SystemZOperands.td revision 055ac429cc995c78be4aee552ea51be7b32efbf1
1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19
20// Constructs both a DAG pattern and instruction operand for an immediate
21// of type VT.  PRED returns true if a node is acceptable and XFORM returns
22// the operand value associated with the node.  ASMOP is the name of the
23// associated asm operand, and also forms the basis of the asm print method.
24class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
25  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
26  let PrintMethod = "print"##asmop##"Operand";
27  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
28}
29
30// Constructs both a DAG pattern and instruction operand for a PC-relative
31// address with address size VT.  SELF is the name of the operand.
32class PCRelAddress<ValueType vt, string self>
33  : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
34    Operand<vt> {
35  let MIOperandInfo = (ops !cast<Operand>(self));
36}
37
38// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
39// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
40class AddressAsmOperand<string format, string bitsize, string dispsize>
41  : AsmOperandClass {
42  let Name = format##bitsize##"Disp"##dispsize;
43  let ParserMethod = "parse"##format##bitsize;
44  let RenderMethod = "add"##format##"Operands";
45}
46
47// Constructs both a DAG pattern and instruction operand for an addressing mode.
48// The mode is selected by custom code in select<TYPE><DISPSIZE><SUFFIX>()
49// and encoded by custom code in get<FORMAT><DISPSIZE>Encoding().
50// The address registers have BITSIZE bits and displacements have
51// DISPSIZE bits.  NUMOPS is the number of operands that make up an
52// address and OPERANDS lists the types of those operands using (ops ...).
53// FORMAT is the type of addressing mode, which needs to match the names
54// used in AddressAsmOperand.
55class AddressingMode<string type, string bitsize, string dispsize,
56                     string suffix, int numops, string format, dag operands>
57  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
58                   "select"##type##dispsize##suffix,
59                   [add, sub, or, frameindex, z_adjdynalloc]>,
60    Operand<!cast<ValueType>("i"##bitsize)> {
61  let PrintMethod = "print"##format##"Operand";
62  let EncoderMethod = "get"##format##dispsize##"Encoding";
63  let MIOperandInfo = operands;
64  let ParserMatchClass =
65    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize);
66}
67
68// An addressing mode with a base and displacement but no index.
69class BDMode<string type, string bitsize, string dispsize, string suffix>
70  : AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr",
71                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
72                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
73
74// An addressing mode with a base, displacement and index.
75class BDXMode<string type, string bitsize, string dispsize, string suffix>
76  : AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr",
77                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
78                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
79                        !cast<RegisterOperand>("ADDR"##bitsize))>;
80
81//===----------------------------------------------------------------------===//
82// Extracting immediate operands from nodes
83// These all create MVT::i64 nodes to ensure the value is not sign-extended
84// when converted from an SDNode to a MachineOperand later on.
85//===----------------------------------------------------------------------===//
86
87// Bits 0-15 (counting from the lsb).
88def LL16 : SDNodeXForm<imm, [{
89  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
90  return CurDAG->getTargetConstant(Value, MVT::i64);
91}]>;
92
93// Bits 16-31 (counting from the lsb).
94def LH16 : SDNodeXForm<imm, [{
95  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
96  return CurDAG->getTargetConstant(Value, MVT::i64);
97}]>;
98
99// Bits 32-47 (counting from the lsb).
100def HL16 : SDNodeXForm<imm, [{
101  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
102  return CurDAG->getTargetConstant(Value, MVT::i64);
103}]>;
104
105// Bits 48-63 (counting from the lsb).
106def HH16 : SDNodeXForm<imm, [{
107  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
108  return CurDAG->getTargetConstant(Value, MVT::i64);
109}]>;
110
111// Low 32 bits.
112def LF32 : SDNodeXForm<imm, [{
113  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
114  return CurDAG->getTargetConstant(Value, MVT::i64);
115}]>;
116
117// High 32 bits.
118def HF32 : SDNodeXForm<imm, [{
119  uint64_t Value = N->getZExtValue() >> 32;
120  return CurDAG->getTargetConstant(Value, MVT::i64);
121}]>;
122
123// Truncate an immediate to a 8-bit signed quantity.
