X86AsmBackend.cpp revision 5943d4e3eea9ad5ef55618c075262337463aafa9
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/ADT/StringSwitch.h"
13#include "llvm/MC/MCAsmBackend.h"
14#include "llvm/MC/MCAssembler.h"
15#include "llvm/MC/MCELFObjectWriter.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/MC/MCFixupKindInfo.h"
18#include "llvm/MC/MCMachObjectWriter.h"
19#include "llvm/MC/MCObjectWriter.h"
20#include "llvm/MC/MCSectionCOFF.h"
21#include "llvm/MC/MCSectionELF.h"
22#include "llvm/MC/MCSectionMachO.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MachO.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31// Option to allow disabling arithmetic relaxation to workaround PR9807, which
32// is useful when running bitwise comparison experiments on Darwin. We should be
33// able to remove this once PR9807 is resolved.
34static cl::opt<bool>
35MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
36         cl::desc("Disable relaxation of arithmetic instruction for X86"));
37
38static unsigned getFixupKindLog2Size(unsigned Kind) {
39  switch (Kind) {
40  default: llvm_unreachable("invalid fixup kind!");
41  case FK_PCRel_1:
42  case FK_SecRel_1:
43  case FK_Data_1: return 0;
44  case FK_PCRel_2:
45  case FK_SecRel_2:
46  case FK_Data_2: return 1;
47  case FK_PCRel_4:
48  case X86::reloc_riprel_4byte:
49  case X86::reloc_riprel_4byte_movq_load:
50  case X86::reloc_signed_4byte:
51  case X86::reloc_global_offset_table:
52  case FK_SecRel_4:
53  case FK_Data_4: return 2;
54  case FK_PCRel_8:
55  case FK_SecRel_8:
56  case FK_Data_8: return 3;
57  }
58}
59
60namespace {
61
62class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63public:
64  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65                     bool HasRelocationAddend, bool foobar)
66    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
67};
68
69class X86AsmBackend : public MCAsmBackend {
70  StringRef CPU;
71  bool HasNopl;
72public:
73  X86AsmBackend(const Target &T, StringRef _CPU)
74    : MCAsmBackend(), CPU(_CPU) {
75    HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
76              CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
77              CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
78              CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
79              CPU != "c3" && CPU != "c3-2";
80  }
81
82  unsigned getNumFixupKinds() const {
83    return X86::NumTargetFixupKinds;
84  }
85
86  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
87    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
88      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
89      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
90      { "reloc_signed_4byte", 0, 4 * 8, 0},
91      { "reloc_global_offset_table", 0, 4 * 8, 0}
92    };
93
94    if (Kind < FirstTargetFixupKind)
95      return MCAsmBackend::getFixupKindInfo(Kind);
96
97    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
98           "Invalid kind!");
99    return Infos[Kind - FirstTargetFixupKind];
100  }
101
102  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
103                  uint64_t Value) const {
104    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
105
106    assert(Fixup.getOffset() + Size <= DataSize &&
107           "Invalid fixup offset!");
108
109    // Check that uppper bits are either all zeros or all ones.
110    // Specifically ignore overflow/underflow as long as the leakage is
111    // limited to the lower bits. This is to remain compatible with
112    // other assemblers.
