access register 1.
1838  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1839                             DAG.getConstant(1, MVT::i32));
1840  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1841
1842  // Merge them into a single 64-bit address.
1843  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1844				    DAG.getConstant(32, PtrVT));
1845  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1846
1847  // Get the offset of GA from the thread pointer.
1848  SystemZConstantPoolValue *CPV =
1849    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1850
1851  // Force the offset into the constant pool and load it from there.
1852  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1853  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1854			       CPAddr, MachinePointerInfo::getConstantPool(),
1855			       false, false, false, 0);
1856
1857  // Add the base and offset together.
1858  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1859}
1860
1861SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1862                                                 SelectionDAG &DAG) const {
1863  SDLoc DL(Node);
1864  const BlockAddress *BA = Node->getBlockAddress();
1865  int64_t Offset = Node->getOffset();
1866  EVT PtrVT = getPointerTy();
1867
1868  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1869  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1870  return Result;
1871}
1872
1873SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1874                                              SelectionDAG &DAG) const {
1875  SDLoc DL(JT);
1876  EVT PtrVT = getPointerTy();
1877  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1878
1879  // Use LARL to load the address of the table.
1880  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1881}
1882
1883SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1884                                                 SelectionDAG &DAG) const {
1885  SDLoc DL(CP);
1886  EVT PtrVT = getPointerTy();
1887
1888  SDValue Result;
1889  if (CP->isMachineConstantPoolEntry())
1890    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1891				       CP->getAlignment());
1892  else
1893    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1894				       CP->getAlignment(), CP->getOffset());
1895
1896  // Use LARL to load the address of the constant pool entry.
1897  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1898}
1899
1900SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1901                                            SelectionDAG &DAG) const {
1902  SDLoc DL(Op);
1903  SDValue In = Op.getOperand(0);
1904  EVT InVT = In.getValueType();
1905  EVT ResVT = Op.getValueType();
1906
1907  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1908    SDValue In64;
1909    if (Subtarget.hasHighWord()) {
1910      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1911                                       MVT::i64);
1912      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1913                                       MVT::i64, SDValue(U64, 0), In);
1914    } else {
1915      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1916      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1917                         DAG.getConstant(32, MVT::i64));
1918    }
1919    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1920    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1921                                      DL, MVT::f32, Out64);
1922  }
1923  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1924    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1925    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1926                                             MVT::f64, SDValue(U64, 0), In);
1927    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1928    if (Subtarget.hasHighWord())
1929      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1930                                        MVT::i32, Out64);
1931    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1932                                DAG.getConstant(32, MVT::i64));
1933    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1934  }
1935  llvm_unreachable("Unexpected bitcast combination");
1936}
1937
1938SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1939                                            SelectionDAG &DAG) const {
1940  MachineFunction &MF = DAG.getMachineFunction();
1941  SystemZMachineFunctionInfo *FuncInfo =
1942    MF.getInfo<SystemZMachineFunctionInfo>();
1943  EVT PtrVT = getPointerTy();
1944
1945  SDValue Chain   = Op.getOperand(0);
1946  SDValue Addr    = Op.getOperand(1);
1947  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1948  SDLoc DL(Op);
1949
1950  // The initial values of each field.
1951  const unsigned NumFields = 4;
1952  SDValue Fields[NumFields] = {
1953    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1954    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1955    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1956    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1957  };
1958
1959  // Store each field into its respective slot.
1960  SDValue MemOps[NumFields];
1961  unsigned Offset = 0;
1962  for (unsigned I = 0; I < NumFields; ++I) {
1963    SDValue FieldAddr = Addr;
1964    if (Offset != 0)
1965      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1966                              DAG.getIntPtrConstant(Offset));
1967    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1968                             MachinePointerInfo(SV, Offset),
1969                             false, false, 0);
1970    Offset += 8;
1971  }
1972  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1973}
1974
1975SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1976                                           SelectionDAG &DAG) const {
1977  SDValue Chain      = Op.getOperand(0);
1978  SDValue DstPtr     = Op.getOperand(1);
1979  SDValue SrcPtr     = Op.getOperand(2);
1980  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1981  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1982  SDLoc DL(Op);
1983
1984  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1985                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1986                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1987}
1988
1989SDValue SystemZTargetLowering::
1990lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1991  SDValue Chain = Op.getOperand(0);
1992  SDValue Size  = Op.getOperand(1);
1993  SDLoc DL(Op);
1994
1995  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1996
1997  // Get a reference to the stack pointer.
1998  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1999
2000  // Get the new stack pointer value.
2001  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2002
2003  // Copy the new stack pointer back.
2004  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2005
2006  // The allocated data lives above the 160 bytes allocated for the standard
2007  // frame, plus any outgoing stack arguments.  We don't know how much that
2008  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2009  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2010  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2011
2012  SDValue Ops[2] = { Result, Chain };
2013  return DAG.getMergeValues(Ops, DL);
2014}
2015
2016SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2017                                              SelectionDAG &DAG) const {
2018  EVT VT = Op.getValueType();
2019  SDLoc DL(Op);
2020  SDValue Ops[2];
2021  if (is32Bit(VT))
2022    // Just do a normal 64-bit multiplication and extract the results.
2023    // We define this so that it can be used for constant division.
2024    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2025                    Op.getOperand(1), Ops[1], Ops[0]);
2026  else {
2027    // Do a full 128-bit multiplication based on UMUL_LOHI64:
2028    //
2029    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2030    //
2031    // but using the fact that the upper halves are either all zeros
2032    // or all ones:
2033    //
2034    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2035    //
2036    // and grouping the right terms together since they are quicker than the
2037    // multiplication:
2038    //
2039    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2040    SDValue C63 = DAG.getConstant(63, MVT::i64);
2041    SDValue LL = Op.getOperand(0);
2042    SDValue RL = Op.getOperand(1);
2043    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2044    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2045    // UMUL_LOHI64 returns the low result in the odd register and the high
2046    // result in the even register.  SMUL_LOHI is defined to return the
2047    // low half first, so the results are in reverse order.
2048    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2049                     LL, RL, Ops[1], Ops[0]);
2050    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2051    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2052    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2053    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2054  }
2055  return DAG.getMergeValues(Ops, DL);
2056}
2057
2058SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2059                                              SelectionDAG &DAG) const {
2060  EVT VT = Op.getValueType();
2061  SDLoc DL(Op);
2062  SDValue Ops[2];
2063  if (is32Bit(VT))
2064    // Just do a normal 64-bit multiplication and extract the results.
2065    // We define this so that it can be used for constant division.
2066    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2067                    Op.getOperand(1), Ops[1], Ops[0]);
2068  else
2069    // UMUL_LOHI64 returns the low result in the odd register and the high
2070    // result in the even register.  UMUL_LOHI is defined to return the
2071    // low half first, so the results are in reverse order.
2072    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2073                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2074  return DAG.getMergeValues(Ops, DL);
2075}
2076
2077SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2078                                            SelectionDAG &DAG) const {
2079  SDValue Op0 = Op.getOperand(0);
2080  SDValue Op1 = Op.getOperand(1);
2081  EVT VT = Op.getValueType();
2082  SDLoc DL(Op);
2083  unsigned Opcode;
2084
2085  // We use DSGF for 32-bit division.
