X86BaseInfo.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef X86BASEINFO_H
18#define X86BASEINFO_H
19
20#include "X86MCTargetDesc.h"
21#include "llvm/MC/MCInstrDesc.h"
22#include "llvm/Support/DataTypes.h"
23#include "llvm/Support/ErrorHandling.h"
24
25namespace llvm {
26
27namespace X86 {
28  // Enums for memory operand decoding.  Each memory operand is represented with
29  // a 5 operand sequence in the form:
30  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31  // These enums help decode this.
32  enum {
33    AddrBaseReg = 0,
34    AddrScaleAmt = 1,
35    AddrIndexReg = 2,
36    AddrDisp = 3,
37
38    /// AddrSegmentReg - The operand # of the segment in the memory operand.
39    AddrSegmentReg = 4,
40
41    /// AddrNumOperands - Total number of operands in a memory reference.
42    AddrNumOperands = 5
43  };
44} // end namespace X86;
45
46/// X86II - This namespace holds all of the target specific flags that
47/// instruction info tracks.
48///
49namespace X86II {
50  /// Target Operand Flag enum.
51  enum TOF {
52    //===------------------------------------------------------------------===//
53    // X86 Specific MachineOperand flags.
54
55    MO_NO_FLAG,
56
57    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58    /// relocation of:
59    ///    SYMBOL_LABEL + [. - PICBASELABEL]
60    MO_GOT_ABSOLUTE_ADDRESS,
61
62    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63    /// immediate should get the value of the symbol minus the PIC base label:
64    ///    SYMBOL_LABEL - PICBASELABEL
65    MO_PIC_BASE_OFFSET,
66
67    /// MO_GOT - On a symbol operand this indicates that the immediate is the
68    /// offset to the GOT entry for the symbol name from the base of the GOT.
69    ///
70    /// See the X86-64 ELF ABI supplement for more details.
71    ///    SYMBOL_LABEL @GOT
72    MO_GOT,
73
74    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75    /// the offset to the location of the symbol name from the base of the GOT.
76    ///
77    /// See the X86-64 ELF ABI supplement for more details.
78    ///    SYMBOL_LABEL @GOTOFF
79    MO_GOTOFF,
80
81    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82    /// offset to the GOT entry for the symbol name from the current code
83    /// location.
84    ///
85    /// See the X86-64 ELF ABI supplement for more details.
86    ///    SYMBOL_LABEL @GOTPCREL
87    MO_GOTPCREL,
88
89    /// MO_PLT - On a symbol operand this indicates that the immediate is
90    /// offset to the PLT entry of symbol name from the current code location.
91    ///
92    /// See the X86-64 ELF ABI supplement for more details.
93    ///    SYMBOL_LABEL @PLT
94    MO_PLT,
95
96    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97    /// the offset of the GOT entry with the TLS index structure that contains
98    /// the module number and variable offset for the symbol. Used in the
99    /// general dynamic TLS access model.
100    ///
101    /// See 'ELF Handling for Thread-Local Storage' for more details.
102    ///    SYMBOL_LABEL @TLSGD
103    MO_TLSGD,
104
105    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106    /// the offset of the GOT entry with the TLS index for the module that
107    /// contains the symbol. When this index is passed to a call to
108    /// __tls_get_addr, the function will return the base address of the TLS
109    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110    ///
111    /// See 'ELF Handling for Thread-Local Storage' for more details.
112    ///    SYMBOL_LABEL @TLSLD
113    MO_TLSLD,
114
115    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116    /// the offset of the GOT entry with the TLS index for the module that
117    /// contains the symbol. When this index is passed to a call to
118    /// ___tls_get_addr, the function will return the base address of the TLS
119    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120    ///
121    /// See 'ELF Handling for Thread-Local Storage' for more details.
122    ///    SYMBOL_LABEL @TLSLDM
123    MO_TLSLDM,
124
125    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126    /// the offset of the GOT entry with the thread-pointer offset for the
127    /// symbol. Used in the x86-64 initial exec TLS access model.
128    ///
129    /// See 'ELF Handling for Thread-Local Storage' for more details.
