X86AsmBackend.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/ADT/StringSwitch.h"
13#include "llvm/MC/MCAsmBackend.h"
14#include "llvm/MC/MCAssembler.h"
15#include "llvm/MC/MCELFObjectWriter.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/MC/MCFixupKindInfo.h"
18#include "llvm/MC/MCMachObjectWriter.h"
19#include "llvm/MC/MCObjectWriter.h"
20#include "llvm/MC/MCSectionCOFF.h"
21#include "llvm/MC/MCSectionELF.h"
22#include "llvm/MC/MCSectionMachO.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MachO.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31// Option to allow disabling arithmetic relaxation to workaround PR9807, which
32// is useful when running bitwise comparison experiments on Darwin. We should be
33// able to remove this once PR9807 is resolved.
34static cl::opt<bool>
35MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
36         cl::desc("Disable relaxation of arithmetic instruction for X86"));
37
38static unsigned getFixupKindLog2Size(unsigned Kind) {
39  switch (Kind) {
40  default: llvm_unreachable("invalid fixup kind!");
41  case FK_PCRel_1:
42  case FK_SecRel_1:
43  case FK_Data_1: return 0;
44  case FK_PCRel_2:
45  case FK_SecRel_2:
46  case FK_Data_2: return 1;
47  case FK_PCRel_4:
48  case X86::reloc_riprel_4byte:
49  case X86::reloc_riprel_4byte_movq_load:
50  case X86::reloc_signed_4byte:
51  case X86::reloc_global_offset_table:
52  case FK_SecRel_4:
53  case FK_Data_4: return 2;
54  case FK_PCRel_8:
55  case FK_SecRel_8:
56  case FK_Data_8: return 3;
57  }
58}
59
60namespace {
61
62class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63public:
64  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65                     bool HasRelocationAddend, bool foobar)
66    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
67};
68
69class X86AsmBackend : public MCAsmBackend {
70  StringRef CPU;
71  bool HasNopl;
72public:
73  X86AsmBackend(const Target &T, StringRef _CPU)
74    : MCAsmBackend(), CPU(_CPU) {
75    HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
76              CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
77              CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
78              CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
79              CPU != "c3" && CPU != "c3-2";
80  }
81
82  unsigned getNumFixupKinds() const override {
83    return X86::NumTargetFixupKinds;
84  }
85
86  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
87    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
88      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
89      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
90      { "reloc_signed_4byte", 0, 4 * 8, 0},
91      { "reloc_global_offset_table", 0, 4 * 8, 0}
92    };
93
94    if (Kind < FirstTargetFixupKind)
95      return MCAsmBackend::getFixupKindInfo(Kind);
96
97    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
98           "Invalid kind!");
99    return Infos[Kind - FirstTargetFixupKind];
100  }
101
102  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
103                  uint64_t Value, bool IsPCRel) const override {
104    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
105
106    assert(Fixup.getOffset() + Size <= DataSize &&
107           "Invalid fixup offset!");
108
109    // Check that uppper bits are either all zeros or all ones.
110    // Specifically ignore overflow/underflow as long as the leakage is
111    // limited to the lower bits. This is to remain compatible with
112    // other assemblers.