2086  if (is32Bit(VT)) {
2087    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2088    Opcode = SystemZISD::SDIVREM32;
2089  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2090    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2091    Opcode = SystemZISD::SDIVREM32;
2092  } else
2093    Opcode = SystemZISD::SDIVREM64;
2094
2095  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2096  // input is "don't care".  The instruction returns the remainder in
2097  // the even register and the quotient in the odd register.
2098  SDValue Ops[2];
2099  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2100                   Op0, Op1, Ops[1], Ops[0]);
2101  return DAG.getMergeValues(Ops, DL);
2102}
2103
2104SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2105                                            SelectionDAG &DAG) const {
2106  EVT VT = Op.getValueType();
2107  SDLoc DL(Op);
2108
2109  // DL(G) uses a double-width dividend, so we need to clear the even
2110  // register in the GR128 input.  The instruction returns the remainder
2111  // in the even register and the quotient in the odd register.
2112  SDValue Ops[2];
2113  if (is32Bit(VT))
2114    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2115                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2116  else
2117    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2118                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2119  return DAG.getMergeValues(Ops, DL);
2120}
2121
2122SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2123  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2124
2125  // Get the known-zero masks for each operand.
2126  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2127  APInt KnownZero[2], KnownOne[2];
2128  DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2129  DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2130
2131  // See if the upper 32 bits of one operand and the lower 32 bits of the
2132  // other are known zero.  They are the low and high operands respectively.
2133  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2134                       KnownZero[1].getZExtValue() };
2135  unsigned High, Low;
2136  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2137    High = 1, Low = 0;
2138  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2139    High = 0, Low = 1;
2140  else
2141    return Op;
2142
2143  SDValue LowOp = Ops[Low];
2144  SDValue HighOp = Ops[High];
2145
2146  // If the high part is a constant, we're better off using IILH.
2147  if (HighOp.getOpcode() == ISD::Constant)
2148    return Op;
2149
2150  // If the low part is a constant that is outside the range of LHI,
2151  // then we're better off using IILF.
2152  if (LowOp.getOpcode() == ISD::Constant) {
2153    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2154    if (!isInt<16>(Value))
2155      return Op;
2156  }
2157
2158  // Check whether the high part is an AND that doesn't change the
2159  // high 32 bits and just masks out low bits.  We can skip it if so.
2160  if (HighOp.getOpcode() == ISD::AND &&
2161      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2162    SDValue HighOp0 = HighOp.getOperand(0);
2163    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2164    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2165      HighOp = HighOp0;
2166  }
2167
2168  // Take advantage of the fact that all GR32 operations only change the
2169  // low 32 bits by truncating Low to an i32 and inserting it directly
2170  // using a subreg.  The interesting cases are those where the truncation
2171  // can be folded.
2172  SDLoc DL(Op);
2173  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2174  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2175                                   MVT::i64, HighOp, Low32);
2176}
2177
2178// Op is an atomic load.  Lower it into a normal volatile load.
2179SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2180                                                SelectionDAG &DAG) const {
2181  auto *Node = cast<AtomicSDNode>(Op.getNode());
2182  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2183                        Node->getChain(), Node->getBasePtr(),
2184                        Node->getMemoryVT(), Node->getMemOperand());
2185}
2186
2187// Op is an atomic store.  Lower it into a normal volatile store followed
2188// by a serialization.
2189SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2190                                                 SelectionDAG &DAG) const {
2191  auto *Node = cast<AtomicSDNode>(Op.getNode());
2192  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2193                                    Node->getBasePtr(), Node->getMemoryVT(),
2194                                    Node->getMemOperand());
2195  return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2196                                    Chain), 0);
2197}
2198
2199// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
2200// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
2201SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2202                                                   SelectionDAG &DAG,
2203                                                   unsigned Opcode) const {
2204  auto *Node = cast<AtomicSDNode>(Op.getNode());
2205
2206  // 32-bit operations need no code outside the main loop.
2207  EVT NarrowVT = Node->getMemoryVT();
2208  EVT WideVT = MVT::i32;
2209  if (NarrowVT == WideVT)
2210    return Op;
2211
2212  int64_t BitSize = NarrowVT.getSizeInBits();
2213  SDValue ChainIn = Node->getChain();
2214  SDValue Addr = Node->getBasePtr();
2215  SDValue Src2 = Node->getVal();
2216  MachineMemOperand *MMO = Node->getMemOperand();
2217  SDLoc DL(Node);
2218  EVT PtrVT = Addr.getValueType();
2219
2220  // Convert atomic subtracts of constants into additions.
2221  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2222    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
2223      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2224      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2225    }
2226
2227  // Get the address of the containing word.
2228  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2229                                    DAG.getConstant(-4, PtrVT));
2230
2231  // Get the number of bits that the word must be rotated left in order
2232  // to bring the field to the top bits of a GR32.
2233  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2234                                 DAG.getConstant(3, PtrVT));
2235  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2236
2237  // Get the complementing shift amount, for rotating a field in the top
2238  // bits back to its proper position.
2239  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2240                                    DAG.getConstant(0, WideVT), BitShift);
2241
2242  // Extend the source operand to 32 bits and prepare it for the inner loop.
2243  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2244  // operations require the source to be shifted in advance.  (This shift
2245  // can be folded if the source is constant.)  For AND and NAND, the lower
2246  // bits must be set, while for other opcodes they should be left clear.
2247  if (Opcode != SystemZISD::ATOMIC_SWAPW)
2248    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2249                       DAG.getConstant(32 - BitSize, WideVT));
2250  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2251      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2252    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2253                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2254
2255  // Construct the ATOMIC_LOADW_* node.
2256  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2257  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2258                    DAG.getConstant(BitSize, WideVT) };
2259  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2260                                             NarrowVT, MMO);
2261
2262  // Rotate the result of the final CS so that the field is in the lower
2263  // bits of a GR32, then truncate it.
2264  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2265                                    DAG.getConstant(BitSize, WideVT));
2266  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2267
2268  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2269  return DAG.getMergeValues(RetOps, DL);
2270}
2271
2272// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
2273// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
2274// operations into additions.
2275SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2276                                                    SelectionDAG &DAG) const {
2277  auto *Node = cast<AtomicSDNode>(Op.getNode());
2278  EVT MemVT = Node->getMemoryVT();
2279  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2280    // A full-width operation.
2281    assert(Op.getValueType() == MemVT && "Mismatched VTs");
2282    SDValue Src2 = Node->getVal();
2283    SDValue NegSrc2;
2284    SDLoc DL(Src2);
2285
2286    if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2287      // Use an addition if the operand is constant and either LAA(G) is
2288      // available or the negative value is in the range of A(G)FHI.
2289      int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2290      if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1())
2291        NegSrc2 = DAG.getConstant(Value, MemVT);
2292    } else if (TM.getSubtargetImpl()->hasInterlockedAccess1())
2293      // Use LAA(G) if available.
2294      NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2295                            Src2);
2296
2297    if (NegSrc2.getNode())
2298      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2299                           Node->getChain(), Node->getBasePtr(), NegSrc2,
2300                           Node->getMemOperand(), Node->getOrdering(),
2301                           Node->getSynchScope());
2302
2303    // Use the node as-is.
2304    return Op;
2305  }
2306
2307  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2308}
2309
2310// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
2311// into a fullword ATOMIC_CMP_SWAPW operation.
2312SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2313                                                    SelectionDAG &DAG) const {
2314  auto *Node = cast<AtomicSDNode>(Op.getNode());
2315
2316  // We have native support for 32-bit compare and swap.
