X86AsmBackend.cpp revision 35de9946d5fc01d2fed970bdcc7966bad92bdbc4
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/ADT/StringSwitch.h"
13#include "llvm/MC/MCAsmBackend.h"
14#include "llvm/MC/MCAssembler.h"
15#include "llvm/MC/MCELFObjectWriter.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/MC/MCFixupKindInfo.h"
18#include "llvm/MC/MCMachObjectWriter.h"
19#include "llvm/MC/MCObjectWriter.h"
20#include "llvm/MC/MCSectionCOFF.h"
21#include "llvm/MC/MCSectionELF.h"
22#include "llvm/MC/MCSectionMachO.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MachO.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31// Option to allow disabling arithmetic relaxation to workaround PR9807, which
32// is useful when running bitwise comparison experiments on Darwin. We should be
33// able to remove this once PR9807 is resolved.
34static cl::opt<bool>
35MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
36         cl::desc("Disable relaxation of arithmetic instruction for X86"));
37
38static unsigned getFixupKindLog2Size(unsigned Kind) {
39  switch (Kind) {
40  default: llvm_unreachable("invalid fixup kind!");
41  case FK_PCRel_1:
42  case FK_SecRel_1:
43  case FK_Data_1: return 0;
44  case FK_PCRel_2:
45  case FK_SecRel_2:
46  case FK_Data_2: return 1;
47  case FK_PCRel_4:
48  case X86::reloc_riprel_4byte:
49  case X86::reloc_riprel_4byte_movq_load:
50  case X86::reloc_signed_4byte:
51  case X86::reloc_global_offset_table:
52  case FK_SecRel_4:
53  case FK_Data_4: return 2;
54  case FK_PCRel_8:
55  case FK_SecRel_8:
56  case FK_Data_8: return 3;
57  }
58}
59
60namespace {
61
62class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63public:
64  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65                     bool HasRelocationAddend, bool foobar)
66    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
67};
68
69class X86AsmBackend : public MCAsmBackend {
70  StringRef CPU;
71public:
72  X86AsmBackend(const Target &T, StringRef _CPU)
73    : MCAsmBackend(), CPU(_CPU) {}
74
75  unsigned getNumFixupKinds() const {
76    return X86::NumTargetFixupKinds;
77  }
78
79  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
80    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
81      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
82      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
83      { "reloc_signed_4byte", 0, 4 * 8, 0},
84      { "reloc_global_offset_table", 0, 4 * 8, 0}
85    };
86
87    if (Kind < FirstTargetFixupKind)
88      return MCAsmBackend::getFixupKindInfo(Kind);
89
90    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
91           "Invalid kind!");
92    return Infos[Kind - FirstTargetFixupKind];
93  }
94
95  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
96                  uint64_t Value) const {
97    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
98
99    assert(Fixup.getOffset() + Size <= DataSize &&
100           "Invalid fixup offset!");
101
102    // Check that uppper bits are either all zeros or all ones.
103    // Specifically ignore overflow/underflow as long as the leakage is
104    // limited to the lower bits. This is to remain compatible with
105    // other assemblers.
