X86MCCodeEmitter.cpp revision 31d157ae1ac2cd9c787dc3c1d28e64c682803844
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
31  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33  const MCInstrInfo &MCII;
34  const MCSubtargetInfo &STI;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                   MCContext &ctx)
39    : MCII(mcii), STI(sti), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() {}
43
44  bool is64BitMode() const {
45    // FIXME: Can tablegen auto-generate this?
46    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47  }
48
49  static unsigned GetX86RegNum(const MCOperand &MO) {
50    return X86_MC::getX86RegNum(MO.getReg());
51  }
52
53  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
54  // 0-7 and the difference between the 2 groups is given by the REX prefix.
55  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
56  // in 1's complement form, example:
57  //
58  //  ModRM field => XMM9 => 1
59  //  VEX.VVVV    => XMM9 => ~9
60  //
61  // See table 4-35 of Intel AVX Programming Reference for details.
62  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
63                                              unsigned OpNum) {
64    unsigned SrcReg = MI.getOperand(OpNum).getReg();
65    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
66    if (X86II::isX86_64ExtendedReg(SrcReg))
67      SrcRegNum |= 8;
68
69    // The registers represented through VEX_VVVV should
70    // be encoded in 1's complement form.
71    return (~SrcRegNum) & 0xf;
72  }
73
74  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
75    OS << (char)C;
76    ++CurByte;
77  }
78
79  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
80                    raw_ostream &OS) const {
81    // Output the constant in little endian byte order.
82    for (unsigned i = 0; i != Size; ++i) {
83      EmitByte(Val & 255, CurByte, OS);
84      Val >>= 8;
85    }
86  }
87
88  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
89                     unsigned ImmSize, MCFixupKind FixupKind,
90                     unsigned &CurByte, raw_ostream &OS,
91                     SmallVectorImpl<MCFixup> &Fixups,
92                     int ImmOffset = 0) const;
93
94  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
95                                        unsigned RM) {
96    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
97    return RM | (RegOpcode << 3) | (Mod << 6);
98  }
99
100  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
101                        unsigned &CurByte, raw_ostream &OS) const {
102    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
103  }
104
105  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
106                   unsigned &CurByte, raw_ostream &OS) const {
107    // SIB byte is in the same format as the ModRMByte.
108    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
109  }
110
111
112  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
113                        unsigned RegOpcodeField,
114                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
115                        SmallVectorImpl<MCFixup> &Fixups) const;
116
117  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
118                         SmallVectorImpl<MCFixup> &Fixups) const;
119
120  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
121                           const MCInst &MI, const MCInstrDesc &Desc,
122                           raw_ostream &OS) const;
123
124  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
125                                 int MemOperand, const MCInst &MI,
126                                 raw_ostream &OS) const;
127
128  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
129                        const MCInst &MI, const MCInstrDesc &Desc,
130                        raw_ostream &OS) const;
131};
132
133} // end anonymous namespace
134
135
136MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
137                                            const MCSubtargetInfo &STI,
138                                            MCContext &Ctx) {
139  return new X86MCCodeEmitter(MCII, STI, Ctx);
140}
141
142/// isDisp8 - Return true if this signed displacement fits in a 8-bit
143/// sign-extended field.
144static bool isDisp8(int Value) {
145  return Value == (signed char)Value;
146}
147
148/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
149/// in an instruction with the specified TSFlags.
150static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
151  unsigned Size = X86II::getSizeOfImm(TSFlags);
152  bool isPCRel = X86II::isImmPCRel(TSFlags);
153
154  return MCFixup::getKindForSize(Size, isPCRel);
155}
156
157/// Is32BitMemOperand - Return true if the specified instruction with a memory
158/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
159/// memory operand.  Op specifies the operand # of the memoperand.
160static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
161  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
162  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
163
164  if ((BaseReg.getReg() != 0 &&
165       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
166      (IndexReg.getReg() != 0 &&
167       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
168    return true;
169  return false;
170}
171
172/// StartsWithGlobalOffsetTable - Check if this expression starts with
173///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
174///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
175/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
176/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
177/// of a binary expression.
