SystemZInstrInfo.cpp revision 93795574785de252703591e7fcc8f052c762f25e
1//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SystemZ implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZInstrInfo.h"
15#include "SystemZTargetMachine.h"
16#include "SystemZInstrBuilder.h"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19
20#define GET_INSTRINFO_CTOR
21#define GET_INSTRMAP_INFO
22#include "SystemZGenInstrInfo.inc"
23
24using namespace llvm;
25
26// Return a mask with Count low bits set.
27static uint64_t allOnes(unsigned int Count) {
28  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
29}
30
31SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
32  : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
33    RI(tm), TM(tm) {
34}
35
36// MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
37// each having the opcode given by NewOpcode.
38void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
39                                 unsigned NewOpcode) const {
40  MachineBasicBlock *MBB = MI->getParent();
41  MachineFunction &MF = *MBB->getParent();
42
43  // Get two load or store instructions.  Use the original instruction for one
44  // of them (arbitarily the second here) and create a clone for the other.
45  MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
46  MBB->insert(MI, EarlierMI);
47
48  // Set up the two 64-bit registers.
49  MachineOperand &HighRegOp = EarlierMI->getOperand(0);
50  MachineOperand &LowRegOp = MI->getOperand(0);
51  HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high));
52  LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low));
53
54  // The address in the first (high) instruction is already correct.
55  // Adjust the offset in the second (low) instruction.
56  MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
57  MachineOperand &LowOffsetOp = MI->getOperand(2);
58  LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
59
60  // Set the opcodes.
61  unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
62  unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
63  assert(HighOpcode && LowOpcode && "Both offsets should be in range");
64
65  EarlierMI->setDesc(get(HighOpcode));
66  MI->setDesc(get(LowOpcode));
67}
68
69// Split ADJDYNALLOC instruction MI.
70void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
71  MachineBasicBlock *MBB = MI->getParent();
72  MachineFunction &MF = *MBB->getParent();
73  MachineFrameInfo *MFFrame = MF.getFrameInfo();
74  MachineOperand &OffsetMO = MI->getOperand(2);
75
76  uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
77                     SystemZMC::CallFrameSize +
78                     OffsetMO.getImm());
79  unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
80  assert(NewOpcode && "No support for huge argument lists yet");
81  MI->setDesc(get(NewOpcode));
82  OffsetMO.setImm(Offset);
83}
84
85// If MI is a simple load or store for a frame object, return the register
86// it loads or stores and set FrameIndex to the index of the frame object.
87// Return 0 otherwise.
88//
89// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
90static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
91                        unsigned Flag) {
92  const MCInstrDesc &MCID = MI->getDesc();
93  if ((MCID.TSFlags & Flag) &&
94      MI->getOperand(1).isFI() &&
95      MI->getOperand(2).getImm() == 0 &&
96      MI->getOperand(3).getReg() == 0) {
97    FrameIndex = MI->getOperand(1).getIndex();
98    return MI->getOperand(0).getReg();
99  }
100  return 0;
101}
102
103unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
104                                               int &FrameIndex) const {
105  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
106}
107
108unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
109                                              int &FrameIndex) const {
110  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
111}
112
113bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
114                                       int &DestFrameIndex,
115                                       int &SrcFrameIndex) const {
116  // Check for MVC 0(Length,FI1),0(FI2)
117  const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
118  if (MI->getOpcode() != SystemZ::MVC ||
119      !MI->getOperand(0).isFI() ||
120      MI->getOperand(1).getImm() != 0 ||
121      !MI->getOperand(3).isFI() ||
122      MI->getOperand(4).getImm() != 0)
123    return false;
124
125  // Check that Length covers the full slots.
