SystemZInstrInfo.cpp revision 0416e3c599c22dc656a1115ac983116ad0b2d9da
1//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SystemZ implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZInstrInfo.h"
15#include "SystemZTargetMachine.h"
16#include "SystemZInstrBuilder.h"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19
20#define GET_INSTRINFO_CTOR
21#define GET_INSTRMAP_INFO
22#include "SystemZGenInstrInfo.inc"
23
24using namespace llvm;
25
26// Return a mask with Count low bits set.
27static uint64_t allOnes(unsigned int Count) {
28  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
29}
30
31SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
32  : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
33    RI(tm), TM(tm) {
34}
35
36// MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
37// each having the opcode given by NewOpcode.
38void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
39                                 unsigned NewOpcode) const {
40  MachineBasicBlock *MBB = MI->getParent();
41  MachineFunction &MF = *MBB->getParent();
42
43  // Get two load or store instructions.  Use the original instruction for one
44  // of them (arbitarily the second here) and create a clone for the other.
45  MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
46  MBB->insert(MI, EarlierMI);
47
48  // Set up the two 64-bit registers.
49  MachineOperand &HighRegOp = EarlierMI->getOperand(0);
50  MachineOperand &LowRegOp = MI->getOperand(0);
51  HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high));
52  LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low));
53
54  // The address in the first (high) instruction is already correct.
55  // Adjust the offset in the second (low) instruction.
56  MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
57  MachineOperand &LowOffsetOp = MI->getOperand(2);
58  LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
59
60  // Set the opcodes.
61  unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
62  unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
63  assert(HighOpcode && LowOpcode && "Both offsets should be in range");
64
65  EarlierMI->setDesc(get(HighOpcode));
66  MI->setDesc(get(LowOpcode));
67}
68
69// Split ADJDYNALLOC instruction MI.
70void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
71  MachineBasicBlock *MBB = MI->getParent();
72  MachineFunction &MF = *MBB->getParent();
73  MachineFrameInfo *MFFrame = MF.getFrameInfo();
74  MachineOperand &OffsetMO = MI->getOperand(2);
75
76  uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
77                     SystemZMC::CallFrameSize +
78                     OffsetMO.getImm());
79  unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
80  assert(NewOpcode && "No support for huge argument lists yet");
81  MI->setDesc(get(NewOpcode));
82  OffsetMO.setImm(Offset);
83}
84
85// If MI is a simple load or store for a frame object, return the register
86// it loads or stores and set FrameIndex to the index of the frame object.
87// Return 0 otherwise.
88//
89// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
90static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
91                        unsigned Flag) {
92  const MCInstrDesc &MCID = MI->getDesc();
93  if ((MCID.TSFlags & Flag) &&
94      MI->getOperand(1).isFI() &&
95      MI->getOperand(2).getImm() == 0 &&
96      MI->getOperand(3).getReg() == 0) {
97    FrameIndex = MI->getOperand(1).getIndex();
98    return MI->getOperand(0).getReg();
99  }
100  return 0;
101}
102
103unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
104                                               int &FrameIndex) const {
105  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
106}
107
108unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
109                                              int &FrameIndex) const {
110  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
111}
112
113bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
114                                       int &DestFrameIndex,
115                                       int &SrcFrameIndex) const {
116  // Check for MVC 0(Length,FI1),0(FI2)
117  const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
118  if (MI->getOpcode() != SystemZ::MVC ||
119      !MI->getOperand(0).isFI() ||
120      MI->getOperand(1).getImm() != 0 ||
121      !MI->getOperand(3).isFI() ||
122      MI->getOperand(4).getImm() != 0)
123    return false;
124
125  // Check that Length covers the full slots.
126  int64_t Length = MI->getOperand(2).getImm();
127  unsigned FI1 = MI->getOperand(0).getIndex();
128  unsigned FI2 = MI->getOperand(3).getIndex();
129  if (MFI->getObjectSize(FI1) != Length ||
130      MFI->getObjectSize(FI2) != Length)
131    return false;
132
133  DestFrameIndex = FI1;
134  SrcFrameIndex = FI2;
135  return true;
136}
137
138bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
139                                     MachineBasicBlock *&TBB,
140                                     MachineBasicBlock *&FBB,
141                                     SmallVectorImpl<MachineOperand> &Cond,
142                                     bool AllowModify) const {
143  // Most of the code and comments here are boilerplate.