130    ///    SYMBOL_LABEL @GOTTPOFF
131    MO_GOTTPOFF,
132
133    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134    /// the absolute address of the GOT entry with the negative thread-pointer
135    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136    /// model.
137    ///
138    /// See 'ELF Handling for Thread-Local Storage' for more details.
139    ///    SYMBOL_LABEL @INDNTPOFF
140    MO_INDNTPOFF,
141
142    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143    /// the thread-pointer offset for the symbol. Used in the x86-64 local
144    /// exec TLS access model.
145    ///
146    /// See 'ELF Handling for Thread-Local Storage' for more details.
147    ///    SYMBOL_LABEL @TPOFF
148    MO_TPOFF,
149
150    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151    /// the offset of the GOT entry with the TLS offset of the symbol. Used
152    /// in the local dynamic TLS access model.
153    ///
154    /// See 'ELF Handling for Thread-Local Storage' for more details.
155    ///    SYMBOL_LABEL @DTPOFF
156    MO_DTPOFF,
157
158    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159    /// the negative thread-pointer offset for the symbol. Used in the IA32
160    /// local exec TLS access model.
161    ///
162    /// See 'ELF Handling for Thread-Local Storage' for more details.
163    ///    SYMBOL_LABEL @NTPOFF
164    MO_NTPOFF,
165
166    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167    /// the offset of the GOT entry with the negative thread-pointer offset for
168    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169    ///
170    /// See 'ELF Handling for Thread-Local Storage' for more details.
171    ///    SYMBOL_LABEL @GOTNTPOFF
172    MO_GOTNTPOFF,
173
174    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175    /// reference is actually to the "__imp_FOO" symbol.  This is used for
176    /// dllimport linkage on windows.
177    MO_DLLIMPORT,
178
179    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
181    /// and jumps to external functions on Tiger and earlier.
182    MO_DARWIN_STUB,
183
184    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187    MO_DARWIN_NONLAZY,
188
189    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192    MO_DARWIN_NONLAZY_PIC_BASE,
193
194    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197    /// stub.
198    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199
200    /// MO_TLVP - On a symbol operand this indicates that the immediate is
201    /// some TLS offset.
202    ///
203    /// This is the TLS offset for the Darwin TLS mechanism.
204    MO_TLVP,
205
206    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207    /// is some TLS offset from the picbase.
208    ///
209    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210    MO_TLVP_PIC_BASE,
211
212    /// MO_SECREL - On a symbol operand this indicates that the immediate is
213    /// the offset from beginning of section.
214    ///
215    /// This is the TLS offset for the COFF/Windows TLS mechanism.
216    MO_SECREL
217  };
218
219  enum {
220    //===------------------------------------------------------------------===//
221    // Instruction encodings.  These are the standard/most common forms for X86
222    // instructions.
223    //
224
225    // PseudoFrm - This represents an instruction that is a pseudo instruction
226    // or one that has not been implemented yet.  It is illegal to code generate
227    // it, but tolerated for intermediate implementation stages.
228    Pseudo         = 0,
229
230    /// Raw - This form is for instructions that don't have any operands, so
231    /// they are just a fixed opcode value, like 'leave'.
232    RawFrm         = 1,
233
234    /// AddRegFrm - This form is used for instructions like 'push r32' that have
235    /// their one register operand added to their opcode.
236    AddRegFrm      = 2,
237
238    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239    /// to specify a destination, which in this case is a register.
240    ///
241    MRMDestReg     = 3,
242
243    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244    /// to specify a destination, which in this case is memory.
245    ///
246    MRMDestMem     = 4,
247
248    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249    /// to specify a source, which in this case is a register.
250    ///
251    MRMSrcReg      = 5,
252
253    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254    /// to specify a source, which in this case is memory.
255    ///
256    MRMSrcMem      = 6,
257
258    /// RawFrmMemOffs - This form is for instructions that store an absolute
259    /// memory offset as an immediate with a possible segment override.
260    RawFrmMemOffs  = 7,
261
262    /// RawFrmSrc - This form is for instructions that use the source index
263    /// register SI/ESI/RSI with a possible segment override.
264    RawFrmSrc      = 8,
265
266    /// RawFrmDst - This form is for instructions that use the destination index
267    /// register DI/EDI/ESI.
