X86MCCodeEmitter.cpp revision 4fd3d292753bd8232a76d5ac6b107f5899e5bfaa
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
31  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33  const MCInstrInfo &MCII;
34  const MCSubtargetInfo &STI;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                   MCContext &ctx)
39    : MCII(mcii), STI(sti), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() {}
43
44  bool is64BitMode() const {
45    // FIXME: Can tablegen auto-generate this?
46    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47  }
48
49  bool is32BitMode() const {
50    // FIXME: Can tablegen auto-generate this?
51    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
52  }
53
54  static unsigned GetX86RegNum(const MCOperand &MO) {
55    return X86_MC::getX86RegNum(MO.getReg());
56  }
57
58  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
59  // 0-7 and the difference between the 2 groups is given by the REX prefix.
60  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
61  // in 1's complement form, example:
62  //
63  //  ModRM field => XMM9 => 1
64  //  VEX.VVVV    => XMM9 => ~9
65  //
66  // See table 4-35 of Intel AVX Programming Reference for details.
67  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
68                                              unsigned OpNum) {
69    unsigned SrcReg = MI.getOperand(OpNum).getReg();
70    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
71    if (X86II::isX86_64ExtendedReg(SrcReg))
72      SrcRegNum |= 8;
73
74    // The registers represented through VEX_VVVV should
75    // be encoded in 1's complement form.
76    return (~SrcRegNum) & 0xf;
77  }
78
79  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
80    OS << (char)C;
81    ++CurByte;
82  }
83
84  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
85                    raw_ostream &OS) const {
86    // Output the constant in little endian byte order.
87    for (unsigned i = 0; i != Size; ++i) {
88      EmitByte(Val & 255, CurByte, OS);
89      Val >>= 8;
90    }
91  }
92
93  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
94                     unsigned ImmSize, MCFixupKind FixupKind,
95                     unsigned &CurByte, raw_ostream &OS,
96                     SmallVectorImpl<MCFixup> &Fixups,
97                     int ImmOffset = 0) const;
98
99  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
100                                        unsigned RM) {
101    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
102    return RM | (RegOpcode << 3) | (Mod << 6);
103  }
104
105  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
106                        unsigned &CurByte, raw_ostream &OS) const {
107    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
108  }
109
110  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
111                   unsigned &CurByte, raw_ostream &OS) const {
112    // SIB byte is in the same format as the ModRMByte.
113    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
114  }
115
116
117  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
118                        unsigned RegOpcodeField,
119                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
120                        SmallVectorImpl<MCFixup> &Fixups) const;
121
122  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
123                         SmallVectorImpl<MCFixup> &Fixups) const;
124
125  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
126                           const MCInst &MI, const MCInstrDesc &Desc,
127                           raw_ostream &OS) const;
128
129  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
130                                 int MemOperand, const MCInst &MI,
131                                 raw_ostream &OS) const;
132
133  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
134                        const MCInst &MI, const MCInstrDesc &Desc,
135                        raw_ostream &OS) const;
136};
137
138} // end anonymous namespace
139
140
141MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
142                                            const MCSubtargetInfo &STI,
143                                            MCContext &Ctx) {
144  return new X86MCCodeEmitter(MCII, STI, Ctx);
145}
146
147/// isDisp8 - Return true if this signed displacement fits in a 8-bit
148/// sign-extended field.
149static bool isDisp8(int Value) {
150  return Value == (signed char)Value;
151}
152
153/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
154/// in an instruction with the specified TSFlags.
155static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
156  unsigned Size = X86II::getSizeOfImm(TSFlags);
157  bool isPCRel = X86II::isImmPCRel(TSFlags);
158
159  return MCFixup::getKindForSize(Size, isPCRel);
160}
161
162/// Is32BitMemOperand - Return true if the specified instruction has
163/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
164static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
165  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
166  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
167
168  if ((BaseReg.getReg() != 0 &&
169       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
170      (IndexReg.getReg() != 0 &&
171       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
172    return true;
173  return false;
174}
175
176/// Is64BitMemOperand - Return true if the specified instruction has
177/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
178static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
179  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
180  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
181
182  if ((BaseReg.getReg() != 0 &&
183       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
184      (IndexReg.getReg() != 0 &&
185       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
186    return true;
187  return false;
188}
189
190/// Is16BitMemOperand - Return true if the specified instruction has
191/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
192static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
193  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
194  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
195
196  if ((BaseReg.getReg() != 0 &&
197       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
198      (IndexReg.getReg() != 0 &&
199       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
200    return true;
201  return false;
202}
203
204/// StartsWithGlobalOffsetTable - Check if this expression starts with
205///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
206///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
207/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
208/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
209/// of a binary expression.