113    assert(isIntN(Size * 8 + 1, Value) &&
114           "Value does not fit in the Fixup field");
115
116    for (unsigned i = 0; i != Size; ++i)
117      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
118  }
119
120  bool mayNeedRelaxation(const MCInst &Inst) const override;
121
122  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
123                            const MCRelaxableFragment *DF,
124                            const MCAsmLayout &Layout) const override;
125
126  void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
127
128  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
129};
130} // end anonymous namespace
131
132static unsigned getRelaxedOpcodeBranch(unsigned Op) {
133  switch (Op) {
134  default:
135    return Op;
136
137  case X86::JAE_1: return X86::JAE_4;
138  case X86::JA_1:  return X86::JA_4;
139  case X86::JBE_1: return X86::JBE_4;
140  case X86::JB_1:  return X86::JB_4;
141  case X86::JE_1:  return X86::JE_4;
142  case X86::JGE_1: return X86::JGE_4;
143  case X86::JG_1:  return X86::JG_4;
144  case X86::JLE_1: return X86::JLE_4;
145  case X86::JL_1:  return X86::JL_4;
146  case X86::JMP_1: return X86::JMP_4;
147  case X86::JNE_1: return X86::JNE_4;
148  case X86::JNO_1: return X86::JNO_4;
149  case X86::JNP_1: return X86::JNP_4;
150  case X86::JNS_1: return X86::JNS_4;
151  case X86::JO_1:  return X86::JO_4;
152  case X86::JP_1:  return X86::JP_4;
153  case X86::JS_1:  return X86::JS_4;
154  }
155}
156
157static unsigned getRelaxedOpcodeArith(unsigned Op) {
158  switch (Op) {
159  default:
160    return Op;
161
162    // IMUL
163  case X86::IMUL16rri8: return X86::IMUL16rri;
164  case X86::IMUL16rmi8: return X86::IMUL16rmi;
165  case X86::IMUL32rri8: return X86::IMUL32rri;
166  case X86::IMUL32rmi8: return X86::IMUL32rmi;
167  case X86::IMUL64rri8: return X86::IMUL64rri32;
168  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
169
170    // AND
171  case X86::AND16ri8: return X86::AND16ri;
172  case X86::AND16mi8: return X86::AND16mi;
173  case X86::AND32ri8: return X86::AND32ri;
174  case X86::AND32mi8: return X86::AND32mi;
175  case X86::AND64ri8: return X86::AND64ri32;
176  case X86::AND64mi8: return X86::AND64mi32;
177
178    // OR
179  case X86::OR16ri8: return X86::OR16ri;
180  case X86::OR16mi8: return X86::OR16mi;
181  case X86::OR32ri8: return X86::OR32ri;
182  case X86::OR32mi8: return X86::OR32mi;
183  case X86::OR64ri8: return X86::OR64ri32;
184  case X86::OR64mi8: return X86::OR64mi32;
185
186    // XOR
187  case X86::XOR16ri8: return X86::XOR16ri;
188  case X86::XOR16mi8: return X86::XOR16mi;
189  case X86::XOR32ri8: return X86::XOR32ri;
190  case X86::XOR32mi8: return X86::XOR32mi;
191  case X86::XOR64ri8: return X86::XOR64ri32;
192  case X86::XOR64mi8: return X86::XOR64mi32;
193
194    // ADD
195  case X86::ADD16ri8: return X86::ADD16ri;
196  case X86::ADD16mi8: return X86::ADD16mi;
197  case X86::ADD32ri8: return X86::ADD32ri;
198  case X86::ADD32mi8: return X86::ADD32mi;
199  case X86::ADD64ri8: return X86::ADD64ri32;
200  case X86::ADD64mi8: return X86::ADD64mi32;
201
202    // SUB
203  case X86::SUB16ri8: return X86::SUB16ri;
204  case X86::SUB16mi8: return X86::SUB16mi;
205  case X86::SUB32ri8: return X86::SUB32ri;
206  case X86::SUB32mi8: return X86::SUB32mi;
207  case X86::SUB64ri8: return X86::SUB64ri32;
208  case X86::SUB64mi8: return X86::SUB64mi32;
209
210    // CMP
211  case X86::CMP16ri8: return X86::CMP16ri;
212  case X86::CMP16mi8: return X86::CMP16mi;
213  case X86::CMP32ri8: return X86::CMP32ri;
214  case X86::CMP32mi8: return X86::CMP32mi;
215  case X86::CMP64ri8: return X86::CMP64ri32;
216  case X86::CMP64mi8: return X86::CMP64mi32;
217
218    // PUSH
219  case X86::PUSH32i8:  return X86::PUSHi32;
220  case X86::PUSH16i8:  return X86::PUSHi16;
221  case X86::PUSH64i8:  return X86::PUSH64i32;
222  case X86::PUSH64i16: return X86::PUSH64i32;
223  }
224}
225
226static unsigned getRelaxedOpcode(unsigned Op) {
227  unsigned R = getRelaxedOpcodeArith(Op);
228  if (R != Op)
229    return R;
230  return getRelaxedOpcodeBranch(Op);
231}
232
233bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
234  // Branches can always be relaxed.
235  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
236    return true;
237
238  if (MCDisableArithRelaxation)
239    return false;
240
241  // Check if this instruction is ever relaxable.
242  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
243    return false;
244
245
246  // Check if it has an expression and is not RIP relative.
