SystemZInstrInfo.cpp revision cf1b5bd60ab7cf907bef20c3997ffb249b4fe90a
1//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SystemZ implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZInstrInfo.h"
15#include "SystemZInstrBuilder.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17#include "llvm/Target/TargetMachine.h"
18
19#define GET_INSTRINFO_CTOR
20#define GET_INSTRMAP_INFO
21#include "SystemZGenInstrInfo.inc"
22
23using namespace llvm;
24
25SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
26  : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
27    RI(tm) {
28}
29
30// MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
31// each having the opcode given by NewOpcode.
32void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
33                                 unsigned NewOpcode) const {
34  MachineBasicBlock *MBB = MI->getParent();
35  MachineFunction &MF = *MBB->getParent();
36
37  // Get two load or store instructions.  Use the original instruction for one
38  // of them (arbitarily the second here) and create a clone for the other.
39  MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
40  MBB->insert(MI, EarlierMI);
41
42  // Set up the two 64-bit registers.
43  MachineOperand &HighRegOp = EarlierMI->getOperand(0);
44  MachineOperand &LowRegOp = MI->getOperand(0);
45  HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high));
46  LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low));
47
48  // The address in the first (high) instruction is already correct.
49  // Adjust the offset in the second (low) instruction.
50  MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
51  MachineOperand &LowOffsetOp = MI->getOperand(2);
52  LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
53
54  // Set the opcodes.
55  unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
56  unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
57  assert(HighOpcode && LowOpcode && "Both offsets should be in range");
58
59  EarlierMI->setDesc(get(HighOpcode));
60  MI->setDesc(get(LowOpcode));
61}
62
63// Split ADJDYNALLOC instruction MI.
64void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
65  MachineBasicBlock *MBB = MI->getParent();
66  MachineFunction &MF = *MBB->getParent();
67  MachineFrameInfo *MFFrame = MF.getFrameInfo();
68  MachineOperand &OffsetMO = MI->getOperand(2);
69
70  uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
71                     SystemZMC::CallFrameSize +
72                     OffsetMO.getImm());
73  unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
74  assert(NewOpcode && "No support for huge argument lists yet");
75  MI->setDesc(get(NewOpcode));
76  OffsetMO.setImm(Offset);
77}
78
79// If MI is a simple load or store for a frame object, return the register
80// it loads or stores and set FrameIndex to the index of the frame object.
81// Return 0 otherwise.
82//
83// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
84static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
85                        unsigned Flag) {
86  const MCInstrDesc &MCID = MI->getDesc();
87  if ((MCID.TSFlags & Flag) &&
88      MI->getOperand(1).isFI() &&
89      MI->getOperand(2).getImm() == 0 &&
90      MI->getOperand(3).getReg() == 0) {
91    FrameIndex = MI->getOperand(1).getIndex();
92    return MI->getOperand(0).getReg();
93  }
94  return 0;
95}
96
97unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
98                                               int &FrameIndex) const {
99  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
100}
101
102unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
103                                              int &FrameIndex) const {
104  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
105}
106
107bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
108                                     MachineBasicBlock *&TBB,
109                                     MachineBasicBlock *&FBB,
110                                     SmallVectorImpl<MachineOperand> &Cond,
111                                     bool AllowModify) const {
112  // Most of the code and comments here are boilerplate.
113
114  // Start from the bottom of the block and work up, examining the
115  // terminator instructions.
116  MachineBasicBlock::iterator I = MBB.end();
117  while (I != MBB.begin()) {
118    --I;
119    if (I->isDebugValue())
120      continue;
121
122    // Working from the bottom, when we see a non-terminator instruction, we're
123    // done.
124    if (!isUnpredicatedTerminator(I))
125      break;
126
127    // A terminator that isn't a branch can't easily be handled by this
128    // analysis.
129    if (!I->isBranch())
130      return true;
131
132    // Can't handle indirect branches.
133    SystemZII::Branch Branch(getBranchInfo(I));
134    if (!Branch.Target->isMBB())
135      return true;
136
137    // Punt on compound branches.
138    if (Branch.Type != SystemZII::BranchNormal)
139      return true;
140
141    if (Branch.CCMask == SystemZ::CCMASK_ANY) {
142      // Handle unconditional branches.
143      if (!AllowModify) {
144        TBB = Branch.Target->getMBB();
145        continue;
146      }
147
148      // If the block has any instructions after a JMP, delete them.
149      while (llvm::next(I) != MBB.end())
150        llvm::next(I)->eraseFromParent();
151
152      Cond.clear();
153      FBB = 0;
154
155      // Delete the JMP if it's equivalent to a fall-through.