210enum GlobalOffsetTableExprKind {
211  GOT_None,
212  GOT_Normal,
213  GOT_SymDiff
214};
215static GlobalOffsetTableExprKind
216StartsWithGlobalOffsetTable(const MCExpr *Expr) {
217  const MCExpr *RHS = 0;
218  if (Expr->getKind() == MCExpr::Binary) {
219    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
220    Expr = BE->getLHS();
221    RHS = BE->getRHS();
222  }
223
224  if (Expr->getKind() != MCExpr::SymbolRef)
225    return GOT_None;
226
227  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
228  const MCSymbol &S = Ref->getSymbol();
229  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
230    return GOT_None;
231  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
232    return GOT_SymDiff;
233  return GOT_Normal;
234}
235
236void X86MCCodeEmitter::
237EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
238              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
239              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
240  const MCExpr *Expr = NULL;
241  if (DispOp.isImm()) {
242    // If this is a simple integer displacement that doesn't require a
243    // relocation, emit it now.
244    if (FixupKind != FK_PCRel_1 &&
245        FixupKind != FK_PCRel_2 &&
246        FixupKind != FK_PCRel_4) {
247      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
248      return;
249    }
250    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
251  } else {
252    Expr = DispOp.getExpr();
253  }
254
255  // If we have an immoffset, add it to the expression.
256  if ((FixupKind == FK_Data_4 ||
257       FixupKind == FK_Data_8 ||
258       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
259    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
260    if (Kind != GOT_None) {
261      assert(ImmOffset == 0);
262
263      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
264      if (Kind == GOT_Normal)
265        ImmOffset = CurByte;
266    } else if (Expr->getKind() == MCExpr::SymbolRef) {
267      const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
268      if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
269        FixupKind = MCFixupKind(FK_SecRel_4);
270      }
271    }
272  }
273
274  // If the fixup is pc-relative, we need to bias the value to be relative to
275  // the start of the field, not the end of the field.
276  if (FixupKind == FK_PCRel_4 ||
277      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
278      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
279    ImmOffset -= 4;
280  if (FixupKind == FK_PCRel_2)
281    ImmOffset -= 2;
282  if (FixupKind == FK_PCRel_1)
283    ImmOffset -= 1;
284
285  if (ImmOffset)
286    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
287                                   Ctx);
288
289  // Emit a symbolic constant as a fixup and 4 zeros.
290  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
291  EmitConstant(0, Size, CurByte, OS);
292}
293
294void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
295                                        unsigned RegOpcodeField,
296                                        uint64_t TSFlags, unsigned &CurByte,
297                                        raw_ostream &OS,
298                                        SmallVectorImpl<MCFixup> &Fixups) const{
299  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
300  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
301  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
302  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
303  unsigned BaseReg = Base.getReg();
304
305  // Handle %rip relative addressing.
306  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
307    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
308    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
309    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
310
311    unsigned FixupKind = X86::reloc_riprel_4byte;
312
313    // movq loads are handled with a special relocation form which allows the
314    // linker to eliminate some loads for GOT references which end up in the
315    // same linkage unit.
316    if (MI.getOpcode() == X86::MOV64rm)
317      FixupKind = X86::reloc_riprel_4byte_movq_load;
318
319    // rip-relative addressing is actually relative to the *next* instruction.
320    // Since an immediate can follow the mod/rm byte for an instruction, this
321    // means that we need to bias the immediate field of the instruction with
322    // the size of the immediate field.  If we have this case, add it into the
323    // expression to emit.
324    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
325
326    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
327                  CurByte, OS, Fixups, -ImmSize);
328    return;
329  }
330
331  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
332
333  // Determine whether a SIB byte is needed.
334  // If no BaseReg, issue a RIP relative instruction only if the MCE can
335  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
336  // 2-7) and absolute references.
337
338  if (// The SIB byte must be used if there is an index register.
339      IndexReg.getReg() == 0 &&
340      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
341      // encode to an R/M value of 4, which indicates that a SIB byte is
342      // present.
343      BaseRegNo != N86::ESP &&
344      // If there is no base register and we're in 64-bit mode, we need a SIB
345      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
346      (!is64BitMode() || BaseReg != 0)) {
347
348    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
349      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
350      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
351      return;
352    }
353
354    // If the base is not EBP/ESP and there is no displacement, use simple
355    // indirect register encoding, this handles addresses like [EAX].  The
356    // encoding for [EBP] with no displacement means [disp32] so we handle it
357    // by emitting a displacement of 0 below.