113    assert(isIntN(Size * 8 + 1, Value) &&
114           "Value does not fit in the Fixup field");
115
116    for (unsigned i = 0; i != Size; ++i)
117      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
118  }
119
120  bool mayNeedRelaxation(const MCInst &Inst) const;
121
122  bool fixupNeedsRelaxation(const MCFixup &Fixup,
123                            uint64_t Value,
124                            const MCRelaxableFragment *DF,
125                            const MCAsmLayout &Layout) const;
126
127  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
128
129  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
130};
131} // end anonymous namespace
132
133static unsigned getRelaxedOpcodeBranch(unsigned Op) {
134  switch (Op) {
135  default:
136    return Op;
137
138  case X86::JAE_1: return X86::JAE_4;
139  case X86::JA_1:  return X86::JA_4;
140  case X86::JBE_1: return X86::JBE_4;
141  case X86::JB_1:  return X86::JB_4;
142  case X86::JE_1:  return X86::JE_4;
143  case X86::JGE_1: return X86::JGE_4;
144  case X86::JG_1:  return X86::JG_4;
145  case X86::JLE_1: return X86::JLE_4;
146  case X86::JL_1:  return X86::JL_4;
147  case X86::JMP_1: return X86::JMP_4;
148  case X86::JNE_1: return X86::JNE_4;
149  case X86::JNO_1: return X86::JNO_4;
150  case X86::JNP_1: return X86::JNP_4;
151  case X86::JNS_1: return X86::JNS_4;
152  case X86::JO_1:  return X86::JO_4;
153  case X86::JP_1:  return X86::JP_4;
154  case X86::JS_1:  return X86::JS_4;
155  }
156}
157
158static unsigned getRelaxedOpcodeArith(unsigned Op) {
159  switch (Op) {
160  default:
161    return Op;
162
163    // IMUL
164  case X86::IMUL16rri8: return X86::IMUL16rri;
165  case X86::IMUL16rmi8: return X86::IMUL16rmi;
166  case X86::IMUL32rri8: return X86::IMUL32rri;
167  case X86::IMUL32rmi8: return X86::IMUL32rmi;
168  case X86::IMUL64rri8: return X86::IMUL64rri32;
169  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
170
171    // AND
172  case X86::AND16ri8: return X86::AND16ri;
173  case X86::AND16mi8: return X86::AND16mi;
174  case X86::AND32ri8: return X86::AND32ri;
175  case X86::AND32mi8: return X86::AND32mi;
176  case X86::AND64ri8: return X86::AND64ri32;
177  case X86::AND64mi8: return X86::AND64mi32;
178
179    // OR
180  case X86::OR16ri8: return X86::OR16ri;
181  case X86::OR16mi8: return X86::OR16mi;
182  case X86::OR32ri8: return X86::OR32ri;
183  case X86::OR32mi8: return X86::OR32mi;
184  case X86::OR64ri8: return X86::OR64ri32;
185  case X86::OR64mi8: return X86::OR64mi32;
186
187    // XOR
188  case X86::XOR16ri8: return X86::XOR16ri;
189  case X86::XOR16mi8: return X86::XOR16mi;
190  case X86::XOR32ri8: return X86::XOR32ri;
191  case X86::XOR32mi8: return X86::XOR32mi;
192  case X86::XOR64ri8: return X86::XOR64ri32;
193  case X86::XOR64mi8: return X86::XOR64mi32;
194
195    // ADD
196  case X86::ADD16ri8: return X86::ADD16ri;
197  case X86::ADD16mi8: return X86::ADD16mi;
198  case X86::ADD32ri8: return X86::ADD32ri;
199  case X86::ADD32mi8: return X86::ADD32mi;
200  case X86::ADD64ri8: return X86::ADD64ri32;
201  case X86::ADD64mi8: return X86::ADD64mi32;
202
203    // SUB
204  case X86::SUB16ri8: return X86::SUB16ri;
205  case X86::SUB16mi8: return X86::SUB16mi;
206  case X86::SUB32ri8: return X86::SUB32ri;
207  case X86::SUB32mi8: return X86::SUB32mi;
208  case X86::SUB64ri8: return X86::SUB64ri32;
209  case X86::SUB64mi8: return X86::SUB64mi32;
210
211    // CMP
212  case X86::CMP16ri8: return X86::CMP16ri;
213  case X86::CMP16mi8: return X86::CMP16mi;
214  case X86::CMP32ri8: return X86::CMP32ri;
215  case X86::CMP32mi8: return X86::CMP32mi;
216  case X86::CMP64ri8: return X86::CMP64ri32;
217  case X86::CMP64mi8: return X86::CMP64mi32;
218
219    // PUSH
220  case X86::PUSHi8: return X86::PUSHi32;
221  case X86::PUSHi16: return X86::PUSHi32;
222  case X86::PUSH64i8: return X86::PUSH64i32;
223  case X86::PUSH64i16: return X86::PUSH64i32;
224  }
225}
226
227static unsigned getRelaxedOpcode(unsigned Op) {
228  unsigned R = getRelaxedOpcodeArith(Op);
229  if (R != Op)
230    return R;
231  return getRelaxedOpcodeBranch(Op);
232}
233
234bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
235  // Branches can always be relaxed.
236  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
237    return true;
238
239  if (MCDisableArithRelaxation)
240    return false;
241
242  // Check if this instruction is ever relaxable.