178enum GlobalOffsetTableExprKind {
179  GOT_None,
180  GOT_Normal,
181  GOT_SymDiff
182};
183static GlobalOffsetTableExprKind
184StartsWithGlobalOffsetTable(const MCExpr *Expr) {
185  const MCExpr *RHS = 0;
186  if (Expr->getKind() == MCExpr::Binary) {
187    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
188    Expr = BE->getLHS();
189    RHS = BE->getRHS();
190  }
191
192  if (Expr->getKind() != MCExpr::SymbolRef)
193    return GOT_None;
194
195  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
196  const MCSymbol &S = Ref->getSymbol();
197  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
198    return GOT_None;
199  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
200    return GOT_SymDiff;
201  return GOT_Normal;
202}
203
204void X86MCCodeEmitter::
205EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
206              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
207              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
208  const MCExpr *Expr = NULL;
209  if (DispOp.isImm()) {
210    // If this is a simple integer displacement that doesn't require a
211    // relocation, emit it now.
212    if (FixupKind != FK_PCRel_1 &&
213        FixupKind != FK_PCRel_2 &&
214        FixupKind != FK_PCRel_4) {
215      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
216      return;
217    }
218    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
219  } else {
220    Expr = DispOp.getExpr();
221  }
222
223  // If we have an immoffset, add it to the expression.
224  if ((FixupKind == FK_Data_4 ||
225       FixupKind == FK_Data_8 ||
226       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
227    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
228    if (Kind != GOT_None) {
229      assert(ImmOffset == 0);
230
231      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
232      if (Kind == GOT_Normal)
233        ImmOffset = CurByte;
234    } else if (Expr->getKind() == MCExpr::SymbolRef) {
235      const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
236      if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
237        FixupKind = MCFixupKind(FK_SecRel_4);
238      }
239    }
240  }
241
242  // If the fixup is pc-relative, we need to bias the value to be relative to
243  // the start of the field, not the end of the field.
244  if (FixupKind == FK_PCRel_4 ||
245      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
246      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
247    ImmOffset -= 4;
248  if (FixupKind == FK_PCRel_2)
249    ImmOffset -= 2;
250  if (FixupKind == FK_PCRel_1)
251    ImmOffset -= 1;
252
253  if (ImmOffset)
254    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
255                                   Ctx);
256
257  // Emit a symbolic constant as a fixup and 4 zeros.
258  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
259  EmitConstant(0, Size, CurByte, OS);
260}
261
262void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
263                                        unsigned RegOpcodeField,
264                                        uint64_t TSFlags, unsigned &CurByte,
265                                        raw_ostream &OS,
266                                        SmallVectorImpl<MCFixup> &Fixups) const{
267  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
268  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
269  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
270  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
271  unsigned BaseReg = Base.getReg();
272
273  // Handle %rip relative addressing.
274  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
275    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
276    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
277    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
278
279    unsigned FixupKind = X86::reloc_riprel_4byte;
280
281    // movq loads are handled with a special relocation form which allows the
282    // linker to eliminate some loads for GOT references which end up in the
283    // same linkage unit.
284    if (MI.getOpcode() == X86::MOV64rm)
285      FixupKind = X86::reloc_riprel_4byte_movq_load;
286
287    // rip-relative addressing is actually relative to the *next* instruction.
288    // Since an immediate can follow the mod/rm byte for an instruction, this
289    // means that we need to bias the immediate field of the instruction with
290    // the size of the immediate field.  If we have this case, add it into the
291    // expression to emit.
292    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
293
294    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
295                  CurByte, OS, Fixups, -ImmSize);
296    return;
297  }
298
299  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
300
301  // Determine whether a SIB byte is needed.
302  // If no BaseReg, issue a RIP relative instruction only if the MCE can
303  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
304  // 2-7) and absolute references.
305
306  if (// The SIB byte must be used if there is an index register.
307      IndexReg.getReg() == 0 &&
308      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
309      // encode to an R/M value of 4, which indicates that a SIB byte is
310      // present.
311      BaseRegNo != N86::ESP &&
312      // If there is no base register and we're in 64-bit mode, we need a SIB
313      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
314      (!is64BitMode() || BaseReg != 0)) {
315
316    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
317      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
318      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
319      return;
320    }
321
322    // If the base is not EBP/ESP and there is no displacement, use simple
323    // indirect register encoding, this handles addresses like [EAX].  The
324    // encoding for [EBP] with no displacement means [disp32] so we handle it
325    // by emitting a displacement of 0 below.
326    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
327      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
328      return;
329    }
330
331    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
332    if (Disp.isImm() && isDisp8(Disp.getImm())) {
333      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
334      EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
335      return;
336    }
337
338    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
339    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
340    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
341                  Fixups);
342    return;
343  }
344
345  // We need a SIB byte, so start by outputting the ModR/M byte first
346  assert(IndexReg.getReg() != X86::ESP &&
347         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
348
349  bool ForceDisp32 = false;
350  bool ForceDisp8  = false;
351  if (BaseReg == 0) {
352    // If there is no base register, we emit the special case SIB byte with
353    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
354    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
355    ForceDisp32 = true;
356  } else if (!Disp.isImm()) {
357    // Emit the normal disp32 encoding.