358    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
359      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
360      return;
361    }
362
363    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
364    if (Disp.isImm() && isDisp8(Disp.getImm())) {
365      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
366      EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
367      return;
368    }
369
370    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
371    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
372    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
373                  Fixups);
374    return;
375  }
376
377  // We need a SIB byte, so start by outputting the ModR/M byte first
378  assert(IndexReg.getReg() != X86::ESP &&
379         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
380
381  bool ForceDisp32 = false;
382  bool ForceDisp8  = false;
383  if (BaseReg == 0) {
384    // If there is no base register, we emit the special case SIB byte with
385    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
386    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
387    ForceDisp32 = true;
388  } else if (!Disp.isImm()) {
389    // Emit the normal disp32 encoding.
390    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
391    ForceDisp32 = true;
392  } else if (Disp.getImm() == 0 &&
393             // Base reg can't be anything that ends up with '5' as the base
394             // reg, it is the magic [*] nomenclature that indicates no base.
395             BaseRegNo != N86::EBP) {
396    // Emit no displacement ModR/M byte
397    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
398  } else if (isDisp8(Disp.getImm())) {
399    // Emit the disp8 encoding.
400    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
401    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
402  } else {
403    // Emit the normal disp32 encoding.
404    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
405  }
406
407  // Calculate what the SS field value should be...
408  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
409  unsigned SS = SSTable[Scale.getImm()];
410
411  if (BaseReg == 0) {
412    // Handle the SIB byte for the case where there is no base, see Intel
413    // Manual 2A, table 2-7. The displacement has already been output.
414    unsigned IndexRegNo;
415    if (IndexReg.getReg())
416      IndexRegNo = GetX86RegNum(IndexReg);
417    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
418      IndexRegNo = 4;
419    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
420  } else {
421    unsigned IndexRegNo;
422    if (IndexReg.getReg())
423      IndexRegNo = GetX86RegNum(IndexReg);
424    else
425      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
426    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
427  }
428
429  // Do we need to output a displacement?
430  if (ForceDisp8)
431    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
432  else if (ForceDisp32 || Disp.getImm() != 0)
433    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
434                  CurByte, OS, Fixups);
435}
436
437/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
438/// called VEX.
439void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
440                                           int MemOperand, const MCInst &MI,
441                                           const MCInstrDesc &Desc,
442                                           raw_ostream &OS) const {
443  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
444  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
445
446  // VEX_R: opcode externsion equivalent to REX.R in
447  // 1's complement (inverted) form
448  //
449  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
450  //  0: Same as REX_R=1 (64 bit mode only)
451  //
452  unsigned char VEX_R = 0x1;
453
454  // VEX_X: equivalent to REX.X, only used when a
455  // register is used for index in SIB Byte.
456  //
457  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
458  //  0: Same as REX.X=1 (64-bit mode only)
459  unsigned char VEX_X = 0x1;
460
461  // VEX_B:
462  //
463  //  1: Same as REX_B=0 (ignored in 32-bit mode)
464  //  0: Same as REX_B=1 (64 bit mode only)
465  //
466  unsigned char VEX_B = 0x1;
467
468  // VEX_W: opcode specific (use like REX.W, or used for
469  // opcode extension, or ignored, depending on the opcode byte)
470  unsigned char VEX_W = 0;
471
472  // XOP: Use XOP prefix byte 0x8f instead of VEX.
473  unsigned char XOP = 0;
474
475  // VEX_5M (VEX m-mmmmm field):
476  //
477  //  0b00000: Reserved for future use
478  //  0b00001: implied 0F leading opcode
479  //  0b00010: implied 0F 38 leading opcode bytes
480  //  0b00011: implied 0F 3A leading opcode bytes
481  //  0b00100-0b11111: Reserved for future use
482  //  0b01000: XOP map select - 08h instructions with imm byte
483  //  0b10001: XOP map select - 09h instructions with no imm byte
484  unsigned char VEX_5M = 0x1;
485
486  // VEX_4V (VEX vvvv field): a register specifier
487  // (in 1's complement form) or 1111 if unused.
488  unsigned char VEX_4V = 0xf;
489
490  // VEX_L (Vector Length):
491  //
492  //  0: scalar or 128-bit vector
493  //  1: 256-bit vector
494  //
495  unsigned char VEX_L = 0;
496
497  // VEX_PP: opcode extension providing equivalent
498  // functionality of a SIMD prefix
499  //
500  //  0b00: None
501  //  0b01: 66
502  //  0b10: F3
503  //  0b11: F2
504  //
505  unsigned char VEX_PP = 0;
506
507  // Encode the operand size opcode prefix as needed.