247  bool hasExp = false;
248  bool hasRIP = false;
249  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
250    const MCOperand &Op = Inst.getOperand(i);
251    if (Op.isExpr())
252      hasExp = true;
253
254    if (Op.isReg() && Op.getReg() == X86::RIP)
255      hasRIP = true;
256  }
257
258  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
259  // how we do relaxations?
260  return hasExp && !hasRIP;
261}
262
263bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
264                                         uint64_t Value,
265                                         const MCRelaxableFragment *DF,
266                                         const MCAsmLayout &Layout) const {
267  // Relax if the value is too big for a (signed) i8.
268  return int64_t(Value) != int64_t(int8_t(Value));
269}
270
271// FIXME: Can tblgen help at all here to verify there aren't other instructions
272// we can relax?
273void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
274  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
275  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
276
277  if (RelaxedOp == Inst.getOpcode()) {
278    SmallString<256> Tmp;
279    raw_svector_ostream OS(Tmp);
280    Inst.dump_pretty(OS);
281    OS << "\n";
282    report_fatal_error("unexpected instruction to relax: " + OS.str());
283  }
284
285  Res = Inst;
286  Res.setOpcode(RelaxedOp);
287}
288
289/// \brief Write a sequence of optimal nops to the output, covering \p Count
290/// bytes.
291/// \return - true on success, false on failure
292bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
293  static const uint8_t Nops[10][10] = {
294    // nop
295    {0x90},
296    // xchg %ax,%ax
297    {0x66, 0x90},
298    // nopl (%[re]ax)
299    {0x0f, 0x1f, 0x00},
300    // nopl 0(%[re]ax)
301    {0x0f, 0x1f, 0x40, 0x00},
302    // nopl 0(%[re]ax,%[re]ax,1)
303    {0x0f, 0x1f, 0x44, 0x00, 0x00},
304    // nopw 0(%[re]ax,%[re]ax,1)
305    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
306    // nopl 0L(%[re]ax)
307    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
308    // nopl 0L(%[re]ax,%[re]ax,1)
309    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
310    // nopw 0L(%[re]ax,%[re]ax,1)
311    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
312    // nopw %cs:0L(%[re]ax,%[re]ax,1)
313    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
314  };
315
316  // This CPU doesn't support long nops. If needed add more.
317  // FIXME: Can we get this from the subtarget somehow?
318  // FIXME: We could generated something better than plain 0x90.
319  if (!HasNopl) {
320    for (uint64_t i = 0; i < Count; ++i)
321      OW->Write8(0x90);
322    return true;
323  }
324
325  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
326  // needed, then emit a nop of the remaining length.
327  do {
328    const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15);
329    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
330    for (uint8_t i = 0; i < Prefixes; i++)
331      OW->Write8(0x66);
332    const uint8_t Rest = ThisNopLength - Prefixes;
333    for (uint8_t i = 0; i < Rest; i++)
334      OW->Write8(Nops[Rest - 1][i]);
335    Count -= ThisNopLength;
336  } while (Count != 0);
337
338  return true;
339}
340
341/* *** */
342
343namespace {
344
345class ELFX86AsmBackend : public X86AsmBackend {
346public:
347  uint8_t OSABI;
348  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
349      : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
350};
351
352class ELFX86_32AsmBackend : public ELFX86AsmBackend {
353public:
354  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
355    : ELFX86AsmBackend(T, OSABI, CPU) {}
356
357  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
358    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
359  }
360};
361
362class ELFX86_64AsmBackend : public ELFX86AsmBackend {
363public:
364  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
365    : ELFX86AsmBackend(T, OSABI, CPU) {}
366
367  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
368    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
369  }
370};
371
372class WindowsX86AsmBackend : public X86AsmBackend {
373  bool Is64Bit;
374
375public:
376  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
377    : X86AsmBackend(T, CPU)
378    , Is64Bit(is64Bit) {
379  }
380
381  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
382    return createX86WinCOFFObjectWriter(OS, Is64Bit);
383  }
384};
385
386namespace CU {
387
388  /// Compact unwind encoding values.
389  enum CompactUnwindEncodings {
390    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
391    /// the return address, then [RE]SP is moved to [RE]BP.
392    UNWIND_MODE_BP_FRAME                   = 0x01000000,
393
394    /// A frameless function with a small constant stack size.
395    UNWIND_MODE_STACK_IMMD                 = 0x02000000,
396
397    /// A frameless function with a large constant stack size.