268    RawFrmDst      = 9,
269
270    /// RawFrmSrc - This form is for instructions that use the the source index
271    /// register SI/ESI/ERI with a possible segment override, and also the
272    /// destination index register DI/ESI/RDI.
273    RawFrmDstSrc   = 10,
274
275    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
276    /// immediates, the first of which is a 16-bit immediate (specified by
277    /// the imm encoding) and the second is a 8-bit fixed value.
278    RawFrmImm8 = 11,
279
280    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
281    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
282    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
283    /// manual, this operand is described as pntr16:32 and pntr16:16
284    RawFrmImm16 = 12,
285
286    /// MRMX[rm] - The forms are used to represent instructions that use a
287    /// Mod/RM byte, and don't use the middle field for anything.
288    MRMXr = 14, MRMXm = 15,
289
290    /// MRM[0-7][rm] - These forms are used to represent instructions that use
291    /// a Mod/RM byte, and use the middle field to hold extended opcode
292    /// information.  In the intel manual these are represented as /0, /1, ...
293    ///
294
295    // First, instructions that operate on a register r/m operand...
296    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
297    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
298
299    // Next, instructions that operate on a memory r/m operand...
300    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
301    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
302
303    //// MRM_XX - A mod/rm byte of exactly 0xXX.
304    MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
305    MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
306    MRM_CB = 40, MRM_D0 = 41, MRM_D1 = 42, MRM_D4 = 43,
307    MRM_D5 = 44, MRM_D6 = 45, MRM_D8 = 46, MRM_D9 = 47,
308    MRM_DA = 48, MRM_DB = 49, MRM_DC = 50, MRM_DD = 51,
309    MRM_DE = 52, MRM_DF = 53, MRM_E0 = 54, MRM_E1 = 55,
310    MRM_E2 = 56, MRM_E3 = 57, MRM_E4 = 58, MRM_E5 = 59,
311    MRM_E8 = 60, MRM_E9 = 61, MRM_EA = 62, MRM_EB = 63,
312    MRM_EC = 64, MRM_ED = 65, MRM_EE = 66, MRM_F0 = 67,
313    MRM_F1 = 68, MRM_F2 = 69, MRM_F3 = 70, MRM_F4 = 71,
314    MRM_F5 = 72, MRM_F6 = 73, MRM_F7 = 74, MRM_F8 = 75,
315    MRM_F9 = 76, MRM_FA = 77, MRM_FB = 78, MRM_FC = 79,
316    MRM_FD = 80, MRM_FE = 81, MRM_FF = 82,
317
318    FormMask       = 127,
319
320    //===------------------------------------------------------------------===//
321    // Actual flags...
322
323    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
324    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
325    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
326    // prefix in 16-bit mode.
327    OpSizeShift = 7,
328    OpSizeMask = 0x3 << OpSizeShift,
329
330    OpSize16 = 1,
331    OpSize32 = 2,
332
333    // AsSize - Set if this instruction requires an operand size prefix (0x67),
334    // which most often indicates that the instruction address 16 bit address
335    // instead of 32 bit address (or 32 bit address in 64 bit mode).
336    AdSizeShift = OpSizeShift + 2,
337    AdSize      = 1 << AdSizeShift,
338
339    //===------------------------------------------------------------------===//
340    // OpPrefix - There are several prefix bytes that are used as opcode
341    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
342    // no prefix.
343    //
344    OpPrefixShift = AdSizeShift + 1,
345    OpPrefixMask  = 0x7 << OpPrefixShift,
346
347    // PS, PD - Prefix code for packed single and double precision vector
348    // floating point operations performed in the SSE registers.
349    PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
350
351    // XS, XD - These prefix codes are for single and double precision scalar
352    // floating point operations performed in the SSE registers.
353    XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
354
355    //===------------------------------------------------------------------===//
356    // OpMap - This field determines which opcode map this instruction
357    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
358    //
359    OpMapShift = OpPrefixShift + 3,
360    OpMapMask  = 0x7 << OpMapShift,
361
362    // OB - OneByte - Set if this instruction has a one byte opcode.