243  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
244    return false;
245
246
247  // Check if it has an expression and is not RIP relative.
248  bool hasExp = false;
249  bool hasRIP = false;
250  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
251    const MCOperand &Op = Inst.getOperand(i);
252    if (Op.isExpr())
253      hasExp = true;
254
255    if (Op.isReg() && Op.getReg() == X86::RIP)
256      hasRIP = true;
257  }
258
259  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
260  // how we do relaxations?
261  return hasExp && !hasRIP;
262}
263
264bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
265                                         uint64_t Value,
266                                         const MCRelaxableFragment *DF,
267                                         const MCAsmLayout &Layout) const {
268  // Relax if the value is too big for a (signed) i8.
269  return int64_t(Value) != int64_t(int8_t(Value));
270}
271
272// FIXME: Can tblgen help at all here to verify there aren't other instructions
273// we can relax?
274void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
275  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
276  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
277
278  if (RelaxedOp == Inst.getOpcode()) {
279    SmallString<256> Tmp;
280    raw_svector_ostream OS(Tmp);
281    Inst.dump_pretty(OS);
282    OS << "\n";
283    report_fatal_error("unexpected instruction to relax: " + OS.str());
284  }
285
286  Res = Inst;
287  Res.setOpcode(RelaxedOp);
288}
289
290/// \brief Write a sequence of optimal nops to the output, covering \p Count
291/// bytes.
292/// \return - true on success, false on failure
293bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
294  static const uint8_t Nops[10][10] = {
295    // nop
296    {0x90},
297    // xchg %ax,%ax
298    {0x66, 0x90},
299    // nopl (%[re]ax)
300    {0x0f, 0x1f, 0x00},
301    // nopl 0(%[re]ax)
302    {0x0f, 0x1f, 0x40, 0x00},
303    // nopl 0(%[re]ax,%[re]ax,1)
304    {0x0f, 0x1f, 0x44, 0x00, 0x00},
305    // nopw 0(%[re]ax,%[re]ax,1)
306    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
307    // nopl 0L(%[re]ax)
308    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
309    // nopl 0L(%[re]ax,%[re]ax,1)
310    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
311    // nopw 0L(%[re]ax,%[re]ax,1)
312    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
313    // nopw %cs:0L(%[re]ax,%[re]ax,1)
314    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
315  };
316
317  // This CPU doesnt support long nops. If needed add more.
318  // FIXME: Can we get this from the subtarget somehow?
319  // FIXME: We could generated something better than plain 0x90.
320  if (!HasNopl) {
321    for (uint64_t i = 0; i < Count; ++i)
322      OW->Write8(0x90);
323    return true;
324  }
325
326  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
327  // needed, then emit a nop of the remaining length.
328  do {
329    const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15);
330    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
331    for (uint8_t i = 0; i < Prefixes; i++)
332      OW->Write8(0x66);
333    const uint8_t Rest = ThisNopLength - Prefixes;
334    for (uint8_t i = 0; i < Rest; i++)
335      OW->Write8(Nops[Rest - 1][i]);
336    Count -= ThisNopLength;
337  } while (Count != 0);
338
339  return true;
340}
341
342/* *** */
343
344namespace {
345
346class ELFX86AsmBackend : public X86AsmBackend {
347public:
348  uint8_t OSABI;
349  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
350    : X86AsmBackend(T, CPU), OSABI(_OSABI) {
351    HasReliableSymbolDifference = true;
352  }
353
354  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
355    const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
356    return ES.getFlags() & ELF::SHF_MERGE;
357  }
358};
359
360class ELFX86_32AsmBackend : public ELFX86AsmBackend {
361public:
362  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
363    : ELFX86AsmBackend(T, OSABI, CPU) {}
364
365  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
366    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
367  }
368};
369
370class ELFX86_64AsmBackend : public ELFX86AsmBackend {
371public:
372  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
373    : ELFX86AsmBackend(T, OSABI, CPU) {}
374
375  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
376    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
377  }
378};
379
380class WindowsX86AsmBackend : public X86AsmBackend {
381  bool Is64Bit;
382
383public:
384  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
385    : X86AsmBackend(T, CPU)
386    , Is64Bit(is64Bit) {
387  }
388
389  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
390    return createX86WinCOFFObjectWriter(OS, Is64Bit);
391  }
392};
393
394namespace CU {
395
396  /// Compact unwind encoding values.