358    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
359    ForceDisp32 = true;
360  } else if (Disp.getImm() == 0 &&
361             // Base reg can't be anything that ends up with '5' as the base
362             // reg, it is the magic [*] nomenclature that indicates no base.
363             BaseRegNo != N86::EBP) {
364    // Emit no displacement ModR/M byte
365    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
366  } else if (isDisp8(Disp.getImm())) {
367    // Emit the disp8 encoding.
368    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
369    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
370  } else {
371    // Emit the normal disp32 encoding.
372    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
373  }
374
375  // Calculate what the SS field value should be...
376  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
377  unsigned SS = SSTable[Scale.getImm()];
378
379  if (BaseReg == 0) {
380    // Handle the SIB byte for the case where there is no base, see Intel
381    // Manual 2A, table 2-7. The displacement has already been output.
382    unsigned IndexRegNo;
383    if (IndexReg.getReg())
384      IndexRegNo = GetX86RegNum(IndexReg);
385    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
386      IndexRegNo = 4;
387    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
388  } else {
389    unsigned IndexRegNo;
390    if (IndexReg.getReg())
391      IndexRegNo = GetX86RegNum(IndexReg);
392    else
393      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
394    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
395  }
396
397  // Do we need to output a displacement?
398  if (ForceDisp8)
399    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
400  else if (ForceDisp32 || Disp.getImm() != 0)
401    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
402                  CurByte, OS, Fixups);
403}
404
405/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
406/// called VEX.
407void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
408                                           int MemOperand, const MCInst &MI,
409                                           const MCInstrDesc &Desc,
410                                           raw_ostream &OS) const {
411  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
412  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
413
414  // VEX_R: opcode externsion equivalent to REX.R in
415  // 1's complement (inverted) form
416  //
417  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
418  //  0: Same as REX_R=1 (64 bit mode only)
419  //
420  unsigned char VEX_R = 0x1;
421
422  // VEX_X: equivalent to REX.X, only used when a
423  // register is used for index in SIB Byte.
424  //
425  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
426  //  0: Same as REX.X=1 (64-bit mode only)
427  unsigned char VEX_X = 0x1;
428
429  // VEX_B:
430  //
431  //  1: Same as REX_B=0 (ignored in 32-bit mode)
432  //  0: Same as REX_B=1 (64 bit mode only)
433  //
434  unsigned char VEX_B = 0x1;
435
436  // VEX_W: opcode specific (use like REX.W, or used for
437  // opcode extension, or ignored, depending on the opcode byte)
438  unsigned char VEX_W = 0;
439
440  // XOP: Use XOP prefix byte 0x8f instead of VEX.
441  unsigned char XOP = 0;
442
443  // VEX_5M (VEX m-mmmmm field):
444  //
445  //  0b00000: Reserved for future use
446  //  0b00001: implied 0F leading opcode
447  //  0b00010: implied 0F 38 leading opcode bytes
448  //  0b00011: implied 0F 3A leading opcode bytes
449  //  0b00100-0b11111: Reserved for future use
450  //  0b01000: XOP map select - 08h instructions with imm byte
451  //  0b10001: XOP map select - 09h instructions with no imm byte
452  unsigned char VEX_5M = 0x1;
453
454  // VEX_4V (VEX vvvv field): a register specifier
455  // (in 1's complement form) or 1111 if unused.
456  unsigned char VEX_4V = 0xf;
457
458  // VEX_L (Vector Length):
459  //
460  //  0: scalar or 128-bit vector
461  //  1: 256-bit vector
462  //
463  unsigned char VEX_L = 0;
464
465  // VEX_PP: opcode extension providing equivalent
466  // functionality of a SIMD prefix
467  //
468  //  0b00: None
469  //  0b01: 66
470  //  0b10: F3
471  //  0b11: F2
472  //
473  unsigned char VEX_PP = 0;
474
475  // Encode the operand size opcode prefix as needed.
