X86MCCodeEmitter.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace llvm;
29
30namespace {
31class X86MCCodeEmitter : public MCCodeEmitter {
32  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34  const MCInstrInfo &MCII;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
38    : MCII(mcii), Ctx(ctx) {
39  }
40
41  ~X86MCCodeEmitter() {}
42
43  bool is64BitMode(const MCSubtargetInfo &STI) const {
44    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
45  }
46
47  bool is32BitMode(const MCSubtargetInfo &STI) const {
48    return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
49  }
50
51  bool is16BitMode(const MCSubtargetInfo &STI) const {
52    return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
53  }
54
55  /// Is16BitMemOperand - Return true if the specified instruction has
56  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
57  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
58                         const MCSubtargetInfo &STI) const {
59    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
60    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
61    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
62
63    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
64        Disp.isImm() && Disp.getImm() < 0x10000)
65      return true;
66    if ((BaseReg.getReg() != 0 &&
67         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
68        (IndexReg.getReg() != 0 &&
69         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
70      return true;
71    return false;
72  }
73
74  unsigned GetX86RegNum(const MCOperand &MO) const {
75    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
76  }
77
78  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
79  // 0-7 and the difference between the 2 groups is given by the REX prefix.
80  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
81  // in 1's complement form, example:
82  //
83  //  ModRM field => XMM9 => 1
84  //  VEX.VVVV    => XMM9 => ~9
85  //
86  // See table 4-35 of Intel AVX Programming Reference for details.
87  unsigned char getVEXRegisterEncoding(const MCInst &MI,
88                                       unsigned OpNum) const {
89    unsigned SrcReg = MI.getOperand(OpNum).getReg();
90    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
91    if (X86II::isX86_64ExtendedReg(SrcReg))
92      SrcRegNum |= 8;
93
94    // The registers represented through VEX_VVVV should
95    // be encoded in 1's complement form.
96    return (~SrcRegNum) & 0xf;
97  }
98
99  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
100                                             unsigned OpNum) const {
101    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
102           "Invalid mask register as write-mask!");
103    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
104    return MaskRegNum;
105  }
106
107  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
108    OS << (char)C;
109    ++CurByte;
110  }
111
112  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
113                    raw_ostream &OS) const {
114    // Output the constant in little endian byte order.
115    for (unsigned i = 0; i != Size; ++i) {
116      EmitByte(Val & 255, CurByte, OS);
117      Val >>= 8;
118    }
119  }
120
121  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
122                     unsigned ImmSize, MCFixupKind FixupKind,
123                     unsigned &CurByte, raw_ostream &OS,
124                     SmallVectorImpl<MCFixup> &Fixups,
125                     int ImmOffset = 0) const;
126
127  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
128                                        unsigned RM) {
129    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
130    return RM | (RegOpcode << 3) | (Mod << 6);
131  }
132
133  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
134                        unsigned &CurByte, raw_ostream &OS) const {
135    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
136  }
137
138  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
139                   unsigned &CurByte, raw_ostream &OS) const {
140    // SIB byte is in the same format as the ModRMByte.
141    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
142  }
143
144
145  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
146                        unsigned RegOpcodeField,
147                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
148                        SmallVectorImpl<MCFixup> &Fixups,
149                        const MCSubtargetInfo &STI) const;
150
151  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
152                         SmallVectorImpl<MCFixup> &Fixups,
153                         const MCSubtargetInfo &STI) const override;
154
155  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
156                           const MCInst &MI, const MCInstrDesc &Desc,
157                           raw_ostream &OS) const;
158
159  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
160                                 const MCInst &MI, raw_ostream &OS) const;
161
162  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
163                        const MCInst &MI, const MCInstrDesc &Desc,
164                        const MCSubtargetInfo &STI,
165                        raw_ostream &OS) const;
166};
167
168} // end anonymous namespace
169
170
171MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
172                                            const MCRegisterInfo &MRI,
173                                            const MCSubtargetInfo &STI,
174                                            MCContext &Ctx) {
175  return new X86MCCodeEmitter(MCII, Ctx);
176}
177
178/// isDisp8 - Return true if this signed displacement fits in a 8-bit
179/// sign-extended field.
180static bool isDisp8(int Value) {
181  return Value == (signed char)Value;
182}
183
184/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
185/// compressed dispacement field.
186static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
187  assert((TSFlags & X86II::EncodingMask) >> X86II::EncodingShift == X86II::EVEX &&
188         "Compressed 8-bit displacement is only valid for EVEX inst.");
189
190  unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
191  unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
192
193  if (CD8V == 0 && CD8E == 0) {
194    CValue = Value;
195    return isDisp8(Value);
196  }
197
198  unsigned MemObjSize = 1U << CD8E;
199  if (CD8V & 4) {
200    // Fixed vector length
201    MemObjSize *= 1U << (CD8V & 0x3);
202  } else {
203    // Modified vector length
204    bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
205    if (!EVEX_b) {
206      unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
207      EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
208      assert(EVEX_LL < 3 && "");
209
210      unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
211      NumElems /= 1U << (CD8V & 0x3);
212
213      MemObjSize *= NumElems;
214    }
215  }
216
217  unsigned MemObjMask = MemObjSize - 1;
218  assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
219
220  if (Value & MemObjMask) // Unaligned offset
221    return false;
222  Value /= (int)MemObjSize;
223  bool Ret = (Value == (signed char)Value);
224
225  if (Ret)
226    CValue = Value;
227  return Ret;
228}
229
230/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
231/// in an instruction with the specified TSFlags.
232static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
233  unsigned Size = X86II::getSizeOfImm(TSFlags);
234  bool isPCRel = X86II::isImmPCRel(TSFlags);
235
236  if (X86II::isImmSigned(TSFlags)) {
237    switch (Size) {
238    default: llvm_unreachable("Unsupported signed fixup size!");
239    case 4: return MCFixupKind(X86::reloc_signed_4byte);
240    }
241  }
242  return MCFixup::getKindForSize(Size, isPCRel);
243}
244
245/// Is32BitMemOperand - Return true if the specified instruction has
246/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
247static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
248  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
249  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
250
251  if ((BaseReg.getReg() != 0 &&
252       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
253      (IndexReg.getReg() != 0 &&
254       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
255    return true;
256  return false;
257}
258
259/// Is64BitMemOperand - Return true if the specified instruction has
260/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
261#ifndef NDEBUG
262static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
263  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
264  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
265
266  if ((BaseReg.getReg() != 0 &&
267       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
268      (IndexReg.getReg() != 0 &&
269       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
270    return true;
271  return false;
272}
273#endif
274
275/// StartsWithGlobalOffsetTable - Check if this expression starts with
276///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
277///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
278/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
279/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
280/// of a binary expression.