398    UNWIND_MODE_STACK_IND                  = 0x03000000,
399
400    /// No compact unwind encoding is available.
401    UNWIND_MODE_DWARF                      = 0x04000000,
402
403    /// Mask for encoding the frame registers.
404    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
405
406    /// Mask for encoding the frameless registers.
407    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
408  };
409
410} // end CU namespace
411
412class DarwinX86AsmBackend : public X86AsmBackend {
413  const MCRegisterInfo &MRI;
414
415  /// \brief Number of registers that can be saved in a compact unwind encoding.
416  enum { CU_NUM_SAVED_REGS = 6 };
417
418  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
419  bool Is64Bit;
420
421  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
422  unsigned PushInstrSize;                ///< Size of a "push" instruction.
423  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
424  unsigned StackDivide;                  ///< Amount to adjust stack stize by.
425protected:
426  /// \brief Implementation of algorithm to generate the compact unwind encoding
427  /// for the CFI instructions.
428  uint32_t
429  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
430    if (Instrs.empty()) return 0;
431
432    // Reset the saved registers.
433    unsigned SavedRegIdx = 0;
434    memset(SavedRegs, 0, sizeof(SavedRegs));
435
436    bool HasFP = false;
437
438    // Encode that we are using EBP/RBP as the frame pointer.
439    uint32_t CompactUnwindEncoding = 0;
440
441    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
442    unsigned InstrOffset = 0;
443    unsigned StackAdjust = 0;
444    unsigned StackSize = 0;
445    unsigned PrevStackSize = 0;
446    unsigned NumDefCFAOffsets = 0;
447
448    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
449      const MCCFIInstruction &Inst = Instrs[i];
450
451      switch (Inst.getOperation()) {
452      default:
453        // Any other CFI directives indicate a frame that we aren't prepared
454        // to represent via compact unwind, so just bail out.
455        return 0;
456      case MCCFIInstruction::OpDefCfaRegister: {
457        // Defines a frame pointer. E.g.
458        //
459        //     movq %rsp, %rbp
460        //  L0:
461        //     .cfi_def_cfa_register %rbp
462        //
463        HasFP = true;
464        assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
465               (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
466
467        // Reset the counts.
468        memset(SavedRegs, 0, sizeof(SavedRegs));
469        StackAdjust = 0;
470        SavedRegIdx = 0;
471        InstrOffset += MoveInstrSize;
472        break;
473      }
474      case MCCFIInstruction::OpDefCfaOffset: {
475        // Defines a new offset for the CFA. E.g.
476        //
477        //  With frame:
478        //
479        //     pushq %rbp
480        //  L0:
481        //     .cfi_def_cfa_offset 16
482        //
483        //  Without frame:
484        //
485        //     subq $72, %rsp
486        //  L0:
487        //     .cfi_def_cfa_offset 80
488        //
489        PrevStackSize = StackSize;
490        StackSize = std::abs(Inst.getOffset()) / StackDivide;
491        ++NumDefCFAOffsets;
492        break;
493      }
494      case MCCFIInstruction::OpOffset: {
495        // Defines a "push" of a callee-saved register. E.g.
496        //
497        //     pushq %r15
498        //     pushq %r14
499        //     pushq %rbx
500        //  L0:
501        //     subq $120, %rsp
502        //  L1:
503        //     .cfi_offset %rbx, -40
504        //     .cfi_offset %r14, -32
505        //     .cfi_offset %r15, -24
506        //
507        if (SavedRegIdx == CU_NUM_SAVED_REGS)
508          // If there are too many saved registers, we cannot use a compact
509          // unwind encoding.
510          return CU::UNWIND_MODE_DWARF;
511
512        unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
513        SavedRegs[SavedRegIdx++] = Reg;
514        StackAdjust += OffsetSize;
515        InstrOffset += PushInstrSize;
516        break;
517      }
518      }
519    }
520
521    StackAdjust /= StackDivide;
522
523    if (HasFP) {
524      if ((StackAdjust & 0xFF) != StackAdjust)
525        // Offset was too big for a compact unwind encoding.
526        return CU::UNWIND_MODE_DWARF;
527
528      // Get the encoding of the saved registers when we have a frame pointer.