397  enum CompactUnwindEncodings {
398    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
399    /// the return address, then [RE]SP is moved to [RE]BP.
400    UNWIND_MODE_BP_FRAME                   = 0x01000000,
401
402    /// A frameless function with a small constant stack size.
403    UNWIND_MODE_STACK_IMMD                 = 0x02000000,
404
405    /// A frameless function with a large constant stack size.
406    UNWIND_MODE_STACK_IND                  = 0x03000000,
407
408    /// No compact unwind encoding is available.
409    UNWIND_MODE_DWARF                      = 0x04000000,
410
411    /// Mask for encoding the frame registers.
412    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
413
414    /// Mask for encoding the frameless registers.
415    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
416  };
417
418} // end CU namespace
419
420class DarwinX86AsmBackend : public X86AsmBackend {
421  const MCRegisterInfo &MRI;
422
423  /// \brief Number of registers that can be saved in a compact unwind encoding.
424  enum { CU_NUM_SAVED_REGS = 6 };
425
426  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
427  bool Is64Bit;
428
429  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
430  unsigned PushInstrSize;                ///< Size of a "push" instruction.
431  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
432  unsigned StackDivide;                  ///< Amount to adjust stack stize by.
433protected:
434  /// \brief Implementation of algorithm to generate the compact unwind encoding
435  /// for the CFI instructions.
436  uint32_t
437  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
438    if (Instrs.empty()) return 0;
439
440    // Reset the saved registers.
441    unsigned SavedRegIdx = 0;
442    memset(SavedRegs, 0, sizeof(SavedRegs));
443
444    bool HasFP = false;
445
446    // Encode that we are using EBP/RBP as the frame pointer.
447    uint32_t CompactUnwindEncoding = 0;
448
449    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
450    unsigned InstrOffset = 0;
451    unsigned StackAdjust = 0;
452    unsigned StackSize = 0;
453    unsigned PrevStackSize = 0;
454    unsigned NumDefCFAOffsets = 0;
455
456    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
457      const MCCFIInstruction &Inst = Instrs[i];
458
459      switch (Inst.getOperation()) {
460      default:
461        // Any other CFI directives indicate a frame that we aren't prepared
462        // to represent via compact unwind, so just bail out.
463        return 0;
464      case MCCFIInstruction::OpDefCfaRegister: {
465        // Defines a frame pointer. E.g.
466        //
467        //     movq %rsp, %rbp
468        //  L0:
469        //     .cfi_def_cfa_register %rbp
470        //
471        HasFP = true;
472        assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
473               (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
474
475        // Reset the counts.
476        memset(SavedRegs, 0, sizeof(SavedRegs));
477        StackAdjust = 0;
478        SavedRegIdx = 0;
479        InstrOffset += MoveInstrSize;
480        break;
481      }
482      case MCCFIInstruction::OpDefCfaOffset: {
483        // Defines a new offset for the CFA. E.g.
484        //
485        //  With frame:
486        //
487        //     pushq %rbp
488        //  L0:
489        //     .cfi_def_cfa_offset 16
490        //
491        //  Without frame:
492        //
493        //     subq $72, %rsp
494        //  L0:
495        //     .cfi_def_cfa_offset 80
496        //
497        PrevStackSize = StackSize;
498        StackSize = std::abs(Inst.getOffset()) / StackDivide;
499        ++NumDefCFAOffsets;
500        break;
501      }
502      case MCCFIInstruction::OpOffset: {
503        // Defines a "push" of a callee-saved register. E.g.
504        //
505        //     pushq %r15
506        //     pushq %r14
507        //     pushq %rbx
508        //  L0:
509        //     subq $120, %rsp
510        //  L1:
511        //     .cfi_offset %rbx, -40
512        //     .cfi_offset %r14, -32
513        //     .cfi_offset %r15, -24
514        //
515        if (SavedRegIdx == CU_NUM_SAVED_REGS)
516          // If there are too many saved registers, we cannot use a compact
517          // unwind encoding.