508  if (TSFlags & X86II::OpSize)
509    VEX_PP = 0x01;
510
511  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
512    VEX_W = 1;
513
514  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
515    XOP = 1;
516
517  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
518    VEX_L = 1;
519
520  switch (TSFlags & X86II::Op0Mask) {
521  default: llvm_unreachable("Invalid prefix!");
522  case X86II::T8:  // 0F 38
523    VEX_5M = 0x2;
524    break;
525  case X86II::TA:  // 0F 3A
526    VEX_5M = 0x3;
527    break;
528  case X86II::T8XS: // F3 0F 38
529    VEX_PP = 0x2;
530    VEX_5M = 0x2;
531    break;
532  case X86II::T8XD: // F2 0F 38
533    VEX_PP = 0x3;
534    VEX_5M = 0x2;
535    break;
536  case X86II::TAXD: // F2 0F 3A
537    VEX_PP = 0x3;
538    VEX_5M = 0x3;
539    break;
540  case X86II::XS:  // F3 0F
541    VEX_PP = 0x2;
542    break;
543  case X86II::XD:  // F2 0F
544    VEX_PP = 0x3;
545    break;
546  case X86II::XOP8:
547    VEX_5M = 0x8;
548    break;
549  case X86II::XOP9:
550    VEX_5M = 0x9;
551    break;
552  case X86II::A6:  // Bypass: Not used by VEX
553  case X86II::A7:  // Bypass: Not used by VEX
554  case X86II::TB:  // Bypass: Not used by VEX
555  case 0:
556    break;  // No prefix!
557  }
558
559
560  // Set the vector length to 256-bit if YMM0-YMM15 is used
561  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
562    if (!MI.getOperand(i).isReg())
563      continue;
564    unsigned SrcReg = MI.getOperand(i).getReg();
565    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
566      VEX_L = 1;
567  }
568
569  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
570  unsigned CurOp = 0;
571  switch (TSFlags & X86II::FormMask) {
572  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
573  case X86II::MRMDestMem: {
574    // MRMDestMem instructions forms:
575    //  MemAddr, src1(ModR/M)
576    //  MemAddr, src1(VEX_4V), src2(ModR/M)
577    //  MemAddr, src1(ModR/M), imm8
578    //
579    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
580      VEX_B = 0x0;
581    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
582      VEX_X = 0x0;
583
584    CurOp = X86::AddrNumOperands;
585    if (HasVEX_4V)
586      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
587
588    const MCOperand &MO = MI.getOperand(CurOp);
589    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
590      VEX_R = 0x0;
591    break;
592  }
593  case X86II::MRMSrcMem:
594    // MRMSrcMem instructions forms:
595    //  src1(ModR/M), MemAddr
596    //  src1(ModR/M), src2(VEX_4V), MemAddr
597    //  src1(ModR/M), MemAddr, imm8
598    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
599    //
600    //  FMA4:
601    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
602    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
603    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
604      VEX_R = 0x0;
605
606    if (HasVEX_4V)
607      VEX_4V = getVEXRegisterEncoding(MI, 1);
608
609    if (X86II::isX86_64ExtendedReg(
610               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
611      VEX_B = 0x0;
612    if (X86II::isX86_64ExtendedReg(
613               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
614      VEX_X = 0x0;
615
616    if (HasVEX_4VOp3)
617      VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
618    break;
619  case X86II::MRM0m: case X86II::MRM1m:
620  case X86II::MRM2m: case X86II::MRM3m:
621  case X86II::MRM4m: case X86II::MRM5m:
622  case X86II::MRM6m: case X86II::MRM7m: {
623    // MRM[0-9]m instructions forms:
624    //  MemAddr
625    //  src1(VEX_4V), MemAddr
626    if (HasVEX_4V)
627      VEX_4V = getVEXRegisterEncoding(MI, 0);
628
629    if (X86II::isX86_64ExtendedReg(
630               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
631      VEX_B = 0x0;
632    if (X86II::isX86_64ExtendedReg(
633               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
634      VEX_X = 0x0;
635    break;
636  }
637  case X86II::MRMSrcReg:
638    // MRMSrcReg instructions forms:
639    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
640    //  dst(ModR/M), src1(ModR/M)
641    //  dst(ModR/M), src1(ModR/M), imm8
642    //
643    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
644      VEX_R = 0x0;
645    CurOp++;
646
647    if (HasVEX_4V)
648      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
649    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
650      VEX_B = 0x0;
651    CurOp++;
652    if (HasVEX_4VOp3)
653      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
654    break;
655  case X86II::MRMDestReg:
656    // MRMDestReg instructions forms:
657    //  dst(ModR/M), src(ModR/M)
658    //  dst(ModR/M), src(ModR/M), imm8
659    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
660      VEX_B = 0x0;
661    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
662      VEX_R = 0x0;
663    break;
664  case X86II::MRM0r: case X86II::MRM1r:
665  case X86II::MRM2r: case X86II::MRM3r:
666  case X86II::MRM4r: case X86II::MRM5r:
667  case X86II::MRM6r: case X86II::MRM7r:
668    // MRM0r-MRM7r instructions forms:
669    //  dst(VEX_4V), src(ModR/M), imm8
670    VEX_4V = getVEXRegisterEncoding(MI, 0);
671    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
672      VEX_B = 0x0;
673    break;
674  default: // RawFrm
675    break;
676  }
677
678  // Emit segment override opcode prefix as needed.