476  if (TSFlags & X86II::OpSize)
477    VEX_PP = 0x01;
478
479  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
480    VEX_W = 1;
481
482  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
483    XOP = 1;
484
485  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
486    VEX_L = 1;
487
488  switch (TSFlags & X86II::Op0Mask) {
489  default: llvm_unreachable("Invalid prefix!");
490  case X86II::T8:  // 0F 38
491    VEX_5M = 0x2;
492    break;
493  case X86II::TA:  // 0F 3A
494    VEX_5M = 0x3;
495    break;
496  case X86II::T8XS: // F3 0F 38
497    VEX_PP = 0x2;
498    VEX_5M = 0x2;
499    break;
500  case X86II::T8XD: // F2 0F 38
501    VEX_PP = 0x3;
502    VEX_5M = 0x2;
503    break;
504  case X86II::TAXD: // F2 0F 3A
505    VEX_PP = 0x3;
506    VEX_5M = 0x3;
507    break;
508  case X86II::XS:  // F3 0F
509    VEX_PP = 0x2;
510    break;
511  case X86II::XD:  // F2 0F
512    VEX_PP = 0x3;
513    break;
514  case X86II::XOP8:
515    VEX_5M = 0x8;
516    break;
517  case X86II::XOP9:
518    VEX_5M = 0x9;
519    break;
520  case X86II::A6:  // Bypass: Not used by VEX
521  case X86II::A7:  // Bypass: Not used by VEX
522  case X86II::TB:  // Bypass: Not used by VEX
523  case 0:
524    break;  // No prefix!
525  }
526
527
528  // Set the vector length to 256-bit if YMM0-YMM15 is used
529  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
530    if (!MI.getOperand(i).isReg())
531      continue;
532    unsigned SrcReg = MI.getOperand(i).getReg();
533    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
534      VEX_L = 1;
535  }
536
537  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
538  unsigned CurOp = 0;
539  switch (TSFlags & X86II::FormMask) {
540  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
541  case X86II::MRMDestMem: {
542    // MRMDestMem instructions forms:
543    //  MemAddr, src1(ModR/M)
544    //  MemAddr, src1(VEX_4V), src2(ModR/M)
545    //  MemAddr, src1(ModR/M), imm8
546    //
547    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
548      VEX_B = 0x0;
549    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
550      VEX_X = 0x0;
551
552    CurOp = X86::AddrNumOperands;
553    if (HasVEX_4V)
554      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
555
556    const MCOperand &MO = MI.getOperand(CurOp);
557    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
558      VEX_R = 0x0;
559    break;
560  }
561  case X86II::MRMSrcMem:
562    // MRMSrcMem instructions forms:
563    //  src1(ModR/M), MemAddr
564    //  src1(ModR/M), src2(VEX_4V), MemAddr
565    //  src1(ModR/M), MemAddr, imm8
566    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
567    //
568    //  FMA4:
569    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
570    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
571    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
572      VEX_R = 0x0;
573
574    if (HasVEX_4V)
575      VEX_4V = getVEXRegisterEncoding(MI, 1);
576
577    if (X86II::isX86_64ExtendedReg(
578               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
579      VEX_B = 0x0;
580    if (X86II::isX86_64ExtendedReg(
581               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
582      VEX_X = 0x0;
583
584    if (HasVEX_4VOp3)
585      VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
586    break;
587  case X86II::MRM0m: case X86II::MRM1m:
588  case X86II::MRM2m: case X86II::MRM3m:
589  case X86II::MRM4m: case X86II::MRM5m:
590  case X86II::MRM6m: case X86II::MRM7m: {
591    // MRM[0-9]m instructions forms:
592    //  MemAddr
593    //  src1(VEX_4V), MemAddr
594    if (HasVEX_4V)
595      VEX_4V = getVEXRegisterEncoding(MI, 0);
596
597    if (X86II::isX86_64ExtendedReg(
598               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
599      VEX_B = 0x0;
600    if (X86II::isX86_64ExtendedReg(
601               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
602      VEX_X = 0x0;
603    break;
604  }
605  case X86II::MRMSrcReg:
606    // MRMSrcReg instructions forms:
607    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
608    //  dst(ModR/M), src1(ModR/M)
609    //  dst(ModR/M), src1(ModR/M), imm8
610    //
611    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
612      VEX_R = 0x0;
613    CurOp++;
614
615    if (HasVEX_4V)
616      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
617    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
618      VEX_B = 0x0;
619    CurOp++;
620    if (HasVEX_4VOp3)
621      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
622    break;
623  case X86II::MRMDestReg:
624    // MRMDestReg instructions forms:
625    //  dst(ModR/M), src(ModR/M)
626    //  dst(ModR/M), src(ModR/M), imm8
627    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
628      VEX_B = 0x0;
629    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
630      VEX_R = 0x0;
631    break;
632  case X86II::MRM0r: case X86II::MRM1r:
633  case X86II::MRM2r: case X86II::MRM3r:
634  case X86II::MRM4r: case X86II::MRM5r:
635  case X86II::MRM6r: case X86II::MRM7r:
636    // MRM0r-MRM7r instructions forms:
637    //  dst(VEX_4V), src(ModR/M), imm8
638    VEX_4V = getVEXRegisterEncoding(MI, 0);
639    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
640      VEX_B = 0x0;
641    break;
642  default: // RawFrm
643    break;
644  }
645
646  // Emit segment override opcode prefix as needed.