518          return CU::UNWIND_MODE_DWARF;
519
520        unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
521        SavedRegs[SavedRegIdx++] = Reg;
522        StackAdjust += OffsetSize;
523        InstrOffset += PushInstrSize;
524        break;
525      }
526      }
527    }
528
529    StackAdjust /= StackDivide;
530
531    if (HasFP) {
532      if ((StackAdjust & 0xFF) != StackAdjust)
533        // Offset was too big for a compact unwind encoding.
534        return CU::UNWIND_MODE_DWARF;
535
536      // Get the encoding of the saved registers when we have a frame pointer.
537      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
538      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
539
540      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
541      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
542      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
543    } else {
544      // If the amount of the stack allocation is the size of a register, then
545      // we "push" the RAX/EAX register onto the stack instead of adjusting the
546      // stack pointer with a SUB instruction. We don't support the push of the
547      // RAX/EAX register with compact unwind. So we check for that situation
548      // here.
549      if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
550           StackSize - PrevStackSize == 1) ||
551          (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
552        return CU::UNWIND_MODE_DWARF;
553
554      SubtractInstrIdx += InstrOffset;
555      ++StackAdjust;
556
557      if ((StackSize & 0xFF) == StackSize) {
558        // Frameless stack with a small stack size.
559        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
560
561        // Encode the stack size.
562        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
563      } else {
564        if ((StackAdjust & 0x7) != StackAdjust)
565          // The extra stack adjustments are too big for us to handle.
566          return CU::UNWIND_MODE_DWARF;
567
568        // Frameless stack with an offset too large for us to encode compactly.
569        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
570
571        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
572        // instruction.
573        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
574
575        // Encode any extra stack stack adjustments (done via push
576        // instructions).
577        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
578      }
579
580      // Encode the number of registers saved. (Reverse the list first.)
581      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
582      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
583
584      // Get the encoding of the saved registers when we don't have a frame
585      // pointer.
586      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
587      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
588
589      // Encode the register encoding.
590      CompactUnwindEncoding |=
591        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
592    }
593
594    return CompactUnwindEncoding;
595  }
596
597private:
598  /// \brief Get the compact unwind number for a given register. The number
599  /// corresponds to the enum lists in compact_unwind_encoding.h.
600  int getCompactUnwindRegNum(unsigned Reg) const {
601    static const uint16_t CU32BitRegs[7] = {
602      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
603    };
604    static const uint16_t CU64BitRegs[] = {
605      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
606    };
607    const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
608    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
609      if (*CURegs == Reg)
610        return Idx;
611
612    return -1;
613  }
614
615  /// \brief Return the registers encoded for a compact encoding with a frame
616  /// pointer.
617  uint32_t encodeCompactUnwindRegistersWithFrame() const {
618    // Encode the registers in the order they were saved --- 3-bits per
619    // register. The list of saved registers is assumed to be in reverse
620    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
621    uint32_t RegEnc = 0;
622    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
623      unsigned Reg = SavedRegs[i];
624      if (Reg == 0) break;
625
626      int CURegNum = getCompactUnwindRegNum(Reg);
627      if (CURegNum == -1) return ~0U;
628
629      // Encode the 3-bit register number in order, skipping over 3-bits for
630      // each register.
631      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
632    }
633
634    assert((RegEnc & 0x3FFFF) == RegEnc &&
635           "Invalid compact register encoding!");
636    return RegEnc;
637  }
638
639  /// \brief Create the permutation encoding used with frameless stacks. It is
640  /// passed the number of registers to be saved and an array of the registers
641  /// saved.
642  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
643    // The saved registers are numbered from 1 to 6. In order to encode the
644    // order in which they were saved, we re-number them according to their
645    // place in the register order. The re-numbering is relative to the last
646    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
647    // that order:
648    //
649    //    Orig  Re-Num
650    //    ----  ------
651    //     6       6
652    //     2       2
653    //     4       3
654    //     5       3
655    //
656    for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
657      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
658      if (CUReg == -1) return ~0U;
659      SavedRegs[i] = CUReg;
660    }
661
662    // Reverse the list.
663    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
664
665    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
666    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
667      unsigned Countless = 0;
668      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
669        if (SavedRegs[j] < SavedRegs[i])
670          ++Countless;
671
672      RenumRegs[i] = SavedRegs[i] - Countless - 1;
673    }
674
675    // Take the renumbered values and encode them into a 10-bit number.