144
145  // Start from the bottom of the block and work up, examining the
146  // terminator instructions.
147  MachineBasicBlock::iterator I = MBB.end();
148  while (I != MBB.begin()) {
149    --I;
150    if (I->isDebugValue())
151      continue;
152
153    // Working from the bottom, when we see a non-terminator instruction, we're
154    // done.
155    if (!isUnpredicatedTerminator(I))
156      break;
157
158    // A terminator that isn't a branch can't easily be handled by this
159    // analysis.
160    if (!I->isBranch())
161      return true;
162
163    // Can't handle indirect branches.
164    SystemZII::Branch Branch(getBranchInfo(I));
165    if (!Branch.Target->isMBB())
166      return true;
167
168    // Punt on compound branches.
169    if (Branch.Type != SystemZII::BranchNormal)
170      return true;
171
172    if (Branch.CCMask == SystemZ::CCMASK_ANY) {
173      // Handle unconditional branches.
174      if (!AllowModify) {
175        TBB = Branch.Target->getMBB();
176        continue;
177      }
178
179      // If the block has any instructions after a JMP, delete them.
180      while (llvm::next(I) != MBB.end())
181        llvm::next(I)->eraseFromParent();
182
183      Cond.clear();
184      FBB = 0;
185
186      // Delete the JMP if it's equivalent to a fall-through.
187      if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
188        TBB = 0;
189        I->eraseFromParent();
190        I = MBB.end();
191        continue;
192      }
193
194      // TBB is used to indicate the unconditinal destination.
195      TBB = Branch.Target->getMBB();
196      continue;
197    }
198
199    // Working from the bottom, handle the first conditional branch.
200    if (Cond.empty()) {
201      // FIXME: add X86-style branch swap
202      FBB = TBB;
203      TBB = Branch.Target->getMBB();
204      Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
205      continue;
206    }
207
208    // Handle subsequent conditional branches.
209    assert(Cond.size() == 1);
210    assert(TBB);
211
212    // Only handle the case where all conditional branches branch to the same
213    // destination.
214    if (TBB != Branch.Target->getMBB())
215      return true;
216
217    // If the conditions are the same, we can leave them alone.
218    unsigned OldCond = Cond[0].getImm();
219    if (OldCond == Branch.CCMask)
220      continue;
221
222    // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
223  }
224
225  return false;
226}
227
228unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
229  // Most of the code and comments here are boilerplate.
230  MachineBasicBlock::iterator I = MBB.end();
231  unsigned Count = 0;
232
233  while (I != MBB.begin()) {
234    --I;
235    if (I->isDebugValue())
236      continue;
237    if (!I->isBranch())
238      break;
239    if (!getBranchInfo(I).Target->isMBB())
240      break;
241    // Remove the branch.
242    I->eraseFromParent();
243    I = MBB.end();
244    ++Count;
245  }
246
247  return Count;
248}
249
250unsigned
251SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
252                               MachineBasicBlock *FBB,
253                               const SmallVectorImpl<MachineOperand> &Cond,
254                               DebugLoc DL) const {
255  // In this function we output 32-bit branches, which should always
256  // have enough range.  They can be shortened and relaxed by later code
257  // in the pipeline, if desired.
258
259  // Shouldn't be a fall through.
260  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
261  assert((Cond.size() == 1 || Cond.size() == 0) &&
262         "SystemZ branch conditions have one component!");
263
264  if (Cond.empty()) {
265    // Unconditional branch?
266    assert(!FBB && "Unconditional branch with multiple successors!");
267    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
268    return 1;
269  }
270
271  // Conditional branch.
272  unsigned Count = 0;
273  unsigned CC = Cond[0].getImm();
274  BuildMI(&MBB, DL, get(SystemZ::BRC)).addImm(CC).addMBB(TBB);
275  ++Count;
276
277  if (FBB) {
278    // Two-way Conditional branch. Insert the second branch.
279    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
280    ++Count;
281  }
282  return Count;
283}
284
285// If Opcode is a move that has a conditional variant, return that variant,
286// otherwise return 0.
