SystemZOperands.td revision 65ddcfa8c1c05aeecd9d4fb062bb121e376aaceb
1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19
20// Constructs both a DAG pattern and instruction operand for an immediate
21// of type VT.  PRED returns true if a node is acceptable and XFORM returns
22// the operand value associated with the node.  ASMOP is the name of the
23// associated asm operand, and also forms the basis of the asm print method.
24class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
25  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
26  let PrintMethod = "print"##asmop##"Operand";
27  let DecoderMethod = "decode"##asmop##"Operand";
28  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29}
30
31// Constructs an asm operand for a PC-relative address.  SIZE says how
32// many bits there are.
33class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
34  let PredicateMethod = "isImm";
35  let ParserMethod = "parsePCRel"##size;
36}
37
38// Constructs an operand for a PC-relative address with address type VT.
39// ASMOP is the associated asm operand.
40class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
41  let PrintMethod = "printPCRelOperand";
42  let ParserMatchClass = asmop;
43}
44
45// Constructs both a DAG pattern and instruction operand for a PC-relative
46// address with address size VT.  SELF is the name of the operand and
47// ASMOP is the associated asm operand.
48class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
49  : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
50    PCRelOperand<vt, asmop> {
51  let MIOperandInfo = (ops !cast<Operand>(self));
52}
53
54// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
55// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
56// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
57// is "".
58class AddressAsmOperand<string format, string bitsize, string dispsize,
59                        string length = "">
60  : AsmOperandClass {
61  let Name = format##bitsize##"Disp"##dispsize##length;
62  let ParserMethod = "parse"##format##bitsize;
63  let RenderMethod = "add"##format##"Operands";
64}
65
66// Constructs both a DAG pattern and instruction operand for an addressing mode.
67// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
68// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
69// (base register, displacement, etc.).  SELTYPE is the type of the memory
70// operand for selection purposes; sometimes we want different selection
71// choices for the same underlying addressing mode.  SUFFIX is similarly
72// a suffix appended to the displacement for selection purposes;
73// e.g. we want to reject small 20-bit displacements if a 12-bit form
74// also exists, but we want to accept them otherwise.
75class AddressingMode<string seltype, string bitsize, string dispsize,
76                     string suffix, string length, int numops, string format,
77                     dag operands>
78  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
79                   "select"##seltype##dispsize##suffix##length,
80                   [add, sub, or, frameindex, z_adjdynalloc]>,
81    Operand<!cast<ValueType>("i"##bitsize)> {
82  let PrintMethod = "print"##format##"Operand";
83  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
84  let DecoderMethod =
85    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
86  let MIOperandInfo = operands;
87  let ParserMatchClass =
88    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
89}
90
91// An addressing mode with a base and displacement but no index.
92class BDMode<string type, string bitsize, string dispsize, string suffix>
93  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
94                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
95                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
96
97// An addressing mode with a base, displacement and index.
98class BDXMode<string type, string bitsize, string dispsize, string suffix>
99  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
100                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
101                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
102                        !cast<RegisterOperand>("ADDR"##bitsize))>;
103
104// A BDMode paired with an immediate length operand of LENSIZE bits.
105class BDLMode<string type, string bitsize, string dispsize, string suffix,
106              string lensize>
107  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
108                   "BDLAddr",
109                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
110                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
111                        !cast<Immediate>("imm"##bitsize))>;
112
113//===----------------------------------------------------------------------===//
114// Extracting immediate operands from nodes
115// These all create MVT::i64 nodes to ensure the value is not sign-extended
116// when converted from an SDNode to a MachineOperand later on.
117//===----------------------------------------------------------------------===//
118
119// Bits 0-15 (counting from the lsb).
120def LL16 : SDNodeXForm<imm, [{
121  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
122  return CurDAG->getTargetConstant(Value, MVT::i64);
123}]>;
124
125// Bits 16-31 (counting from the lsb).
126def LH16 : SDNodeXForm<imm, [{
127  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
128  return CurDAG->getTargetConstant(Value, MVT::i64);
129}]>;
130
131// Bits 32-47 (counting from the lsb).