363    OB = 0 << OpMapShift,
364
365    // TB - TwoByte - Set if this instruction has a two byte opcode, which
366    // starts with a 0x0F byte before the real opcode.
367    TB = 1 << OpMapShift,
368
369    // T8, TA - Prefix after the 0x0F prefix.
370    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
371
372    // XOP8 - Prefix to include use of imm byte.
373    XOP8 = 4 << OpMapShift,
374
375    // XOP9 - Prefix to exclude use of imm byte.
376    XOP9 = 5 << OpMapShift,
377
378    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
379    XOPA = 6 << OpMapShift,
380
381    //===------------------------------------------------------------------===//
382    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
383    // They are used to specify GPRs and SSE registers, 64-bit operand size,
384    // etc. We only cares about REX.W and REX.R bits and only the former is
385    // statically determined.
386    //
387    REXShift    = OpMapShift + 3,
388    REX_W       = 1 << REXShift,
389
390    //===------------------------------------------------------------------===//
391    // This three-bit field describes the size of an immediate operand.  Zero is
392    // unused so that we can tell if we forgot to set a value.
393    ImmShift = REXShift + 1,
394    ImmMask    = 15 << ImmShift,
395    Imm8       = 1 << ImmShift,
396    Imm8PCRel  = 2 << ImmShift,
397    Imm16      = 3 << ImmShift,
398    Imm16PCRel = 4 << ImmShift,
399    Imm32      = 5 << ImmShift,
400    Imm32PCRel = 6 << ImmShift,
401    Imm32S     = 7 << ImmShift,
402    Imm64      = 8 << ImmShift,
403
404    //===------------------------------------------------------------------===//
405    // FP Instruction Classification...  Zero is non-fp instruction.
406
407    // FPTypeMask - Mask for all of the FP types...
408    FPTypeShift = ImmShift + 4,
409    FPTypeMask  = 7 << FPTypeShift,
410
411    // NotFP - The default, set for instructions that do not use FP registers.
412    NotFP      = 0 << FPTypeShift,
413
414    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
415    ZeroArgFP  = 1 << FPTypeShift,
416
417    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
418    OneArgFP   = 2 << FPTypeShift,
419
420    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
421    // result back to ST(0).  For example, fcos, fsqrt, etc.
422    //
423    OneArgFPRW = 3 << FPTypeShift,
424
425    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
426    // explicit argument, storing the result to either ST(0) or the implicit
427    // argument.  For example: fadd, fsub, fmul, etc...
428    TwoArgFP   = 4 << FPTypeShift,
429
430    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
431    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
432    CompareFP  = 5 << FPTypeShift,
433
434    // CondMovFP - "2 operand" floating point conditional move instructions.
435    CondMovFP  = 6 << FPTypeShift,
436
437    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
438    SpecialFP  = 7 << FPTypeShift,
439
440    // Lock prefix
441    LOCKShift = FPTypeShift + 3,
442    LOCK = 1 << LOCKShift,
443
444    // REP prefix
445    REPShift = LOCKShift + 1,
446    REP = 1 << REPShift,
447
448    // Execution domain for SSE instructions.
449    // 0 means normal, non-SSE instruction.
450    SSEDomainShift = REPShift + 1,
451
452    // Encoding
453    EncodingShift = SSEDomainShift + 2,
454    EncodingMask = 0x3 << EncodingShift,
455
456    // VEX - encoding using 0xC4/0xC5
457    VEX = 1,
458
459    /// XOP - Opcode prefix used by XOP instructions.
460    XOP = 2,
461
462    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
463    // syntax support up to 32 512-bit register operands and up to 7 16-bit
464    // mask operands as well as source operand data swizzling/memory operand
465    // conversion, eviction hint, and rounding mode.
466    EVEX = 3,
467
468    // Opcode
469    OpcodeShift   = EncodingShift + 2,
470
471    //===------------------------------------------------------------------===//
472    /// VEX - The opcode prefix used by AVX instructions
473    VEXShift = OpcodeShift + 8,
474
475    /// VEX_W - Has a opcode specific functionality, but is used in the same
476    /// way as REX_W is for regular SSE instructions.
477    VEX_W       = 1U << 0,
478
479    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
480    /// address instructions in SSE are represented as 3 address ones in AVX
481    /// and the additional register is encoded in VEX_VVVV prefix.