287static unsigned getConditionalMove(unsigned Opcode) {
288  switch (Opcode) {
289  case SystemZ::LR:  return SystemZ::LOCR;
290  case SystemZ::LGR: return SystemZ::LOCGR;
291  default:           return 0;
292  }
293}
294
295bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
296  unsigned Opcode = MI->getOpcode();
297  if (TM.getSubtargetImpl()->hasLoadStoreOnCond() &&
298      getConditionalMove(Opcode))
299    return true;
300  return false;
301}
302
303bool SystemZInstrInfo::
304isProfitableToIfCvt(MachineBasicBlock &MBB,
305                    unsigned NumCycles, unsigned ExtraPredCycles,
306                    const BranchProbability &Probability) const {
307  // For now only convert single instructions.
308  return NumCycles == 1;
309}
310
311bool SystemZInstrInfo::
312isProfitableToIfCvt(MachineBasicBlock &TMBB,
313                    unsigned NumCyclesT, unsigned ExtraPredCyclesT,
314                    MachineBasicBlock &FMBB,
315                    unsigned NumCyclesF, unsigned ExtraPredCyclesF,
316                    const BranchProbability &Probability) const {
317  // For now avoid converting mutually-exclusive cases.
318  return false;
319}
320
321bool SystemZInstrInfo::
322PredicateInstruction(MachineInstr *MI,
323                     const SmallVectorImpl<MachineOperand> &Pred) const {
324  unsigned CCMask = Pred[0].getImm();
325  assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
326  unsigned Opcode = MI->getOpcode();
327  if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
328    if (unsigned CondOpcode = getConditionalMove(Opcode)) {
329      MI->setDesc(get(CondOpcode));
330      MachineInstrBuilder(*MI->getParent()->getParent(), MI).addImm(CCMask);
331      return true;
332    }
333  }
334  return false;
335}
336
337void
338SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
339			      MachineBasicBlock::iterator MBBI, DebugLoc DL,
340			      unsigned DestReg, unsigned SrcReg,
341			      bool KillSrc) const {
342  // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
343  if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
344    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high),
345                RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc);
346    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low),
347                RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc);
348    return;
349  }
350
351  // Everything else needs only one instruction.
352  unsigned Opcode;
353  if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg))
354    Opcode = SystemZ::LR;
355  else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
356    Opcode = SystemZ::LGR;
357  else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
358    Opcode = SystemZ::LER;
359  else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
360    Opcode = SystemZ::LDR;
361  else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
362    Opcode = SystemZ::LXR;
363  else
364    llvm_unreachable("Impossible reg-to-reg copy");
365
366  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
367    .addReg(SrcReg, getKillRegState(KillSrc));
368}
369
370void
371SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
372				      MachineBasicBlock::iterator MBBI,
373				      unsigned SrcReg, bool isKill,
374				      int FrameIdx,
375				      const TargetRegisterClass *RC,
376				      const TargetRegisterInfo *TRI) const {
377  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
378
379  // Callers may expect a single instruction, so keep 128-bit moves
380  // together for now and lower them after register allocation.
381  unsigned LoadOpcode, StoreOpcode;
382  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
383  addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
384		    .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
385}
386
387void
388SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
389				       MachineBasicBlock::iterator MBBI,
390				       unsigned DestReg, int FrameIdx,
391				       const TargetRegisterClass *RC,
392				       const TargetRegisterInfo *TRI) const {
393  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
394
395  // Callers may expect a single instruction, so keep 128-bit moves
396  // together for now and lower them after register allocation.
397  unsigned LoadOpcode, StoreOpcode;
398  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
399  addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
400                    FrameIdx);
401}
402
403// Return true if MI is a simple load or store with a 12-bit displacement
404// and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
405static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
406  const MCInstrDesc &MCID = MI->getDesc();
407  return ((MCID.TSFlags & Flag) &&
408          isUInt<12>(MI->getOperand(2).getImm()) &&
409          MI->getOperand(3).getReg() == 0);
410}
411
412namespace {
413  struct LogicOp {
414    LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
415    LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
416      : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
417
418    operator bool() const { return RegSize; }
419
420    unsigned RegSize, ImmLSB, ImmSize;
421  };
422}
423
424static LogicOp interpretAndImmediate(unsigned Opcode) {
425  switch (Opcode) {
426  case SystemZ::NILL32: return LogicOp(32,  0, 16);
427  case SystemZ::NILH32: return LogicOp(32, 16, 16);
428  case SystemZ::NILL:   return LogicOp(64,  0, 16);
429  case SystemZ::NILH:   return LogicOp(64, 16, 16);
430  case SystemZ::NIHL:   return LogicOp(64, 32, 16);
431  case SystemZ::NIHH:   return LogicOp(64, 48, 16);
432  case SystemZ::NILF32: return LogicOp(32,  0, 32);
433  case SystemZ::NILF:   return LogicOp(64,  0, 32);
434  case SystemZ::NIHF:   return LogicOp(64, 32, 32);
435  default:              return LogicOp();
436  }
437}
438
439// Used to return from convertToThreeAddress after replacing two-address
440// instruction OldMI with three-address instruction NewMI.