281enum GlobalOffsetTableExprKind {
282  GOT_None,
283  GOT_Normal,
284  GOT_SymDiff
285};
286static GlobalOffsetTableExprKind
287StartsWithGlobalOffsetTable(const MCExpr *Expr) {
288  const MCExpr *RHS = 0;
289  if (Expr->getKind() == MCExpr::Binary) {
290    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
291    Expr = BE->getLHS();
292    RHS = BE->getRHS();
293  }
294
295  if (Expr->getKind() != MCExpr::SymbolRef)
296    return GOT_None;
297
298  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
299  const MCSymbol &S = Ref->getSymbol();
300  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
301    return GOT_None;
302  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
303    return GOT_SymDiff;
304  return GOT_Normal;
305}
306
307static bool HasSecRelSymbolRef(const MCExpr *Expr) {
308  if (Expr->getKind() == MCExpr::SymbolRef) {
309    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
310    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
311  }
312  return false;
313}
314
315void X86MCCodeEmitter::
316EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
317              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
318              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
319  const MCExpr *Expr = NULL;
320  if (DispOp.isImm()) {
321    // If this is a simple integer displacement that doesn't require a
322    // relocation, emit it now.
323    if (FixupKind != FK_PCRel_1 &&
324        FixupKind != FK_PCRel_2 &&
325        FixupKind != FK_PCRel_4) {
326      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
327      return;
328    }
329    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
330  } else {
331    Expr = DispOp.getExpr();
332  }
333
334  // If we have an immoffset, add it to the expression.
335  if ((FixupKind == FK_Data_4 ||
336       FixupKind == FK_Data_8 ||
337       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
338    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
339    if (Kind != GOT_None) {
340      assert(ImmOffset == 0);
341
342      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
343      if (Kind == GOT_Normal)
344        ImmOffset = CurByte;
345    } else if (Expr->getKind() == MCExpr::SymbolRef) {
346      if (HasSecRelSymbolRef(Expr)) {
347        FixupKind = MCFixupKind(FK_SecRel_4);
348      }
349    } else if (Expr->getKind() == MCExpr::Binary) {
350      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
351      if (HasSecRelSymbolRef(Bin->getLHS())
352          || HasSecRelSymbolRef(Bin->getRHS())) {
353        FixupKind = MCFixupKind(FK_SecRel_4);
354      }
355    }
356  }
357
358  // If the fixup is pc-relative, we need to bias the value to be relative to
359  // the start of the field, not the end of the field.
360  if (FixupKind == FK_PCRel_4 ||
361      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
362      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
363    ImmOffset -= 4;
364  if (FixupKind == FK_PCRel_2)
365    ImmOffset -= 2;
366  if (FixupKind == FK_PCRel_1)
367    ImmOffset -= 1;
368
369  if (ImmOffset)
370    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
371                                   Ctx);
372
373  // Emit a symbolic constant as a fixup and 4 zeros.
374  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
375  EmitConstant(0, Size, CurByte, OS);
376}
377
378void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
379                                        unsigned RegOpcodeField,
380                                        uint64_t TSFlags, unsigned &CurByte,
381                                        raw_ostream &OS,
382                                        SmallVectorImpl<MCFixup> &Fixups,
383                                        const MCSubtargetInfo &STI) const{
384  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
385  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
386  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
387  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
388  unsigned BaseReg = Base.getReg();
389  unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
390                           X86II::EncodingShift;
391  bool HasEVEX = (Encoding == X86II::EVEX);
392
393  // Handle %rip relative addressing.
394  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
395    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
396    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
397    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
398
399    unsigned FixupKind = X86::reloc_riprel_4byte;
400
401    // movq loads are handled with a special relocation form which allows the
402    // linker to eliminate some loads for GOT references which end up in the
403    // same linkage unit.
404    if (MI.getOpcode() == X86::MOV64rm)
405      FixupKind = X86::reloc_riprel_4byte_movq_load;
406
407    // rip-relative addressing is actually relative to the *next* instruction.
408    // Since an immediate can follow the mod/rm byte for an instruction, this
409    // means that we need to bias the immediate field of the instruction with
410    // the size of the immediate field.  If we have this case, add it into the
411    // expression to emit.
412    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
413
414    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
415                  CurByte, OS, Fixups, -ImmSize);
416    return;
417  }
418
419  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
420
421  // 16-bit addressing forms of the ModR/M byte have a different encoding for
422  // the R/M field and are far more limited in which registers can be used.
423  if (Is16BitMemOperand(MI, Op, STI)) {
424    if (BaseReg) {
425      // For 32-bit addressing, the row and column values in Table 2-2 are
426      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
427      // some special cases. And GetX86RegNum reflects that numbering.
428      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
429      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
430      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
431      // while values 0-3 indicate the allowed combinations (base+index) of
432      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
433      //
434      // R16Table[] is a lookup from the normal RegNo, to the row values from
435      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
436      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
437      unsigned RMfield = R16Table[BaseRegNo];
438
439      assert(RMfield && "invalid 16-bit base register");
440
441      if (IndexReg.getReg()) {
442        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
443
444        assert(IndexReg16 && "invalid 16-bit index register");
445        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
446        assert(((IndexReg16 ^ RMfield) & 2) &&
447               "invalid 16-bit base/index register combination");
448        assert(Scale.getImm() == 1 &&
449               "invalid scale for 16-bit memory reference");
450
451        // Allow base/index to appear in either order (although GAS doesn't).
452        if (IndexReg16 & 2)
453          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
454        else
455          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
456      }
457
458      if (Disp.isImm() && isDisp8(Disp.getImm())) {
459        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
460          // There is no displacement; just the register.