156      if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
157        TBB = 0;
158        I->eraseFromParent();
159        I = MBB.end();
160        continue;
161      }
162
163      // TBB is used to indicate the unconditinal destination.
164      TBB = Branch.Target->getMBB();
165      continue;
166    }
167
168    // Working from the bottom, handle the first conditional branch.
169    if (Cond.empty()) {
170      // FIXME: add X86-style branch swap
171      FBB = TBB;
172      TBB = Branch.Target->getMBB();
173      Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
174      continue;
175    }
176
177    // Handle subsequent conditional branches.
178    assert(Cond.size() == 1);
179    assert(TBB);
180
181    // Only handle the case where all conditional branches branch to the same
182    // destination.
183    if (TBB != Branch.Target->getMBB())
184      return true;
185
186    // If the conditions are the same, we can leave them alone.
187    unsigned OldCond = Cond[0].getImm();
188    if (OldCond == Branch.CCMask)
189      continue;
190
191    // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
192  }
193
194  return false;
195}
196
197unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
198  // Most of the code and comments here are boilerplate.
199  MachineBasicBlock::iterator I = MBB.end();
200  unsigned Count = 0;
201
202  while (I != MBB.begin()) {
203    --I;
204    if (I->isDebugValue())
205      continue;
206    if (!I->isBranch())
207      break;
208    if (!getBranchInfo(I).Target->isMBB())
209      break;
210    // Remove the branch.
211    I->eraseFromParent();
212    I = MBB.end();
213    ++Count;
214  }
215
216  return Count;
217}
218
219unsigned
220SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
221                               MachineBasicBlock *FBB,
222                               const SmallVectorImpl<MachineOperand> &Cond,
223                               DebugLoc DL) const {
224  // In this function we output 32-bit branches, which should always
225  // have enough range.  They can be shortened and relaxed by later code
226  // in the pipeline, if desired.
227
228  // Shouldn't be a fall through.
229  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
230  assert((Cond.size() == 1 || Cond.size() == 0) &&
231         "SystemZ branch conditions have one component!");
232
233  if (Cond.empty()) {
234    // Unconditional branch?
235    assert(!FBB && "Unconditional branch with multiple successors!");
236    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
237    return 1;
238  }
239
240  // Conditional branch.
241  unsigned Count = 0;
242  unsigned CC = Cond[0].getImm();
243  BuildMI(&MBB, DL, get(SystemZ::BRC)).addImm(CC).addMBB(TBB);
244  ++Count;
245
246  if (FBB) {
247    // Two-way Conditional branch. Insert the second branch.
248    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
249    ++Count;
250  }
251  return Count;
252}
253
254void
255SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
256			      MachineBasicBlock::iterator MBBI, DebugLoc DL,
257			      unsigned DestReg, unsigned SrcReg,
258			      bool KillSrc) const {
259  // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
260  if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
261    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high),
262                RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc);
263    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low),
264                RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc);
265    return;
266  }
267
268  // Everything else needs only one instruction.
269  unsigned Opcode;
270  if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg))
271    Opcode = SystemZ::LR;
272  else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
273    Opcode = SystemZ::LGR;
274  else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
275    Opcode = SystemZ::LER;
276  else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
277    Opcode = SystemZ::LDR;
278  else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
279    Opcode = SystemZ::LXR;
280  else
281    llvm_unreachable("Impossible reg-to-reg copy");
282
283  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
284    .addReg(SrcReg, getKillRegState(KillSrc));
285}
286
287void
288SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
289				      MachineBasicBlock::iterator MBBI,
290				      unsigned SrcReg, bool isKill,
291				      int FrameIdx,
292				      const TargetRegisterClass *RC,
293				      const TargetRegisterInfo *TRI) const {
294  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
295
296  // Callers may expect a single instruction, so keep 128-bit moves
297  // together for now and lower them after register allocation.
298  unsigned LoadOpcode, StoreOpcode;
299  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
300  addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
301		    .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
302}
303
304void
305SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
306				       MachineBasicBlock::iterator MBBI,
307				       unsigned DestReg, int FrameIdx,
308				       const TargetRegisterClass *RC,
309				       const TargetRegisterInfo *TRI) const {
310  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
311
312  // Callers may expect a single instruction, so keep 128-bit moves
313  // together for now and lower them after register allocation.
314  unsigned LoadOpcode, StoreOpcode;
315  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
316  addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
317                    FrameIdx);
318}
319
320// Return true if MI is a simple load or store with a 12-bit displacement
321// and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
322static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
323  const MCInstrDesc &MCID = MI->getDesc();
324  return ((MCID.TSFlags & Flag) &&
325          isUInt<12>(MI->getOperand(2).getImm()) &&
326          MI->getOperand(3).getReg() == 0);
327}
328
329// Return a MachineMemOperand for FrameIndex with flags MMOFlags.