647  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
648
649  // VEX opcode prefix can have 2 or 3 bytes
650  //
651  //  3 bytes:
652  //    +-----+ +--------------+ +-------------------+
653  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
654  //    +-----+ +--------------+ +-------------------+
655  //  2 bytes:
656  //    +-----+ +-------------------+
657  //    | C5h | | R | vvvv | L | pp |
658  //    +-----+ +-------------------+
659  //
660  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
661
662  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
663    EmitByte(0xC5, CurByte, OS);
664    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
665    return;
666  }
667
668  // 3 byte VEX prefix
669  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
670  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
671  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
672}
673
674/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
675/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
676/// size, and 3) use of X86-64 extended registers.
677static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
678                                   const MCInstrDesc &Desc) {
679  unsigned REX = 0;
680  if (TSFlags & X86II::REX_W)
681    REX |= 1 << 3; // set REX.W
682
683  if (MI.getNumOperands() == 0) return REX;
684
685  unsigned NumOps = MI.getNumOperands();
686  // FIXME: MCInst should explicitize the two-addrness.
687  bool isTwoAddr = NumOps > 1 &&
688                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
689
690  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
691  unsigned i = isTwoAddr ? 1 : 0;
692  for (; i != NumOps; ++i) {
693    const MCOperand &MO = MI.getOperand(i);
694    if (!MO.isReg()) continue;
695    unsigned Reg = MO.getReg();
696    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
697    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
698    // that returns non-zero.
699    REX |= 0x40; // REX fixed encoding prefix
700    break;
701  }
702
703  switch (TSFlags & X86II::FormMask) {
704  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
705  case X86II::MRMSrcReg:
706    if (MI.getOperand(0).isReg() &&
707        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
708      REX |= 1 << 2; // set REX.R
709    i = isTwoAddr ? 2 : 1;
710    for (; i != NumOps; ++i) {
711      const MCOperand &MO = MI.getOperand(i);
712      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
713        REX |= 1 << 0; // set REX.B
714    }
715    break;
716  case X86II::MRMSrcMem: {
717    if (MI.getOperand(0).isReg() &&
718        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
719      REX |= 1 << 2; // set REX.R
720    unsigned Bit = 0;
721    i = isTwoAddr ? 2 : 1;
722    for (; i != NumOps; ++i) {
723      const MCOperand &MO = MI.getOperand(i);
724      if (MO.isReg()) {
725        if (X86II::isX86_64ExtendedReg(MO.getReg()))
726          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
727        Bit++;
728      }
729    }
730    break;
731  }
732  case X86II::MRM0m: case X86II::MRM1m:
733  case X86II::MRM2m: case X86II::MRM3m:
734  case X86II::MRM4m: case X86II::MRM5m:
735  case X86II::MRM6m: case X86II::MRM7m:
736  case X86II::MRMDestMem: {
737    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
738    i = isTwoAddr ? 1 : 0;
739    if (NumOps > e && MI.getOperand(e).isReg() &&
740        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
741      REX |= 1 << 2; // set REX.R
742    unsigned Bit = 0;
743    for (; i != e; ++i) {
744      const MCOperand &MO = MI.getOperand(i);
745      if (MO.isReg()) {
746        if (X86II::isX86_64ExtendedReg(MO.getReg()))
747          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
748        Bit++;
749      }
750    }
751    break;
752  }
753  default:
754    if (MI.getOperand(0).isReg() &&
755        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
756      REX |= 1 << 0; // set REX.B
757    i = isTwoAddr ? 2 : 1;
758    for (unsigned e = NumOps; i != e; ++i) {
759      const MCOperand &MO = MI.getOperand(i);
760      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
761        REX |= 1 << 2; // set REX.R
762    }
763    break;
764  }
765  return REX;
766}
767
768/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
769void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
770                                        unsigned &CurByte, int MemOperand,
771                                        const MCInst &MI,
772                                        raw_ostream &OS) const {
773  switch (TSFlags & X86II::SegOvrMask) {
774  default: llvm_unreachable("Invalid segment!");
775  case 0:
776    // No segment override, check for explicit one on memory operand.