106    assert(isIntN(Size * 8 + 1, Value) &&
107           "Value does not fit in the Fixup field");
108
109    for (unsigned i = 0; i != Size; ++i)
110      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
111  }
112
113  bool mayNeedRelaxation(const MCInst &Inst) const;
114
115  bool fixupNeedsRelaxation(const MCFixup &Fixup,
116                            uint64_t Value,
117                            const MCRelaxableFragment *DF,
118                            const MCAsmLayout &Layout) const;
119
120  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
121
122  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
123};
124} // end anonymous namespace
125
126static unsigned getRelaxedOpcodeBranch(unsigned Op) {
127  switch (Op) {
128  default:
129    return Op;
130
131  case X86::JAE_1: return X86::JAE_4;
132  case X86::JA_1:  return X86::JA_4;
133  case X86::JBE_1: return X86::JBE_4;
134  case X86::JB_1:  return X86::JB_4;
135  case X86::JE_1:  return X86::JE_4;
136  case X86::JGE_1: return X86::JGE_4;
137  case X86::JG_1:  return X86::JG_4;
138  case X86::JLE_1: return X86::JLE_4;
139  case X86::JL_1:  return X86::JL_4;
140  case X86::JMP_1: return X86::JMP_4;
141  case X86::JNE_1: return X86::JNE_4;
142  case X86::JNO_1: return X86::JNO_4;
143  case X86::JNP_1: return X86::JNP_4;
144  case X86::JNS_1: return X86::JNS_4;
145  case X86::JO_1:  return X86::JO_4;
146  case X86::JP_1:  return X86::JP_4;
147  case X86::JS_1:  return X86::JS_4;
148  }
149}
150
151static unsigned getRelaxedOpcodeArith(unsigned Op) {
152  switch (Op) {
153  default:
154    return Op;
155
156    // IMUL
157  case X86::IMUL16rri8: return X86::IMUL16rri;
158  case X86::IMUL16rmi8: return X86::IMUL16rmi;
159  case X86::IMUL32rri8: return X86::IMUL32rri;
160  case X86::IMUL32rmi8: return X86::IMUL32rmi;
161  case X86::IMUL64rri8: return X86::IMUL64rri32;
162  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
163
164    // AND
165  case X86::AND16ri8: return X86::AND16ri;
166  case X86::AND16mi8: return X86::AND16mi;
167  case X86::AND32ri8: return X86::AND32ri;
168  case X86::AND32mi8: return X86::AND32mi;
169  case X86::AND64ri8: return X86::AND64ri32;
170  case X86::AND64mi8: return X86::AND64mi32;
171
172    // OR
173  case X86::OR16ri8: return X86::OR16ri;
174  case X86::OR16mi8: return X86::OR16mi;
175  case X86::OR32ri8: return X86::OR32ri;
176  case X86::OR32mi8: return X86::OR32mi;
177  case X86::OR64ri8: return X86::OR64ri32;
178  case X86::OR64mi8: return X86::OR64mi32;
179
180    // XOR
181  case X86::XOR16ri8: return X86::XOR16ri;
182  case X86::XOR16mi8: return X86::XOR16mi;
183  case X86::XOR32ri8: return X86::XOR32ri;
184  case X86::XOR32mi8: return X86::XOR32mi;
185  case X86::XOR64ri8: return X86::XOR64ri32;
186  case X86::XOR64mi8: return X86::XOR64mi32;
187
188    // ADD
189  case X86::ADD16ri8: return X86::ADD16ri;
190  case X86::ADD16mi8: return X86::ADD16mi;
191  case X86::ADD32ri8: return X86::ADD32ri;
192  case X86::ADD32mi8: return X86::ADD32mi;
193  case X86::ADD64ri8: return X86::ADD64ri32;
194  case X86::ADD64mi8: return X86::ADD64mi32;
195
196    // SUB
197  case X86::SUB16ri8: return X86::SUB16ri;
198  case X86::SUB16mi8: return X86::SUB16mi;
199  case X86::SUB32ri8: return X86::SUB32ri;
200  case X86::SUB32mi8: return X86::SUB32mi;
201  case X86::SUB64ri8: return X86::SUB64ri32;
202  case X86::SUB64mi8: return X86::SUB64mi32;
203
204    // CMP
205  case X86::CMP16ri8: return X86::CMP16ri;
206  case X86::CMP16mi8: return X86::CMP16mi;
207  case X86::CMP32ri8: return X86::CMP32ri;
208  case X86::CMP32mi8: return X86::CMP32mi;
209  case X86::CMP64ri8: return X86::CMP64ri32;
210  case X86::CMP64mi8: return X86::CMP64mi32;
211
212    // PUSH
213  case X86::PUSHi8: return X86::PUSHi32;
214  case X86::PUSHi16: return X86::PUSHi32;
215  case X86::PUSH64i8: return X86::PUSH64i32;
216  case X86::PUSH64i16: return X86::PUSH64i32;
217  }
218}
219
220static unsigned getRelaxedOpcode(unsigned Op) {
221  unsigned R = getRelaxedOpcodeArith(Op);
222  if (R != Op)
223    return R;
224  return getRelaxedOpcodeBranch(Op);
225}
226
227bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
228  // Branches can always be relaxed.
229  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
230    return true;
231
232  if (MCDisableArithRelaxation)
233    return false;
234
235  // Check if this instruction is ever relaxable.
236  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
237    return false;
238
239
240  // Check if it has an expression and is not RIP relative.