2317  EVT NarrowVT = Node->getMemoryVT();
2318  EVT WideVT = MVT::i32;
2319  if (NarrowVT == WideVT)
2320    return Op;
2321
2322  int64_t BitSize = NarrowVT.getSizeInBits();
2323  SDValue ChainIn = Node->getOperand(0);
2324  SDValue Addr = Node->getOperand(1);
2325  SDValue CmpVal = Node->getOperand(2);
2326  SDValue SwapVal = Node->getOperand(3);
2327  MachineMemOperand *MMO = Node->getMemOperand();
2328  SDLoc DL(Node);
2329  EVT PtrVT = Addr.getValueType();
2330
2331  // Get the address of the containing word.
2332  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2333                                    DAG.getConstant(-4, PtrVT));
2334
2335  // Get the number of bits that the word must be rotated left in order
2336  // to bring the field to the top bits of a GR32.
2337  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2338                                 DAG.getConstant(3, PtrVT));
2339  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2340
2341  // Get the complementing shift amount, for rotating a field in the top
2342  // bits back to its proper position.
2343  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2344                                    DAG.getConstant(0, WideVT), BitShift);
2345
2346  // Construct the ATOMIC_CMP_SWAPW node.
2347  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2348  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2349                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
2350  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2351                                             VTList, Ops, NarrowVT, MMO);
2352  return AtomicOp;
2353}
2354
2355SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2356                                              SelectionDAG &DAG) const {
2357  MachineFunction &MF = DAG.getMachineFunction();
2358  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2359  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2360                            SystemZ::R15D, Op.getValueType());
2361}
2362
2363SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2364                                                 SelectionDAG &DAG) const {
2365  MachineFunction &MF = DAG.getMachineFunction();
2366  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2367  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2368                          SystemZ::R15D, Op.getOperand(1));
2369}
2370
2371SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2372                                             SelectionDAG &DAG) const {
2373  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2374  if (!IsData)
2375    // Just preserve the chain.
2376    return Op.getOperand(0);
2377
2378  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2379  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2380  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2381  SDValue Ops[] = {
2382    Op.getOperand(0),
2383    DAG.getConstant(Code, MVT::i32),
2384    Op.getOperand(1)
2385  };
2386  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2387                                 Node->getVTList(), Ops,
2388                                 Node->getMemoryVT(), Node->getMemOperand());
2389}
2390
2391SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2392                                              SelectionDAG &DAG) const {
2393  switch (Op.getOpcode()) {
2394  case ISD::BR_CC:
2395    return lowerBR_CC(Op, DAG);
2396  case ISD::SELECT_CC:
2397    return lowerSELECT_CC(Op, DAG);
2398  case ISD::SETCC:
2399    return lowerSETCC(Op, DAG);
2400  case ISD::GlobalAddress:
2401    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2402  case ISD::GlobalTLSAddress:
2403    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2404  case ISD::BlockAddress:
2405    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2406  case ISD::JumpTable:
2407    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2408  case ISD::ConstantPool:
2409    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2410  case ISD::BITCAST:
2411    return lowerBITCAST(Op, DAG);
2412  case ISD::VASTART:
2413    return lowerVASTART(Op, DAG);
2414  case ISD::VACOPY:
2415    return lowerVACOPY(Op, DAG);
2416  case ISD::DYNAMIC_STACKALLOC:
2417    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2418  case ISD::SMUL_LOHI:
2419    return lowerSMUL_LOHI(Op, DAG);
2420  case ISD::UMUL_LOHI:
2421    return lowerUMUL_LOHI(Op, DAG);
2422  case ISD::SDIVREM:
2423    return lowerSDIVREM(Op, DAG);
2424  case ISD::UDIVREM:
2425    return lowerUDIVREM(Op, DAG);
2426  case ISD::OR:
2427    return lowerOR(Op, DAG);
2428  case ISD::ATOMIC_SWAP:
2429    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2430  case ISD::ATOMIC_STORE:
2431    return lowerATOMIC_STORE(Op, DAG);
2432  case ISD::ATOMIC_LOAD:
2433    return lowerATOMIC_LOAD(Op, DAG);
2434  case ISD::ATOMIC_LOAD_ADD:
2435    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2436  case ISD::ATOMIC_LOAD_SUB:
2437    return lowerATOMIC_LOAD_SUB(Op, DAG);
2438  case ISD::ATOMIC_LOAD_AND:
2439    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2440  case ISD::ATOMIC_LOAD_OR:
2441    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2442  case ISD::ATOMIC_LOAD_XOR:
2443    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2444  case ISD::ATOMIC_LOAD_NAND:
2445    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2446  case ISD::ATOMIC_LOAD_MIN:
2447    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2448  case ISD::ATOMIC_LOAD_MAX:
2449    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2450  case ISD::ATOMIC_LOAD_UMIN:
2451    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2452  case ISD::ATOMIC_LOAD_UMAX:
2453    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2454  case ISD::ATOMIC_CMP_SWAP:
2455    return lowerATOMIC_CMP_SWAP(Op, DAG);
2456  case ISD::STACKSAVE:
2457    return lowerSTACKSAVE(Op, DAG);
2458  case ISD::STACKRESTORE:
2459    return lowerSTACKRESTORE(Op, DAG);
2460  case ISD::PREFETCH:
2461    return lowerPREFETCH(Op, DAG);
2462  default:
2463    llvm_unreachable("Unexpected node to lower");
2464  }
2465}
2466
2467const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2468#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2469  switch (Opcode) {
2470    OPCODE(RET_FLAG);
2471    OPCODE(CALL);
2472    OPCODE(SIBCALL);
2473    OPCODE(PCREL_WRAPPER);
2474    OPCODE(PCREL_OFFSET);
2475    OPCODE(IABS);
2476    OPCODE(ICMP);
2477    OPCODE(FCMP);
2478    OPCODE(TM);
2479    OPCODE(BR_CCMASK);
2480    OPCODE(SELECT_CCMASK);
2481    OPCODE(ADJDYNALLOC);
2482    OPCODE(EXTRACT_ACCESS);
2483    OPCODE(UMUL_LOHI64);
2484    OPCODE(SDIVREM64);
2485    OPCODE(UDIVREM32);
2486    OPCODE(UDIVREM64);
2487    OPCODE(MVC);
2488    OPCODE(MVC_LOOP);
2489    OPCODE(NC);
2490    OPCODE(NC_LOOP);
2491    OPCODE(OC);
2492    OPCODE(OC_LOOP);
2493    OPCODE(XC);
2494    OPCODE(XC_LOOP);
2495    OPCODE(CLC);
2496    OPCODE(CLC_LOOP);
2497    OPCODE(STRCMP);
2498    OPCODE(STPCPY);
2499    OPCODE(SEARCH_STRING);
2500    OPCODE(IPM);
2501    OPCODE(SERIALIZE);
2502    OPCODE(ATOMIC_SWAPW);
2503    OPCODE(ATOMIC_LOADW_ADD);
2504    OPCODE(ATOMIC_LOADW_SUB);
2505    OPCODE(ATOMIC_LOADW_AND);
2506    OPCODE(ATOMIC_LOADW_OR);
2507    OPCODE(ATOMIC_LOADW_XOR);
2508    OPCODE(ATOMIC_LOADW_NAND);
2509    OPCODE(ATOMIC_LOADW_MIN);
2510    OPCODE(ATOMIC_LOADW_MAX);
2511    OPCODE(ATOMIC_LOADW_UMIN);
2512    OPCODE(ATOMIC_LOADW_UMAX);
2513    OPCODE(ATOMIC_CMP_SWAPW);
2514    OPCODE(PREFETCH);
2515  }
2516  return nullptr;
2517#undef OPCODE
2518}
2519
2520SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2521                                                 DAGCombinerInfo &DCI) const {
2522  SelectionDAG &DAG = DCI.DAG;
2523  unsigned Opcode = N->getOpcode();
2524  if (Opcode == ISD::SIGN_EXTEND) {
2525    // Convert (sext (ashr (shl X, C1), C2)) to
2526    // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2527    // cheap as narrower ones.