126  int64_t Length = MI->getOperand(2).getImm();
127  unsigned FI1 = MI->getOperand(0).getIndex();
128  unsigned FI2 = MI->getOperand(3).getIndex();
129  if (MFI->getObjectSize(FI1) != Length ||
130      MFI->getObjectSize(FI2) != Length)
131    return false;
132
133  DestFrameIndex = FI1;
134  SrcFrameIndex = FI2;
135  return true;
136}
137
138bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
139                                     MachineBasicBlock *&TBB,
140                                     MachineBasicBlock *&FBB,
141                                     SmallVectorImpl<MachineOperand> &Cond,
142                                     bool AllowModify) const {
143  // Most of the code and comments here are boilerplate.
144
145  // Start from the bottom of the block and work up, examining the
146  // terminator instructions.
147  MachineBasicBlock::iterator I = MBB.end();
148  while (I != MBB.begin()) {
149    --I;
150    if (I->isDebugValue())
151      continue;
152
153    // Working from the bottom, when we see a non-terminator instruction, we're
154    // done.
155    if (!isUnpredicatedTerminator(I))
156      break;
157
158    // A terminator that isn't a branch can't easily be handled by this
159    // analysis.
160    if (!I->isBranch())
161      return true;
162
163    // Can't handle indirect branches.
164    SystemZII::Branch Branch(getBranchInfo(I));
165    if (!Branch.Target->isMBB())
166      return true;
167
168    // Punt on compound branches.
169    if (Branch.Type != SystemZII::BranchNormal)
170      return true;
171
172    if (Branch.CCMask == SystemZ::CCMASK_ANY) {
173      // Handle unconditional branches.
174      if (!AllowModify) {
175        TBB = Branch.Target->getMBB();
176        continue;
177      }
178
179      // If the block has any instructions after a JMP, delete them.
180      while (llvm::next(I) != MBB.end())
181        llvm::next(I)->eraseFromParent();
182
183      Cond.clear();
184      FBB = 0;
185
186      // Delete the JMP if it's equivalent to a fall-through.
187      if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
188        TBB = 0;
189        I->eraseFromParent();
190        I = MBB.end();
191        continue;
192      }
193
194      // TBB is used to indicate the unconditinal destination.
195      TBB = Branch.Target->getMBB();
196      continue;
197    }
198
199    // Working from the bottom, handle the first conditional branch.
200    if (Cond.empty()) {
201      // FIXME: add X86-style branch swap
202      FBB = TBB;
203      TBB = Branch.Target->getMBB();
204      Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
205      Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
206      continue;
207    }
208
209    // Handle subsequent conditional branches.
210    assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
211
212    // Only handle the case where all conditional branches branch to the same
213    // destination.
214    if (TBB != Branch.Target->getMBB())
215      return true;
216
217    // If the conditions are the same, we can leave them alone.
218    unsigned OldCCValid = Cond[0].getImm();
219    unsigned OldCCMask = Cond[1].getImm();
220    if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
221      continue;
222
223    // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
224    return false;
225  }
226
227  return false;
228}
229
230unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
231  // Most of the code and comments here are boilerplate.
232  MachineBasicBlock::iterator I = MBB.end();
233  unsigned Count = 0;
234
235  while (I != MBB.begin()) {
236    --I;
237    if (I->isDebugValue())
238      continue;
239    if (!I->isBranch())
240      break;
241    if (!getBranchInfo(I).Target->isMBB())
242      break;
243    // Remove the branch.
244    I->eraseFromParent();
245    I = MBB.end();
246    ++Count;
247  }
248
249  return Count;
250}
251
252bool SystemZInstrInfo::
253ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
254  assert(Cond.size() == 2 && "Invalid condition");
255  Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
256  return false;
257}
258
259unsigned
260SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
261                               MachineBasicBlock *FBB,
262                               const SmallVectorImpl<MachineOperand> &Cond,
263                               DebugLoc DL) const {
264  // In this function we output 32-bit branches, which should always
265  // have enough range.  They can be shortened and relaxed by later code
266  // in the pipeline, if desired.
267
268  // Shouldn't be a fall through.