482    VEX_4V      = 1U << 1,
483
484    /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
485    /// operand 3 with VEX.vvvv.
486    VEX_4VOp3   = 1U << 2,
487
488    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
489    /// must be encoded in the i8 immediate field. This usually happens in
490    /// instructions with 4 operands.
491    VEX_I8IMM   = 1U << 3,
492
493    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
494    /// instruction uses 256-bit wide registers. This is usually auto detected
495    /// if a VR256 register is used, but some AVX instructions also have this
496    /// field marked when using a f256 memory references.
497    VEX_L       = 1U << 4,
498
499    // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
500    // prefix. Usually used for scalar instructions. Needed by disassembler.
501    VEX_LIG     = 1U << 5,
502
503    // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
504    // with following encoding:
505    // - 00 V128
506    // - 01 V256
507    // - 10 V512
508    // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
509    // this will save 1 tsflag bit
510
511    // EVEX_K - Set if this instruction requires masking
512    EVEX_K      = 1U << 6,
513
514    // EVEX_Z - Set if this instruction has EVEX.Z field set.
515    EVEX_Z      = 1U << 7,
516
517    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
518    EVEX_L2     = 1U << 8,
519
520    // EVEX_B - Set if this instruction has EVEX.B field set.
521    EVEX_B      = 1U << 9,
522
523    // EVEX_CD8E - compressed disp8 form, element-size
524    EVEX_CD8EShift = VEXShift + 10,
525    EVEX_CD8EMask = 3,
526
527    // EVEX_CD8V - compressed disp8 form, vector-width
528    EVEX_CD8VShift = EVEX_CD8EShift + 2,
529    EVEX_CD8VMask = 7,
530
531    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
532    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
533    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
534    /// storing a classifier in the imm8 field.  To simplify our implementation,
535    /// we handle this by storeing the classifier in the opcode field and using
536    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
537    Has3DNow0F0FOpcode = 1U << 15,
538
539    /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
540    /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
541    MemOp4 = 1U << 16,
542
543    /// Explicitly specified rounding control
544    EVEX_RC = 1U << 17
545  };
546
547  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
548  // specified machine instruction.
549  //
550  inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
551    return TSFlags >> X86II::OpcodeShift;
552  }
553
554  inline bool hasImm(uint64_t TSFlags) {
555    return (TSFlags & X86II::ImmMask) != 0;
556  }
557
558  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
559  /// of the specified instruction.
560  inline unsigned getSizeOfImm(uint64_t TSFlags) {
561    switch (TSFlags & X86II::ImmMask) {
562    default: llvm_unreachable("Unknown immediate size");
563    case X86II::Imm8:
564    case X86II::Imm8PCRel:  return 1;
565    case X86II::Imm16:
566    case X86II::Imm16PCRel: return 2;
567    case X86II::Imm32:
568    case X86II::Imm32S:
569    case X86II::Imm32PCRel: return 4;
570    case X86II::Imm64:      return 8;
571    }
572  }
573
574  /// isImmPCRel - Return true if the immediate of the specified instruction's
575  /// TSFlags indicates that it is pc relative.
576  inline unsigned isImmPCRel(uint64_t TSFlags) {
577    switch (TSFlags & X86II::ImmMask) {
578    default: llvm_unreachable("Unknown immediate size");
579    case X86II::Imm8PCRel:
580    case X86II::Imm16PCRel:
581    case X86II::Imm32PCRel:
582      return true;
583    case X86II::Imm8:
584    case X86II::Imm16:
585    case X86II::Imm32:
586    case X86II::Imm32S:
587    case X86II::Imm64:
588      return false;
589    }
590  }
591
592  /// isImmSigned - Return true if the immediate of the specified instruction's
593  /// TSFlags indicates that it is signed.
594  inline unsigned isImmSigned(uint64_t TSFlags) {
595    switch (TSFlags & X86II::ImmMask) {
596    default: llvm_unreachable("Unknown immediate signedness");
597    case X86II::Imm32S:
598      return true;
599    case X86II::Imm8:
600    case X86II::Imm8PCRel:
601    case X86II::Imm16:
602    case X86II::Imm16PCRel:
603    case X86II::Imm32:
604    case X86II::Imm32PCRel:
605    case X86II::Imm64:
606      return false;
607    }
608  }
609
610  /// getOperandBias - compute any additional adjustment needed to
611  ///                  the offset to the start of the memory operand
612  ///                  in this instruction.