2528    SDValue N0 = N->getOperand(0);
2529    EVT VT = N->getValueType(0);
2530    if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2531      auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2532      SDValue Inner = N0.getOperand(0);
2533      if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2534        if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2535          unsigned Extra = (VT.getSizeInBits() -
2536                            N0.getValueType().getSizeInBits());
2537          unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2538          unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2539          EVT ShiftVT = N0.getOperand(1).getValueType();
2540          SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2541                                    Inner.getOperand(0));
2542          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2543                                    DAG.getConstant(NewShlAmt, ShiftVT));
2544          return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2545                             DAG.getConstant(NewSraAmt, ShiftVT));
2546        }
2547      }
2548    }
2549  }
2550  return SDValue();
2551}
2552
2553//===----------------------------------------------------------------------===//
2554// Custom insertion
2555//===----------------------------------------------------------------------===//
2556
2557// Create a new basic block after MBB.
2558static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2559  MachineFunction &MF = *MBB->getParent();
2560  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2561  MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2562  return NewMBB;
2563}
2564
2565// Split MBB after MI and return the new block (the one that contains
2566// instructions after MI).
2567static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2568                                          MachineBasicBlock *MBB) {
2569  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2570  NewMBB->splice(NewMBB->begin(), MBB,
2571                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2572  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2573  return NewMBB;
2574}
2575
2576// Split MBB before MI and return the new block (the one that contains MI).
2577static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2578                                           MachineBasicBlock *MBB) {
2579  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2580  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2581  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2582  return NewMBB;
2583}
2584
2585// Force base value Base into a register before MI.  Return the register.
2586static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2587                         const SystemZInstrInfo *TII) {
2588  if (Base.isReg())
2589    return Base.getReg();
2590
2591  MachineBasicBlock *MBB = MI->getParent();
2592  MachineFunction &MF = *MBB->getParent();
2593  MachineRegisterInfo &MRI = MF.getRegInfo();
2594
2595  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2596  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2597    .addOperand(Base).addImm(0).addReg(0);
2598  return Reg;
2599}
2600
2601// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2602MachineBasicBlock *
2603SystemZTargetLowering::emitSelect(MachineInstr *MI,
2604                                  MachineBasicBlock *MBB) const {
2605  const SystemZInstrInfo *TII = TM.getInstrInfo();
2606
2607  unsigned DestReg  = MI->getOperand(0).getReg();
2608  unsigned TrueReg  = MI->getOperand(1).getReg();
2609  unsigned FalseReg = MI->getOperand(2).getReg();
2610  unsigned CCValid  = MI->getOperand(3).getImm();
2611  unsigned CCMask   = MI->getOperand(4).getImm();
2612  DebugLoc DL       = MI->getDebugLoc();
2613
2614  MachineBasicBlock *StartMBB = MBB;
2615  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2616  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2617
2618  //  StartMBB:
2619  //   BRC CCMask, JoinMBB
2620  //   # fallthrough to FalseMBB
2621  MBB = StartMBB;
2622  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2623    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2624  MBB->addSuccessor(JoinMBB);
2625  MBB->addSuccessor(FalseMBB);
2626
2627  //  FalseMBB:
2628  //   # fallthrough to JoinMBB
2629  MBB = FalseMBB;
2630  MBB->addSuccessor(JoinMBB);
2631
2632  //  JoinMBB:
2633  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2634  //  ...
2635  MBB = JoinMBB;
2636  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2637    .addReg(TrueReg).addMBB(StartMBB)
2638    .addReg(FalseReg).addMBB(FalseMBB);
2639
2640  MI->eraseFromParent();
2641  return JoinMBB;
2642}
2643
2644// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2645// StoreOpcode is the store to use and Invert says whether the store should
2646// happen when the condition is false rather than true.  If a STORE ON
2647// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2648MachineBasicBlock *
2649SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2650                                     MachineBasicBlock *MBB,
2651                                     unsigned StoreOpcode, unsigned STOCOpcode,
2652                                     bool Invert) const {
2653  const SystemZInstrInfo *TII = TM.getInstrInfo();
2654
2655  unsigned SrcReg     = MI->getOperand(0).getReg();
2656  MachineOperand Base = MI->getOperand(1);
2657  int64_t Disp        = MI->getOperand(2).getImm();
2658  unsigned IndexReg   = MI->getOperand(3).getReg();
2659  unsigned CCValid    = MI->getOperand(4).getImm();
2660  unsigned CCMask     = MI->getOperand(5).getImm();
2661  DebugLoc DL         = MI->getDebugLoc();
2662
2663  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2664
2665  // Use STOCOpcode if possible.  We could use different store patterns in
2666  // order to avoid matching the index register, but the performance trade-offs
2667  // might be more complicated in that case.
2668  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2669    if (Invert)
2670      CCMask ^= CCValid;
2671    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2672      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2673      .addImm(CCValid).addImm(CCMask);
2674    MI->eraseFromParent();
2675    return MBB;
2676  }
2677
2678  // Get the condition needed to branch around the store.
2679  if (!Invert)
2680    CCMask ^= CCValid;
2681
2682  MachineBasicBlock *StartMBB = MBB;
2683  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2684  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2685
2686  //  StartMBB:
2687  //   BRC CCMask, JoinMBB
2688  //   # fallthrough to FalseMBB
2689  MBB = StartMBB;
2690  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2691    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2692  MBB->addSuccessor(JoinMBB);
2693  MBB->addSuccessor(FalseMBB);
2694
2695  //  FalseMBB:
2696  //   store %SrcReg, %Disp(%Index,%Base)
2697  //   # fallthrough to JoinMBB
2698  MBB = FalseMBB;
2699  BuildMI(MBB, DL, TII->get(StoreOpcode))
2700    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2701  MBB->addSuccessor(JoinMBB);
2702
2703  MI->eraseFromParent();
2704  return JoinMBB;
2705}
2706
2707// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2708// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2709// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2710// BitSize is the width of the field in bits, or 0 if this is a partword
2711// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2712// is one of the operands.  Invert says whether the field should be
2713// inverted after performing BinOpcode (e.g. for NAND).
2714MachineBasicBlock *
2715SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2716                                            MachineBasicBlock *MBB,
2717                                            unsigned BinOpcode,
2718                                            unsigned BitSize,
2719                                            bool Invert) const {
2720  const SystemZInstrInfo *TII = TM.getInstrInfo();
2721  MachineFunction &MF = *MBB->getParent();
2722  MachineRegisterInfo &MRI = MF.getRegInfo();
2723  bool IsSubWord = (BitSize < 32);
2724
2725  // Extract the operands.  Base can be a register or a frame index.