461          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
462          return;
463        }
464        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
465        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
466        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
467        return;
468      }
469      // This is the [REG]+disp16 case.
470      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
471    } else {
472      // There is no BaseReg; this is the plain [disp16] case.
473      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
474    }
475
476    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
477    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
478    return;
479  }
480
481  // Determine whether a SIB byte is needed.
482  // If no BaseReg, issue a RIP relative instruction only if the MCE can
483  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
484  // 2-7) and absolute references.
485
486  if (// The SIB byte must be used if there is an index register.
487      IndexReg.getReg() == 0 &&
488      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
489      // encode to an R/M value of 4, which indicates that a SIB byte is
490      // present.
491      BaseRegNo != N86::ESP &&
492      // If there is no base register and we're in 64-bit mode, we need a SIB
493      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
494      (!is64BitMode(STI) || BaseReg != 0)) {
495
496    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
497      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
498      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
499      return;
500    }
501
502    // If the base is not EBP/ESP and there is no displacement, use simple
503    // indirect register encoding, this handles addresses like [EAX].  The
504    // encoding for [EBP] with no displacement means [disp32] so we handle it
505    // by emitting a displacement of 0 below.
506    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
507      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
508      return;
509    }
510
511    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
512    if (Disp.isImm()) {
513      if (!HasEVEX && isDisp8(Disp.getImm())) {
514        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
515        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
516        return;
517      }
518      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
519      // 32-bit displacement.
520      int CDisp8 = 0;
521      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
522        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
523        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
524                      CDisp8 - Disp.getImm());
525        return;
526      }
527    }
528
529    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
530    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
531    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
532                  Fixups);
533    return;
534  }
535
536  // We need a SIB byte, so start by outputting the ModR/M byte first
537  assert(IndexReg.getReg() != X86::ESP &&
538         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
539
540  bool ForceDisp32 = false;
541  bool ForceDisp8  = false;
542  int CDisp8 = 0;
543  int ImmOffset = 0;
544  if (BaseReg == 0) {
545    // If there is no base register, we emit the special case SIB byte with
546    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
547    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
548    ForceDisp32 = true;
549  } else if (!Disp.isImm()) {
550    // Emit the normal disp32 encoding.
551    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
552    ForceDisp32 = true;
553  } else if (Disp.getImm() == 0 &&
554             // Base reg can't be anything that ends up with '5' as the base
555             // reg, it is the magic [*] nomenclature that indicates no base.
556             BaseRegNo != N86::EBP) {
557    // Emit no displacement ModR/M byte
558    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
559  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
560    // Emit the disp8 encoding.
561    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
562    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
563  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
564    // Emit the disp8 encoding.
565    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
566    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
567    ImmOffset = CDisp8 - Disp.getImm();
568  } else {
569    // Emit the normal disp32 encoding.
570    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
571  }
572
573  // Calculate what the SS field value should be...
574  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
575  unsigned SS = SSTable[Scale.getImm()];
576
577  if (BaseReg == 0) {
578    // Handle the SIB byte for the case where there is no base, see Intel
579    // Manual 2A, table 2-7. The displacement has already been output.
580    unsigned IndexRegNo;
581    if (IndexReg.getReg())
582      IndexRegNo = GetX86RegNum(IndexReg);
583    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
584      IndexRegNo = 4;
585    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
586  } else {
587    unsigned IndexRegNo;
588    if (IndexReg.getReg())
589      IndexRegNo = GetX86RegNum(IndexReg);
590    else
591      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
592    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
593  }
594
595  // Do we need to output a displacement?
596  if (ForceDisp8)
597    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
598  else if (ForceDisp32 || Disp.getImm() != 0)
599    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
600                  CurByte, OS, Fixups);
601}
602
603/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
604/// called VEX.
605void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
606                                           int MemOperand, const MCInst &MI,
607                                           const MCInstrDesc &Desc,
608                                           raw_ostream &OS) const {
609  unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
610                           X86II::EncodingShift;
611  bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
612  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
613  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
614  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
615  bool HasEVEX_RC = (TSFlags >> X86II::VEXShift) & X86II::EVEX_RC;
616
617  // VEX_R: opcode externsion equivalent to REX.R in
618  // 1's complement (inverted) form
619  //
620  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
621  //  0: Same as REX_R=1 (64 bit mode only)
622  //
623  unsigned char VEX_R = 0x1;
624  unsigned char EVEX_R2 = 0x1;
625
626  // VEX_X: equivalent to REX.X, only used when a
627  // register is used for index in SIB Byte.
628  //
629  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
630  //  0: Same as REX.X=1 (64-bit mode only)
631  unsigned char VEX_X = 0x1;
632
633  // VEX_B:
634  //
635  //  1: Same as REX_B=0 (ignored in 32-bit mode)
636  //  0: Same as REX_B=1 (64 bit mode only)
637  //
638  unsigned char VEX_B = 0x1;
639
640  // VEX_W: opcode specific (use like REX.W, or used for
641  // opcode extension, or ignored, depending on the opcode byte)
642  unsigned char VEX_W = 0;
643
644  // VEX_5M (VEX m-mmmmm field):
645  //
646  //  0b00000: Reserved for future use
647  //  0b00001: implied 0F leading opcode
648  //  0b00010: implied 0F 38 leading opcode bytes
649  //  0b00011: implied 0F 3A leading opcode bytes
650  //  0b00100-0b11111: Reserved for future use
651  //  0b01000: XOP map select - 08h instructions with imm byte
652  //  0b01001: XOP map select - 09h instructions with no imm byte
653  //  0b01010: XOP map select - 0Ah instructions with imm dword
654  unsigned char VEX_5M = 0;
655
656  // VEX_4V (VEX vvvv field): a register specifier
657  // (in 1's complement form) or 1111 if unused.