777    if (MemOperand != -1) {   // If the instruction has a memory operand.
778      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
779      default: llvm_unreachable("Unknown segment register!");
780      case 0: break;
781      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
782      case X86::SS: EmitByte(0x36, CurByte, OS); break;
783      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
784      case X86::ES: EmitByte(0x26, CurByte, OS); break;
785      case X86::FS: EmitByte(0x64, CurByte, OS); break;
786      case X86::GS: EmitByte(0x65, CurByte, OS); break;
787      }
788    }
789    break;
790  case X86II::FS:
791    EmitByte(0x64, CurByte, OS);
792    break;
793  case X86II::GS:
794    EmitByte(0x65, CurByte, OS);
795    break;
796  }
797}
798
799/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
800///
801/// MemOperand is the operand # of the start of a memory operand if present.  If
802/// Not present, it is -1.
803void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
804                                        int MemOperand, const MCInst &MI,
805                                        const MCInstrDesc &Desc,
806                                        raw_ostream &OS) const {
807
808  // Emit the lock opcode prefix as needed.
809  if (TSFlags & X86II::LOCK)
810    EmitByte(0xF0, CurByte, OS);
811
812  // Emit segment override opcode prefix as needed.
813  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
814
815  // Emit the repeat opcode prefix as needed.
816  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
817    EmitByte(0xF3, CurByte, OS);
818
819  // Emit the address size opcode prefix as needed.
820  if ((TSFlags & X86II::AdSize) ||
821      (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
822    EmitByte(0x67, CurByte, OS);
823
824  // Emit the operand size opcode prefix as needed.
825  if (TSFlags & X86II::OpSize)
826    EmitByte(0x66, CurByte, OS);
827
828  bool Need0FPrefix = false;
829  switch (TSFlags & X86II::Op0Mask) {
830  default: llvm_unreachable("Invalid prefix!");
831  case 0: break;  // No prefix!
832  case X86II::REP: break; // already handled.
833  case X86II::TB:  // Two-byte opcode prefix
834  case X86II::T8:  // 0F 38
835  case X86II::TA:  // 0F 3A
836  case X86II::A6:  // 0F A6
837  case X86II::A7:  // 0F A7
838    Need0FPrefix = true;
839    break;
840  case X86II::T8XS: // F3 0F 38
841    EmitByte(0xF3, CurByte, OS);
842    Need0FPrefix = true;
843    break;
844  case X86II::T8XD: // F2 0F 38
845    EmitByte(0xF2, CurByte, OS);
846    Need0FPrefix = true;
847    break;
848  case X86II::TAXD: // F2 0F 3A
849    EmitByte(0xF2, CurByte, OS);
850    Need0FPrefix = true;
851    break;
852  case X86II::XS:   // F3 0F
853    EmitByte(0xF3, CurByte, OS);
854    Need0FPrefix = true;
855    break;
856  case X86II::XD:   // F2 0F
857    EmitByte(0xF2, CurByte, OS);
858    Need0FPrefix = true;
859    break;
860  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
861  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
862  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
863  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
864  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
865  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
866  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
867  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
868  }
869
870  // Handle REX prefix.
871  // FIXME: Can this come before F2 etc to simplify emission?
872  if (is64BitMode()) {
873    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
874      EmitByte(0x40 | REX, CurByte, OS);
875  }
876
877  // 0x0F escape code must be emitted just before the opcode.
878  if (Need0FPrefix)
879    EmitByte(0x0F, CurByte, OS);
880
881  // FIXME: Pull this up into previous switch if REX can be moved earlier.
882  switch (TSFlags & X86II::Op0Mask) {
883  case X86II::T8XS:  // F3 0F 38
884  case X86II::T8XD:  // F2 0F 38
885  case X86II::T8:    // 0F 38
886    EmitByte(0x38, CurByte, OS);
887    break;
888  case X86II::TAXD:  // F2 0F 3A
889  case X86II::TA:    // 0F 3A
890    EmitByte(0x3A, CurByte, OS);
891    break;
892  case X86II::A6:    // 0F A6
893    EmitByte(0xA6, CurByte, OS);
894    break;
895  case X86II::A7:    // 0F A7
896    EmitByte(0xA7, CurByte, OS);
897    break;
898  }
899}
900
901void X86MCCodeEmitter::
902EncodeInstruction(const MCInst &MI, raw_ostream &OS,
903                  SmallVectorImpl<MCFixup> &Fixups) const {
904  unsigned Opcode = MI.getOpcode();
905  const MCInstrDesc &Desc = MCII.get(Opcode);
906  uint64_t TSFlags = Desc.TSFlags;
907
908  // Pseudo instructions don't get encoded.