2726  // Src2 can be a register or immediate.
2727  unsigned Dest        = MI->getOperand(0).getReg();
2728  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2729  int64_t Disp         = MI->getOperand(2).getImm();
2730  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2731  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2732  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2733  DebugLoc DL          = MI->getDebugLoc();
2734  if (IsSubWord)
2735    BitSize = MI->getOperand(6).getImm();
2736
2737  // Subword operations use 32-bit registers.
2738  const TargetRegisterClass *RC = (BitSize <= 32 ?
2739                                   &SystemZ::GR32BitRegClass :
2740                                   &SystemZ::GR64BitRegClass);
2741  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2742  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2743
2744  // Get the right opcodes for the displacement.
2745  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2746  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2747  assert(LOpcode && CSOpcode && "Displacement out of range");
2748
2749  // Create virtual registers for temporary results.
2750  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2751  unsigned OldVal        = MRI.createVirtualRegister(RC);
2752  unsigned NewVal        = (BinOpcode || IsSubWord ?
2753                            MRI.createVirtualRegister(RC) : Src2.getReg());
2754  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2755  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2756
2757  // Insert a basic block for the main loop.
2758  MachineBasicBlock *StartMBB = MBB;
2759  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2760  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2761
2762  //  StartMBB:
2763  //   ...
2764  //   %OrigVal = L Disp(%Base)
2765  //   # fall through to LoopMMB
2766  MBB = StartMBB;
2767  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2768    .addOperand(Base).addImm(Disp).addReg(0);
2769  MBB->addSuccessor(LoopMBB);
2770
2771  //  LoopMBB:
2772  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2773  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2774  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2775  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2776  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2777  //   JNE LoopMBB
2778  //   # fall through to DoneMMB
2779  MBB = LoopMBB;
2780  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2781    .addReg(OrigVal).addMBB(StartMBB)
2782    .addReg(Dest).addMBB(LoopMBB);
2783  if (IsSubWord)
2784    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2785      .addReg(OldVal).addReg(BitShift).addImm(0);
2786  if (Invert) {
2787    // Perform the operation normally and then invert every bit of the field.
2788    unsigned Tmp = MRI.createVirtualRegister(RC);
2789    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2790      .addReg(RotatedOldVal).addOperand(Src2);
2791    if (BitSize < 32)
2792      // XILF with the upper BitSize bits set.
2793      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2794        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2795    else if (BitSize == 32)
2796      // XILF with every bit set.
2797      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2798        .addReg(Tmp).addImm(~uint32_t(0));
2799    else {
2800      // Use LCGR and add -1 to the result, which is more compact than
2801      // an XILF, XILH pair.
2802      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2803      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2804      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2805        .addReg(Tmp2).addImm(-1);
2806    }
2807  } else if (BinOpcode)
2808    // A simply binary operation.
2809    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2810      .addReg(RotatedOldVal).addOperand(Src2);
2811  else if (IsSubWord)
2812    // Use RISBG to rotate Src2 into position and use it to replace the
2813    // field in RotatedOldVal.
2814    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2815      .addReg(RotatedOldVal).addReg(Src2.getReg())
2816      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2817  if (IsSubWord)
2818    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2819      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2820  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2821    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2822  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2823    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2824  MBB->addSuccessor(LoopMBB);
2825  MBB->addSuccessor(DoneMBB);
2826
2827  MI->eraseFromParent();
2828  return DoneMBB;
2829}
2830
2831// Implement EmitInstrWithCustomInserter for pseudo
2832// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2833// instruction that should be used to compare the current field with the
2834// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2835// for when the current field should be kept.  BitSize is the width of
2836// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2837MachineBasicBlock *
2838SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2839                                            MachineBasicBlock *MBB,
2840                                            unsigned CompareOpcode,
2841                                            unsigned KeepOldMask,
2842                                            unsigned BitSize) const {
2843  const SystemZInstrInfo *TII = TM.getInstrInfo();
2844  MachineFunction &MF = *MBB->getParent();
2845  MachineRegisterInfo &MRI = MF.getRegInfo();
2846  bool IsSubWord = (BitSize < 32);
2847
2848  // Extract the operands.  Base can be a register or a frame index.
2849  unsigned Dest        = MI->getOperand(0).getReg();
2850  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2851  int64_t  Disp        = MI->getOperand(2).getImm();
2852  unsigned Src2        = MI->getOperand(3).getReg();
2853  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2854  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2855  DebugLoc DL          = MI->getDebugLoc();
2856  if (IsSubWord)
2857    BitSize = MI->getOperand(6).getImm();
2858
2859  // Subword operations use 32-bit registers.
2860  const TargetRegisterClass *RC = (BitSize <= 32 ?
2861                                   &SystemZ::GR32BitRegClass :
2862                                   &SystemZ::GR64BitRegClass);
2863  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2864  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2865
2866  // Get the right opcodes for the displacement.
2867  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2868  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2869  assert(LOpcode && CSOpcode && "Displacement out of range");
2870
2871  // Create virtual registers for temporary results.
2872  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2873  unsigned OldVal        = MRI.createVirtualRegister(RC);
2874  unsigned NewVal        = MRI.createVirtualRegister(RC);
2875  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2876  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2877  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2878
2879  // Insert 3 basic blocks for the loop.
2880  MachineBasicBlock *StartMBB  = MBB;
2881  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2882  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2883  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2884  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2885
2886  //  StartMBB:
2887  //   ...
2888  //   %OrigVal     = L Disp(%Base)
2889  //   # fall through to LoopMMB
2890  MBB = StartMBB;
2891  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2892    .addOperand(Base).addImm(Disp).addReg(0);
2893  MBB->addSuccessor(LoopMBB);
2894
2895  //  LoopMBB:
2896  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2897  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2898  //   CompareOpcode %RotatedOldVal, %Src2
2899  //   BRC KeepOldMask, UpdateMBB
2900  MBB = LoopMBB;
2901  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2902    .addReg(OrigVal).addMBB(StartMBB)
2903    .addReg(Dest).addMBB(UpdateMBB);
2904  if (IsSubWord)
2905    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2906      .addReg(OldVal).addReg(BitShift).addImm(0);
2907  BuildMI(MBB, DL, TII->get(CompareOpcode))
2908    .addReg(RotatedOldVal).addReg(Src2);
2909  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2910    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2911  MBB->addSuccessor(UpdateMBB);
2912  MBB->addSuccessor(UseAltMBB);
2913
2914  //  UseAltMBB:
2915  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2916  //   # fall through to UpdateMMB
2917  MBB = UseAltMBB;
2918  if (IsSubWord)
2919    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2920      .addReg(RotatedOldVal).addReg(Src2)
2921      .addImm(32).addImm(31 + BitSize).addImm(0);
2922  MBB->addSuccessor(UpdateMBB);
2923
2924  //  UpdateMBB:
2925  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2926  //                        [ %RotatedAltVal, UseAltMBB ]
2927  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2928  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2929  //   JNE LoopMBB
2930  //   # fall through to DoneMMB
2931  MBB = UpdateMBB;
2932  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2933    .addReg(RotatedOldVal).addMBB(LoopMBB)
2934    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2935  if (IsSubWord)
2936    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2937      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2938  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2939    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2940  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2941    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2942  MBB->addSuccessor(LoopMBB);
2943  MBB->addSuccessor(DoneMBB);
2944
2945  MI->eraseFromParent();
2946  return DoneMBB;
2947}
2948
2949// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2950// instruction MI.