132def HL16 : SDNodeXForm<imm, [{
133  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
134  return CurDAG->getTargetConstant(Value, MVT::i64);
135}]>;
136
137// Bits 48-63 (counting from the lsb).
138def HH16 : SDNodeXForm<imm, [{
139  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
140  return CurDAG->getTargetConstant(Value, MVT::i64);
141}]>;
142
143// Low 32 bits.
144def LF32 : SDNodeXForm<imm, [{
145  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
146  return CurDAG->getTargetConstant(Value, MVT::i64);
147}]>;
148
149// High 32 bits.
150def HF32 : SDNodeXForm<imm, [{
151  uint64_t Value = N->getZExtValue() >> 32;
152  return CurDAG->getTargetConstant(Value, MVT::i64);
153}]>;
154
155// Truncate an immediate to a 8-bit signed quantity.
156def SIMM8 : SDNodeXForm<imm, [{
157  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
158}]>;
159
160// Truncate an immediate to a 8-bit unsigned quantity.
161def UIMM8 : SDNodeXForm<imm, [{
162  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
163}]>;
164
165// Truncate an immediate to a 16-bit signed quantity.
166def SIMM16 : SDNodeXForm<imm, [{
167  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
168}]>;
169
170// Truncate an immediate to a 16-bit unsigned quantity.
171def UIMM16 : SDNodeXForm<imm, [{
172  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
173}]>;
174
175// Truncate an immediate to a 32-bit signed quantity.
176def SIMM32 : SDNodeXForm<imm, [{
177  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
178}]>;
179
180// Truncate an immediate to a 32-bit unsigned quantity.
181def UIMM32 : SDNodeXForm<imm, [{
182  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
183}]>;
184
185// Negate and then truncate an immediate to a 32-bit unsigned quantity.
186def NEGIMM32 : SDNodeXForm<imm, [{
187  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
188}]>;
189
190//===----------------------------------------------------------------------===//
191// Immediate asm operands.
192//===----------------------------------------------------------------------===//
193
194def U4Imm  : ImmediateAsmOperand<"U4Imm">;
195def U6Imm  : ImmediateAsmOperand<"U6Imm">;
196def S8Imm  : ImmediateAsmOperand<"S8Imm">;
197def U8Imm  : ImmediateAsmOperand<"U8Imm">;
198def S16Imm : ImmediateAsmOperand<"S16Imm">;
199def U16Imm : ImmediateAsmOperand<"U16Imm">;
200def S32Imm : ImmediateAsmOperand<"S32Imm">;
201def U32Imm : ImmediateAsmOperand<"U32Imm">;
202
203//===----------------------------------------------------------------------===//
204// 8-bit immediates
205//===----------------------------------------------------------------------===//
206
207def uimm8zx4 : Immediate<i8, [{
208  return isUInt<4>(N->getZExtValue());
209}], NOOP_SDNodeXForm, "U4Imm">;
210
211def uimm8zx6 : Immediate<i8, [{
212  return isUInt<6>(N->getZExtValue());
213}], NOOP_SDNodeXForm, "U6Imm">;
214
215def simm8    : Immediate<i8, [{}], SIMM8, "S8Imm">;
216def uimm8    : Immediate<i8, [{}], UIMM8, "U8Imm">;
217
218//===----------------------------------------------------------------------===//
219// i32 immediates
220//===----------------------------------------------------------------------===//
221
222// Immediates for 8-bit lengths.
223def imm32len8 : Immediate<i32, [{
224  return isUInt<8>(N->getZExtValue() - 1);
225}], NOOP_SDNodeXForm, "U32Imm">;
226
227// Immediates for the lower and upper 16 bits of an i32, with the other
228// bits of the i32 being zero.
229def imm32ll16 : Immediate<i32, [{
230  return SystemZ::isImmLL(N->getZExtValue());
231}], LL16, "U16Imm">;
232
233def imm32lh16 : Immediate<i32, [{
234  return SystemZ::isImmLH(N->getZExtValue());
235}], LH16, "U16Imm">;
236
237// Immediates for the lower and upper 16 bits of an i32, with the other
238// bits of the i32 being one.