679  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
680
681  // VEX opcode prefix can have 2 or 3 bytes
682  //
683  //  3 bytes:
684  //    +-----+ +--------------+ +-------------------+
685  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
686  //    +-----+ +--------------+ +-------------------+
687  //  2 bytes:
688  //    +-----+ +-------------------+
689  //    | C5h | | R | vvvv | L | pp |
690  //    +-----+ +-------------------+
691  //
692  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
693
694  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
695    EmitByte(0xC5, CurByte, OS);
696    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
697    return;
698  }
699
700  // 3 byte VEX prefix
701  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
702  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
703  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
704}
705
706/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
707/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
708/// size, and 3) use of X86-64 extended registers.
709static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
710                                   const MCInstrDesc &Desc) {
711  unsigned REX = 0;
712  if (TSFlags & X86II::REX_W)
713    REX |= 1 << 3; // set REX.W
714
715  if (MI.getNumOperands() == 0) return REX;
716
717  unsigned NumOps = MI.getNumOperands();
718  // FIXME: MCInst should explicitize the two-addrness.
719  bool isTwoAddr = NumOps > 1 &&
720                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
721
722  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
723  unsigned i = isTwoAddr ? 1 : 0;
724  for (; i != NumOps; ++i) {
725    const MCOperand &MO = MI.getOperand(i);
726    if (!MO.isReg()) continue;
727    unsigned Reg = MO.getReg();
728    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
729    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
730    // that returns non-zero.
731    REX |= 0x40; // REX fixed encoding prefix
732    break;
733  }
734
735  switch (TSFlags & X86II::FormMask) {
736  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
737  case X86II::MRMSrcReg:
738    if (MI.getOperand(0).isReg() &&
739        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
740      REX |= 1 << 2; // set REX.R
741    i = isTwoAddr ? 2 : 1;
742    for (; i != NumOps; ++i) {
743      const MCOperand &MO = MI.getOperand(i);
744      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
745        REX |= 1 << 0; // set REX.B
746    }
747    break;
748  case X86II::MRMSrcMem: {
749    if (MI.getOperand(0).isReg() &&
750        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
751      REX |= 1 << 2; // set REX.R
752    unsigned Bit = 0;
753    i = isTwoAddr ? 2 : 1;
754    for (; i != NumOps; ++i) {
755      const MCOperand &MO = MI.getOperand(i);
756      if (MO.isReg()) {
757        if (X86II::isX86_64ExtendedReg(MO.getReg()))
758          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
759        Bit++;
760      }
761    }
762    break;
763  }
764  case X86II::MRM0m: case X86II::MRM1m:
765  case X86II::MRM2m: case X86II::MRM3m:
766  case X86II::MRM4m: case X86II::MRM5m:
767  case X86II::MRM6m: case X86II::MRM7m:
768  case X86II::MRMDestMem: {
769    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
770    i = isTwoAddr ? 1 : 0;
771    if (NumOps > e && MI.getOperand(e).isReg() &&
772        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
773      REX |= 1 << 2; // set REX.R
774    unsigned Bit = 0;
775    for (; i != e; ++i) {
776      const MCOperand &MO = MI.getOperand(i);
777      if (MO.isReg()) {
778        if (X86II::isX86_64ExtendedReg(MO.getReg()))
779          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
780        Bit++;
781      }
782    }
783    break;
784  }
785  default:
786    if (MI.getOperand(0).isReg() &&
787        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
788      REX |= 1 << 0; // set REX.B
789    i = isTwoAddr ? 2 : 1;
790    for (unsigned e = NumOps; i != e; ++i) {
791      const MCOperand &MO = MI.getOperand(i);
792      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
793        REX |= 1 << 2; // set REX.R
794    }
795    break;
796  }
797  return REX;
798}
799
800/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
801void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
802                                        unsigned &CurByte, int MemOperand,
803                                        const MCInst &MI,
804                                        raw_ostream &OS) const {
805  switch (TSFlags & X86II::SegOvrMask) {
806  default: llvm_unreachable("Invalid segment!");
807  case 0:
808    // No segment override, check for explicit one on memory operand.
809    if (MemOperand != -1) {   // If the instruction has a memory operand.