529      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
530      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
531
532      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
533      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
534      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
535    } else {
536      // If the amount of the stack allocation is the size of a register, then
537      // we "push" the RAX/EAX register onto the stack instead of adjusting the
538      // stack pointer with a SUB instruction. We don't support the push of the
539      // RAX/EAX register with compact unwind. So we check for that situation
540      // here.
541      if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
542           StackSize - PrevStackSize == 1) ||
543          (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
544        return CU::UNWIND_MODE_DWARF;
545
546      SubtractInstrIdx += InstrOffset;
547      ++StackAdjust;
548
549      if ((StackSize & 0xFF) == StackSize) {
550        // Frameless stack with a small stack size.
551        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
552
553        // Encode the stack size.
554        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
555      } else {
556        if ((StackAdjust & 0x7) != StackAdjust)
557          // The extra stack adjustments are too big for us to handle.
558          return CU::UNWIND_MODE_DWARF;
559
560        // Frameless stack with an offset too large for us to encode compactly.
561        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
562
563        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
564        // instruction.
565        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
566
567        // Encode any extra stack stack adjustments (done via push
568        // instructions).
569        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
570      }
571
572      // Encode the number of registers saved. (Reverse the list first.)
573      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
574      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
575
576      // Get the encoding of the saved registers when we don't have a frame
577      // pointer.
578      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
579      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
580
581      // Encode the register encoding.
582      CompactUnwindEncoding |=
583        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
584    }
585
586    return CompactUnwindEncoding;
587  }
588
589private:
590  /// \brief Get the compact unwind number for a given register. The number
591  /// corresponds to the enum lists in compact_unwind_encoding.h.
592  int getCompactUnwindRegNum(unsigned Reg) const {
593    static const uint16_t CU32BitRegs[7] = {
594      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
595    };
596    static const uint16_t CU64BitRegs[] = {
597      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
598    };
599    const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
600    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
601      if (*CURegs == Reg)
602        return Idx;
603
604    return -1;
605  }
606
607  /// \brief Return the registers encoded for a compact encoding with a frame
608  /// pointer.
609  uint32_t encodeCompactUnwindRegistersWithFrame() const {
610    // Encode the registers in the order they were saved --- 3-bits per
611    // register. The list of saved registers is assumed to be in reverse
612    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
613    uint32_t RegEnc = 0;
614    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
615      unsigned Reg = SavedRegs[i];
616      if (Reg == 0) break;
617
618      int CURegNum = getCompactUnwindRegNum(Reg);
619      if (CURegNum == -1) return ~0U;
620
621      // Encode the 3-bit register number in order, skipping over 3-bits for
622      // each register.
623      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
624    }
625
626    assert((RegEnc & 0x3FFFF) == RegEnc &&
627           "Invalid compact register encoding!");
628    return RegEnc;
629  }
630
631  /// \brief Create the permutation encoding used with frameless stacks. It is
632  /// passed the number of registers to be saved and an array of the registers
633  /// saved.
634  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
635    // The saved registers are numbered from 1 to 6. In order to encode the
636    // order in which they were saved, we re-number them according to their
637    // place in the register order. The re-numbering is relative to the last
638    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
639    // that order:
640    //
641    //    Orig  Re-Num
642    //    ----  ------
643    //     6       6
644    //     2       2
645    //     4       3
646    //     5       3
647    //
648    for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
649      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
650      if (CUReg == -1) return ~0U;
651      SavedRegs[i] = CUReg;
652    }
653
654    // Reverse the list.
655    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
656
657    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
658    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
659      unsigned Countless = 0;
660      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
661        if (SavedRegs[j] < SavedRegs[i])
662          ++Countless;
663
664      RenumRegs[i] = SavedRegs[i] - Countless - 1;
665    }
666
667    // Take the renumbered values and encode them into a 10-bit number.