241  bool hasExp = false;
242  bool hasRIP = false;
243  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
244    const MCOperand &Op = Inst.getOperand(i);
245    if (Op.isExpr())
246      hasExp = true;
247
248    if (Op.isReg() && Op.getReg() == X86::RIP)
249      hasRIP = true;
250  }
251
252  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
253  // how we do relaxations?
254  return hasExp && !hasRIP;
255}
256
257bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
258                                         uint64_t Value,
259                                         const MCRelaxableFragment *DF,
260                                         const MCAsmLayout &Layout) const {
261  // Relax if the value is too big for a (signed) i8.
262  return int64_t(Value) != int64_t(int8_t(Value));
263}
264
265// FIXME: Can tblgen help at all here to verify there aren't other instructions
266// we can relax?
267void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
268  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
269  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
270
271  if (RelaxedOp == Inst.getOpcode()) {
272    SmallString<256> Tmp;
273    raw_svector_ostream OS(Tmp);
274    Inst.dump_pretty(OS);
275    OS << "\n";
276    report_fatal_error("unexpected instruction to relax: " + OS.str());
277  }
278
279  Res = Inst;
280  Res.setOpcode(RelaxedOp);
281}
282
283/// \brief Write a sequence of optimal nops to the output, covering \p Count
284/// bytes.
285/// \return - true on success, false on failure
286bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
287  static const uint8_t Nops[10][10] = {
288    // nop
289    {0x90},
290    // xchg %ax,%ax
291    {0x66, 0x90},
292    // nopl (%[re]ax)
293    {0x0f, 0x1f, 0x00},
294    // nopl 0(%[re]ax)
295    {0x0f, 0x1f, 0x40, 0x00},
296    // nopl 0(%[re]ax,%[re]ax,1)
297    {0x0f, 0x1f, 0x44, 0x00, 0x00},
298    // nopw 0(%[re]ax,%[re]ax,1)
299    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
300    // nopl 0L(%[re]ax)
301    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
302    // nopl 0L(%[re]ax,%[re]ax,1)
303    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
304    // nopw 0L(%[re]ax,%[re]ax,1)
305    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
306    // nopw %cs:0L(%[re]ax,%[re]ax,1)
307    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
308  };
309
310  // This CPU doesnt support long nops. If needed add more.
311  // FIXME: Can we get this from the subtarget somehow?
312  if (CPU == "generic" || CPU == "i386" || CPU == "i486" || CPU == "i586" ||
313      CPU == "pentium" || CPU == "pentium-mmx" || CPU == "geode") {
314    for (uint64_t i = 0; i < Count; ++i)
315      OW->Write8(0x90);
316    return true;
317  }
318
319  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
320  // needed, then emit a nop of the remaining length.
321  do {
322    const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15);
323    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
324    for (uint8_t i = 0; i < Prefixes; i++)
325      OW->Write8(0x66);
326    const uint8_t Rest = ThisNopLength - Prefixes;
327    for (uint8_t i = 0; i < Rest; i++)
328      OW->Write8(Nops[Rest - 1][i]);
329    Count -= ThisNopLength;
330  } while (Count != 0);
331
332  return true;
333}
334
335/* *** */
336
337namespace {
338
339class ELFX86AsmBackend : public X86AsmBackend {
340public:
341  uint8_t OSABI;
342  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
343    : X86AsmBackend(T, CPU), OSABI(_OSABI) {
344    HasReliableSymbolDifference = true;
345  }
346
347  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
348    const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
349    return ES.getFlags() & ELF::SHF_MERGE;
350  }
351};
352
353class ELFX86_32AsmBackend : public ELFX86AsmBackend {
354public:
355  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
356    : ELFX86AsmBackend(T, OSABI, CPU) {}
357
358  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
359    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
360  }
361};
362
363class ELFX86_64AsmBackend : public ELFX86AsmBackend {
364public:
365  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
366    : ELFX86AsmBackend(T, OSABI, CPU) {}
367
368  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
369    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
370  }
371};
372
373class WindowsX86AsmBackend : public X86AsmBackend {
374  bool Is64Bit;
375
376public:
377  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
378    : X86AsmBackend(T, CPU)
379    , Is64Bit(is64Bit) {
380  }
381
382  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
383    return createX86WinCOFFObjectWriter(OS, Is64Bit);
384  }
385};
386
387namespace CU {
388
389  /// Compact unwind encoding values.