658  unsigned char VEX_4V = 0xf;
659  unsigned char EVEX_V2 = 0x1;
660
661  // VEX_L (Vector Length):
662  //
663  //  0: scalar or 128-bit vector
664  //  1: 256-bit vector
665  //
666  unsigned char VEX_L = 0;
667  unsigned char EVEX_L2 = 0;
668
669  // VEX_PP: opcode extension providing equivalent
670  // functionality of a SIMD prefix
671  //
672  //  0b00: None
673  //  0b01: 66
674  //  0b10: F3
675  //  0b11: F2
676  //
677  unsigned char VEX_PP = 0;
678
679  // EVEX_U
680  unsigned char EVEX_U = 1; // Always '1' so far
681
682  // EVEX_z
683  unsigned char EVEX_z = 0;
684
685  // EVEX_b
686  unsigned char EVEX_b = 0;
687
688  // EVEX_rc
689  unsigned char EVEX_rc = 0;
690
691  // EVEX_aaa
692  unsigned char EVEX_aaa = 0;
693
694  bool EncodeRC = false;
695
696  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
697    VEX_W = 1;
698
699  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
700    VEX_L = 1;
701  if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
702    EVEX_L2 = 1;
703
704  if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
705    EVEX_z = 1;
706
707  if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
708    EVEX_b = 1;
709
710  switch (TSFlags & X86II::OpPrefixMask) {
711  default: break; // VEX_PP already correct
712  case X86II::PD: VEX_PP = 0x1; break; // 66
713  case X86II::XS: VEX_PP = 0x2; break; // F3
714  case X86II::XD: VEX_PP = 0x3; break; // F2
715  }
716
717  switch (TSFlags & X86II::OpMapMask) {
718  default: llvm_unreachable("Invalid prefix!");
719  case X86II::TB:   VEX_5M = 0x1; break; // 0F
720  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
721  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
722  case X86II::XOP8: VEX_5M = 0x8; break;
723  case X86II::XOP9: VEX_5M = 0x9; break;
724  case X86II::XOPA: VEX_5M = 0xA; break;
725  }
726
727  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
728  unsigned NumOps = Desc.getNumOperands();
729  unsigned CurOp = X86II::getOperandBias(Desc);
730
731  switch (TSFlags & X86II::FormMask) {
732  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
733  case X86II::RawFrm:
734    break;
735  case X86II::MRMDestMem: {
736    // MRMDestMem instructions forms:
737    //  MemAddr, src1(ModR/M)
738    //  MemAddr, src1(VEX_4V), src2(ModR/M)
739    //  MemAddr, src1(ModR/M), imm8
740    //
741    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
742                                                 X86::AddrBaseReg).getReg()))
743      VEX_B = 0x0;
744    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
745                                                 X86::AddrIndexReg).getReg()))
746      VEX_X = 0x0;
747    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
748                                          X86::AddrIndexReg).getReg()))
749      EVEX_V2 = 0x0;
750
751    CurOp += X86::AddrNumOperands;
752
753    if (HasEVEX_K)
754      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
755
756    if (HasVEX_4V) {
757      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
758      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
759        EVEX_V2 = 0x0;
760      CurOp++;
761    }
762
763    const MCOperand &MO = MI.getOperand(CurOp);
764    if (MO.isReg()) {
765      if (X86II::isX86_64ExtendedReg(MO.getReg()))
766        VEX_R = 0x0;
767      if (X86II::is32ExtendedReg(MO.getReg()))
768        EVEX_R2 = 0x0;
769    }
770    break;
771  }
772  case X86II::MRMSrcMem:
773    // MRMSrcMem instructions forms:
774    //  src1(ModR/M), MemAddr
775    //  src1(ModR/M), src2(VEX_4V), MemAddr
776    //  src1(ModR/M), MemAddr, imm8
777    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
778    //
779    //  FMA4:
780    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
781    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
782    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
783      VEX_R = 0x0;
784    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
785      EVEX_R2 = 0x0;
786    CurOp++;
787
788    if (HasEVEX_K)
789      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
790
791    if (HasVEX_4V) {
792      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
793      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
794        EVEX_V2 = 0x0;
795      CurOp++;
796    }
797
798    if (X86II::isX86_64ExtendedReg(
799               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
800      VEX_B = 0x0;
801    if (X86II::isX86_64ExtendedReg(
802               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
803      VEX_X = 0x0;
804    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
805                               X86::AddrIndexReg).getReg()))
806      EVEX_V2 = 0x0;
807
808    if (HasVEX_4VOp3)
809      // Instruction format for 4VOp3:
810      //   src1(ModR/M), MemAddr, src3(VEX_4V)
811      // CurOp points to start of the MemoryOperand,
812      //   it skips TIED_TO operands if exist, then increments past src1.
813      // CurOp + X86::AddrNumOperands will point to src3.