330// Offset is the byte offset from the start of FrameIndex.
331static MachineMemOperand *getFrameMMO(MachineFunction &MF, int FrameIndex,
332                                      uint64_t &Offset, unsigned MMOFlags) {
333  const MachineFrameInfo *MFI = MF.getFrameInfo();
334  const Value *V = PseudoSourceValue::getFixedStack(FrameIndex);
335  return MF.getMachineMemOperand(MachinePointerInfo(V, Offset), MMOFlags,
336                                 MFI->getObjectSize(FrameIndex),
337                                 MFI->getObjectAlignment(FrameIndex));
338}
339
340MachineInstr *
341SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
342                                        MachineInstr *MI,
343                                        const SmallVectorImpl<unsigned> &Ops,
344                                        int FrameIndex) const {
345  const MachineFrameInfo *MFI = MF.getFrameInfo();
346  unsigned Size = MFI->getObjectSize(FrameIndex);
347
348  // Eary exit for cases we don't care about
349  if (Ops.size() != 1)
350    return 0;
351
352  unsigned OpNum = Ops[0];
353  assert(Size == MF.getRegInfo()
354         .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
355         "Invalid size combination");
356
357  // Look for cases where the source of a simple store or the destination
358  // of a simple load is being spilled.  Try to use MVC instead.
359  //
360  // Although MVC is in practice a fast choice in these cases, it is still
361  // logically a bytewise copy.  This means that we cannot use it if the
362  // load or store is volatile.  It also means that the transformation is
363  // not valid in cases where the two memories partially overlap; however,
364  // that is not a problem here, because we know that one of the memories
365  // is a full frame index.
366  if (OpNum == 0 && MI->hasOneMemOperand()) {
367    MachineMemOperand *MMO = *MI->memoperands_begin();
368    if (MMO->getSize() == Size && !MMO->isVolatile()) {
369      // Handle conversion of loads.
370      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
371        uint64_t Offset = 0;
372        MachineMemOperand *FrameMMO = getFrameMMO(MF, FrameIndex, Offset,
373                                                  MachineMemOperand::MOStore);
374        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
375          .addFrameIndex(FrameIndex).addImm(Offset).addImm(Size)
376          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
377          .addMemOperand(FrameMMO).addMemOperand(MMO);
378      }
379      // Handle conversion of stores.
380      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
381        uint64_t Offset = 0;
382        MachineMemOperand *FrameMMO = getFrameMMO(MF, FrameIndex, Offset,
383                                                  MachineMemOperand::MOLoad);
384        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
385          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
386          .addImm(Size).addFrameIndex(FrameIndex).addImm(Offset)
387          .addMemOperand(MMO).addMemOperand(FrameMMO);
388      }
389    }
390  }
391
392  // If the spilled operand is the final one, try to change <INSN>R
393  // into <INSN>.
394  int MemOpcode = SystemZ::getMemOpcode(MI->getOpcode());
395  if (MemOpcode >= 0) {
396    unsigned NumOps = MI->getNumExplicitOperands();
397    if (OpNum == NumOps - 1) {
398      const MCInstrDesc &MemDesc = get(MemOpcode);
399      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
400      assert(AccessBytes != 0 && "Size of access should be known");
401      assert(AccessBytes <= Size && "Access outside the frame index");
402      uint64_t Offset = Size - AccessBytes;
403      MachineMemOperand *FrameMMO = getFrameMMO(MF, FrameIndex, Offset,
404                                                MachineMemOperand::MOLoad);
405      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
406      for (unsigned I = 0; I < OpNum; ++I)
407        MIB.addOperand(MI->getOperand(I));
408      MIB.addFrameIndex(FrameIndex).addImm(Offset);
409      if (MemDesc.TSFlags & SystemZII::HasIndex)
410        MIB.addReg(0);
411      MIB.addMemOperand(FrameMMO);
412      return MIB;
413    }
414  }
415
416  return 0;
417}
418
419MachineInstr *
420SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
421                                        const SmallVectorImpl<unsigned> &Ops,
422                                        MachineInstr* LoadMI) const {
423  return 0;
424}
425
426bool
427SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
428  switch (MI->getOpcode()) {
429  case SystemZ::L128:
430    splitMove(MI, SystemZ::LG);
431    return true;
432
433  case SystemZ::ST128:
434    splitMove(MI, SystemZ::STG);
435    return true;
436
437  case SystemZ::LX:
438    splitMove(MI, SystemZ::LD);
439    return true;
440
441  case SystemZ::STX:
442    splitMove(MI, SystemZ::STD);
443    return true;
444
445  case SystemZ::ADJDYNALLOC:
446    splitAdjDynAlloc(MI);
