X86AsmBackend.cpp revision df09270ae897e7fa64a7c162de163c32ee181a03
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MCAsmBackend.h"
11#include "MCTargetDesc/X86BaseInfo.h"
12#include "MCTargetDesc/X86FixupKinds.h"
13#include "llvm/ADT/Twine.h"
14#include "llvm/MC/MCAssembler.h"
15#include "llvm/MC/MCELFObjectWriter.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/MC/MCFixupKindInfo.h"
18#include "llvm/MC/MCMachObjectWriter.h"
19#include "llvm/MC/MCObjectWriter.h"
20#include "llvm/MC/MCSectionCOFF.h"
21#include "llvm/MC/MCSectionELF.h"
22#include "llvm/MC/MCSectionMachO.h"
23#include "llvm/Object/MachOFormat.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/ELF.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31// Option to allow disabling arithmetic relaxation to workaround PR9807, which
32// is useful when running bitwise comparison experiments on Darwin. We should be
33// able to remove this once PR9807 is resolved.
34static cl::opt<bool>
35MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
36         cl::desc("Disable relaxation of arithmetic instruction for X86"));
37
38static unsigned getFixupKindLog2Size(unsigned Kind) {
39  switch (Kind) {
40  default: assert(0 && "invalid fixup kind!");
41  case FK_PCRel_1:
42  case FK_Data_1: return 0;
43  case FK_PCRel_2:
44  case FK_Data_2: return 1;
45  case FK_PCRel_4:
46  case X86::reloc_riprel_4byte:
47  case X86::reloc_riprel_4byte_movq_load:
48  case X86::reloc_signed_4byte:
49  case X86::reloc_global_offset_table:
50  case X86::reloc_coff_secrel32:
51  case FK_Data_4: return 2;
52  case FK_PCRel_8:
53  case FK_Data_8: return 3;
54  }
55}
56
57namespace {
58
59class X86ELFObjectWriter : public MCELFObjectTargetWriter {
60public:
61  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
62                     bool HasRelocationAddend, bool foobar)
63    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
64};
65
66class X86AsmBackend : public MCAsmBackend {
67public:
68  X86AsmBackend(const Target &T)
69    : MCAsmBackend() {}
70
71  unsigned getNumFixupKinds() const {
72    return X86::NumTargetFixupKinds;
73  }
74
75  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
76    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
77      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
78      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
79      { "reloc_signed_4byte", 0, 4 * 8, 0},
80      { "reloc_global_offset_table", 0, 4 * 8, 0},
81      { "reloc_coff_secrel32", 0, 4 * 8, 0}
82    };
83
84    if (Kind < FirstTargetFixupKind)
85      return MCAsmBackend::getFixupKindInfo(Kind);
86
87    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
88           "Invalid kind!");
89    return Infos[Kind - FirstTargetFixupKind];
90  }
91
92  void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
93                  uint64_t Value) const {
94    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
95
96    assert(Fixup.getOffset() + Size <= DataSize &&
97           "Invalid fixup offset!");
98
99    // Check that uppper bits are either all zeros or all ones.
100    // Specifically ignore overflow/underflow as long as the leakage is
101    // limited to the lower bits. This is to remain compatible with
102    // other assemblers.
103    assert(isIntN(Size * 8 + 1, Value) &&
104           "Value does not fit in the Fixup field");
105
106    for (unsigned i = 0; i != Size; ++i)
107      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
108  }
109
110  bool MayNeedRelaxation(const MCInst &Inst) const;
111
112  bool fixupNeedsRelaxation(const MCFixup &Fixup,
113                            uint64_t Value,
114                            const MCInstFragment *DF,
115                            const MCAsmLayout &Layout) const;
116
117  void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
118
119  bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
120};
121} // end anonymous namespace
122
123static unsigned getRelaxedOpcodeBranch(unsigned Op) {
124  switch (Op) {
125  default:
126    return Op;
127
128  case X86::JAE_1: return X86::JAE_4;
129  case X86::JA_1:  return X86::JA_4;
130  case X86::JBE_1: return X86::JBE_4;
131  case X86::JB_1:  return X86::JB_4;
132  case X86::JE_1:  return X86::JE_4;
133  case X86::JGE_1: return X86::JGE_4;
134  case X86::JG_1:  return X86::JG_4;
135  case X86::JLE_1: return X86::JLE_4;
136  case X86::JL_1:  return X86::JL_4;
137  case X86::JMP_1: return X86::JMP_4;
138  case X86::JNE_1: return X86::JNE_4;
139  case X86::JNO_1: return X86::JNO_4;
140  case X86::JNP_1: return X86::JNP_4;
141  case X86::JNS_1: return X86::JNS_4;
142  case X86::JO_1:  return X86::JO_4;
143  case X86::JP_1:  return X86::JP_4;