269  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
270  assert((Cond.size() == 2 || Cond.size() == 0) &&
271         "SystemZ branch conditions have one component!");
272
273  if (Cond.empty()) {
274    // Unconditional branch?
275    assert(!FBB && "Unconditional branch with multiple successors!");
276    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
277    return 1;
278  }
279
280  // Conditional branch.
281  unsigned Count = 0;
282  unsigned CCValid = Cond[0].getImm();
283  unsigned CCMask = Cond[1].getImm();
284  BuildMI(&MBB, DL, get(SystemZ::BRC))
285    .addImm(CCValid).addImm(CCMask).addMBB(TBB);
286  ++Count;
287
288  if (FBB) {
289    // Two-way Conditional branch. Insert the second branch.
290    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
291    ++Count;
292  }
293  return Count;
294}
295
296// If Opcode is a move that has a conditional variant, return that variant,
297// otherwise return 0.
298static unsigned getConditionalMove(unsigned Opcode) {
299  switch (Opcode) {
300  case SystemZ::LR:  return SystemZ::LOCR;
301  case SystemZ::LGR: return SystemZ::LOCGR;
302  default:           return 0;
303  }
304}
305
306bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
307  unsigned Opcode = MI->getOpcode();
308  if (TM.getSubtargetImpl()->hasLoadStoreOnCond() &&
309      getConditionalMove(Opcode))
310    return true;
311  return false;
312}
313
314bool SystemZInstrInfo::
315isProfitableToIfCvt(MachineBasicBlock &MBB,
316                    unsigned NumCycles, unsigned ExtraPredCycles,
317                    const BranchProbability &Probability) const {
318  // For now only convert single instructions.
319  return NumCycles == 1;
320}
321
322bool SystemZInstrInfo::
323isProfitableToIfCvt(MachineBasicBlock &TMBB,
324                    unsigned NumCyclesT, unsigned ExtraPredCyclesT,
325                    MachineBasicBlock &FMBB,
326                    unsigned NumCyclesF, unsigned ExtraPredCyclesF,
327                    const BranchProbability &Probability) const {
328  // For now avoid converting mutually-exclusive cases.
329  return false;
330}
331
332bool SystemZInstrInfo::
333PredicateInstruction(MachineInstr *MI,
334                     const SmallVectorImpl<MachineOperand> &Pred) const {
335  assert(Pred.size() == 2 && "Invalid condition");
336  unsigned CCValid = Pred[0].getImm();
337  unsigned CCMask = Pred[1].getImm();
338  assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
339  unsigned Opcode = MI->getOpcode();
340  if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
341    if (unsigned CondOpcode = getConditionalMove(Opcode)) {
342      MI->setDesc(get(CondOpcode));
343      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
344        .addImm(CCValid).addImm(CCMask)
345        .addReg(SystemZ::CC, RegState::Implicit);;
346      return true;
347    }
348  }
349  return false;
350}
351
352void
353SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
354			      MachineBasicBlock::iterator MBBI, DebugLoc DL,
355			      unsigned DestReg, unsigned SrcReg,
356			      bool KillSrc) const {
357  // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
358  if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
359    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high),
360                RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc);
361    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low),
362                RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc);
363    return;
364  }
365
366  // Everything else needs only one instruction.
367  unsigned Opcode;
368  if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg))
369    Opcode = SystemZ::LR;
370  else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
371    Opcode = SystemZ::LGR;
372  else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
373    Opcode = SystemZ::LER;
374  else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
375    Opcode = SystemZ::LDR;
376  else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
377    Opcode = SystemZ::LXR;
378  else
379    llvm_unreachable("Impossible reg-to-reg copy");
380
381  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
382    .addReg(SrcReg, getKillRegState(KillSrc));
383}
384
385void
386SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
387				      MachineBasicBlock::iterator MBBI,
388				      unsigned SrcReg, bool isKill,
389				      int FrameIdx,
390				      const TargetRegisterClass *RC,
391				      const TargetRegisterInfo *TRI) const {
392  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
393
394  // Callers may expect a single instruction, so keep 128-bit moves
395  // together for now and lower them after register allocation.