447    return true;
448
449  default:
450    return false;
451  }
452}
453
454bool SystemZInstrInfo::
455ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
456  assert(Cond.size() == 1 && "Invalid branch condition!");
457  Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY);
458  return false;
459}
460
461uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
462  if (MI->getOpcode() == TargetOpcode::INLINEASM) {
463    const MachineFunction *MF = MI->getParent()->getParent();
464    const char *AsmStr = MI->getOperand(0).getSymbolName();
465    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
466  }
467  return MI->getDesc().getSize();
468}
469
470SystemZII::Branch
471SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
472  switch (MI->getOpcode()) {
473  case SystemZ::BR:
474  case SystemZ::J:
475  case SystemZ::JG:
476    return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
477                             &MI->getOperand(0));
478
479  case SystemZ::BRC:
480  case SystemZ::BRCL:
481    return SystemZII::Branch(SystemZII::BranchNormal,
482                             MI->getOperand(0).getImm(), &MI->getOperand(1));
483
484  case SystemZ::CIJ:
485  case SystemZ::CRJ:
486    return SystemZII::Branch(SystemZII::BranchC, MI->getOperand(2).getImm(),
487                             &MI->getOperand(3));
488
489  case SystemZ::CGIJ:
490  case SystemZ::CGRJ:
491    return SystemZII::Branch(SystemZII::BranchCG, MI->getOperand(2).getImm(),
492                             &MI->getOperand(3));
493
494  default:
495    llvm_unreachable("Unrecognized branch opcode");
496  }
497}
498
499void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
500                                           unsigned &LoadOpcode,
501                                           unsigned &StoreOpcode) const {
502  if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
503    LoadOpcode = SystemZ::L;
504    StoreOpcode = SystemZ::ST32;
505  } else if (RC == &SystemZ::GR64BitRegClass ||
506             RC == &SystemZ::ADDR64BitRegClass) {
507    LoadOpcode = SystemZ::LG;
508    StoreOpcode = SystemZ::STG;
509  } else if (RC == &SystemZ::GR128BitRegClass ||
510             RC == &SystemZ::ADDR128BitRegClass) {
511    LoadOpcode = SystemZ::L128;
512    StoreOpcode = SystemZ::ST128;
513  } else if (RC == &SystemZ::FP32BitRegClass) {
514    LoadOpcode = SystemZ::LE;
515    StoreOpcode = SystemZ::STE;
516  } else if (RC == &SystemZ::FP64BitRegClass) {
517    LoadOpcode = SystemZ::LD;
518    StoreOpcode = SystemZ::STD;
519  } else if (RC == &SystemZ::FP128BitRegClass) {
520    LoadOpcode = SystemZ::LX;
521    StoreOpcode = SystemZ::STX;
522  } else
523    llvm_unreachable("Unsupported regclass to load or store");
524}
525
526unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
527                                              int64_t Offset) const {
528  const MCInstrDesc &MCID = get(Opcode);
529  int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
530  if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
531    // Get the instruction to use for unsigned 12-bit displacements.
532    int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
533    if (Disp12Opcode >= 0)
534      return Disp12Opcode;
535
536    // All address-related instructions can use unsigned 12-bit
537    // displacements.
538    return Opcode;
539  }
540  if (isInt<20>(Offset) && isInt<20>(Offset2)) {
541    // Get the instruction to use for signed 20-bit displacements.
542    int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
543    if (Disp20Opcode >= 0)
544      return Disp20Opcode;
545
546    // Check whether Opcode allows signed 20-bit displacements.
547    if (MCID.TSFlags & SystemZII::Has20BitOffset)
548      return Opcode;
549  }
550  return 0;
551}
552
553unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
554                                               const MachineInstr *MI) const {
555  switch (Opcode) {
556  case SystemZ::CR:
557    return SystemZ::CRJ;
558  case SystemZ::CGR:
559    return SystemZ::CGRJ;
560  case SystemZ::CHI:
561    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
562  case SystemZ::CGHI:
563    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
564  default:
565    return 0;
566  }
567}
568
569void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
570                                     MachineBasicBlock::iterator MBBI,
571                                     unsigned Reg, uint64_t Value) const {
572  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
573  unsigned Opcode;
574  if (isInt<16>(Value))
575    Opcode = SystemZ::LGHI;
576  else if (SystemZ::isImmLL(Value))
577    Opcode = SystemZ::LLILL;
578  else if (SystemZ::isImmLH(Value)) {
579    Opcode = SystemZ::LLILH;
580    Value >>= 16;
581  } else {
582    assert(isInt<32>(Value) && "Huge values not handled yet");
583    Opcode = SystemZ::LGFI;
584  }
585  BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
586}
587