2951MachineBasicBlock *
2952SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2953                                          MachineBasicBlock *MBB) const {
2954  const SystemZInstrInfo *TII = TM.getInstrInfo();
2955  MachineFunction &MF = *MBB->getParent();
2956  MachineRegisterInfo &MRI = MF.getRegInfo();
2957
2958  // Extract the operands.  Base can be a register or a frame index.
2959  unsigned Dest        = MI->getOperand(0).getReg();
2960  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2961  int64_t  Disp        = MI->getOperand(2).getImm();
2962  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2963  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2964  unsigned BitShift    = MI->getOperand(5).getReg();
2965  unsigned NegBitShift = MI->getOperand(6).getReg();
2966  int64_t  BitSize     = MI->getOperand(7).getImm();
2967  DebugLoc DL          = MI->getDebugLoc();
2968
2969  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2970
2971  // Get the right opcodes for the displacement.
2972  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2973  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2974  assert(LOpcode && CSOpcode && "Displacement out of range");
2975
2976  // Create virtual registers for temporary results.
2977  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2978  unsigned OldVal       = MRI.createVirtualRegister(RC);
2979  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2980  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2981  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2982  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2983  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2984  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2985
2986  // Insert 2 basic blocks for the loop.
2987  MachineBasicBlock *StartMBB = MBB;
2988  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2989  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2990  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2991
2992  //  StartMBB:
2993  //   ...
2994  //   %OrigOldVal     = L Disp(%Base)
2995  //   # fall through to LoopMMB
2996  MBB = StartMBB;
2997  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2998    .addOperand(Base).addImm(Disp).addReg(0);
2999  MBB->addSuccessor(LoopMBB);
3000
3001  //  LoopMBB:
3002  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3003  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3004  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3005  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
3006  //                      ^^ The low BitSize bits contain the field
3007  //                         of interest.
3008  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3009  //                      ^^ Replace the upper 32-BitSize bits of the
3010  //                         comparison value with those that we loaded,
3011  //                         so that we can use a full word comparison.
3012  //   CR %Dest, %RetryCmpVal
3013  //   JNE DoneMBB
3014  //   # Fall through to SetMBB
3015  MBB = LoopMBB;
3016  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3017    .addReg(OrigOldVal).addMBB(StartMBB)
3018    .addReg(RetryOldVal).addMBB(SetMBB);
3019  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3020    .addReg(OrigCmpVal).addMBB(StartMBB)
3021    .addReg(RetryCmpVal).addMBB(SetMBB);
3022  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3023    .addReg(OrigSwapVal).addMBB(StartMBB)
3024    .addReg(RetrySwapVal).addMBB(SetMBB);
3025  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3026    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3027  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3028    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3029  BuildMI(MBB, DL, TII->get(SystemZ::CR))
3030    .addReg(Dest).addReg(RetryCmpVal);
3031  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3032    .addImm(SystemZ::CCMASK_ICMP)
3033    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
3034  MBB->addSuccessor(DoneMBB);
3035  MBB->addSuccessor(SetMBB);
3036
3037  //  SetMBB:
3038  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3039  //                      ^^ Replace the upper 32-BitSize bits of the new
3040  //                         value with those that we loaded.
3041  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3042  //                      ^^ Rotate the new field to its proper position.
3043  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3044  //   JNE LoopMBB
3045  //   # fall through to ExitMMB
3046  MBB = SetMBB;
3047  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3048    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3049  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3050    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3051  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3052    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
3053  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3054    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
3055  MBB->addSuccessor(LoopMBB);
3056  MBB->addSuccessor(DoneMBB);
3057
3058  MI->eraseFromParent();
3059  return DoneMBB;
3060}
3061
3062// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
3063// if the high register of the GR128 value must be cleared or false if
3064// it's "don't care".  SubReg is subreg_l32 when extending a GR32
3065// and subreg_l64 when extending a GR64.
3066MachineBasicBlock *
3067SystemZTargetLowering::emitExt128(MachineInstr *MI,
3068                                  MachineBasicBlock *MBB,
3069                                  bool ClearEven, unsigned SubReg) const {
3070  const SystemZInstrInfo *TII = TM.getInstrInfo();
3071  MachineFunction &MF = *MBB->getParent();
3072  MachineRegisterInfo &MRI = MF.getRegInfo();
3073  DebugLoc DL = MI->getDebugLoc();
3074
3075  unsigned Dest  = MI->getOperand(0).getReg();
3076  unsigned Src   = MI->getOperand(1).getReg();
3077  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3078
3079  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3080  if (ClearEven) {
3081    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3082    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3083
3084    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3085      .addImm(0);
3086    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
3087      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
3088    In128 = NewIn128;
3089  }
3090  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3091    .addReg(In128).addReg(Src).addImm(SubReg);
3092
3093  MI->eraseFromParent();
3094  return MBB;
3095}
3096
3097MachineBasicBlock *
3098SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3099                                         MachineBasicBlock *MBB,
3100                                         unsigned Opcode) const {
3101  const SystemZInstrInfo *TII = TM.getInstrInfo();
3102  MachineFunction &MF = *MBB->getParent();
3103  MachineRegisterInfo &MRI = MF.getRegInfo();
3104  DebugLoc DL = MI->getDebugLoc();
3105
3106  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
3107  uint64_t       DestDisp = MI->getOperand(1).getImm();
3108  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
3109  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
3110  uint64_t       Length   = MI->getOperand(4).getImm();
3111
3112  // When generating more than one CLC, all but the last will need to
3113  // branch to the end when a difference is found.
3114  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3115                               splitBlockAfter(MI, MBB) : nullptr);
3116
3117  // Check for the loop form, in which operand 5 is the trip count.
3118  if (MI->getNumExplicitOperands() > 5) {
3119    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3120
3121    uint64_t StartCountReg = MI->getOperand(5).getReg();
3122    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
3123    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
3124                              forceReg(MI, DestBase, TII));
3125
3126    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3127    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
3128    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3129                            MRI.createVirtualRegister(RC));
3130    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
3131    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3132                            MRI.createVirtualRegister(RC));
3133
3134    RC = &SystemZ::GR64BitRegClass;
3135    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3136    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3137
3138    MachineBasicBlock *StartMBB = MBB;
3139    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3140    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3141    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
3142
3143    //  StartMBB:
3144    //   # fall through to LoopMMB
3145    MBB->addSuccessor(LoopMBB);
3146
3147    //  LoopMBB:
3148    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
3149    //                      [ %NextDestReg, NextMBB ]
3150    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
3151    //                     [ %NextSrcReg, NextMBB ]
3152    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
3153    //                       [ %NextCountReg, NextMBB ]
3154    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
3155    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
3156    //   ( JLH EndMBB )
3157    //
3158    // The prefetch is used only for MVC.  The JLH is used only for CLC.