441static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
442                                                 MachineInstr *NewMI,
443                                                 LiveVariables *LV) {
444  if (LV) {
445    unsigned NumOps = OldMI->getNumOperands();
446    for (unsigned I = 1; I < NumOps; ++I) {
447      MachineOperand &Op = OldMI->getOperand(I);
448      if (Op.isReg() && Op.isKill())
449        LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
450    }
451  }
452  return NewMI;
453}
454
455MachineInstr *
456SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
457                                        MachineBasicBlock::iterator &MBBI,
458                                        LiveVariables *LV) const {
459  MachineInstr *MI = MBBI;
460  MachineBasicBlock *MBB = MI->getParent();
461
462  unsigned Opcode = MI->getOpcode();
463  unsigned NumOps = MI->getNumOperands();
464
465  // Try to convert something like SLL into SLLK, if supported.
466  // We prefer to keep the two-operand form where possible both
467  // because it tends to be shorter and because some instructions
468  // have memory forms that can be used during spilling.
469  if (TM.getSubtargetImpl()->hasDistinctOps()) {
470    int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
471    if (ThreeOperandOpcode >= 0) {
472      MachineOperand &Dest = MI->getOperand(0);
473      MachineOperand &Src = MI->getOperand(1);
474      MachineInstrBuilder MIB =
475        BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
476        .addOperand(Dest);
477      // Keep the kill state, but drop the tied flag.
478      MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
479      // Keep the remaining operands as-is.
480      for (unsigned I = 2; I < NumOps; ++I)
481        MIB.addOperand(MI->getOperand(I));
482      return finishConvertToThreeAddress(MI, MIB, LV);
483    }
484  }
485
486  // Try to convert an AND into an RISBG-type instruction.
487  if (LogicOp And = interpretAndImmediate(Opcode)) {
488    unsigned NewOpcode;
489    if (And.RegSize == 64)
490      NewOpcode = SystemZ::RISBG;
491    else if (TM.getSubtargetImpl()->hasHighWord())
492      NewOpcode = SystemZ::RISBLG32;
493    else
494      // We can't use RISBG for 32-bit operations because it clobbers the
495      // high word of the destination too.
496      NewOpcode = 0;
497    if (NewOpcode) {
498      uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
499      // AND IMMEDIATE leaves the other bits of the register unchanged.
500      Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
501      unsigned Start, End;
502      if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
503        if (NewOpcode == SystemZ::RISBLG32) {
504          Start &= 31;
505          End &= 31;
506        }
507        MachineOperand &Dest = MI->getOperand(0);
508        MachineOperand &Src = MI->getOperand(1);
509        MachineInstrBuilder MIB =
510          BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
511          .addOperand(Dest).addReg(0)
512          .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
513          .addImm(Start).addImm(End + 128).addImm(0);
514        return finishConvertToThreeAddress(MI, MIB, LV);
515      }
516    }
517  }
518  return 0;
519}
520
521MachineInstr *
522SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
523                                        MachineInstr *MI,
524                                        const SmallVectorImpl<unsigned> &Ops,
525                                        int FrameIndex) const {
526  const MachineFrameInfo *MFI = MF.getFrameInfo();
527  unsigned Size = MFI->getObjectSize(FrameIndex);
528
529  // Eary exit for cases we don't care about
530  if (Ops.size() != 1)
531    return 0;
532
533  unsigned OpNum = Ops[0];
534  assert(Size == MF.getRegInfo()
535         .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
536         "Invalid size combination");
537
538  unsigned Opcode = MI->getOpcode();
539  if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
540    bool Op0IsGPR = (Opcode == SystemZ::LGDR);
541    bool Op1IsGPR = (Opcode == SystemZ::LDGR);
542    // If we're spilling the destination of an LDGR or LGDR, store the
543    // source register instead.
544    if (OpNum == 0) {
545      unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
546      return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
547        .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
548        .addImm(0).addReg(0);
549    }
550    // If we're spilling the source of an LDGR or LGDR, load the
551    // destination register instead.