124def SIMM8 : SDNodeXForm<imm, [{
125  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
126}]>;
127
128// Truncate an immediate to a 8-bit unsigned quantity.
129def UIMM8 : SDNodeXForm<imm, [{
130  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
131}]>;
132
133// Truncate an immediate to a 16-bit signed quantity.
134def SIMM16 : SDNodeXForm<imm, [{
135  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
136}]>;
137
138// Truncate an immediate to a 16-bit unsigned quantity.
139def UIMM16 : SDNodeXForm<imm, [{
140  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
141}]>;
142
143// Truncate an immediate to a 32-bit signed quantity.
144def SIMM32 : SDNodeXForm<imm, [{
145  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
146}]>;
147
148// Truncate an immediate to a 32-bit unsigned quantity.
149def UIMM32 : SDNodeXForm<imm, [{
150  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
151}]>;
152
153// Negate and then truncate an immediate to a 32-bit unsigned quantity.
154def NEGIMM32 : SDNodeXForm<imm, [{
155  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
156}]>;
157
158//===----------------------------------------------------------------------===//
159// Immediate asm operands.
160//===----------------------------------------------------------------------===//
161
162def U4Imm  : ImmediateAsmOperand<"U4Imm">;
163def U6Imm  : ImmediateAsmOperand<"U6Imm">;
164def S8Imm  : ImmediateAsmOperand<"S8Imm">;
165def U8Imm  : ImmediateAsmOperand<"U8Imm">;
166def S16Imm : ImmediateAsmOperand<"S16Imm">;
167def U16Imm : ImmediateAsmOperand<"U16Imm">;
168def S32Imm : ImmediateAsmOperand<"S32Imm">;
169def U32Imm : ImmediateAsmOperand<"U32Imm">;
170
171//===----------------------------------------------------------------------===//
172// 8-bit immediates
173//===----------------------------------------------------------------------===//
174
175def uimm8zx4 : Immediate<i8, [{
176  return isUInt<4>(N->getZExtValue());
177}], NOOP_SDNodeXForm, "U4Imm">;
178
179def uimm8zx6 : Immediate<i8, [{
180  return isUInt<6>(N->getZExtValue());
181}], NOOP_SDNodeXForm, "U6Imm">;
182
183def simm8    : Immediate<i8, [{}], SIMM8, "S8Imm">;
184def uimm8    : Immediate<i8, [{}], UIMM8, "U8Imm">;
185
186//===----------------------------------------------------------------------===//
187// i32 immediates
188//===----------------------------------------------------------------------===//
189
190// Immediates for the lower and upper 16 bits of an i32, with the other
191// bits of the i32 being zero.
192def imm32ll16 : Immediate<i32, [{
193  return SystemZ::isImmLL(N->getZExtValue());
194}], LL16, "U16Imm">;
195
196def imm32lh16 : Immediate<i32, [{
197  return SystemZ::isImmLH(N->getZExtValue());
198}], LH16, "U16Imm">;
199
200// Immediates for the lower and upper 16 bits of an i32, with the other
201// bits of the i32 being one.
202def imm32ll16c : Immediate<i32, [{
203  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
204}], LL16, "U16Imm">;
205
206def imm32lh16c : Immediate<i32, [{
207  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
208}], LH16, "U16Imm">;
209
210// Short immediates
211def imm32sx8 : Immediate<i32, [{
212  return isInt<8>(N->getSExtValue());
213}], SIMM8, "S8Imm">;
214
215def imm32zx8 : Immediate<i32, [{
216  return isUInt<8>(N->getZExtValue());
217}], UIMM8, "U8Imm">;
218
219def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
220
221def imm32sx16 : Immediate<i32, [{
222  return isInt<16>(N->getSExtValue());
223}], SIMM16, "S16Imm">;
224
225def imm32zx16 : Immediate<i32, [{
226  return isUInt<16>(N->getZExtValue());
227}], UIMM16, "U16Imm">;
228
229def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
230
231// Full 32-bit immediates.  we need both signed and unsigned versions
232// because the assembler is picky.  E.g. AFI requires signed operands
233// while NILF requires unsigned ones.