676    uint32_t permutationEncoding = 0;
677    switch (RegCount) {
678    case 6:
679      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
680                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
681                             +     RenumRegs[4];
682      break;
683    case 5:
684      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
685                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
686                             +     RenumRegs[5];
687      break;
688    case 4:
689      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
690                             + 3 * RenumRegs[4] +      RenumRegs[5];
691      break;
692    case 3:
693      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
694                             +     RenumRegs[5];
695      break;
696    case 2:
697      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
698      break;
699    case 1:
700      permutationEncoding |=       RenumRegs[5];
701      break;
702    }
703
704    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
705           "Invalid compact register encoding!");
706    return permutationEncoding;
707  }
708
709public:
710  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
711                      bool Is64Bit)
712    : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
713    memset(SavedRegs, 0, sizeof(SavedRegs));
714    OffsetSize = Is64Bit ? 8 : 4;
715    MoveInstrSize = Is64Bit ? 3 : 2;
716    StackDivide = Is64Bit ? 8 : 4;
717    PushInstrSize = 1;
718  }
719};
720
721class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
722  bool SupportsCU;
723public:
724  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
725                         StringRef CPU, bool SupportsCU)
726    : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {}
727
728  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
729    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
730                                     MachO::CPU_TYPE_I386,
731                                     MachO::CPU_SUBTYPE_I386_ALL);
732  }
733
734  /// \brief Generate the compact unwind encoding for the CFI instructions.
735  virtual uint32_t
736  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
737    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
738  }
739};
740
741class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
742  bool SupportsCU;
743  const MachO::CPUSubTypeX86 Subtype;
744public:
745  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
746                         StringRef CPU, bool SupportsCU,
747                         MachO::CPUSubTypeX86 st)
748    : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU),
749      Subtype(st) {
750    HasReliableSymbolDifference = true;
751  }
752
753  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
754    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
755                                     MachO::CPU_TYPE_X86_64, Subtype);
756  }
757
758  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
759    // Temporary labels in the string literals sections require symbols. The
760    // issue is that the x86_64 relocation format does not allow symbol +
761    // offset, and so the linker does not have enough information to resolve the
762    // access to the appropriate atom unless an external relocation is used. For
763    // non-cstring sections, we expect the compiler to use a non-temporary label
764    // for anything that could have an addend pointing outside the symbol.
765    //
766    // See <rdar://problem/4765733>.
767    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
768    return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
769  }
770
771  virtual bool isSectionAtomizable(const MCSection &Section) const {
772    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
773    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
774    switch (SMO.getType()) {
775    default:
776      return true;
777
778    case MCSectionMachO::S_4BYTE_LITERALS:
779    case MCSectionMachO::S_8BYTE_LITERALS:
780    case MCSectionMachO::S_16BYTE_LITERALS:
781    case MCSectionMachO::S_LITERAL_POINTERS:
782    case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
783    case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
784    case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
785    case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
786    case MCSectionMachO::S_INTERPOSING:
787      return false;
788    }
789  }
790
791  /// \brief Generate the compact unwind encoding for the CFI instructions.
792  virtual uint32_t
793  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
794    return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
795  }
796};
797
798} // end anonymous namespace
799
800MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
801                                           const MCRegisterInfo &MRI,
802                                           StringRef TT,
803                                           StringRef CPU) {
804  Triple TheTriple(TT);
805
806  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
807    return new DarwinX86_32AsmBackend(T, MRI, CPU,
808                                      TheTriple.isMacOSX() &&
809                                      !TheTriple.isMacOSXVersionLT(10, 7));
810
811  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
812    return new WindowsX86AsmBackend(T, false, CPU);
813
814  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
815  return new ELFX86_32AsmBackend(T, OSABI, CPU);
816}
817
818MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
819                                           const MCRegisterInfo &MRI,
820                                           StringRef TT,
821                                           StringRef CPU) {
822  Triple TheTriple(TT);
823
824  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
825    MachO::CPUSubTypeX86 CS =
826        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
827            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
828            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
829    return new DarwinX86_64AsmBackend(T, MRI, CPU,
830                                      TheTriple.isMacOSX() &&
831                                      !TheTriple.isMacOSXVersionLT(10, 7), CS);
832  }
833
834  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
835    return new WindowsX86AsmBackend(T, true, CPU);
836
837  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
838  return new ELFX86_64AsmBackend(T, OSABI, CPU);
839}
840