552    if (OpNum == 1) {
553      unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
554      unsigned Dest = MI->getOperand(0).getReg();
555      return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
556        .addFrameIndex(FrameIndex).addImm(0).addReg(0);
557    }
558  }
559
560  // Look for cases where the source of a simple store or the destination
561  // of a simple load is being spilled.  Try to use MVC instead.
562  //
563  // Although MVC is in practice a fast choice in these cases, it is still
564  // logically a bytewise copy.  This means that we cannot use it if the
565  // load or store is volatile.  It also means that the transformation is
566  // not valid in cases where the two memories partially overlap; however,
567  // that is not a problem here, because we know that one of the memories
568  // is a full frame index.
569  if (OpNum == 0 && MI->hasOneMemOperand()) {
570    MachineMemOperand *MMO = *MI->memoperands_begin();
571    if (MMO->getSize() == Size && !MMO->isVolatile()) {
572      // Handle conversion of loads.
573      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
574        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
575          .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
576          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
577          .addMemOperand(MMO);
578      }
579      // Handle conversion of stores.
580      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
581        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
582          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
583          .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
584          .addMemOperand(MMO);
585      }
586    }
587  }
588
589  // If the spilled operand is the final one, try to change <INSN>R
590  // into <INSN>.
591  int MemOpcode = SystemZ::getMemOpcode(Opcode);
592  if (MemOpcode >= 0) {
593    unsigned NumOps = MI->getNumExplicitOperands();
594    if (OpNum == NumOps - 1) {
595      const MCInstrDesc &MemDesc = get(MemOpcode);
596      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
597      assert(AccessBytes != 0 && "Size of access should be known");
598      assert(AccessBytes <= Size && "Access outside the frame index");
599      uint64_t Offset = Size - AccessBytes;
600      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
601      for (unsigned I = 0; I < OpNum; ++I)
602        MIB.addOperand(MI->getOperand(I));
603      MIB.addFrameIndex(FrameIndex).addImm(Offset);
604      if (MemDesc.TSFlags & SystemZII::HasIndex)
605        MIB.addReg(0);
606      return MIB;
607    }
608  }
609
610  return 0;
611}
612
613MachineInstr *
614SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
615                                        const SmallVectorImpl<unsigned> &Ops,
616                                        MachineInstr* LoadMI) const {
617  return 0;
618}
619
620bool
621SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
622  switch (MI->getOpcode()) {
623  case SystemZ::L128:
624    splitMove(MI, SystemZ::LG);
625    return true;
626
627  case SystemZ::ST128:
628    splitMove(MI, SystemZ::STG);
629    return true;
630
631  case SystemZ::LX:
632    splitMove(MI, SystemZ::LD);
633    return true;
634
635  case SystemZ::STX:
636    splitMove(MI, SystemZ::STD);
637    return true;
638
639  case SystemZ::ADJDYNALLOC:
640    splitAdjDynAlloc(MI);
641    return true;
642
643  default:
644    return false;
645  }
646}
647
648bool SystemZInstrInfo::
649ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
650  assert(Cond.size() == 1 && "Invalid branch condition!");
651  Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY);
652  return false;
653}
654
655uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
656  if (MI->getOpcode() == TargetOpcode::INLINEASM) {
657    const MachineFunction *MF = MI->getParent()->getParent();
658    const char *AsmStr = MI->getOperand(0).getSymbolName();
659    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
660  }
661  return MI->getDesc().getSize();
662}
663
664SystemZII::Branch
665SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
666  switch (MI->getOpcode()) {
667  case SystemZ::BR:
668  case SystemZ::J:
669  case SystemZ::JG:
670    return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
671                             &MI->getOperand(0));
672
673  case SystemZ::BRC:
674  case SystemZ::BRCL:
675    return SystemZII::Branch(SystemZII::BranchNormal,
676                             MI->getOperand(0).getImm(), &MI->getOperand(1));
677
678  case SystemZ::CIJ:
679  case SystemZ::CRJ:
680    return SystemZII::Branch(SystemZII::BranchC, MI->getOperand(2).getImm(),
681                             &MI->getOperand(3));
682
683  case SystemZ::CGIJ:
684  case SystemZ::CGRJ:
685    return SystemZII::Branch(SystemZII::BranchCG, MI->getOperand(2).getImm(),