810      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
811      default: llvm_unreachable("Unknown segment register!");
812      case 0: break;
813      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
814      case X86::SS: EmitByte(0x36, CurByte, OS); break;
815      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
816      case X86::ES: EmitByte(0x26, CurByte, OS); break;
817      case X86::FS: EmitByte(0x64, CurByte, OS); break;
818      case X86::GS: EmitByte(0x65, CurByte, OS); break;
819      }
820    }
821    break;
822  case X86II::FS:
823    EmitByte(0x64, CurByte, OS);
824    break;
825  case X86II::GS:
826    EmitByte(0x65, CurByte, OS);
827    break;
828  }
829}
830
831/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
832///
833/// MemOperand is the operand # of the start of a memory operand if present.  If
834/// Not present, it is -1.
835void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
836                                        int MemOperand, const MCInst &MI,
837                                        const MCInstrDesc &Desc,
838                                        raw_ostream &OS) const {
839
840  // Emit the lock opcode prefix as needed.
841  if (TSFlags & X86II::LOCK)
842    EmitByte(0xF0, CurByte, OS);
843
844  // Emit segment override opcode prefix as needed.
845  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
846
847  // Emit the repeat opcode prefix as needed.
848  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
849    EmitByte(0xF3, CurByte, OS);
850
851  // Emit the address size opcode prefix as needed.
852  bool need_address_override;
853  if (TSFlags & X86II::AdSize) {
854    need_address_override = true;
855  } else if (MemOperand == -1) {
856    need_address_override = false;
857  } else if (is64BitMode()) {
858    assert(!Is16BitMemOperand(MI, MemOperand));
859    need_address_override = Is32BitMemOperand(MI, MemOperand);
860  } else if (is32BitMode()) {
861    assert(!Is64BitMemOperand(MI, MemOperand));
862    need_address_override = Is16BitMemOperand(MI, MemOperand);
863  } else {
864    need_address_override = false;
865  }
866
867  if (need_address_override)
868    EmitByte(0x67, CurByte, OS);
869
870  // Emit the operand size opcode prefix as needed.
871  if (TSFlags & X86II::OpSize)
872    EmitByte(0x66, CurByte, OS);
873
874  bool Need0FPrefix = false;
875  switch (TSFlags & X86II::Op0Mask) {
876  default: llvm_unreachable("Invalid prefix!");
877  case 0: break;  // No prefix!
878  case X86II::REP: break; // already handled.
879  case X86II::TB:  // Two-byte opcode prefix
880  case X86II::T8:  // 0F 38
881  case X86II::TA:  // 0F 3A
882  case X86II::A6:  // 0F A6
883  case X86II::A7:  // 0F A7
884    Need0FPrefix = true;
885    break;
886  case X86II::T8XS: // F3 0F 38
887    EmitByte(0xF3, CurByte, OS);
888    Need0FPrefix = true;
889    break;
890  case X86II::T8XD: // F2 0F 38
891    EmitByte(0xF2, CurByte, OS);
892    Need0FPrefix = true;
893    break;
894  case X86II::TAXD: // F2 0F 3A
895    EmitByte(0xF2, CurByte, OS);
896    Need0FPrefix = true;
897    break;
898  case X86II::XS:   // F3 0F
899    EmitByte(0xF3, CurByte, OS);
900    Need0FPrefix = true;
901    break;
902  case X86II::XD:   // F2 0F
903    EmitByte(0xF2, CurByte, OS);
904    Need0FPrefix = true;
905    break;
906  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
907  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
908  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
909  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
910  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
911  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
912  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
913  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
914  }
915
916  // Handle REX prefix.
917  // FIXME: Can this come before F2 etc to simplify emission?
918  if (is64BitMode()) {
919    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
920      EmitByte(0x40 | REX, CurByte, OS);
921  }
922
923  // 0x0F escape code must be emitted just before the opcode.
924  if (Need0FPrefix)
925    EmitByte(0x0F, CurByte, OS);
926
927  // FIXME: Pull this up into previous switch if REX can be moved earlier.
928  switch (TSFlags & X86II::Op0Mask) {
929  case X86II::T8XS:  // F3 0F 38
930  case X86II::T8XD:  // F2 0F 38
931  case X86II::T8:    // 0F 38
932    EmitByte(0x38, CurByte, OS);
933    break;
934  case X86II::TAXD:  // F2 0F 3A
935  case X86II::TA:    // 0F 3A
936    EmitByte(0x3A, CurByte, OS);
937    break;
938  case X86II::A6:    // 0F A6
939    EmitByte(0xA6, CurByte, OS);
940    break;
941  case X86II::A7:    // 0F A7
942    EmitByte(0xA7, CurByte, OS);
943    break;
944  }
945}
946
947void X86MCCodeEmitter::
948EncodeInstruction(const MCInst &MI, raw_ostream &OS,
949                  SmallVectorImpl<MCFixup> &Fixups) const {
950  unsigned Opcode = MI.getOpcode();
951  const MCInstrDesc &Desc = MCII.get(Opcode);
952  uint64_t TSFlags = Desc.TSFlags;
953
954  // Pseudo instructions don't get encoded.