909  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
910    return;
911
912  // If this is a two-address instruction, skip one of the register operands.
913  // FIXME: This should be handled during MCInst lowering.
914  unsigned NumOps = Desc.getNumOperands();
915  unsigned CurOp = 0;
916  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
917    ++CurOp;
918  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
919    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
920    --NumOps;
921
922  // Keep track of the current byte being emitted.
923  unsigned CurByte = 0;
924
925  // Is this instruction encoded using the AVX VEX prefix?
926  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
927
928  // It uses the VEX.VVVV field?
929  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
930  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
931  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
932  const unsigned MemOp4_I8IMMOperand = 2;
933
934  // Determine where the memory operand starts, if present.
935  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
936  if (MemoryOperand != -1) MemoryOperand += CurOp;
937
938  if (!HasVEXPrefix)
939    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
940  else
941    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
942
943  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
944
945  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
946    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
947
948  unsigned SrcRegNum = 0;
949  switch (TSFlags & X86II::FormMask) {
950  case X86II::MRMInitReg:
951    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
952  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
953    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
954  case X86II::Pseudo:
955    llvm_unreachable("Pseudo instruction shouldn't be emitted");
956  case X86II::RawFrm:
957    EmitByte(BaseOpcode, CurByte, OS);
958    break;
959  case X86II::RawFrmImm8:
960    EmitByte(BaseOpcode, CurByte, OS);
961    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
962                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
963                  CurByte, OS, Fixups);
964    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
965                  OS, Fixups);
966    break;
967  case X86II::RawFrmImm16:
968    EmitByte(BaseOpcode, CurByte, OS);
969    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
970                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
971                  CurByte, OS, Fixups);
972    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
973                  OS, Fixups);
974    break;
975
976  case X86II::AddRegFrm:
977    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
978    break;
979
980  case X86II::MRMDestReg:
981    EmitByte(BaseOpcode, CurByte, OS);
982    EmitRegModRMByte(MI.getOperand(CurOp),
983                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
984    CurOp += 2;
985    break;
986
987  case X86II::MRMDestMem:
988    EmitByte(BaseOpcode, CurByte, OS);
989    SrcRegNum = CurOp + X86::AddrNumOperands;
990
991    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
992      SrcRegNum++;
993
994    EmitMemModRMByte(MI, CurOp,
995                     GetX86RegNum(MI.getOperand(SrcRegNum)),
996                     TSFlags, CurByte, OS, Fixups);
997    CurOp = SrcRegNum + 1;
998    break;
999
1000  case X86II::MRMSrcReg:
1001    EmitByte(BaseOpcode, CurByte, OS);
1002    SrcRegNum = CurOp + 1;
1003
1004    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1005      SrcRegNum++;
1006
1007    if(HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1008      SrcRegNum++;
1009
1010    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1011                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1012
1013    // 2 operands skipped with HasMemOp4, comensate accordingly
1014    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1015    if (HasVEX_4VOp3)
1016      ++CurOp;
1017    break;
1018
1019  case X86II::MRMSrcMem: {
1020    int AddrOperands = X86::AddrNumOperands;
1021    unsigned FirstMemOp = CurOp+1;
1022    if (HasVEX_4V) {
1023      ++AddrOperands;
1024      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1025    }
1026    if(HasMemOp4) // Skip second register source (encoded in I8IMM)
1027      ++FirstMemOp;
1028
1029    EmitByte(BaseOpcode, CurByte, OS);
1030
1031    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1032                     TSFlags, CurByte, OS, Fixups);
1033    CurOp += AddrOperands + 1;
1034    if (HasVEX_4VOp3)
1035      ++CurOp;
1036    break;
1037  }
1038
1039  case X86II::MRM0r: case X86II::MRM1r:
1040  case X86II::MRM2r: case X86II::MRM3r:
1041  case X86II::MRM4r: case X86II::MRM5r:
1042  case X86II::MRM6r: case X86II::MRM7r:
1043    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1044      CurOp++;
1045    EmitByte(BaseOpcode, CurByte, OS);
1046    EmitRegModRMByte(MI.getOperand(CurOp++),
1047                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1048                     CurByte, OS);
1049    break;
1050  case X86II::MRM0m: case X86II::MRM1m:
1051  case X86II::MRM2m: case X86II::MRM3m:
1052  case X86II::MRM4m: case X86II::MRM5m:
1053  case X86II::MRM6m: case X86II::MRM7m:
1054    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1055      CurOp++;
1056    EmitByte(BaseOpcode, CurByte, OS);
1057    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1058                     TSFlags, CurByte, OS, Fixups);
1059    CurOp += X86::AddrNumOperands;
1060    break;
1061  case X86II::MRM_C1: case X86II::MRM_C2:
1062  case X86II::MRM_C3: case X86II::MRM_C4:
1063  case X86II::MRM_C8: case X86II::MRM_C9:
1064  case X86II::MRM_D0: case X86II::MRM_D1:
1065  case X86II::MRM_D8: case X86II::MRM_D9:
1066  case X86II::MRM_DA: case X86II::MRM_DB:
1067  case X86II::MRM_DC: case X86II::MRM_DD:
1068  case X86II::MRM_DE: case X86II::MRM_DF:
1069  case X86II::MRM_E8: case X86II::MRM_F0:
1070  case X86II::MRM_F8: case X86II::MRM_F9:
1071    EmitByte(BaseOpcode, CurByte, OS);
1072
1073    unsigned char MRM;
1074    switch (TSFlags & X86II::FormMask) {
1075    default: llvm_unreachable("Invalid Form");
1076    case X86II::MRM_C1: MRM = 0xC1; break;
1077    case X86II::MRM_C2: MRM = 0xC2; break;
1078    case X86II::MRM_C3: MRM = 0xC3; break;
1079    case X86II::MRM_C4: MRM = 0xC4; break;
1080    case X86II::MRM_C8: MRM = 0xC8; break;
1081    case X86II::MRM_C9: MRM = 0xC9; break;
1082    case X86II::MRM_D0: MRM = 0xD0; break;
1083    case X86II::MRM_D1: MRM = 0xD1; break;
1084    case X86II::MRM_D8: MRM = 0xD8; break;
1085    case X86II::MRM_D9: MRM = 0xD9; break;
1086    case X86II::MRM_DA: MRM = 0xDA; break;
1087    case X86II::MRM_DB: MRM = 0xDB; break;
1088    case X86II::MRM_DC: MRM = 0xDC; break;
1089    case X86II::MRM_DD: MRM = 0xDD; break;
1090    case X86II::MRM_DE: MRM = 0xDE; break;
1091    case X86II::MRM_DF: MRM = 0xDF; break;
1092    case X86II::MRM_E8: MRM = 0xE8; break;
1093    case X86II::MRM_F0: MRM = 0xF0; break;
1094    case X86II::MRM_F8: MRM = 0xF8; break;
1095    case X86II::MRM_F9: MRM = 0xF9; break;
1096    }
1097    EmitByte(MRM, CurByte, OS);
1098    break;
1099  }
1100
1101  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1102  // according to the right size for the instruction.
1103  if (CurOp != NumOps) {
1104    // The last source register of a 4 operand instruction in AVX is encoded
1105    // in bits[7:4] of a immediate byte.
1106    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1107      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1108                                                   : CurOp);
1109      CurOp++;
1110      bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
1111      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1112      RegNum |= GetX86RegNum(MO) << 4;
1113      // If there is an additional 5th operand it must be an immediate, which
1114      // is encoded in bits[3:0]
1115      if(CurOp != NumOps) {
1116        const MCOperand &MIMM = MI.getOperand(CurOp++);
1117        if(MIMM.isImm()) {
1118          unsigned Val = MIMM.getImm();
1119          assert(Val < 16 && "Immediate operand value out of range");
1120          RegNum |= Val;
1121        }
1122      }
1123      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1124                    CurByte, OS, Fixups);
1125    } else {
1126      unsigned FixupKind;
1127      // FIXME: Is there a better way to know that we need a signed relocation?
1128      if (MI.getOpcode() == X86::ADD64ri32 ||
1129          MI.getOpcode() == X86::MOV64ri32 ||
1130          MI.getOpcode() == X86::MOV64mi32 ||
1131          MI.getOpcode() == X86::PUSH64i32)
1132        FixupKind = X86::reloc_signed_4byte;
1133      else
1134        FixupKind = getImmFixupKind(TSFlags);
1135      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1136                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1137                    CurByte, OS, Fixups);
1138    }
1139  }
1140
1141  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1142    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1143
1144#ifndef NDEBUG
1145  // FIXME: Verify.
1146  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1147    errs() << "Cannot encode all operands of: ";
1148    MI.dump();
1149    errs() << '\n';
1150    abort();
1151  }
1152#endif
1153}
1154