814      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
815    break;
816  case X86II::MRM0m: case X86II::MRM1m:
817  case X86II::MRM2m: case X86II::MRM3m:
818  case X86II::MRM4m: case X86II::MRM5m:
819  case X86II::MRM6m: case X86II::MRM7m: {
820    // MRM[0-9]m instructions forms:
821    //  MemAddr
822    //  src1(VEX_4V), MemAddr
823    if (HasVEX_4V) {
824      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
825      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
826        EVEX_V2 = 0x0;
827      CurOp++;
828    }
829
830    if (HasEVEX_K)
831      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
832
833    if (X86II::isX86_64ExtendedReg(
834               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
835      VEX_B = 0x0;
836    if (X86II::isX86_64ExtendedReg(
837               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
838      VEX_X = 0x0;
839    break;
840  }
841  case X86II::MRMSrcReg:
842    // MRMSrcReg instructions forms:
843    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
844    //  dst(ModR/M), src1(ModR/M)
845    //  dst(ModR/M), src1(ModR/M), imm8
846    //
847    //  FMA4:
848    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
849    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
850    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
851      VEX_R = 0x0;
852    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
853      EVEX_R2 = 0x0;
854    CurOp++;
855
856    if (HasEVEX_K)
857      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
858
859    if (HasVEX_4V) {
860      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
861      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
862        EVEX_V2 = 0x0;
863      CurOp++;
864    }
865
866    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
867      CurOp++;
868
869    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
870      VEX_B = 0x0;
871    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
872      VEX_X = 0x0;
873    CurOp++;
874    if (HasVEX_4VOp3)
875      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
876    if (EVEX_b) {
877      if (HasEVEX_RC) {
878        unsigned RcOperand = NumOps-1;
879        assert(RcOperand >= CurOp);
880        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
881      }
882      EncodeRC = true;
883    }
884    break;
885  case X86II::MRMDestReg:
886    // MRMDestReg instructions forms:
887    //  dst(ModR/M), src(ModR/M)
888    //  dst(ModR/M), src(ModR/M), imm8
889    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
890    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
891      VEX_B = 0x0;
892    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
893      VEX_X = 0x0;
894    CurOp++;
895
896    if (HasEVEX_K)
897      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
898
899    if (HasVEX_4V) {
900      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
901      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
902        EVEX_V2 = 0x0;
903      CurOp++;
904    }
905
906    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
907      VEX_R = 0x0;
908    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
909      EVEX_R2 = 0x0;
910    if (EVEX_b)
911      EncodeRC = true;
912    break;
913  case X86II::MRM0r: case X86II::MRM1r:
914  case X86II::MRM2r: case X86II::MRM3r:
915  case X86II::MRM4r: case X86II::MRM5r:
916  case X86II::MRM6r: case X86II::MRM7r:
917    // MRM0r-MRM7r instructions forms:
918    //  dst(VEX_4V), src(ModR/M), imm8
919    if (HasVEX_4V) {
920      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
921      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
922          EVEX_V2 = 0x0;
923      CurOp++;
924    }
925    if (HasEVEX_K)
926      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
927
928    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
929      VEX_B = 0x0;
930    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
931      VEX_X = 0x0;
932    break;
933  }
934
935  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
936    // VEX opcode prefix can have 2 or 3 bytes
937    //
938    //  3 bytes:
939    //    +-----+ +--------------+ +-------------------+
940    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
941    //    +-----+ +--------------+ +-------------------+
942    //  2 bytes:
943    //    +-----+ +-------------------+
944    //    | C5h | | R | vvvv | L | pp |
945    //    +-----+ +-------------------+
946    //
947    //  XOP uses a similar prefix:
948    //    +-----+ +--------------+ +-------------------+
949    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
950    //    +-----+ +--------------+ +-------------------+
951    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
952
953    // Can we use the 2 byte VEX prefix?
954    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
955      EmitByte(0xC5, CurByte, OS);
956      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
957      return;
958    }
959
960    // 3 byte VEX prefix
961    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
962    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
963    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
964  } else {
965    assert(Encoding == X86II::EVEX && "unknown encoding!");
966    // EVEX opcode prefix can have 4 bytes
967    //
968    // +-----+ +--------------+ +-------------------+ +------------------------+
969    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
970    // +-----+ +--------------+ +-------------------+ +------------------------+
971    assert((VEX_5M & 0x3) == VEX_5M
972           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
973
974    VEX_5M &= 0x3;
975
976    EmitByte(0x62, CurByte, OS);
977    EmitByte((VEX_R   << 7) |
978             (VEX_X   << 6) |
979             (VEX_B   << 5) |
980             (EVEX_R2 << 4) |
981             VEX_5M, CurByte, OS);
982    EmitByte((VEX_W   << 7) |
983             (VEX_4V  << 3) |
984             (EVEX_U  << 2) |
985             VEX_PP, CurByte, OS);
986    if (EncodeRC)
987      EmitByte((EVEX_z  << 7) |
988              (EVEX_rc << 5) |
989              (EVEX_b  << 4) |
990              (EVEX_V2 << 3) |
991              EVEX_aaa, CurByte, OS);
992    else
993      EmitByte((EVEX_z  << 7) |
994              (EVEX_L2 << 6) |
995              (VEX_L   << 5) |
996              (EVEX_b  << 4) |
997              (EVEX_V2 << 3) |
998              EVEX_aaa, CurByte, OS);
999  }
1000}
1001
1002/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
1003/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
1004/// size, and 3) use of X86-64 extended registers.
1005static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1006                                   const MCInstrDesc &Desc) {
1007  unsigned REX = 0;
1008  if (TSFlags & X86II::REX_W)
1009    REX |= 1 << 3; // set REX.W
1010
1011  if (MI.getNumOperands() == 0) return REX;
1012
1013  unsigned NumOps = MI.getNumOperands();
1014  // FIXME: MCInst should explicitize the two-addrness.
1015  bool isTwoAddr = NumOps > 1 &&
1016                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1017
1018  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1019  unsigned i = isTwoAddr ? 1 : 0;
1020  for (; i != NumOps; ++i) {
1021    const MCOperand &MO = MI.getOperand(i);
1022    if (!MO.isReg()) continue;
1023    unsigned Reg = MO.getReg();
1024    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1025    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1026    // that returns non-zero.
1027    REX |= 0x40; // REX fixed encoding prefix
1028    break;
1029  }
1030
1031  switch (TSFlags & X86II::FormMask) {
1032  case X86II::MRMSrcReg:
1033    if (MI.getOperand(0).isReg() &&
1034        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1035      REX |= 1 << 2; // set REX.R
1036    i = isTwoAddr ? 2 : 1;
1037    for (; i != NumOps; ++i) {
1038      const MCOperand &MO = MI.getOperand(i);
1039      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1040        REX |= 1 << 0; // set REX.B
1041    }
1042    break;
1043  case X86II::MRMSrcMem: {
1044    if (MI.getOperand(0).isReg() &&
1045        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1046      REX |= 1 << 2; // set REX.R
1047    unsigned Bit = 0;
1048    i = isTwoAddr ? 2 : 1;
1049    for (; i != NumOps; ++i) {
1050      const MCOperand &MO = MI.getOperand(i);
1051      if (MO.isReg()) {
1052        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1053          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1054        Bit++;
1055      }
1056    }
1057    break;
1058  }
1059  case X86II::MRMXm:
1060  case X86II::MRM0m: case X86II::MRM1m:
1061  case X86II::MRM2m: case X86II::MRM3m:
1062  case X86II::MRM4m: case X86II::MRM5m:
1063  case X86II::MRM6m: case X86II::MRM7m:
1064  case X86II::MRMDestMem: {
1065    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1066    i = isTwoAddr ? 1 : 0;
1067    if (NumOps > e && MI.getOperand(e).isReg() &&
1068        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1069      REX |= 1 << 2; // set REX.R
1070    unsigned Bit = 0;
1071    for (; i != e; ++i) {
1072      const MCOperand &MO = MI.getOperand(i);
1073      if (MO.isReg()) {
1074        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1075          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1076        Bit++;
1077      }
1078    }
1079    break;
1080  }
1081  default:
1082    if (MI.getOperand(0).isReg() &&
1083        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1084      REX |= 1 << 0; // set REX.B
1085    i = isTwoAddr ? 2 : 1;
1086    for (unsigned e = NumOps; i != e; ++i) {
1087      const MCOperand &MO = MI.getOperand(i);
1088      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1089        REX |= 1 << 2; // set REX.R
1090    }
1091    break;
1092  }
1093  return REX;
1094}
1095
1096/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1097void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1098                                                 unsigned SegOperand,
1099                                                 const MCInst &MI,
1100                                                 raw_ostream &OS) const {
1101  // Check for explicit segment override on memory operand.