144  case X86::JS_1:  return X86::JS_4;
145  }
146}
147
148static unsigned getRelaxedOpcodeArith(unsigned Op) {
149  switch (Op) {
150  default:
151    return Op;
152
153    // IMUL
154  case X86::IMUL16rri8: return X86::IMUL16rri;
155  case X86::IMUL16rmi8: return X86::IMUL16rmi;
156  case X86::IMUL32rri8: return X86::IMUL32rri;
157  case X86::IMUL32rmi8: return X86::IMUL32rmi;
158  case X86::IMUL64rri8: return X86::IMUL64rri32;
159  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
160
161    // AND
162  case X86::AND16ri8: return X86::AND16ri;
163  case X86::AND16mi8: return X86::AND16mi;
164  case X86::AND32ri8: return X86::AND32ri;
165  case X86::AND32mi8: return X86::AND32mi;
166  case X86::AND64ri8: return X86::AND64ri32;
167  case X86::AND64mi8: return X86::AND64mi32;
168
169    // OR
170  case X86::OR16ri8: return X86::OR16ri;
171  case X86::OR16mi8: return X86::OR16mi;
172  case X86::OR32ri8: return X86::OR32ri;
173  case X86::OR32mi8: return X86::OR32mi;
174  case X86::OR64ri8: return X86::OR64ri32;
175  case X86::OR64mi8: return X86::OR64mi32;
176
177    // XOR
178  case X86::XOR16ri8: return X86::XOR16ri;
179  case X86::XOR16mi8: return X86::XOR16mi;
180  case X86::XOR32ri8: return X86::XOR32ri;
181  case X86::XOR32mi8: return X86::XOR32mi;
182  case X86::XOR64ri8: return X86::XOR64ri32;
183  case X86::XOR64mi8: return X86::XOR64mi32;
184
185    // ADD
186  case X86::ADD16ri8: return X86::ADD16ri;
187  case X86::ADD16mi8: return X86::ADD16mi;
188  case X86::ADD32ri8: return X86::ADD32ri;
189  case X86::ADD32mi8: return X86::ADD32mi;
190  case X86::ADD64ri8: return X86::ADD64ri32;
191  case X86::ADD64mi8: return X86::ADD64mi32;
192
193    // SUB
194  case X86::SUB16ri8: return X86::SUB16ri;
195  case X86::SUB16mi8: return X86::SUB16mi;
196  case X86::SUB32ri8: return X86::SUB32ri;
197  case X86::SUB32mi8: return X86::SUB32mi;
198  case X86::SUB64ri8: return X86::SUB64ri32;
199  case X86::SUB64mi8: return X86::SUB64mi32;
200
201    // CMP
202  case X86::CMP16ri8: return X86::CMP16ri;
203  case X86::CMP16mi8: return X86::CMP16mi;
204  case X86::CMP32ri8: return X86::CMP32ri;
205  case X86::CMP32mi8: return X86::CMP32mi;
206  case X86::CMP64ri8: return X86::CMP64ri32;
207  case X86::CMP64mi8: return X86::CMP64mi32;
208
209    // PUSH
210  case X86::PUSHi8: return X86::PUSHi32;
211  case X86::PUSHi16: return X86::PUSHi32;
212  case X86::PUSH64i8: return X86::PUSH64i32;
213  case X86::PUSH64i16: return X86::PUSH64i32;
214  }
215}
216
217static unsigned getRelaxedOpcode(unsigned Op) {
218  unsigned R = getRelaxedOpcodeArith(Op);
219  if (R != Op)
220    return R;
221  return getRelaxedOpcodeBranch(Op);
222}
223
224bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
225  // Branches can always be relaxed.
226  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
227    return true;
228
229  if (MCDisableArithRelaxation)
230    return false;
231
232  // Check if this instruction is ever relaxable.
233  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
234    return false;
235
236
237  // Check if it has an expression and is not RIP relative.
238  bool hasExp = false;
239  bool hasRIP = false;
240  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
241    const MCOperand &Op = Inst.getOperand(i);
242    if (Op.isExpr())
243      hasExp = true;
244
245    if (Op.isReg() && Op.getReg() == X86::RIP)
246      hasRIP = true;
247  }
248
249  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
250  // how we do relaxations?
251  return hasExp && !hasRIP;
252}
253
254bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
255                                         uint64_t Value,
256                                         const MCInstFragment *DF,
257                                         const MCAsmLayout &Layout) const {
258  // Relax if the value is too big for a (signed) i8.
259  return int64_t(Value) != int64_t(int8_t(Value));
260}
261
262// FIXME: Can tblgen help at all here to verify there aren't other instructions
263// we can relax?
264void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
265  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
266  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
267
268  if (RelaxedOp == Inst.getOpcode()) {
269    SmallString<256> Tmp;
270    raw_svector_ostream OS(Tmp);
271    Inst.dump_pretty(OS);
272    OS << "\n";
273    report_fatal_error("unexpected instruction to relax: " + OS.str());
274  }
275
276  Res = Inst;
277  Res.setOpcode(RelaxedOp);
278}
279
280/// WriteNopData - Write optimal nops to the output file for the \arg Count
281/// bytes.  This returns the number of bytes written.  It may return 0 if
282/// the \arg Count is more than the maximum optimal nops.
283bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
284  static const uint8_t Nops[10][10] = {
285    // nop
286    {0x90},
287    // xchg %ax,%ax
288    {0x66, 0x90},
289    // nopl (%[re]ax)
290    {0x0f, 0x1f, 0x00},
291    // nopl 0(%[re]ax)
292    {0x0f, 0x1f, 0x40, 0x00},
293    // nopl 0(%[re]ax,%[re]ax,1)
294    {0x0f, 0x1f, 0x44, 0x00, 0x00},
295    // nopw 0(%[re]ax,%[re]ax,1)
296    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
297    // nopl 0L(%[re]ax)
298    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
299    // nopl 0L(%[re]ax,%[re]ax,1)
300    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
301    // nopw 0L(%[re]ax,%[re]ax,1)
302    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
303    // nopw %cs:0L(%[re]ax,%[re]ax,1)
304    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
305  };
306
307  // Write an optimal sequence for the first 15 bytes.
308  const uint64_t OptimalCount = (Count < 16) ? Count : 15;
309  const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
310  for (uint64_t i = 0, e = Prefixes; i != e; i++)
311    OW->Write8(0x66);
312  const uint64_t Rest = OptimalCount - Prefixes;
313  for (uint64_t i = 0, e = Rest; i != e; i++)
314    OW->Write8(Nops[Rest - 1][i]);
315
316  // Finish with single byte nops.
317  for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
318   OW->Write8(0x90);
319
320  return true;
321}
322
323/* *** */
324
325namespace {
326class ELFX86AsmBackend : public X86AsmBackend {
327public:
328  uint8_t OSABI;
329  ELFX86AsmBackend(const Target &T, uint8_t _OSABI)
330    : X86AsmBackend(T), OSABI(_OSABI) {
331    HasReliableSymbolDifference = true;
332  }
333
334  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
335    const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
336    return ES.getFlags() & ELF::SHF_MERGE;
337  }
338};
339
340class ELFX86_32AsmBackend : public ELFX86AsmBackend {
341public:
342  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI)
343    : ELFX86AsmBackend(T, OSABI) {}
344
345  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
346    return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
347  }
348};
349
350class ELFX86_64AsmBackend : public ELFX86AsmBackend {
351public:
352  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI)
353    : ELFX86AsmBackend(T, OSABI) {}
354
355  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
356    return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
357  }
358};
359
360class WindowsX86AsmBackend : public X86AsmBackend {
361  bool Is64Bit;
362
363public:
364  WindowsX86AsmBackend(const Target &T, bool is64Bit)
365    : X86AsmBackend(T)
366    , Is64Bit(is64Bit) {
367  }
368
369  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
370    return createX86WinCOFFObjectWriter(OS, Is64Bit);
371  }
372};
373
374class DarwinX86AsmBackend : public X86AsmBackend {
375public:
376  DarwinX86AsmBackend(const Target &T)
377    : X86AsmBackend(T) { }
378};
379
380class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
381public:
382  DarwinX86_32AsmBackend(const Target &T)
383    : DarwinX86AsmBackend(T) {}
384
385  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
386    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
387                                     object::mach::CTM_i386,
388                                     object::mach::CSX86_ALL);
389  }
390};
391
392class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
393public:
394  DarwinX86_64AsmBackend(const Target &T)
395    : DarwinX86AsmBackend(T) {
396    HasReliableSymbolDifference = true;
397  }
398
399  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
400    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
401                                     object::mach::CTM_x86_64,
402                                     object::mach::CSX86_ALL);
403  }
404
405  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
406    // Temporary labels in the string literals sections require symbols. The
407    // issue is that the x86_64 relocation format does not allow symbol +
408    // offset, and so the linker does not have enough information to resolve the
409    // access to the appropriate atom unless an external relocation is used. For
410    // non-cstring sections, we expect the compiler to use a non-temporary label
411    // for anything that could have an addend pointing outside the symbol.
412    //
413    // See <rdar://problem/4765733>.
414    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
415    return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
416  }
417
418  virtual bool isSectionAtomizable(const MCSection &Section) const {
419    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
420    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
421    switch (SMO.getType()) {
422    default:
423      return true;
424
425    case MCSectionMachO::S_4BYTE_LITERALS:
426    case MCSectionMachO::S_8BYTE_LITERALS:
427    case MCSectionMachO::S_16BYTE_LITERALS:
428    case MCSectionMachO::S_LITERAL_POINTERS:
429    case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
430    case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
431    case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
432    case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
433    case MCSectionMachO::S_INTERPOSING:
434      return false;
435    }
436  }
437};
438
439} // end anonymous namespace
440
441MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) {
442  Triple TheTriple(TT);
443
444  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
445    return new DarwinX86_32AsmBackend(T);
446
447  if (TheTriple.isOSWindows())
448    return new WindowsX86AsmBackend(T, false);
449
450  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
451  return new ELFX86_32AsmBackend(T, OSABI);
452}
453
454MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) {
455  Triple TheTriple(TT);
456
457  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
458    return new DarwinX86_64AsmBackend(T);
459
460  if (TheTriple.isOSWindows())
461    return new WindowsX86AsmBackend(T, true);
462
463  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
464  return new ELFX86_64AsmBackend(T, OSABI);
465}
466