955  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
956    return;
957
958  // If this is a two-address instruction, skip one of the register operands.
959  // FIXME: This should be handled during MCInst lowering.
960  unsigned NumOps = Desc.getNumOperands();
961  unsigned CurOp = 0;
962  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
963    ++CurOp;
964  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
965    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
966    --NumOps;
967
968  // Keep track of the current byte being emitted.
969  unsigned CurByte = 0;
970
971  // Is this instruction encoded using the AVX VEX prefix?
972  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
973
974  // It uses the VEX.VVVV field?
975  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
976  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
977  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
978  const unsigned MemOp4_I8IMMOperand = 2;
979
980  // Determine where the memory operand starts, if present.
981  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
982  if (MemoryOperand != -1) MemoryOperand += CurOp;
983
984  if (!HasVEXPrefix)
985    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
986  else
987    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
988
989  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
990
991  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
992    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
993
994  unsigned SrcRegNum = 0;
995  switch (TSFlags & X86II::FormMask) {
996  case X86II::MRMInitReg:
997    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
998  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
999    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1000  case X86II::Pseudo:
1001    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1002  case X86II::RawFrm:
1003    EmitByte(BaseOpcode, CurByte, OS);
1004    break;
1005  case X86II::RawFrmImm8:
1006    EmitByte(BaseOpcode, CurByte, OS);
1007    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1008                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1009                  CurByte, OS, Fixups);
1010    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1011                  OS, Fixups);
1012    break;
1013  case X86II::RawFrmImm16:
1014    EmitByte(BaseOpcode, CurByte, OS);
1015    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1016                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1017                  CurByte, OS, Fixups);
1018    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1019                  OS, Fixups);
1020    break;
1021
1022  case X86II::AddRegFrm:
1023    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1024    break;
1025
1026  case X86II::MRMDestReg:
1027    EmitByte(BaseOpcode, CurByte, OS);
1028    EmitRegModRMByte(MI.getOperand(CurOp),
1029                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
1030    CurOp += 2;
1031    break;
1032
1033  case X86II::MRMDestMem:
1034    EmitByte(BaseOpcode, CurByte, OS);
1035    SrcRegNum = CurOp + X86::AddrNumOperands;
1036
1037    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1038      SrcRegNum++;
1039
1040    EmitMemModRMByte(MI, CurOp,
1041                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1042                     TSFlags, CurByte, OS, Fixups);
1043    CurOp = SrcRegNum + 1;
1044    break;
1045
1046  case X86II::MRMSrcReg:
1047    EmitByte(BaseOpcode, CurByte, OS);
1048    SrcRegNum = CurOp + 1;
1049
1050    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1051      SrcRegNum++;
1052
1053    if(HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1054      SrcRegNum++;
1055
1056    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1057                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1058
1059    // 2 operands skipped with HasMemOp4, comensate accordingly
1060    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1061    if (HasVEX_4VOp3)
1062      ++CurOp;
1063    break;
1064
1065  case X86II::MRMSrcMem: {
1066    int AddrOperands = X86::AddrNumOperands;
1067    unsigned FirstMemOp = CurOp+1;
1068    if (HasVEX_4V) {
1069      ++AddrOperands;
1070      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1071    }
1072    if(HasMemOp4) // Skip second register source (encoded in I8IMM)
1073      ++FirstMemOp;
1074
1075    EmitByte(BaseOpcode, CurByte, OS);
1076
1077    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1078                     TSFlags, CurByte, OS, Fixups);
1079    CurOp += AddrOperands + 1;
1080    if (HasVEX_4VOp3)
1081      ++CurOp;
1082    break;
1083  }
1084
1085  case X86II::MRM0r: case X86II::MRM1r:
1086  case X86II::MRM2r: case X86II::MRM3r:
1087  case X86II::MRM4r: case X86II::MRM5r:
1088  case X86II::MRM6r: case X86II::MRM7r:
1089    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1090      CurOp++;
1091    EmitByte(BaseOpcode, CurByte, OS);
1092    EmitRegModRMByte(MI.getOperand(CurOp++),
1093                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1094                     CurByte, OS);
1095    break;
1096  case X86II::MRM0m: case X86II::MRM1m:
1097  case X86II::MRM2m: case X86II::MRM3m:
1098  case X86II::MRM4m: case X86II::MRM5m:
1099  case X86II::MRM6m: case X86II::MRM7m:
1100    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1101      CurOp++;
1102    EmitByte(BaseOpcode, CurByte, OS);
1103    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1104                     TSFlags, CurByte, OS, Fixups);
1105    CurOp += X86::AddrNumOperands;
1106    break;
1107  case X86II::MRM_C1: case X86II::MRM_C2:
1108  case X86II::MRM_C3: case X86II::MRM_C4:
1109  case X86II::MRM_C8: case X86II::MRM_C9:
1110  case X86II::MRM_D0: case X86II::MRM_D1:
1111  case X86II::MRM_D4: case X86II::MRM_D8:
1112  case X86II::MRM_D9: case X86II::MRM_DA:
1113  case X86II::MRM_DB: case X86II::MRM_DC:
1114  case X86II::MRM_DD: case X86II::MRM_DE:
1115  case X86II::MRM_DF: case X86II::MRM_E8:
1116  case X86II::MRM_F0: case X86II::MRM_F8:
1117  case X86II::MRM_F9:
1118    EmitByte(BaseOpcode, CurByte, OS);
1119
1120    unsigned char MRM;
1121    switch (TSFlags & X86II::FormMask) {
1122    default: llvm_unreachable("Invalid Form");
1123    case X86II::MRM_C1: MRM = 0xC1; break;
1124    case X86II::MRM_C2: MRM = 0xC2; break;
1125    case X86II::MRM_C3: MRM = 0xC3; break;
1126    case X86II::MRM_C4: MRM = 0xC4; break;
1127    case X86II::MRM_C8: MRM = 0xC8; break;
1128    case X86II::MRM_C9: MRM = 0xC9; break;
1129    case X86II::MRM_D0: MRM = 0xD0; break;
1130    case X86II::MRM_D1: MRM = 0xD1; break;
1131    case X86II::MRM_D4: MRM = 0xD4; break;
1132    case X86II::MRM_D8: MRM = 0xD8; break;
1133    case X86II::MRM_D9: MRM = 0xD9; break;
1134    case X86II::MRM_DA: MRM = 0xDA; break;
1135    case X86II::MRM_DB: MRM = 0xDB; break;
1136    case X86II::MRM_DC: MRM = 0xDC; break;
1137    case X86II::MRM_DD: MRM = 0xDD; break;
1138    case X86II::MRM_DE: MRM = 0xDE; break;
1139    case X86II::MRM_DF: MRM = 0xDF; break;
1140    case X86II::MRM_E8: MRM = 0xE8; break;
1141    case X86II::MRM_F0: MRM = 0xF0; break;
1142    case X86II::MRM_F8: MRM = 0xF8; break;
1143    case X86II::MRM_F9: MRM = 0xF9; break;
1144    }
1145    EmitByte(MRM, CurByte, OS);
1146    break;
1147  }
1148
1149  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1150  // according to the right size for the instruction.
1151  if (CurOp != NumOps) {
1152    // The last source register of a 4 operand instruction in AVX is encoded
1153    // in bits[7:4] of a immediate byte.
1154    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1155      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1156                                                   : CurOp);
1157      CurOp++;
1158      bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
1159      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1160      RegNum |= GetX86RegNum(MO) << 4;
1161      // If there is an additional 5th operand it must be an immediate, which
1162      // is encoded in bits[3:0]
1163      if(CurOp != NumOps) {
1164        const MCOperand &MIMM = MI.getOperand(CurOp++);
1165        if(MIMM.isImm()) {
1166          unsigned Val = MIMM.getImm();
1167          assert(Val < 16 && "Immediate operand value out of range");
1168          RegNum |= Val;
1169        }
1170      }
1171      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1172                    CurByte, OS, Fixups);
1173    } else {
1174      unsigned FixupKind;
1175      // FIXME: Is there a better way to know that we need a signed relocation?
1176      if (MI.getOpcode() == X86::ADD64ri32 ||
1177          MI.getOpcode() == X86::MOV64ri32 ||
1178          MI.getOpcode() == X86::MOV64mi32 ||
1179          MI.getOpcode() == X86::PUSH64i32)
1180        FixupKind = X86::reloc_signed_4byte;
1181      else
1182        FixupKind = getImmFixupKind(TSFlags);
1183      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1184                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1185                    CurByte, OS, Fixups);
1186    }
1187  }
1188
1189  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1190    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1191
1192#ifndef NDEBUG
1193  // FIXME: Verify.
1194  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1195    errs() << "Cannot encode all operands of: ";
1196    MI.dump();
1197    errs() << '\n';
1198    abort();
1199  }
1200#endif
1201}
1202