239def imm32ll16c : Immediate<i32, [{
240  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
241}], LL16, "U16Imm">;
242
243def imm32lh16c : Immediate<i32, [{
244  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
245}], LH16, "U16Imm">;
246
247// Short immediates
248def imm32sx8 : Immediate<i32, [{
249  return isInt<8>(N->getSExtValue());
250}], SIMM8, "S8Imm">;
251
252def imm32zx8 : Immediate<i32, [{
253  return isUInt<8>(N->getZExtValue());
254}], UIMM8, "U8Imm">;
255
256def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
257
258def imm32sx16 : Immediate<i32, [{
259  return isInt<16>(N->getSExtValue());
260}], SIMM16, "S16Imm">;
261
262def imm32zx16 : Immediate<i32, [{
263  return isUInt<16>(N->getZExtValue());
264}], UIMM16, "U16Imm">;
265
266def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
267
268// Full 32-bit immediates.  we need both signed and unsigned versions
269// because the assembler is picky.  E.g. AFI requires signed operands
270// while NILF requires unsigned ones.
271def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
272def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
273
274def imm32 : ImmLeaf<i32, [{}]>;
275
276//===----------------------------------------------------------------------===//
277// 64-bit immediates
278//===----------------------------------------------------------------------===//
279
280// Immediates for 16-bit chunks of an i64, with the other bits of the
281// i32 being zero.
282def imm64ll16 : Immediate<i64, [{
283  return SystemZ::isImmLL(N->getZExtValue());
284}], LL16, "U16Imm">;
285
286def imm64lh16 : Immediate<i64, [{
287  return SystemZ::isImmLH(N->getZExtValue());
288}], LH16, "U16Imm">;
289
290def imm64hl16 : Immediate<i64, [{
291  return SystemZ::isImmHL(N->getZExtValue());
292}], HL16, "U16Imm">;
293
294def imm64hh16 : Immediate<i64, [{
295  return SystemZ::isImmHH(N->getZExtValue());
296}], HH16, "U16Imm">;
297
298// Immediates for 16-bit chunks of an i64, with the other bits of the
299// i32 being one.
300def imm64ll16c : Immediate<i64, [{
301  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
302}], LL16, "U16Imm">;
303
304def imm64lh16c : Immediate<i64, [{
305  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
306}], LH16, "U16Imm">;
307
308def imm64hl16c : Immediate<i64, [{
309  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
310}], HL16, "U16Imm">;
311
312def imm64hh16c : Immediate<i64, [{
313  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
314}], HH16, "U16Imm">;
315
316// Immediates for the lower and upper 32 bits of an i64, with the other
317// bits of the i32 being zero.
318def imm64lf32 : Immediate<i64, [{
319  return SystemZ::isImmLF(N->getZExtValue());
320}], LF32, "U32Imm">;
321
322def imm64hf32 : Immediate<i64, [{
323  return SystemZ::isImmHF(N->getZExtValue());
324}], HF32, "U32Imm">;
325
326// Immediates for the lower and upper 32 bits of an i64, with the other
327// bits of the i32 being one.
328def imm64lf32c : Immediate<i64, [{
329  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
330}], LF32, "U32Imm">;
331
332def imm64hf32c : Immediate<i64, [{
333  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
334}], HF32, "U32Imm">;
335
336// Short immediates.
337def imm64sx8 : Immediate<i64, [{
338  return isInt<8>(N->getSExtValue());
339}], SIMM8, "S8Imm">;
340
341def imm64sx16 : Immediate<i64, [{
342  return isInt<16>(N->getSExtValue());
343}], SIMM16, "S16Imm">;
344
345def imm64zx16 : Immediate<i64, [{
346  return isUInt<16>(N->getZExtValue());
347}], UIMM16, "U16Imm">;
348
349def imm64sx32 : Immediate<i64, [{
350  return isInt<32>(N->getSExtValue());
351}], SIMM32, "S32Imm">;
352
353def imm64zx32 : Immediate<i64, [{
354  return isUInt<32>(N->getZExtValue());
355}], UIMM32, "U32Imm">;
356
357def imm64zx32n : Immediate<i64, [{
358  return isUInt<32>(-N->getSExtValue());
359}], NEGIMM32, "U32Imm">;
360
361def imm64 : ImmLeaf<i64, [{}]>;
362
363//===----------------------------------------------------------------------===//
364// Floating-point immediates
365//===----------------------------------------------------------------------===//
366
367// Floating-point zero.