3159    MBB = LoopMBB;
3160
3161    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3162      .addReg(StartDestReg).addMBB(StartMBB)
3163      .addReg(NextDestReg).addMBB(NextMBB);
3164    if (!HaveSingleBase)
3165      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3166        .addReg(StartSrcReg).addMBB(StartMBB)
3167        .addReg(NextSrcReg).addMBB(NextMBB);
3168    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3169      .addReg(StartCountReg).addMBB(StartMBB)
3170      .addReg(NextCountReg).addMBB(NextMBB);
3171    if (Opcode == SystemZ::MVC)
3172      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3173        .addImm(SystemZ::PFD_WRITE)
3174        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3175    BuildMI(MBB, DL, TII->get(Opcode))
3176      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3177      .addReg(ThisSrcReg).addImm(SrcDisp);
3178    if (EndMBB) {
3179      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3180        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3181        .addMBB(EndMBB);
3182      MBB->addSuccessor(EndMBB);
3183      MBB->addSuccessor(NextMBB);
3184    }
3185
3186    // NextMBB:
3187    //   %NextDestReg = LA 256(%ThisDestReg)
3188    //   %NextSrcReg = LA 256(%ThisSrcReg)
3189    //   %NextCountReg = AGHI %ThisCountReg, -1
3190    //   CGHI %NextCountReg, 0
3191    //   JLH LoopMBB
3192    //   # fall through to DoneMMB
3193    //
3194    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
3195    MBB = NextMBB;
3196
3197    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3198      .addReg(ThisDestReg).addImm(256).addReg(0);
3199    if (!HaveSingleBase)
3200      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3201        .addReg(ThisSrcReg).addImm(256).addReg(0);
3202    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3203      .addReg(ThisCountReg).addImm(-1);
3204    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3205      .addReg(NextCountReg).addImm(0);
3206    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3207      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3208      .addMBB(LoopMBB);
3209    MBB->addSuccessor(LoopMBB);
3210    MBB->addSuccessor(DoneMBB);
3211
3212    DestBase = MachineOperand::CreateReg(NextDestReg, false);
3213    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3214    Length &= 255;
3215    MBB = DoneMBB;
3216  }
3217  // Handle any remaining bytes with straight-line code.
3218  while (Length > 0) {
3219    uint64_t ThisLength = std::min(Length, uint64_t(256));
3220    // The previous iteration might have created out-of-range displacements.
3221    // Apply them using LAY if so.
3222    if (!isUInt<12>(DestDisp)) {
3223      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3224      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3225        .addOperand(DestBase).addImm(DestDisp).addReg(0);
3226      DestBase = MachineOperand::CreateReg(Reg, false);
3227      DestDisp = 0;
3228    }
3229    if (!isUInt<12>(SrcDisp)) {
3230      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3231      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3232        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3233      SrcBase = MachineOperand::CreateReg(Reg, false);
3234      SrcDisp = 0;
3235    }
3236    BuildMI(*MBB, MI, DL, TII->get(Opcode))
3237      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3238      .addOperand(SrcBase).addImm(SrcDisp);
3239    DestDisp += ThisLength;
3240    SrcDisp += ThisLength;
3241    Length -= ThisLength;
3242    // If there's another CLC to go, branch to the end if a difference
3243    // was found.
3244    if (EndMBB && Length > 0) {
3245      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3246      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3247        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3248        .addMBB(EndMBB);
3249      MBB->addSuccessor(EndMBB);
3250      MBB->addSuccessor(NextMBB);
3251      MBB = NextMBB;
3252    }
3253  }
3254  if (EndMBB) {
3255    MBB->addSuccessor(EndMBB);
3256    MBB = EndMBB;
3257    MBB->addLiveIn(SystemZ::CC);
3258  }
3259
3260  MI->eraseFromParent();
3261  return MBB;
3262}
3263
3264// Decompose string pseudo-instruction MI into a loop that continually performs
3265// Opcode until CC != 3.
3266MachineBasicBlock *
3267SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3268                                         MachineBasicBlock *MBB,
3269                                         unsigned Opcode) const {
3270  const SystemZInstrInfo *TII = TM.getInstrInfo();
3271  MachineFunction &MF = *MBB->getParent();
3272  MachineRegisterInfo &MRI = MF.getRegInfo();
3273  DebugLoc DL = MI->getDebugLoc();
3274
3275  uint64_t End1Reg   = MI->getOperand(0).getReg();
3276  uint64_t Start1Reg = MI->getOperand(1).getReg();
3277  uint64_t Start2Reg = MI->getOperand(2).getReg();
3278  uint64_t CharReg   = MI->getOperand(3).getReg();
3279
3280  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3281  uint64_t This1Reg = MRI.createVirtualRegister(RC);
3282  uint64_t This2Reg = MRI.createVirtualRegister(RC);
3283  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
3284
3285  MachineBasicBlock *StartMBB = MBB;
3286  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3287  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3288
3289  //  StartMBB:
3290  //   # fall through to LoopMMB
3291  MBB->addSuccessor(LoopMBB);
3292
3293  //  LoopMBB:
3294  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3295  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3296  //   R0L = %CharReg
3297  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3298  //   JO LoopMBB
3299  //   # fall through to DoneMMB
3300  //
3301  // The load of R0L can be hoisted by post-RA LICM.
3302  MBB = LoopMBB;
3303
3304  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3305    .addReg(Start1Reg).addMBB(StartMBB)
3306    .addReg(End1Reg).addMBB(LoopMBB);
3307  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3308    .addReg(Start2Reg).addMBB(StartMBB)
3309    .addReg(End2Reg).addMBB(LoopMBB);
3310  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3311  BuildMI(MBB, DL, TII->get(Opcode))
3312    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3313    .addReg(This1Reg).addReg(This2Reg);
3314  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3315    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3316  MBB->addSuccessor(LoopMBB);
3317  MBB->addSuccessor(DoneMBB);
3318
3319  DoneMBB->addLiveIn(SystemZ::CC);
3320
3321  MI->eraseFromParent();
3322  return DoneMBB;
3323}
3324
3325MachineBasicBlock *SystemZTargetLowering::
3326EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3327  switch (MI->getOpcode()) {
3328  case SystemZ::Select32Mux:
3329  case SystemZ::Select32:
3330  case SystemZ::SelectF32:
3331  case SystemZ::Select64:
3332  case SystemZ::SelectF64:
3333  case SystemZ::SelectF128:
3334    return emitSelect(MI, MBB);
3335
3336  case SystemZ::CondStore8Mux:
3337    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3338  case SystemZ::CondStore8MuxInv:
3339    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3340  case SystemZ::CondStore16Mux:
3341    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3342  case SystemZ::CondStore16MuxInv:
3343    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3344  case SystemZ::CondStore8:
3345    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3346  case SystemZ::CondStore8Inv:
3347    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3348  case SystemZ::CondStore16:
3349    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3350  case SystemZ::CondStore16Inv:
3351    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3352  case SystemZ::CondStore32:
3353    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3354  case SystemZ::CondStore32Inv:
3355    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3356  case SystemZ::CondStore64:
3357    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3358  case SystemZ::CondStore64Inv:
3359    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3360  case SystemZ::CondStoreF32:
3361    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3362  case SystemZ::CondStoreF32Inv:
3363    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3364  case SystemZ::CondStoreF64:
3365    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3366  case SystemZ::CondStoreF64Inv:
3367    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3368
3369  case SystemZ::AEXT128_64:
3370    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3371  case SystemZ::ZEXT128_32:
3372    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3373  case SystemZ::ZEXT128_64:
3374    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3375
3376  case SystemZ::ATOMIC_SWAPW:
3377    return emitAtomicLoadBinary(MI, MBB, 0, 0);
