SystemZRegisterInfo.td revision 5e009541973b7935386055066689902aa7134e2d
1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions.
12//===----------------------------------------------------------------------===//
13
14class SystemZReg<string n> : Register<n> {
15  let Namespace = "SystemZ";
16}
17
18class SystemZRegWithSubregs<string n, list<Register> subregs>
19  : RegisterWithSubRegs<n, subregs> {
20  let Namespace = "SystemZ";
21}
22
23let Namespace = "SystemZ" in {
24def subreg_32bit  : SubRegIndex<32>; // could also be named "subreg_high32"
25// Indices are used in a variety of ways, so don't set an Offset.
26def subreg_high   : SubRegIndex<64, -1>;
27def subreg_low    : SubRegIndex<64, -1>;
28def subreg_low32  : ComposedSubRegIndex<subreg_low, subreg_32bit>;
29}
30
31// Define a register class that contains values of type TYPE and an
32// associated operand called NAME.  SIZE is the size and alignment
33// of the registers and REGLIST is the list of individual registers.
34multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
35  def AsmOperand : AsmOperandClass {
36    let Name = name;
37    let ParserMethod = "parse"##name;
38    let RenderMethod = "addRegOperands";
39  }
40  def Bit : RegisterClass<"SystemZ", [type], size, regList> {
41    let Size = size;
42  }
43  def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
44    let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
45  }
46}
47
48//===----------------------------------------------------------------------===//
49// General-purpose registers
50//===----------------------------------------------------------------------===//
51
52// Lower 32 bits of one of the 16 64-bit general-purpose registers
53class GPR32<bits<16> num, string n> : SystemZReg<n> {
54  let HWEncoding = num;
55}
56
57// One of the 16 64-bit general-purpose registers.
58class GPR64<bits<16> num, string n, GPR32 low>
59 : SystemZRegWithSubregs<n, [low]> {
60  let HWEncoding = num;
61  let SubRegIndices = [subreg_32bit];
62}
63
64// 8 even-odd pairs of GPR64s.
65class GPR128<bits<16> num, string n, GPR64 high, GPR64 low>
66 : SystemZRegWithSubregs<n, [high, low]> {
67  let HWEncoding = num;
68  let SubRegIndices = [subreg_high, subreg_low];
69}
70
71// General-purpose registers
72foreach I = 0-15 in {
73  def R#I#W : GPR32<I, "r"#I>;
74  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"W")>, DwarfRegNum<[I]>;
75}
76
77foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
78  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#I#"D"),
79                     !cast<GPR64>("R"#!add(I, 1)#"D")>;
80}
81
82/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
83/// together with R14 and R15 in one prolog instruction.
84defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uW",  0, 5),
85                                                  (sequence "R%uW", 15, 6))>;
86defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD",  0, 5),
87                                                  (sequence "R%uD", 15, 6))>;
88
89// The architecture doesn't really have any i128 support, so model the
90// register pairs as untyped instead.
91defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
92                                                         R12Q, R10Q, R8Q, R6Q,
93                                                         R14Q)>;
94
95// Base and index registers.  Everything except R0, which in an address
96// context evaluates as 0.
97defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0W)>;
98defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;
99
100// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
101// of a GR128.
102defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;
103
104//===----------------------------------------------------------------------===//
105// Floating-point registers
106//===----------------------------------------------------------------------===//
107
108// Lower 32 bits of one of the 16 64-bit floating-point registers
109class FPR32<bits<16> num, string n> : SystemZReg<n> {
110  let HWEncoding = num;
111}
112
113// One of the 16 64-bit floating-point registers
114class FPR64<bits<16> num, string n, FPR32 low>
115 : SystemZRegWithSubregs<n, [low]> {
116  let HWEncoding = num;
117  let SubRegIndices = [subreg_32bit];
118}
119
120// 8 pairs of FPR64s, with a one-register gap inbetween.
121class FPR128<bits<16> num, string n, FPR64 high, FPR64 low>
122 : SystemZRegWithSubregs<n, [high, low]> {
123  let HWEncoding = num;
124  let SubRegIndices = [subreg_high, subreg_low];
125}
126
127// Floating-point registers
128foreach I = 0-15 in {
129  def F#I#S : FPR32<I, "f"#I>;
130  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
131              DwarfRegNum<[!add(I, 16)]>;
132}
133
134foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
135  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#I#"D"),
136                     !cast<FPR64>("F"#!add(I, 2)#"D")>;
137}
138
139// There's no store-multiple instruction for FPRs, so we're not fussy
140// about the order in which call-saved registers are allocated.
141defm FP32  : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
142defm FP64  : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
143defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
144                                                      F8Q, F9Q, F12Q, F13Q)>;
145
146//===----------------------------------------------------------------------===//
147// Other registers
148//===----------------------------------------------------------------------===//
149
150// The 2-bit condition code field of the PSW.  Every register named in an
151// inline asm needs a class associated with it.
152def CC : SystemZReg<"cc">;
153def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
154