396  unsigned LoadOpcode, StoreOpcode;
397  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
398  addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
399		    .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
400}
401
402void
403SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
404				       MachineBasicBlock::iterator MBBI,
405				       unsigned DestReg, int FrameIdx,
406				       const TargetRegisterClass *RC,
407				       const TargetRegisterInfo *TRI) const {
408  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
409
410  // Callers may expect a single instruction, so keep 128-bit moves
411  // together for now and lower them after register allocation.
412  unsigned LoadOpcode, StoreOpcode;
413  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
414  addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
415                    FrameIdx);
416}
417
418// Return true if MI is a simple load or store with a 12-bit displacement
419// and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
420static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
421  const MCInstrDesc &MCID = MI->getDesc();
422  return ((MCID.TSFlags & Flag) &&
423          isUInt<12>(MI->getOperand(2).getImm()) &&
424          MI->getOperand(3).getReg() == 0);
425}
426
427namespace {
428  struct LogicOp {
429    LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
430    LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
431      : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
432
433    operator bool() const { return RegSize; }
434
435    unsigned RegSize, ImmLSB, ImmSize;
436  };
437}
438
439static LogicOp interpretAndImmediate(unsigned Opcode) {
440  switch (Opcode) {
441  case SystemZ::NILL32: return LogicOp(32,  0, 16);
442  case SystemZ::NILH32: return LogicOp(32, 16, 16);
443  case SystemZ::NILL:   return LogicOp(64,  0, 16);
444  case SystemZ::NILH:   return LogicOp(64, 16, 16);
445  case SystemZ::NIHL:   return LogicOp(64, 32, 16);
446  case SystemZ::NIHH:   return LogicOp(64, 48, 16);
447  case SystemZ::NILF32: return LogicOp(32,  0, 32);
448  case SystemZ::NILF:   return LogicOp(64,  0, 32);
449  case SystemZ::NIHF:   return LogicOp(64, 32, 32);
450  default:              return LogicOp();
451  }
452}
453
454// Used to return from convertToThreeAddress after replacing two-address
455// instruction OldMI with three-address instruction NewMI.
456static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
457                                                 MachineInstr *NewMI,
458                                                 LiveVariables *LV) {
459  if (LV) {
460    unsigned NumOps = OldMI->getNumOperands();
461    for (unsigned I = 1; I < NumOps; ++I) {
462      MachineOperand &Op = OldMI->getOperand(I);
463      if (Op.isReg() && Op.isKill())
464        LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
465    }
466  }
467  return NewMI;
468}
469
470MachineInstr *
471SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
472                                        MachineBasicBlock::iterator &MBBI,
473                                        LiveVariables *LV) const {
474  MachineInstr *MI = MBBI;
475  MachineBasicBlock *MBB = MI->getParent();
476
477  unsigned Opcode = MI->getOpcode();
478  unsigned NumOps = MI->getNumOperands();
479
480  // Try to convert something like SLL into SLLK, if supported.
481  // We prefer to keep the two-operand form where possible both
482  // because it tends to be shorter and because some instructions
483  // have memory forms that can be used during spilling.
484  if (TM.getSubtargetImpl()->hasDistinctOps()) {
485    int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
486    if (ThreeOperandOpcode >= 0) {
487      MachineOperand &Dest = MI->getOperand(0);
488      MachineOperand &Src = MI->getOperand(1);
489      MachineInstrBuilder MIB =
490        BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
491        .addOperand(Dest);
492      // Keep the kill state, but drop the tied flag.
493      MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
494      // Keep the remaining operands as-is.
495      for (unsigned I = 2; I < NumOps; ++I)
496        MIB.addOperand(MI->getOperand(I));
497      return finishConvertToThreeAddress(MI, MIB, LV);
498    }
499  }
500
501  // Try to convert an AND into an RISBG-type instruction.