234def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
235def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
236
237def imm32 : ImmLeaf<i32, [{}]>;
238
239//===----------------------------------------------------------------------===//
240// 64-bit immediates
241//===----------------------------------------------------------------------===//
242
243// Immediates for 16-bit chunks of an i64, with the other bits of the
244// i32 being zero.
245def imm64ll16 : Immediate<i64, [{
246  return SystemZ::isImmLL(N->getZExtValue());
247}], LL16, "U16Imm">;
248
249def imm64lh16 : Immediate<i64, [{
250  return SystemZ::isImmLH(N->getZExtValue());
251}], LH16, "U16Imm">;
252
253def imm64hl16 : Immediate<i64, [{
254  return SystemZ::isImmHL(N->getZExtValue());
255}], HL16, "U16Imm">;
256
257def imm64hh16 : Immediate<i64, [{
258  return SystemZ::isImmHH(N->getZExtValue());
259}], HH16, "U16Imm">;
260
261// Immediates for 16-bit chunks of an i64, with the other bits of the
262// i32 being one.
263def imm64ll16c : Immediate<i64, [{
264  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
265}], LL16, "U16Imm">;
266
267def imm64lh16c : Immediate<i64, [{
268  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
269}], LH16, "U16Imm">;
270
271def imm64hl16c : Immediate<i64, [{
272  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
273}], HL16, "U16Imm">;
274
275def imm64hh16c : Immediate<i64, [{
276  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
277}], HH16, "U16Imm">;
278
279// Immediates for the lower and upper 32 bits of an i64, with the other
280// bits of the i32 being zero.
281def imm64lf32 : Immediate<i64, [{
282  return SystemZ::isImmLF(N->getZExtValue());
283}], LF32, "U32Imm">;
284
285def imm64hf32 : Immediate<i64, [{
286  return SystemZ::isImmHF(N->getZExtValue());
287}], HF32, "U32Imm">;
288
289// Immediates for the lower and upper 32 bits of an i64, with the other
290// bits of the i32 being one.
291def imm64lf32c : Immediate<i64, [{
292  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
293}], LF32, "U32Imm">;
294
295def imm64hf32c : Immediate<i64, [{
296  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
297}], HF32, "U32Imm">;
298
299// Short immediates.
300def imm64sx8 : Immediate<i64, [{
301  return isInt<8>(N->getSExtValue());
302}], SIMM8, "S8Imm">;
303
304def imm64sx16 : Immediate<i64, [{
305  return isInt<16>(N->getSExtValue());
306}], SIMM16, "S16Imm">;
307
308def imm64zx16 : Immediate<i64, [{
309  return isUInt<16>(N->getZExtValue());
310}], UIMM16, "U16Imm">;
311
312def imm64sx32 : Immediate<i64, [{
313  return isInt<32>(N->getSExtValue());
314}], SIMM32, "S32Imm">;
315
316def imm64zx32 : Immediate<i64, [{
317  return isUInt<32>(N->getZExtValue());
318}], UIMM32, "U32Imm">;
319
320def imm64zx32n : Immediate<i64, [{
321  return isUInt<32>(-N->getSExtValue());
322}], NEGIMM32, "U32Imm">;
323
324def imm64 : ImmLeaf<i64, [{}]>;
325
326//===----------------------------------------------------------------------===//
327// Floating-point immediates
328//===----------------------------------------------------------------------===//
329
330// Floating-point zero.
331def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
332
333// Floating point negative zero.
334def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
335
336//===----------------------------------------------------------------------===//
337// Symbolic address operands
338//===----------------------------------------------------------------------===//
339
340// PC-relative offsets of a basic block.  The offset is sign-extended
341// and multiplied by 2.
342def brtarget16 : Operand<OtherVT> {
343  let EncoderMethod = "getPC16DBLEncoding";
344}
345def brtarget32 : Operand<OtherVT> {
346  let EncoderMethod = "getPC32DBLEncoding";
347}
348
349// A PC-relative offset of a global value.  The offset is sign-extended
350// and multiplied by 2.