1102  switch (MI.getOperand(SegOperand).getReg()) {
1103  default: llvm_unreachable("Unknown segment register!");
1104  case 0: break;
1105  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1106  case X86::SS: EmitByte(0x36, CurByte, OS); break;
1107  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1108  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1109  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1110  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1111  }
1112}
1113
1114/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1115///
1116/// MemOperand is the operand # of the start of a memory operand if present.  If
1117/// Not present, it is -1.
1118void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1119                                        int MemOperand, const MCInst &MI,
1120                                        const MCInstrDesc &Desc,
1121                                        const MCSubtargetInfo &STI,
1122                                        raw_ostream &OS) const {
1123
1124  // Emit the operand size opcode prefix as needed.
1125  unsigned char OpSize = (TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift;
1126  if (OpSize == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16))
1127    EmitByte(0x66, CurByte, OS);
1128
1129  switch (TSFlags & X86II::OpPrefixMask) {
1130  case X86II::PD:   // 66
1131    EmitByte(0x66, CurByte, OS);
1132    break;
1133  case X86II::XS:   // F3
1134    EmitByte(0xF3, CurByte, OS);
1135    break;
1136  case X86II::XD:   // F2
1137    EmitByte(0xF2, CurByte, OS);
1138    break;
1139  }
1140
1141  // Handle REX prefix.
1142  // FIXME: Can this come before F2 etc to simplify emission?
1143  if (is64BitMode(STI)) {
1144    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1145      EmitByte(0x40 | REX, CurByte, OS);
1146  }
1147
1148  // 0x0F escape code must be emitted just before the opcode.
1149  switch (TSFlags & X86II::OpMapMask) {
1150  case X86II::TB:  // Two-byte opcode map
1151  case X86II::T8:  // 0F 38
1152  case X86II::TA:  // 0F 3A
1153    EmitByte(0x0F, CurByte, OS);
1154    break;
1155  }
1156
1157  switch (TSFlags & X86II::OpMapMask) {
1158  case X86II::T8:    // 0F 38
1159    EmitByte(0x38, CurByte, OS);
1160    break;
1161  case X86II::TA:    // 0F 3A
1162    EmitByte(0x3A, CurByte, OS);
1163    break;
1164  }
1165}
1166
1167void X86MCCodeEmitter::
1168EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1169                  SmallVectorImpl<MCFixup> &Fixups,
1170                  const MCSubtargetInfo &STI) const {
1171  unsigned Opcode = MI.getOpcode();
1172  const MCInstrDesc &Desc = MCII.get(Opcode);
1173  uint64_t TSFlags = Desc.TSFlags;
1174
1175  // Pseudo instructions don't get encoded.
1176  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1177    return;
1178
1179  unsigned NumOps = Desc.getNumOperands();
1180  unsigned CurOp = X86II::getOperandBias(Desc);
1181
1182  // Keep track of the current byte being emitted.
1183  unsigned CurByte = 0;
1184
1185  // Encoding type for this instruction.
1186  unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
1187                           X86II::EncodingShift;
1188
1189  // It uses the VEX.VVVV field?
1190  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1191  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1192  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1193  const unsigned MemOp4_I8IMMOperand = 2;
1194
1195  // It uses the EVEX.aaa field?
1196  bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
1197  bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
1198
1199  // Determine where the memory operand starts, if present.
1200  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1201  if (MemoryOperand != -1) MemoryOperand += CurOp;
1202
1203  // Emit the lock opcode prefix as needed.
1204  if (TSFlags & X86II::LOCK)
1205    EmitByte(0xF0, CurByte, OS);
1206
1207  // Emit segment override opcode prefix as needed.
1208  if (MemoryOperand >= 0)
1209    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1210                              MI, OS);
1211
1212  // Emit the repeat opcode prefix as needed.
1213  if (TSFlags & X86II::REP)
1214    EmitByte(0xF3, CurByte, OS);
1215
1216  // Emit the address size opcode prefix as needed.
1217  bool need_address_override;
1218  // The AdSize prefix is only for 32-bit and 64-bit modes. Hm, perhaps we
1219  // should introduce an AdSize16 bit instead of having seven special cases?
1220  if ((!is16BitMode(STI) && TSFlags & X86II::AdSize) ||
1221      (is16BitMode(STI) && (MI.getOpcode() == X86::JECXZ_32 ||
1222                         MI.getOpcode() == X86::MOV8o8a ||
1223                         MI.getOpcode() == X86::MOV16o16a ||
1224                         MI.getOpcode() == X86::MOV32o32a ||
1225                         MI.getOpcode() == X86::MOV8ao8 ||
1226                         MI.getOpcode() == X86::MOV16ao16 ||
1227                         MI.getOpcode() == X86::MOV32ao32))) {
1228    need_address_override = true;
1229  } else if (MemoryOperand < 0) {
1230    need_address_override = false;
1231  } else if (is64BitMode(STI)) {
1232    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1233    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1234  } else if (is32BitMode(STI)) {
1235    assert(!Is64BitMemOperand(MI, MemoryOperand));
1236    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1237  } else {
1238    assert(is16BitMode(STI));
1239    assert(!Is64BitMemOperand(MI, MemoryOperand));
1240    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1241  }
1242
1243  if (need_address_override)
1244    EmitByte(0x67, CurByte, OS);
1245
1246  if (Encoding == 0)
1247    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1248  else
1249    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1250
1251  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1252
1253  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1254    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1255
1256  unsigned SrcRegNum = 0;
1257  switch (TSFlags & X86II::FormMask) {
1258  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1259    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1260  case X86II::Pseudo:
1261    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1262  case X86II::RawFrmDstSrc: {
1263    unsigned siReg = MI.getOperand(1).getReg();
1264    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1265            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1266            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1267           "SI and DI register sizes do not match");
1268    // Emit segment override opcode prefix as needed (not for %ds).