502  if (LogicOp And = interpretAndImmediate(Opcode)) {
503    unsigned NewOpcode;
504    if (And.RegSize == 64)
505      NewOpcode = SystemZ::RISBG;
506    else if (TM.getSubtargetImpl()->hasHighWord())
507      NewOpcode = SystemZ::RISBLG32;
508    else
509      // We can't use RISBG for 32-bit operations because it clobbers the
510      // high word of the destination too.
511      NewOpcode = 0;
512    if (NewOpcode) {
513      uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
514      // AND IMMEDIATE leaves the other bits of the register unchanged.
515      Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
516      unsigned Start, End;
517      if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
518        if (NewOpcode == SystemZ::RISBLG32) {
519          Start &= 31;
520          End &= 31;
521        }
522        MachineOperand &Dest = MI->getOperand(0);
523        MachineOperand &Src = MI->getOperand(1);
524        MachineInstrBuilder MIB =
525          BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
526          .addOperand(Dest).addReg(0)
527          .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
528          .addImm(Start).addImm(End + 128).addImm(0);
529        return finishConvertToThreeAddress(MI, MIB, LV);
530      }
531    }
532  }
533  return 0;
534}
535
536MachineInstr *
537SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
538                                        MachineInstr *MI,
539                                        const SmallVectorImpl<unsigned> &Ops,
540                                        int FrameIndex) const {
541  const MachineFrameInfo *MFI = MF.getFrameInfo();
542  unsigned Size = MFI->getObjectSize(FrameIndex);
543
544  // Eary exit for cases we don't care about
545  if (Ops.size() != 1)
546    return 0;
547
548  unsigned OpNum = Ops[0];
549  assert(Size == MF.getRegInfo()
550         .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
551         "Invalid size combination");
552
553  unsigned Opcode = MI->getOpcode();
554  if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
555    bool Op0IsGPR = (Opcode == SystemZ::LGDR);
556    bool Op1IsGPR = (Opcode == SystemZ::LDGR);
557    // If we're spilling the destination of an LDGR or LGDR, store the
558    // source register instead.
559    if (OpNum == 0) {
560      unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
561      return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
562        .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
563        .addImm(0).addReg(0);
564    }
565    // If we're spilling the source of an LDGR or LGDR, load the
566    // destination register instead.
567    if (OpNum == 1) {
568      unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
569      unsigned Dest = MI->getOperand(0).getReg();
570      return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
571        .addFrameIndex(FrameIndex).addImm(0).addReg(0);
572    }
573  }
574
575  // Look for cases where the source of a simple store or the destination
576  // of a simple load is being spilled.  Try to use MVC instead.
577  //
578  // Although MVC is in practice a fast choice in these cases, it is still
579  // logically a bytewise copy.  This means that we cannot use it if the
580  // load or store is volatile.  It also means that the transformation is
581  // not valid in cases where the two memories partially overlap; however,
582  // that is not a problem here, because we know that one of the memories
583  // is a full frame index.
584  if (OpNum == 0 && MI->hasOneMemOperand()) {
585    MachineMemOperand *MMO = *MI->memoperands_begin();
586    if (MMO->getSize() == Size && !MMO->isVolatile()) {
587      // Handle conversion of loads.
588      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
589        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
590          .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
591          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
592          .addMemOperand(MMO);
593      }
594      // Handle conversion of stores.
595      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
596        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
597          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
598          .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
599          .addMemOperand(MMO);
600      }
601    }
602  }
603
604  // If the spilled operand is the final one, try to change <INSN>R
605  // into <INSN>.