390  enum CompactUnwindEncodings {
391    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
392    /// the return address, then [RE]SP is moved to [RE]BP.
393    UNWIND_MODE_BP_FRAME                   = 0x01000000,
394
395    /// A frameless function with a small constant stack size.
396    UNWIND_MODE_STACK_IMMD                 = 0x02000000,
397
398    /// A frameless function with a large constant stack size.
399    UNWIND_MODE_STACK_IND                  = 0x03000000,
400
401    /// No compact unwind encoding is available.
402    UNWIND_MODE_DWARF                      = 0x04000000,
403
404    /// Mask for encoding the frame registers.
405    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
406
407    /// Mask for encoding the frameless registers.
408    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
409  };
410
411} // end CU namespace
412
413class DarwinX86AsmBackend : public X86AsmBackend {
414  const MCRegisterInfo &MRI;
415
416  /// \brief Number of registers that can be saved in a compact unwind encoding.
417  enum { CU_NUM_SAVED_REGS = 6 };
418
419  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
420  bool Is64Bit;
421
422  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
423  unsigned PushInstrSize;                ///< Size of a "push" instruction.
424  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
425  unsigned StackDivide;                  ///< Amount to adjust stack stize by.
426protected:
427  /// \brief Implementation of algorithm to generate the compact unwind encoding
428  /// for the CFI instructions.
429  uint32_t
430  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
431    if (Instrs.empty()) return 0;
432
433    // Reset the saved registers.
434    unsigned SavedRegIdx = 0;
435    memset(SavedRegs, 0, sizeof(SavedRegs));
436
437    bool HasFP = false;
438
439    // Encode that we are using EBP/RBP as the frame pointer.
440    uint32_t CompactUnwindEncoding = 0;
441
442    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
443    unsigned InstrOffset = 0;
444    unsigned StackAdjust = 0;
445    unsigned StackSize = 0;
446    unsigned PrevStackSize = 0;
447    unsigned NumDefCFAOffsets = 0;
448
449    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
450      const MCCFIInstruction &Inst = Instrs[i];
451
452      switch (Inst.getOperation()) {
453      default:
454        // Any other CFI directives indicate a frame that we aren't prepared
455        // to represent via compact unwind, so just bail out.
456        return 0;
457      case MCCFIInstruction::OpDefCfaRegister: {
458        // Defines a frame pointer. E.g.
459        //
460        //     movq %rsp, %rbp
461        //  L0:
462        //     .cfi_def_cfa_register %rbp
463        //
464        HasFP = true;
465        assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
466               (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
467
468        // Reset the counts.
469        memset(SavedRegs, 0, sizeof(SavedRegs));
470        StackAdjust = 0;
471        SavedRegIdx = 0;
472        InstrOffset += MoveInstrSize;
473        break;
474      }
475      case MCCFIInstruction::OpDefCfaOffset: {
476        // Defines a new offset for the CFA. E.g.
477        //
478        //  With frame:
479        //
480        //     pushq %rbp
481        //  L0:
482        //     .cfi_def_cfa_offset 16
483        //
484        //  Without frame:
485        //
486        //     subq $72, %rsp
487        //  L0:
488        //     .cfi_def_cfa_offset 80
489        //
490        PrevStackSize = StackSize;
491        StackSize = std::abs(Inst.getOffset()) / StackDivide;
492        ++NumDefCFAOffsets;
493        break;
494      }
495      case MCCFIInstruction::OpOffset: {
496        // Defines a "push" of a callee-saved register. E.g.
497        //
498        //     pushq %r15
499        //     pushq %r14
500        //     pushq %rbx
501        //  L0:
502        //     subq $120, %rsp
503        //  L1:
504        //     .cfi_offset %rbx, -40
505        //     .cfi_offset %r14, -32
506        //     .cfi_offset %r15, -24
507        //
508        if (SavedRegIdx == CU_NUM_SAVED_REGS)
509          // If there are too many saved registers, we cannot use a compact
510          // unwind encoding.