1269    if (MI.getOperand(2).getReg() != X86::DS)
1270      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1271    // Emit AdSize prefix as needed.
1272    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1273        (is32BitMode(STI) && siReg == X86::SI))
1274      EmitByte(0x67, CurByte, OS);
1275    CurOp += 3; // Consume operands.
1276    EmitByte(BaseOpcode, CurByte, OS);
1277    break;
1278  }
1279  case X86II::RawFrmSrc: {
1280    unsigned siReg = MI.getOperand(0).getReg();
1281    // Emit segment override opcode prefix as needed (not for %ds).
1282    if (MI.getOperand(1).getReg() != X86::DS)
1283      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1284    // Emit AdSize prefix as needed.
1285    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1286        (is32BitMode(STI) && siReg == X86::SI))
1287      EmitByte(0x67, CurByte, OS);
1288    CurOp += 2; // Consume operands.
1289    EmitByte(BaseOpcode, CurByte, OS);
1290    break;
1291  }
1292  case X86II::RawFrmDst: {
1293    unsigned siReg = MI.getOperand(0).getReg();
1294    // Emit AdSize prefix as needed.
1295    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1296        (is32BitMode(STI) && siReg == X86::DI))
1297      EmitByte(0x67, CurByte, OS);
1298    ++CurOp; // Consume operand.
1299    EmitByte(BaseOpcode, CurByte, OS);
1300    break;
1301  }
1302  case X86II::RawFrm:
1303    EmitByte(BaseOpcode, CurByte, OS);
1304    break;
1305  case X86II::RawFrmMemOffs:
1306    // Emit segment override opcode prefix as needed.
1307    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1308    EmitByte(BaseOpcode, CurByte, OS);
1309    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1310                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1311                  CurByte, OS, Fixups);
1312    ++CurOp; // skip segment operand
1313    break;
1314  case X86II::RawFrmImm8:
1315    EmitByte(BaseOpcode, CurByte, OS);
1316    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1317                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1318                  CurByte, OS, Fixups);
1319    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1320                  OS, Fixups);
1321    break;
1322  case X86II::RawFrmImm16:
1323    EmitByte(BaseOpcode, CurByte, OS);
1324    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1325                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1326                  CurByte, OS, Fixups);
1327    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1328                  OS, Fixups);
1329    break;
1330
1331  case X86II::AddRegFrm:
1332    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1333    break;
1334
1335  case X86II::MRMDestReg:
1336    EmitByte(BaseOpcode, CurByte, OS);
1337    SrcRegNum = CurOp + 1;
1338
1339    if (HasEVEX_K) // Skip writemask
1340      SrcRegNum++;
1341
1342    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1343      ++SrcRegNum;
1344
1345    EmitRegModRMByte(MI.getOperand(CurOp),
1346                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1347    CurOp = SrcRegNum + 1;
1348    break;
1349
1350  case X86II::MRMDestMem:
1351    EmitByte(BaseOpcode, CurByte, OS);
1352    SrcRegNum = CurOp + X86::AddrNumOperands;
1353
1354    if (HasEVEX_K) // Skip writemask
1355      SrcRegNum++;
1356
1357    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1358      ++SrcRegNum;
1359
1360    EmitMemModRMByte(MI, CurOp,
1361                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1362                     TSFlags, CurByte, OS, Fixups, STI);
1363    CurOp = SrcRegNum + 1;
1364    break;
1365
1366  case X86II::MRMSrcReg:
1367    EmitByte(BaseOpcode, CurByte, OS);
1368    SrcRegNum = CurOp + 1;
1369
1370    if (HasEVEX_K) // Skip writemask
1371      SrcRegNum++;
1372
1373    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1374      ++SrcRegNum;
1375
1376    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1377      ++SrcRegNum;
1378
1379    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1380                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1381
1382    // 2 operands skipped with HasMemOp4, compensate accordingly
1383    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1384    if (HasVEX_4VOp3)
1385      ++CurOp;
1386    // do not count the rounding control operand
1387    if (HasEVEX_RC)
1388      NumOps--;
1389    break;
1390
1391  case X86II::MRMSrcMem: {
1392    int AddrOperands = X86::AddrNumOperands;
1393    unsigned FirstMemOp = CurOp+1;
1394
1395    if (HasEVEX_K) { // Skip writemask
1396      ++AddrOperands;
1397      ++FirstMemOp;
1398    }
1399
1400    if (HasVEX_4V) {
1401      ++AddrOperands;
1402      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1403    }
1404    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1405      ++FirstMemOp;
1406
1407    EmitByte(BaseOpcode, CurByte, OS);
1408
1409    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1410                     TSFlags, CurByte, OS, Fixups, STI);
1411    CurOp += AddrOperands + 1;
1412    if (HasVEX_4VOp3)
1413      ++CurOp;
1414    break;
1415  }
1416
1417  case X86II::MRMXr:
1418  case X86II::MRM0r: case X86II::MRM1r:
1419  case X86II::MRM2r: case X86II::MRM3r:
1420  case X86II::MRM4r: case X86II::MRM5r:
1421  case X86II::MRM6r: case X86II::MRM7r: {
1422    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1423      ++CurOp;
1424    EmitByte(BaseOpcode, CurByte, OS);
1425    uint64_t Form = TSFlags & X86II::FormMask;
1426    EmitRegModRMByte(MI.getOperand(CurOp++),
1427                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1428                     CurByte, OS);
1429    break;
1430  }
1431
1432  case X86II::MRMXm:
1433  case X86II::MRM0m: case X86II::MRM1m:
1434  case X86II::MRM2m: case X86II::MRM3m:
1435  case X86II::MRM4m: case X86II::MRM5m:
1436  case X86II::MRM6m: case X86II::MRM7m: {