351def pcrel32 : PCRelAddress<i64, "pcrel32"> {
352  let EncoderMethod = "getPC32DBLEncoding";
353}
354
355// A PC-relative offset of a global value when the value is used as a
356// call target.  The offset is sign-extended and multiplied by 2.
357def pcrel16call : PCRelAddress<i64, "pcrel16call"> {
358  let PrintMethod = "printCallOperand";
359  let EncoderMethod = "getPLT16DBLEncoding";
360}
361def pcrel32call : PCRelAddress<i64, "pcrel32call"> {
362  let PrintMethod = "printCallOperand";
363  let EncoderMethod = "getPLT32DBLEncoding";
364}
365
366//===----------------------------------------------------------------------===//
367// Addressing modes
368//===----------------------------------------------------------------------===//
369
370// 12-bit displacement operands.
371def disp12imm32 : Operand<i32>;
372def disp12imm64 : Operand<i64>;
373
374// 20-bit displacement operands.
375def disp20imm32 : Operand<i32>;
376def disp20imm64 : Operand<i64>;
377
378def BDAddr32Disp12  : AddressAsmOperand<"BDAddr",  "32", "12">;
379def BDAddr32Disp20  : AddressAsmOperand<"BDAddr",  "32", "20">;
380def BDAddr64Disp12  : AddressAsmOperand<"BDAddr",  "64", "12">;
381def BDAddr64Disp20  : AddressAsmOperand<"BDAddr",  "64", "20">;
382def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
383def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
384
385// DAG patterns and operands for addressing modes.  Each mode has
386// the form <type><range><group> where:
387//
388// <type> is one of:
389//   shift    : base + displacement (32-bit)
390//   bdaddr   : base + displacement
391//   bdxaddr  : base + displacement + index
392//   laaddr   : like bdxaddr, but used for Load Address operations
393//   dynalloc : base + displacement + index + ADJDYNALLOC
394//
395// <range> is one of:
396//   12       : the displacement is an unsigned 12-bit value
397//   20       : the displacement is a signed 20-bit value
398//
399// <group> is one of:
400//   pair     : used when there is an equivalent instruction with the opposite
401//              range value (12 or 20)
402//   only     : used when there is no equivalent instruction with the opposite
403//              range value
404def shift12only      : BDMode <"BDAddr",   "32", "12", "Only">;
405def shift20only      : BDMode <"BDAddr",   "32", "20", "Only">;
406def bdaddr12only     : BDMode <"BDAddr",   "64", "12", "Only">;
407def bdaddr12pair     : BDMode <"BDAddr",   "64", "12", "Pair">;
408def bdaddr20only     : BDMode <"BDAddr",   "64", "20", "Only">;
409def bdaddr20pair     : BDMode <"BDAddr",   "64", "20", "Pair">;
410def bdxaddr12only    : BDXMode<"BDXAddr",  "64", "12", "Only">;
411def bdxaddr12pair    : BDXMode<"BDXAddr",  "64", "12", "Pair">;
412def bdxaddr20only    : BDXMode<"BDXAddr",  "64", "20", "Only">;
413def bdxaddr20only128 : BDXMode<"BDXAddr",  "64", "20", "Only128">;
414def bdxaddr20pair    : BDXMode<"BDXAddr",  "64", "20", "Pair">;
415def dynalloc12only   : BDXMode<"DynAlloc", "64", "12", "Only">;
416def laaddr12pair     : BDXMode<"LAAddr",   "64", "12", "Pair">;
417def laaddr20pair     : BDXMode<"LAAddr",   "64", "20", "Pair">;
418
419//===----------------------------------------------------------------------===//
420// Miscellaneous
421//===----------------------------------------------------------------------===//
422
423// Access registers.  At present we just use them for accessing the thread
424// pointer, so we don't expose them as register to LLVM.
425def AccessReg : AsmOperandClass {
426  let Name = "AccessReg";
427  let ParserMethod = "parseAccessReg";
428}
429def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
430                           NOOP_SDNodeXForm, "AccessReg"> {
431  let ParserMatchClass = AccessReg;
432}
433
434// A 4-bit condition-code mask.
435def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
436            Operand<i8> {
437  let PrintMethod = "printCond4Operand";
438}
439