686                             &MI->getOperand(3));
687
688  default:
689    llvm_unreachable("Unrecognized branch opcode");
690  }
691}
692
693void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
694                                           unsigned &LoadOpcode,
695                                           unsigned &StoreOpcode) const {
696  if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
697    LoadOpcode = SystemZ::L;
698    StoreOpcode = SystemZ::ST32;
699  } else if (RC == &SystemZ::GR64BitRegClass ||
700             RC == &SystemZ::ADDR64BitRegClass) {
701    LoadOpcode = SystemZ::LG;
702    StoreOpcode = SystemZ::STG;
703  } else if (RC == &SystemZ::GR128BitRegClass ||
704             RC == &SystemZ::ADDR128BitRegClass) {
705    LoadOpcode = SystemZ::L128;
706    StoreOpcode = SystemZ::ST128;
707  } else if (RC == &SystemZ::FP32BitRegClass) {
708    LoadOpcode = SystemZ::LE;
709    StoreOpcode = SystemZ::STE;
710  } else if (RC == &SystemZ::FP64BitRegClass) {
711    LoadOpcode = SystemZ::LD;
712    StoreOpcode = SystemZ::STD;
713  } else if (RC == &SystemZ::FP128BitRegClass) {
714    LoadOpcode = SystemZ::LX;
715    StoreOpcode = SystemZ::STX;
716  } else
717    llvm_unreachable("Unsupported regclass to load or store");
718}
719
720unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
721                                              int64_t Offset) const {
722  const MCInstrDesc &MCID = get(Opcode);
723  int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
724  if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
725    // Get the instruction to use for unsigned 12-bit displacements.
726    int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
727    if (Disp12Opcode >= 0)
728      return Disp12Opcode;
729
730    // All address-related instructions can use unsigned 12-bit
731    // displacements.
732    return Opcode;
733  }
734  if (isInt<20>(Offset) && isInt<20>(Offset2)) {
735    // Get the instruction to use for signed 20-bit displacements.
736    int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
737    if (Disp20Opcode >= 0)
738      return Disp20Opcode;
739
740    // Check whether Opcode allows signed 20-bit displacements.
741    if (MCID.TSFlags & SystemZII::Has20BitOffset)
742      return Opcode;
743  }
744  return 0;
745}
746
747// Return true if Mask matches the regexp 0*1+0*, given that zero masks
748// have already been filtered out.  Store the first set bit in LSB and
749// the number of set bits in Length if so.
750static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
751  unsigned First = findFirstSet(Mask);
752  uint64_t Top = (Mask >> First) + 1;
753  if ((Top & -Top) == Top) {
754    LSB = First;
755    Length = findFirstSet(Top);
756    return true;
757  }
758  return false;
759}
760
761bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
762                                   unsigned &Start, unsigned &End) const {
763  // Reject trivial all-zero masks.
764  if (Mask == 0)
765    return false;
766
767  // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
768  // the msb and End specifies the index of the lsb.
769  unsigned LSB, Length;
770  if (isStringOfOnes(Mask, LSB, Length)) {
771    Start = 63 - (LSB + Length - 1);
772    End = 63 - LSB;
773    return true;
774  }
775
776  // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
777  // of the low 1s and End specifies the lsb of the high 1s.
778  if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
779    assert(LSB > 0 && "Bottom bit must be set");
780    assert(LSB + Length < BitSize && "Top bit must be set");
781    Start = 63 - (LSB - 1);
782    End = 63 - (LSB + Length);
783    return true;
784  }
785
786  return false;
787}
788
789unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
790                                               const MachineInstr *MI) const {
791  switch (Opcode) {
792  case SystemZ::CR:
793    return SystemZ::CRJ;
794  case SystemZ::CGR:
795    return SystemZ::CGRJ;
796  case SystemZ::CHI:
797    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
798  case SystemZ::CGHI:
799    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
800  default:
801    return 0;
802  }
803}
804
805void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
806                                     MachineBasicBlock::iterator MBBI,
807                                     unsigned Reg, uint64_t Value) const {
808  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
809  unsigned Opcode;
810  if (isInt<16>(Value))
811    Opcode = SystemZ::LGHI;
812  else if (SystemZ::isImmLL(Value))
813    Opcode = SystemZ::LLILL;
814  else if (SystemZ::isImmLH(Value)) {
815    Opcode = SystemZ::LLILH;
816    Value >>= 16;
817  } else {
818    assert(isInt<32>(Value) && "Huge values not handled yet");
819    Opcode = SystemZ::LGFI;
820  }
821  BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
822}
823