606  int MemOpcode = SystemZ::getMemOpcode(Opcode);
607  if (MemOpcode >= 0) {
608    unsigned NumOps = MI->getNumExplicitOperands();
609    if (OpNum == NumOps - 1) {
610      const MCInstrDesc &MemDesc = get(MemOpcode);
611      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
612      assert(AccessBytes != 0 && "Size of access should be known");
613      assert(AccessBytes <= Size && "Access outside the frame index");
614      uint64_t Offset = Size - AccessBytes;
615      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
616      for (unsigned I = 0; I < OpNum; ++I)
617        MIB.addOperand(MI->getOperand(I));
618      MIB.addFrameIndex(FrameIndex).addImm(Offset);
619      if (MemDesc.TSFlags & SystemZII::HasIndex)
620        MIB.addReg(0);
621      return MIB;
622    }
623  }
624
625  return 0;
626}
627
628MachineInstr *
629SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
630                                        const SmallVectorImpl<unsigned> &Ops,
631                                        MachineInstr* LoadMI) const {
632  return 0;
633}
634
635bool
636SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
637  switch (MI->getOpcode()) {
638  case SystemZ::L128:
639    splitMove(MI, SystemZ::LG);
640    return true;
641
642  case SystemZ::ST128:
643    splitMove(MI, SystemZ::STG);
644    return true;
645
646  case SystemZ::LX:
647    splitMove(MI, SystemZ::LD);
648    return true;
649
650  case SystemZ::STX:
651    splitMove(MI, SystemZ::STD);
652    return true;
653
654  case SystemZ::ADJDYNALLOC:
655    splitAdjDynAlloc(MI);
656    return true;
657
658  default:
659    return false;
660  }
661}
662
663uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
664  if (MI->getOpcode() == TargetOpcode::INLINEASM) {
665    const MachineFunction *MF = MI->getParent()->getParent();
666    const char *AsmStr = MI->getOperand(0).getSymbolName();
667    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
668  }
669  return MI->getDesc().getSize();
670}
671
672SystemZII::Branch
673SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
674  switch (MI->getOpcode()) {
675  case SystemZ::BR:
676  case SystemZ::J:
677  case SystemZ::JG:
678    return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
679                             SystemZ::CCMASK_ANY, &MI->getOperand(0));
680
681  case SystemZ::BRC:
682  case SystemZ::BRCL:
683    return SystemZII::Branch(SystemZII::BranchNormal,
684                             MI->getOperand(0).getImm(),
685                             MI->getOperand(1).getImm(), &MI->getOperand(2));
686
687  case SystemZ::BRCT:
688    return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
689                             SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
690
691  case SystemZ::BRCTG:
692    return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
693                             SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
694
695  case SystemZ::CIJ:
696  case SystemZ::CRJ:
697    return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
698                             MI->getOperand(2).getImm(), &MI->getOperand(3));
699
700  case SystemZ::CGIJ:
701  case SystemZ::CGRJ:
702    return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
703                             MI->getOperand(2).getImm(), &MI->getOperand(3));
704
705  default:
706    llvm_unreachable("Unrecognized branch opcode");
707  }
708}
709
710void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
711                                           unsigned &LoadOpcode,
712                                           unsigned &StoreOpcode) const {
713  if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
714    LoadOpcode = SystemZ::L;
715    StoreOpcode = SystemZ::ST32;
716  } else if (RC == &SystemZ::GR64BitRegClass ||
717             RC == &SystemZ::ADDR64BitRegClass) {
718    LoadOpcode = SystemZ::LG;
719    StoreOpcode = SystemZ::STG;
720  } else if (RC == &SystemZ::GR128BitRegClass ||
721             RC == &SystemZ::ADDR128BitRegClass) {
722    LoadOpcode = SystemZ::L128;
723    StoreOpcode = SystemZ::ST128;
724  } else if (RC == &SystemZ::FP32BitRegClass) {
725    LoadOpcode = SystemZ::LE;
726    StoreOpcode = SystemZ::STE;
727  } else if (RC == &SystemZ::FP64BitRegClass) {
728    LoadOpcode = SystemZ::LD;
729    StoreOpcode = SystemZ::STD;
730  } else if (RC == &SystemZ::FP128BitRegClass) {
731    LoadOpcode = SystemZ::LX;
732    StoreOpcode = SystemZ::STX;
733  } else
734    llvm_unreachable("Unsupported regclass to load or store");
735}
736
737unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
738                                              int64_t Offset) const {
739  const MCInstrDesc &MCID = get(Opcode);
740  int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
741  if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
742    // Get the instruction to use for unsigned 12-bit displacements.