668    uint32_t permutationEncoding = 0;
669    switch (RegCount) {
670    case 6:
671      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
672                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
673                             +     RenumRegs[4];
674      break;
675    case 5:
676      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
677                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
678                             +     RenumRegs[5];
679      break;
680    case 4:
681      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
682                             + 3 * RenumRegs[4] +      RenumRegs[5];
683      break;
684    case 3:
685      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
686                             +     RenumRegs[5];
687      break;
688    case 2:
689      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
690      break;
691    case 1:
692      permutationEncoding |=       RenumRegs[5];
693      break;
694    }
695
696    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
697           "Invalid compact register encoding!");
698    return permutationEncoding;
699  }
700
701public:
702  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
703                      bool Is64Bit)
704    : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
705    memset(SavedRegs, 0, sizeof(SavedRegs));
706    OffsetSize = Is64Bit ? 8 : 4;
707    MoveInstrSize = Is64Bit ? 3 : 2;
708    StackDivide = Is64Bit ? 8 : 4;
709    PushInstrSize = 1;
710  }
711};
712
713class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
714  bool SupportsCU;
715public:
716  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
717                         StringRef CPU, bool SupportsCU)
718    : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {}
719
720  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
721    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
722                                     MachO::CPU_TYPE_I386,
723                                     MachO::CPU_SUBTYPE_I386_ALL);
724  }
725
726  /// \brief Generate the compact unwind encoding for the CFI instructions.
727  uint32_t generateCompactUnwindEncoding(
728                             ArrayRef<MCCFIInstruction> Instrs) const override {
729    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
730  }
731};
732
733class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
734  bool SupportsCU;
735  const MachO::CPUSubTypeX86 Subtype;
736public:
737  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
738                         StringRef CPU, bool SupportsCU,
739                         MachO::CPUSubTypeX86 st)
740    : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU),
741      Subtype(st) {
742  }
743
744  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
745    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
746                                     MachO::CPU_TYPE_X86_64, Subtype);
747  }
748
749  bool doesSectionRequireSymbols(const MCSection &Section) const override {
750    // Temporary labels in the string literals sections require symbols. The
751    // issue is that the x86_64 relocation format does not allow symbol +
752    // offset, and so the linker does not have enough information to resolve the
753    // access to the appropriate atom unless an external relocation is used. For
754    // non-cstring sections, we expect the compiler to use a non-temporary label
755    // for anything that could have an addend pointing outside the symbol.
756    //
757    // See <rdar://problem/4765733>.
758    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
759    return SMO.getType() == MachO::S_CSTRING_LITERALS;
760  }
761
762  bool isSectionAtomizable(const MCSection &Section) const override {
763    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
764    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
765    switch (SMO.getType()) {
766    default:
767      return true;
768
769    case MachO::S_4BYTE_LITERALS:
770    case MachO::S_8BYTE_LITERALS:
771    case MachO::S_16BYTE_LITERALS:
772    case MachO::S_LITERAL_POINTERS:
773    case MachO::S_NON_LAZY_SYMBOL_POINTERS:
774    case MachO::S_LAZY_SYMBOL_POINTERS:
775    case MachO::S_MOD_INIT_FUNC_POINTERS:
776    case MachO::S_MOD_TERM_FUNC_POINTERS:
777    case MachO::S_INTERPOSING:
778      return false;
779    }
780  }
781
782  /// \brief Generate the compact unwind encoding for the CFI instructions.
783  uint32_t generateCompactUnwindEncoding(
784                             ArrayRef<MCCFIInstruction> Instrs) const override {
785    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
786  }
787};
788
789} // end anonymous namespace
790
791MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
792                                           const MCRegisterInfo &MRI,
793                                           StringRef TT,
794                                           StringRef CPU) {
795  Triple TheTriple(TT);
796
797  if (TheTriple.isOSBinFormatMachO())
798    return new DarwinX86_32AsmBackend(T, MRI, CPU,
799                                      TheTriple.isMacOSX() &&
800                                      !TheTriple.isMacOSXVersionLT(10, 7));
801
802  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
803    return new WindowsX86AsmBackend(T, false, CPU);
804
805  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
806  return new ELFX86_32AsmBackend(T, OSABI, CPU);
807}
808
809MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
810                                           const MCRegisterInfo &MRI,
811                                           StringRef TT,
812                                           StringRef CPU) {
813  Triple TheTriple(TT);
814
815  if (TheTriple.isOSBinFormatMachO()) {
816    MachO::CPUSubTypeX86 CS =
817        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
818            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
819            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
820    return new DarwinX86_64AsmBackend(T, MRI, CPU,
821                                      TheTriple.isMacOSX() &&
822                                      !TheTriple.isMacOSXVersionLT(10, 7), CS);
823  }
824
825  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
826    return new WindowsX86AsmBackend(T, true, CPU);
827
828  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
829  return new ELFX86_64AsmBackend(T, OSABI, CPU);
830}
831