613  /// If this is a two-address instruction,skip one of the register operands.
614  /// FIXME: This should be handled during MCInst lowering.
615  inline int getOperandBias(const MCInstrDesc& Desc)
616  {
617    unsigned NumOps = Desc.getNumOperands();
618    unsigned CurOp = 0;
619    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
620      ++CurOp;
621    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
622             Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
623      // Special case for AVX-512 GATHER with 2 TIED_TO operands
624      // Skip the first 2 operands: dst, mask_wb
625      CurOp += 2;
626    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
627             Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
628      // Special case for GATHER with 2 TIED_TO operands
629      // Skip the first 2 operands: dst, mask_wb
630      CurOp += 2;
631    else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
632      // SCATTER
633      ++CurOp;
634    return CurOp;
635  }
636
637  /// getMemoryOperandNo - The function returns the MCInst operand # for the
638  /// first field of the memory operand.  If the instruction doesn't have a
639  /// memory operand, this returns -1.
640  ///
641  /// Note that this ignores tied operands.  If there is a tied register which
642  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
643  /// counted as one operand.
644  ///
645  inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
646    switch (TSFlags & X86II::FormMask) {
647    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
648    case X86II::Pseudo:
649    case X86II::RawFrm:
650    case X86II::AddRegFrm:
651    case X86II::MRMDestReg:
652    case X86II::MRMSrcReg:
653    case X86II::RawFrmImm8:
654    case X86II::RawFrmImm16:
655    case X86II::RawFrmMemOffs:
656    case X86II::RawFrmSrc:
657    case X86II::RawFrmDst:
658    case X86II::RawFrmDstSrc:
659       return -1;
660    case X86II::MRMDestMem:
661      return 0;
662    case X86II::MRMSrcMem: {
663      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
664      bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
665      bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
666      unsigned FirstMemOp = 1;
667      if (HasVEX_4V)
668        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
669      if (HasMemOp4)
670        ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
671      if (HasEVEX_K)
672        ++FirstMemOp;// Skip the mask register
673      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
674      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
675      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
676      return FirstMemOp;
677    }
678    case X86II::MRMXr:
679    case X86II::MRM0r: case X86II::MRM1r:
680    case X86II::MRM2r: case X86II::MRM3r:
681    case X86II::MRM4r: case X86II::MRM5r:
682    case X86II::MRM6r: case X86II::MRM7r:
683      return -1;
684    case X86II::MRMXm:
685    case X86II::MRM0m: case X86II::MRM1m:
686    case X86II::MRM2m: case X86II::MRM3m:
687    case X86II::MRM4m: case X86II::MRM5m:
688    case X86II::MRM6m: case X86II::MRM7m: {
689      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
690      unsigned FirstMemOp = 0;
691      if (HasVEX_4V)
692        ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
693      return FirstMemOp;
694    }
695    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
696    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
697    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
698    case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
699    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
700    case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
701    case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
702    case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
703    case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
704    case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
705    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
706    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
707    case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
708    case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
709    case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
710    case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
711    case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
712      return -1;
713    }
714  }
715
716  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
717  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
718  inline bool isX86_64ExtendedReg(unsigned RegNo) {
719    if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
720        (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
721        (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
722        (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
723        (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
724        (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
725      return true;
726
727    switch (RegNo) {
728    default: break;
729    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
730    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
731    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
732    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
733    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
734    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
735    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
736    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
737    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
738    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
739        return true;
740    }
741    return false;
742  }
743
744  /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
745  /// registers? e.g. zmm21, etc.
746  static inline bool is32ExtendedReg(unsigned RegNo) {
747    return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
748            (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
749            (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
750  }
751
752
753  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
754    return (reg == X86::SPL || reg == X86::BPL ||
755            reg == X86::SIL || reg == X86::DIL);
756  }
757}
758
759} // end namespace llvm;
760
761#endif
762