511          return CU::UNWIND_MODE_DWARF;
512
513        unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
514        SavedRegs[SavedRegIdx++] = Reg;
515        StackAdjust += OffsetSize;
516        InstrOffset += PushInstrSize;
517        break;
518      }
519      }
520    }
521
522    StackAdjust /= StackDivide;
523
524    if (HasFP) {
525      if ((StackAdjust & 0xFF) != StackAdjust)
526        // Offset was too big for a compact unwind encoding.
527        return CU::UNWIND_MODE_DWARF;
528
529      // Get the encoding of the saved registers when we have a frame pointer.
530      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
531      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
532
533      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
534      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
535      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
536    } else {
537      // If the amount of the stack allocation is the size of a register, then
538      // we "push" the RAX/EAX register onto the stack instead of adjusting the
539      // stack pointer with a SUB instruction. We don't support the push of the
540      // RAX/EAX register with compact unwind. So we check for that situation
541      // here.
542      if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
543           StackSize - PrevStackSize == 1) ||
544          (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
545        return CU::UNWIND_MODE_DWARF;
546
547      SubtractInstrIdx += InstrOffset;
548      ++StackAdjust;
549
550      if ((StackSize & 0xFF) == StackSize) {
551        // Frameless stack with a small stack size.
552        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
553
554        // Encode the stack size.
555        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
556      } else {
557        if ((StackAdjust & 0x7) != StackAdjust)
558          // The extra stack adjustments are too big for us to handle.
559          return CU::UNWIND_MODE_DWARF;
560
561        // Frameless stack with an offset too large for us to encode compactly.
562        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
563
564        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
565        // instruction.
566        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
567
568        // Encode any extra stack stack adjustments (done via push
569        // instructions).
570        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
571      }
572
573      // Encode the number of registers saved. (Reverse the list first.)
574      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
575      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
576
577      // Get the encoding of the saved registers when we don't have a frame
578      // pointer.
579      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
580      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
581
582      // Encode the register encoding.
583      CompactUnwindEncoding |=
584        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
585    }
586
587    return CompactUnwindEncoding;
588  }
589
590private:
591  /// \brief Get the compact unwind number for a given register. The number
592  /// corresponds to the enum lists in compact_unwind_encoding.h.
593  int getCompactUnwindRegNum(unsigned Reg) const {
594    static const uint16_t CU32BitRegs[7] = {
595      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
596    };
597    static const uint16_t CU64BitRegs[] = {
598      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
599    };
600    const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
601    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
602      if (*CURegs == Reg)
603        return Idx;
604
605    return -1;
606  }
607
608  /// \brief Return the registers encoded for a compact encoding with a frame
609  /// pointer.
610  uint32_t encodeCompactUnwindRegistersWithFrame() const {
611    // Encode the registers in the order they were saved --- 3-bits per
612    // register. The list of saved registers is assumed to be in reverse
613    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
614    uint32_t RegEnc = 0;
615    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
616      unsigned Reg = SavedRegs[i];
617      if (Reg == 0) break;
618
619      int CURegNum = getCompactUnwindRegNum(Reg);
620      if (CURegNum == -1) return ~0U;
621
622      // Encode the 3-bit register number in order, skipping over 3-bits for
623      // each register.
624      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
625    }
626
627    assert((RegEnc & 0x3FFFF) == RegEnc &&
628           "Invalid compact register encoding!");
629    return RegEnc;
630  }
631
632  /// \brief Create the permutation encoding used with frameless stacks. It is
633  /// passed the number of registers to be saved and an array of the registers
634  /// saved.
635  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
636    // The saved registers are numbered from 1 to 6. In order to encode the
637    // order in which they were saved, we re-number them according to their
638    // place in the register order. The re-numbering is relative to the last
639    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
640    // that order:
641    //
642    //    Orig  Re-Num
643    //    ----  ------
644    //     6       6
645    //     2       2
646    //     4       3
647    //     5       3
648    //
649    for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
650      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
651      if (CUReg == -1) return ~0U;
652      SavedRegs[i] = CUReg;
653    }
654
655    // Reverse the list.
656    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
657
658    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
659    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
660      unsigned Countless = 0;
661      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
662        if (SavedRegs[j] < SavedRegs[i])
663          ++Countless;
664
665      RenumRegs[i] = SavedRegs[i] - Countless - 1;
666    }
667
668    // Take the renumbered values and encode them into a 10-bit number.