743    int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
744    if (Disp12Opcode >= 0)
745      return Disp12Opcode;
746
747    // All address-related instructions can use unsigned 12-bit
748    // displacements.
749    return Opcode;
750  }
751  if (isInt<20>(Offset) && isInt<20>(Offset2)) {
752    // Get the instruction to use for signed 20-bit displacements.
753    int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
754    if (Disp20Opcode >= 0)
755      return Disp20Opcode;
756
757    // Check whether Opcode allows signed 20-bit displacements.
758    if (MCID.TSFlags & SystemZII::Has20BitOffset)
759      return Opcode;
760  }
761  return 0;
762}
763
764unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
765  switch (Opcode) {
766  case SystemZ::L:    return SystemZ::LT;
767  case SystemZ::LY:   return SystemZ::LT;
768  case SystemZ::LG:   return SystemZ::LTG;
769  case SystemZ::LGF:  return SystemZ::LTGF;
770  case SystemZ::LR:   return SystemZ::LTR;
771  case SystemZ::LGFR: return SystemZ::LTGFR;
772  case SystemZ::LGR:  return SystemZ::LTGR;
773  default:            return 0;
774  }
775}
776
777// Return true if Mask matches the regexp 0*1+0*, given that zero masks
778// have already been filtered out.  Store the first set bit in LSB and
779// the number of set bits in Length if so.
780static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
781  unsigned First = findFirstSet(Mask);
782  uint64_t Top = (Mask >> First) + 1;
783  if ((Top & -Top) == Top) {
784    LSB = First;
785    Length = findFirstSet(Top);
786    return true;
787  }
788  return false;
789}
790
791bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
792                                   unsigned &Start, unsigned &End) const {
793  // Reject trivial all-zero masks.
794  if (Mask == 0)
795    return false;
796
797  // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
798  // the msb and End specifies the index of the lsb.
799  unsigned LSB, Length;
800  if (isStringOfOnes(Mask, LSB, Length)) {
801    Start = 63 - (LSB + Length - 1);
802    End = 63 - LSB;
803    return true;
804  }
805
806  // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
807  // of the low 1s and End specifies the lsb of the high 1s.
808  if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
809    assert(LSB > 0 && "Bottom bit must be set");
810    assert(LSB + Length < BitSize && "Top bit must be set");
811    Start = 63 - (LSB - 1);
812    End = 63 - (LSB + Length);
813    return true;
814  }
815
816  return false;
817}
818
819unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
820                                               const MachineInstr *MI) const {
821  switch (Opcode) {
822  case SystemZ::CR:
823    return SystemZ::CRJ;
824  case SystemZ::CGR:
825    return SystemZ::CGRJ;
826  case SystemZ::CHI:
827    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
828  case SystemZ::CGHI:
829    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
830  default:
831    return 0;
832  }
833}
834
835void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
836                                     MachineBasicBlock::iterator MBBI,
837                                     unsigned Reg, uint64_t Value) const {
838  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
839  unsigned Opcode;
840  if (isInt<16>(Value))
841    Opcode = SystemZ::LGHI;
842  else if (SystemZ::isImmLL(Value))
843    Opcode = SystemZ::LLILL;
844  else if (SystemZ::isImmLH(Value)) {
845    Opcode = SystemZ::LLILH;
846    Value >>= 16;
847  } else {
848    assert(isInt<32>(Value) && "Huge values not handled yet");
849    Opcode = SystemZ::LGFI;
850  }
851  BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
852}
853