3378  case SystemZ::ATOMIC_SWAP_32:
3379    return emitAtomicLoadBinary(MI, MBB, 0, 32);
3380  case SystemZ::ATOMIC_SWAP_64:
3381    return emitAtomicLoadBinary(MI, MBB, 0, 64);
3382
3383  case SystemZ::ATOMIC_LOADW_AR:
3384    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3385  case SystemZ::ATOMIC_LOADW_AFI:
3386    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3387  case SystemZ::ATOMIC_LOAD_AR:
3388    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3389  case SystemZ::ATOMIC_LOAD_AHI:
3390    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3391  case SystemZ::ATOMIC_LOAD_AFI:
3392    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3393  case SystemZ::ATOMIC_LOAD_AGR:
3394    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3395  case SystemZ::ATOMIC_LOAD_AGHI:
3396    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3397  case SystemZ::ATOMIC_LOAD_AGFI:
3398    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3399
3400  case SystemZ::ATOMIC_LOADW_SR:
3401    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3402  case SystemZ::ATOMIC_LOAD_SR:
3403    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3404  case SystemZ::ATOMIC_LOAD_SGR:
3405    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3406
3407  case SystemZ::ATOMIC_LOADW_NR:
3408    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3409  case SystemZ::ATOMIC_LOADW_NILH:
3410    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3411  case SystemZ::ATOMIC_LOAD_NR:
3412    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3413  case SystemZ::ATOMIC_LOAD_NILL:
3414    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3415  case SystemZ::ATOMIC_LOAD_NILH:
3416    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3417  case SystemZ::ATOMIC_LOAD_NILF:
3418    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3419  case SystemZ::ATOMIC_LOAD_NGR:
3420    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3421  case SystemZ::ATOMIC_LOAD_NILL64:
3422    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3423  case SystemZ::ATOMIC_LOAD_NILH64:
3424    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3425  case SystemZ::ATOMIC_LOAD_NIHL64:
3426    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3427  case SystemZ::ATOMIC_LOAD_NIHH64:
3428    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3429  case SystemZ::ATOMIC_LOAD_NILF64:
3430    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3431  case SystemZ::ATOMIC_LOAD_NIHF64:
3432    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3433
3434  case SystemZ::ATOMIC_LOADW_OR:
3435    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3436  case SystemZ::ATOMIC_LOADW_OILH:
3437    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3438  case SystemZ::ATOMIC_LOAD_OR:
3439    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3440  case SystemZ::ATOMIC_LOAD_OILL:
3441    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3442  case SystemZ::ATOMIC_LOAD_OILH:
3443    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3444  case SystemZ::ATOMIC_LOAD_OILF:
3445    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3446  case SystemZ::ATOMIC_LOAD_OGR:
3447    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3448  case SystemZ::ATOMIC_LOAD_OILL64:
3449    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3450  case SystemZ::ATOMIC_LOAD_OILH64:
3451    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3452  case SystemZ::ATOMIC_LOAD_OIHL64:
3453    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3454  case SystemZ::ATOMIC_LOAD_OIHH64:
3455    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3456  case SystemZ::ATOMIC_LOAD_OILF64:
3457    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3458  case SystemZ::ATOMIC_LOAD_OIHF64:
3459    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3460
3461  case SystemZ::ATOMIC_LOADW_XR:
3462    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3463  case SystemZ::ATOMIC_LOADW_XILF:
3464    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3465  case SystemZ::ATOMIC_LOAD_XR:
3466    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3467  case SystemZ::ATOMIC_LOAD_XILF:
3468    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3469  case SystemZ::ATOMIC_LOAD_XGR:
3470    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3471  case SystemZ::ATOMIC_LOAD_XILF64:
3472    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3473  case SystemZ::ATOMIC_LOAD_XIHF64:
3474    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3475
3476  case SystemZ::ATOMIC_LOADW_NRi:
3477    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3478  case SystemZ::ATOMIC_LOADW_NILHi:
3479    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3480  case SystemZ::ATOMIC_LOAD_NRi:
3481    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3482  case SystemZ::ATOMIC_LOAD_NILLi:
3483    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3484  case SystemZ::ATOMIC_LOAD_NILHi:
3485    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3486  case SystemZ::ATOMIC_LOAD_NILFi:
3487    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3488  case SystemZ::ATOMIC_LOAD_NGRi:
3489    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3490  case SystemZ::ATOMIC_LOAD_NILL64i:
3491    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3492  case SystemZ::ATOMIC_LOAD_NILH64i:
3493    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3494  case SystemZ::ATOMIC_LOAD_NIHL64i:
3495    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3496  case SystemZ::ATOMIC_LOAD_NIHH64i:
3497    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3498  case SystemZ::ATOMIC_LOAD_NILF64i:
3499    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3500  case SystemZ::ATOMIC_LOAD_NIHF64i:
3501    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3502
3503  case SystemZ::ATOMIC_LOADW_MIN:
3504    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3505                                SystemZ::CCMASK_CMP_LE, 0);
3506  case SystemZ::ATOMIC_LOAD_MIN_32:
3507    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3508                                SystemZ::CCMASK_CMP_LE, 32);
3509  case SystemZ::ATOMIC_LOAD_MIN_64:
3510    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3511                                SystemZ::CCMASK_CMP_LE, 64);
3512
3513  case SystemZ::ATOMIC_LOADW_MAX:
3514    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3515                                SystemZ::CCMASK_CMP_GE, 0);
3516  case SystemZ::ATOMIC_LOAD_MAX_32:
3517    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3518                                SystemZ::CCMASK_CMP_GE, 32);
3519  case SystemZ::ATOMIC_LOAD_MAX_64:
3520    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3521                                SystemZ::CCMASK_CMP_GE, 64);
3522
3523  case SystemZ::ATOMIC_LOADW_UMIN:
3524    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3525                                SystemZ::CCMASK_CMP_LE, 0);
3526  case SystemZ::ATOMIC_LOAD_UMIN_32:
3527    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3528                                SystemZ::CCMASK_CMP_LE, 32);
3529  case SystemZ::ATOMIC_LOAD_UMIN_64:
3530    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3531                                SystemZ::CCMASK_CMP_LE, 64);
3532
3533  case SystemZ::ATOMIC_LOADW_UMAX:
3534    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3535                                SystemZ::CCMASK_CMP_GE, 0);
3536  case SystemZ::ATOMIC_LOAD_UMAX_32:
3537    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3538                                SystemZ::CCMASK_CMP_GE, 32);
3539  case SystemZ::ATOMIC_LOAD_UMAX_64:
3540    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3541                                SystemZ::CCMASK_CMP_GE, 64);
3542
3543  case SystemZ::ATOMIC_CMP_SWAPW:
3544    return emitAtomicCmpSwapW(MI, MBB);
3545  case SystemZ::MVCSequence:
3546  case SystemZ::MVCLoop:
3547    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3548  case SystemZ::NCSequence:
3549  case SystemZ::NCLoop:
3550    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3551  case SystemZ::OCSequence:
3552  case SystemZ::OCLoop:
3553    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3554  case SystemZ::XCSequence:
3555  case SystemZ::XCLoop:
3556    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3557  case SystemZ::CLCSequence:
3558  case SystemZ::CLCLoop:
3559    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3560  case SystemZ::CLSTLoop:
3561    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3562  case SystemZ::MVSTLoop:
3563    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3564  case SystemZ::SRSTLoop:
3565    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3566  default:
3567    llvm_unreachable("Unexpected instr type to insert");
3568  }
3569}
3570