1437    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1438      ++CurOp;
1439    EmitByte(BaseOpcode, CurByte, OS);
1440    uint64_t Form = TSFlags & X86II::FormMask;
1441    EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1442                     TSFlags, CurByte, OS, Fixups, STI);
1443    CurOp += X86::AddrNumOperands;
1444    break;
1445  }
1446  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1447  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
1448  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1449  case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
1450  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
1451  case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
1452  case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
1453  case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
1454  case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
1455  case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
1456  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1457  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
1458  case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
1459  case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
1460  case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
1461  case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
1462  case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
1463    EmitByte(BaseOpcode, CurByte, OS);
1464
1465    unsigned char MRM;
1466    switch (TSFlags & X86II::FormMask) {
1467    default: llvm_unreachable("Invalid Form");
1468    case X86II::MRM_C0: MRM = 0xC0; break;
1469    case X86II::MRM_C1: MRM = 0xC1; break;
1470    case X86II::MRM_C2: MRM = 0xC2; break;
1471    case X86II::MRM_C3: MRM = 0xC3; break;
1472    case X86II::MRM_C4: MRM = 0xC4; break;
1473    case X86II::MRM_C8: MRM = 0xC8; break;
1474    case X86II::MRM_C9: MRM = 0xC9; break;
1475    case X86II::MRM_CA: MRM = 0xCA; break;
1476    case X86II::MRM_CB: MRM = 0xCB; break;
1477    case X86II::MRM_D0: MRM = 0xD0; break;
1478    case X86II::MRM_D1: MRM = 0xD1; break;
1479    case X86II::MRM_D4: MRM = 0xD4; break;
1480    case X86II::MRM_D5: MRM = 0xD5; break;
1481    case X86II::MRM_D6: MRM = 0xD6; break;
1482    case X86II::MRM_D8: MRM = 0xD8; break;
1483    case X86II::MRM_D9: MRM = 0xD9; break;
1484    case X86II::MRM_DA: MRM = 0xDA; break;
1485    case X86II::MRM_DB: MRM = 0xDB; break;
1486    case X86II::MRM_DC: MRM = 0xDC; break;
1487    case X86II::MRM_DD: MRM = 0xDD; break;
1488    case X86II::MRM_DE: MRM = 0xDE; break;
1489    case X86II::MRM_DF: MRM = 0xDF; break;
1490    case X86II::MRM_E0: MRM = 0xE0; break;
1491    case X86II::MRM_E1: MRM = 0xE1; break;
1492    case X86II::MRM_E2: MRM = 0xE2; break;
1493    case X86II::MRM_E3: MRM = 0xE3; break;
1494    case X86II::MRM_E4: MRM = 0xE4; break;
1495    case X86II::MRM_E5: MRM = 0xE5; break;
1496    case X86II::MRM_E8: MRM = 0xE8; break;
1497    case X86II::MRM_E9: MRM = 0xE9; break;
1498    case X86II::MRM_EA: MRM = 0xEA; break;
1499    case X86II::MRM_EB: MRM = 0xEB; break;
1500    case X86II::MRM_EC: MRM = 0xEC; break;
1501    case X86II::MRM_ED: MRM = 0xED; break;
1502    case X86II::MRM_EE: MRM = 0xEE; break;
1503    case X86II::MRM_F0: MRM = 0xF0; break;
1504    case X86II::MRM_F1: MRM = 0xF1; break;
1505    case X86II::MRM_F2: MRM = 0xF2; break;
1506    case X86II::MRM_F3: MRM = 0xF3; break;
1507    case X86II::MRM_F4: MRM = 0xF4; break;
1508    case X86II::MRM_F5: MRM = 0xF5; break;
1509    case X86II::MRM_F6: MRM = 0xF6; break;
1510    case X86II::MRM_F7: MRM = 0xF7; break;
1511    case X86II::MRM_F8: MRM = 0xF8; break;
1512    case X86II::MRM_F9: MRM = 0xF9; break;
1513    case X86II::MRM_FA: MRM = 0xFA; break;
1514    case X86II::MRM_FB: MRM = 0xFB; break;
1515    case X86II::MRM_FC: MRM = 0xFC; break;
1516    case X86II::MRM_FD: MRM = 0xFD; break;
1517    case X86II::MRM_FE: MRM = 0xFE; break;
1518    case X86II::MRM_FF: MRM = 0xFF; break;
1519    }
1520    EmitByte(MRM, CurByte, OS);
1521    break;
1522  }
1523
1524  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1525  // according to the right size for the instruction. Some instructions
1526  // (SSE4a extrq and insertq) have two trailing immediates.
1527  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1528    // The last source register of a 4 operand instruction in AVX is encoded
1529    // in bits[7:4] of a immediate byte.
1530    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1531      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1532                                                    : CurOp);
1533      ++CurOp;
1534      unsigned RegNum = GetX86RegNum(MO) << 4;
1535      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1536        RegNum |= 1 << 7;
1537      // If there is an additional 5th operand it must be an immediate, which
1538      // is encoded in bits[3:0]
1539      if (CurOp != NumOps) {
1540        const MCOperand &MIMM = MI.getOperand(CurOp++);
1541        if (MIMM.isImm()) {
1542          unsigned Val = MIMM.getImm();
1543          assert(Val < 16 && "Immediate operand value out of range");
1544          RegNum |= Val;
1545        }
1546      }
1547      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1548                    CurByte, OS, Fixups);
1549    } else {
1550      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1551                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1552                    CurByte, OS, Fixups);
1553    }
1554  }
1555
1556  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1557    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1558
1559#ifndef NDEBUG
1560  // FIXME: Verify.
1561  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1562    errs() << "Cannot encode all operands of: ";
1563    MI.dump();
1564    errs() << '\n';
1565    abort();
1566  }
1567#endif
1568}
1569