669    uint32_t permutationEncoding = 0;
670    switch (RegCount) {
671    case 6:
672      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
673                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
674                             +     RenumRegs[4];
675      break;
676    case 5:
677      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
678                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
679                             +     RenumRegs[5];
680      break;
681    case 4:
682      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
683                             + 3 * RenumRegs[4] +      RenumRegs[5];
684      break;
685    case 3:
686      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
687                             +     RenumRegs[5];
688      break;
689    case 2:
690      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
691      break;
692    case 1:
693      permutationEncoding |=       RenumRegs[5];
694      break;
695    }
696
697    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
698           "Invalid compact register encoding!");
699    return permutationEncoding;
700  }
701
702public:
703  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
704                      bool Is64Bit)
705    : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
706    memset(SavedRegs, 0, sizeof(SavedRegs));
707    OffsetSize = Is64Bit ? 8 : 4;
708    MoveInstrSize = Is64Bit ? 3 : 2;
709    StackDivide = Is64Bit ? 8 : 4;
710    PushInstrSize = 1;
711  }
712};
713
714class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
715  bool SupportsCU;
716public:
717  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
718                         StringRef CPU, bool SupportsCU)
719    : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {}
720
721  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
722    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
723                                     MachO::CPU_TYPE_I386,
724                                     MachO::CPU_SUBTYPE_I386_ALL);
725  }
726
727  /// \brief Generate the compact unwind encoding for the CFI instructions.
728  virtual uint32_t
729  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
730    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
731  }
732};
733
734class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
735  bool SupportsCU;
736  const MachO::CPUSubTypeX86 Subtype;
737public:
738  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
739                         StringRef CPU, bool SupportsCU,
740                         MachO::CPUSubTypeX86 st)
741    : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU),
742      Subtype(st) {
743    HasReliableSymbolDifference = true;
744  }
745
746  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
747    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
748                                     MachO::CPU_TYPE_X86_64, Subtype);
749  }
750
751  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
752    // Temporary labels in the string literals sections require symbols. The
753    // issue is that the x86_64 relocation format does not allow symbol +
754    // offset, and so the linker does not have enough information to resolve the
755    // access to the appropriate atom unless an external relocation is used. For
756    // non-cstring sections, we expect the compiler to use a non-temporary label
757    // for anything that could have an addend pointing outside the symbol.
758    //
759    // See <rdar://problem/4765733>.
760    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
761    return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
762  }
763
764  virtual bool isSectionAtomizable(const MCSection &Section) const {
765    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
766    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
767    switch (SMO.getType()) {
768    default:
769      return true;
770
771    case MCSectionMachO::S_4BYTE_LITERALS:
772    case MCSectionMachO::S_8BYTE_LITERALS:
773    case MCSectionMachO::S_16BYTE_LITERALS:
774    case MCSectionMachO::S_LITERAL_POINTERS:
775    case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
776    case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
777    case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
778    case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
779    case MCSectionMachO::S_INTERPOSING:
780      return false;
781    }
782  }
783
784  /// \brief Generate the compact unwind encoding for the CFI instructions.
785  virtual uint32_t
786  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
787    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
788  }
789};
790
791} // end anonymous namespace
792
793MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
794                                           const MCRegisterInfo &MRI,
795                                           StringRef TT,
796                                           StringRef CPU) {
797  Triple TheTriple(TT);
798
799  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
800    return new DarwinX86_32AsmBackend(T, MRI, CPU,
801                                      TheTriple.isMacOSX() &&
802                                      !TheTriple.isMacOSXVersionLT(10, 7));
803
804  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
805    return new WindowsX86AsmBackend(T, false, CPU);
806
807  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
808  return new ELFX86_32AsmBackend(T, OSABI, CPU);
809}
810
811MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
812                                           const MCRegisterInfo &MRI,
813                                           StringRef TT,
814                                           StringRef CPU) {
815  Triple TheTriple(TT);
816
817  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
818    MachO::CPUSubTypeX86 CS =
819        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
820            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
821            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
822    return new DarwinX86_64AsmBackend(T, MRI, CPU,
823                                      TheTriple.isMacOSX() &&
824                                      !TheTriple.isMacOSXVersionLT(10, 7), CS);
825  }
826
827  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
828    return new WindowsX86AsmBackend(T, true, CPU);
829
830  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
831  return new ELFX86_64AsmBackend(T, OSABI, CPU);
832}
833