X86Disassembler.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11// 64-bit X86 instruction sets.  The main decode sequence for an assembly
12// instruction in this disassembler is:
13//
14// 1. Read the prefix bytes and determine the attributes of the instruction.
15//    These attributes, recorded in enum attributeBits
16//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
17//    provides a mapping from bitmasks to contexts, which are represented by
18//    enum InstructionContext (ibid.).
19//
20// 2. Read the opcode, and determine what kind of opcode it is.  The
21//    disassembler distinguishes four kinds of opcodes, which are enumerated in
22//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
25//
26// 3. Depending on the opcode type, look in one of four ClassDecision structures
27//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
28//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
29//    a ModRMDecision (ibid.).
30//
31// 4. Some instructions, such as escape opcodes or extended opcodes, or even
32//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
34//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35//    ModR/M byte is required and how to interpret it.
36//
37// 5. After resolving the ModRMDecision, the disassembler has a unique ID
38//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
39//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40//    meanings of its operands.
41//
42// 6. For each operand, its encoding is an entry from OperandEncoding
43//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
44//    OperandType (ibid.).  The encoding indicates how to read it from the
45//    instruction; the type indicates how to interpret the value once it has
46//    been read.  For example, a register operand could be stored in the R/M
47//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
49//    register, for instance).  Given this information, the operands can be
50//    extracted and interpreted.
51//
52// 7. As the last step, the disassembler translates the instruction information
53//    and operands into a format understandable by the client - in this case, an
54//    MCInst for use by the MC infrastructure.
55//
56// The disassembler is broken broadly into two parts: the table emitter that
57// emits the instruction decode tables discussed above during compilation, and
58// the disassembler itself.  The table emitter is documented in more detail in
59// utils/TableGen/X86DisassemblerEmitter.h.
60//
61// X86Disassembler.h contains the public interface for the disassembler,
62//   adhering to the MCDisassembler interface.
63// X86Disassembler.cpp contains the code responsible for step 7, and for
64//   invoking the decoder to execute steps 1-6.
65// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66//   table emitter and the disassembler.
67// X86DisassemblerDecoder.h contains the public interface of the decoder,
68//   factored out into C for possible use by other projects.
69// X86DisassemblerDecoder.c contains the source code of the decoder, which is
70//   responsible for steps 1-6.
71//
72//===----------------------------------------------------------------------===//
73
74#ifndef X86DISASSEMBLER_H
75#define X86DISASSEMBLER_H
76
77#define INSTRUCTION_SPECIFIER_FIELDS \
78  uint16_t operands;
79
80#define INSTRUCTION_IDS               \
81  uint16_t instructionIDs;
82
83#include "X86DisassemblerDecoderCommon.h"
84
85#undef INSTRUCTION_SPECIFIER_FIELDS
86#undef INSTRUCTION_IDS
87
88#include "llvm/MC/MCDisassembler.h"
89
90namespace llvm {
91
92class MCInst;
93class MCInstrInfo;
94class MCSubtargetInfo;
95class MemoryObject;
96class raw_ostream;
97
98namespace X86Disassembler {
99
100/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
101///   All each platform class should have to do is subclass the constructor, and
102///   provide a different disassemblerMode value.
103class X86GenericDisassembler : public MCDisassembler {
104  const MCInstrInfo *MII;
105public:
106  /// Constructor     - Initializes the disassembler.
107  ///
108  X86GenericDisassembler(const MCSubtargetInfo &STI, const MCInstrInfo *MII);
109private:
110  ~X86GenericDisassembler();
111public:
112
113  /// getInstruction - See MCDisassembler.
114  DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
115                              const MemoryObject &region, uint64_t address,
116                              raw_ostream &vStream,
117                              raw_ostream &cStream) const override;
118
119private:
120  DisassemblerMode              fMode;
121};
122
123} // namespace X86Disassembler
124
125} // namespace llvm
126
127#endif
128