368def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
369
370// Floating point negative zero.
371def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
372
373//===----------------------------------------------------------------------===//
374// Symbolic address operands
375//===----------------------------------------------------------------------===//
376
377// PC-relative asm operands.
378def PCRel16 : PCRelAsmOperand<"16">;
379def PCRel32 : PCRelAsmOperand<"32">;
380
381// PC-relative offsets of a basic block.  The offset is sign-extended
382// and multiplied by 2.
383def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
384  let EncoderMethod = "getPC16DBLEncoding";
385  let DecoderMethod = "decodePC16DBLOperand";
386}
387def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
388  let EncoderMethod = "getPC32DBLEncoding";
389  let DecoderMethod = "decodePC32DBLOperand";
390}
391
392// A PC-relative offset of a global value.  The offset is sign-extended
393// and multiplied by 2.
394def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
395  let EncoderMethod = "getPC32DBLEncoding";
396  let DecoderMethod = "decodePC32DBLOperand";
397}
398
399// A PC-relative offset of a global value when the value is used as a
400// call target.  The offset is sign-extended and multiplied by 2.
401def pcrel16call : PCRelAddress<i64, "pcrel16call", PCRel16> {
402  let PrintMethod = "printCallOperand";
403  let EncoderMethod = "getPLT16DBLEncoding";
404  let DecoderMethod = "decodePC16DBLOperand";
405}
406def pcrel32call : PCRelAddress<i64, "pcrel32call", PCRel32> {
407  let PrintMethod = "printCallOperand";
408  let EncoderMethod = "getPLT32DBLEncoding";
409  let DecoderMethod = "decodePC32DBLOperand";
410}
411
412//===----------------------------------------------------------------------===//
413// Addressing modes
414//===----------------------------------------------------------------------===//
415
416// 12-bit displacement operands.
417def disp12imm32 : Operand<i32>;
418def disp12imm64 : Operand<i64>;
419
420// 20-bit displacement operands.
421def disp20imm32 : Operand<i32>;
422def disp20imm64 : Operand<i64>;
423
424def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
425def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
426def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
427def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
428def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
429def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
430def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
431
432// DAG patterns and operands for addressing modes.  Each mode has
433// the form <type><range><group>[<len>] where:
434//
435// <type> is one of:
436//   shift    : base + displacement (32-bit)
437//   bdaddr   : base + displacement
438//   mviaddr  : like bdaddr, but reject cases with a natural index
439//   bdxaddr  : base + displacement + index
440//   laaddr   : like bdxaddr, but used for Load Address operations
441//   dynalloc : base + displacement + index + ADJDYNALLOC
442//   bdladdr  : base + displacement with a length field
443//
444// <range> is one of:
445//   12       : the displacement is an unsigned 12-bit value
446//   20       : the displacement is a signed 20-bit value
447//
448// <group> is one of:
449//   pair     : used when there is an equivalent instruction with the opposite
450//              range value (12 or 20)
451//   only     : used when there is no equivalent instruction with the opposite
452//              range value
453//
454// <len> is one of:
455//
456//   <empty>  : there is no length field
457//   len8     : the length field is 8 bits, with a range of [1, 0x100].
458def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
459def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
460def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
461def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
462def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
463def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
464def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
465def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
466def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
467def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
468def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
469def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
470def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
471def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
472def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
473def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
474def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
475
476//===----------------------------------------------------------------------===//
477// Miscellaneous
478//===----------------------------------------------------------------------===//
479
480// Access registers.  At present we just use them for accessing the thread
481// pointer, so we don't expose them as register to LLVM.
482def AccessReg : AsmOperandClass {
483  let Name = "AccessReg";
484  let ParserMethod = "parseAccessReg";
485}
486def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
487                           NOOP_SDNodeXForm, "AccessReg"> {
488  let ParserMatchClass = AccessReg;
489}
490
491// A 4-bit condition-code mask.
492def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
493            Operand<i8> {
494  let PrintMethod = "printCond4Operand";
495}
496