X86MCCodeEmitter.cpp revision bd0decae3c0af9eb38592f305935559782096c9e
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace llvm;
29
30namespace {
31class X86MCCodeEmitter : public MCCodeEmitter {
32  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34  const MCInstrInfo &MCII;
35  const MCSubtargetInfo &STI;
36  MCContext &Ctx;
37public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39                   MCContext &ctx)
40    : MCII(mcii), STI(sti), Ctx(ctx) {
41  }
42
43  ~X86MCCodeEmitter() {}
44
45  bool is64BitMode() const {
46    // FIXME: Can tablegen auto-generate this?
47    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48  }
49
50  bool is32BitMode() const {
51    // FIXME: Can tablegen auto-generate this?
52    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
53  }
54
55  unsigned GetX86RegNum(const MCOperand &MO) const {
56    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
57  }
58
59  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
60  // 0-7 and the difference between the 2 groups is given by the REX prefix.
61  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
62  // in 1's complement form, example:
63  //
64  //  ModRM field => XMM9 => 1
65  //  VEX.VVVV    => XMM9 => ~9
66  //
67  // See table 4-35 of Intel AVX Programming Reference for details.
68  unsigned char getVEXRegisterEncoding(const MCInst &MI,
69                                       unsigned OpNum) const {
70    unsigned SrcReg = MI.getOperand(OpNum).getReg();
71    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
72    if (X86II::isX86_64ExtendedReg(SrcReg))
73      SrcRegNum |= 8;
74
75    // The registers represented through VEX_VVVV should
76    // be encoded in 1's complement form.
77    return (~SrcRegNum) & 0xf;
78  }
79
80  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
81                                             unsigned OpNum) const {
82    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
83           "Invalid mask register as write-mask!");
84    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
85    return MaskRegNum;
86  }
87
88  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
89    OS << (char)C;
90    ++CurByte;
91  }
92
93  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94                    raw_ostream &OS) const {
95    // Output the constant in little endian byte order.
96    for (unsigned i = 0; i != Size; ++i) {
97      EmitByte(Val & 255, CurByte, OS);
98      Val >>= 8;
99    }
100  }
101
102  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
103                     unsigned ImmSize, MCFixupKind FixupKind,
104                     unsigned &CurByte, raw_ostream &OS,
105                     SmallVectorImpl<MCFixup> &Fixups,
106                     int ImmOffset = 0) const;
107
108  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109                                        unsigned RM) {
110    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111    return RM | (RegOpcode << 3) | (Mod << 6);
112  }
113
114  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
115                        unsigned &CurByte, raw_ostream &OS) const {
116    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
117  }
118
119  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
120                   unsigned &CurByte, raw_ostream &OS) const {
121    // SIB byte is in the same format as the ModRMByte.
122    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
123  }
124
125
126  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
127                        unsigned RegOpcodeField,
128                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
129                        SmallVectorImpl<MCFixup> &Fixups) const;
130
131  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132                         SmallVectorImpl<MCFixup> &Fixups) const;
133
134  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
135                           const MCInst &MI, const MCInstrDesc &Desc,
136                           raw_ostream &OS) const;
137
138  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139                                 int MemOperand, const MCInst &MI,
140                                 raw_ostream &OS) const;
141
142  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
143                        const MCInst &MI, const MCInstrDesc &Desc,
144                        raw_ostream &OS) const;
145};
146
147} // end anonymous namespace
148
149
150MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
151                                            const MCRegisterInfo &MRI,
152                                            const MCSubtargetInfo &STI,
153                                            MCContext &Ctx) {
154  return new X86MCCodeEmitter(MCII, STI, Ctx);
155}
156
157/// isDisp8 - Return true if this signed displacement fits in a 8-bit
158/// sign-extended field.
159static bool isDisp8(int Value) {
160  return Value == (signed char)Value;
161}
162
163/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
164/// compressed dispacement field.
165static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
166  assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) &&
167         "Compressed 8-bit displacement is only valid for EVEX inst.");
168
169  unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
170  unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
171
172  if (CD8V == 0 && CD8E == 0) {
173    CValue = Value;
174    return isDisp8(Value);
175  }
176
177  unsigned MemObjSize = 1U << CD8E;
178  if (CD8V & 4) {
179    // Fixed vector length
180    MemObjSize *= 1U << (CD8V & 0x3);
181  } else {
182    // Modified vector length
183    bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
184    if (!EVEX_b) {
185      unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
186      EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
187      assert(EVEX_LL < 3 && "");
188
189      unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
190      NumElems /= 1U << (CD8V & 0x3);
191
192      MemObjSize *= NumElems;
193    }
194  }
195
196  unsigned MemObjMask = MemObjSize - 1;
197  assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
198
199  if (Value & MemObjMask) // Unaligned offset
200    return false;
201  Value /= MemObjSize;
202  bool Ret = (Value == (signed char)Value);
203
204  if (Ret)
205    CValue = Value;
206  return Ret;
207}
208
209/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
210/// in an instruction with the specified TSFlags.
211static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
212  unsigned Size = X86II::getSizeOfImm(TSFlags);
213  bool isPCRel = X86II::isImmPCRel(TSFlags);
214
215  return MCFixup::getKindForSize(Size, isPCRel);
216}
217
218/// Is32BitMemOperand - Return true if the specified instruction has
219/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
220static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
221  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
222  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
223
224  if ((BaseReg.getReg() != 0 &&
225       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
226      (IndexReg.getReg() != 0 &&
227       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
228    return true;
229  return false;
230}
231
232/// Is64BitMemOperand - Return true if the specified instruction has
233/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
234#ifndef NDEBUG
235static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
236  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
237  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
238
239  if ((BaseReg.getReg() != 0 &&
240       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
241      (IndexReg.getReg() != 0 &&
242       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
243    return true;
244  return false;
245}
246#endif
247
248/// Is16BitMemOperand - Return true if the specified instruction has
249/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
250static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
251  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
252  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
253
254  if ((BaseReg.getReg() != 0 &&
255       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
256      (IndexReg.getReg() != 0 &&
257       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
258    return true;
259  return false;
260}
261
262/// StartsWithGlobalOffsetTable - Check if this expression starts with
263///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
264///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
265/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
266/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
267/// of a binary expression.
268enum GlobalOffsetTableExprKind {
269  GOT_None,
270  GOT_Normal,
271  GOT_SymDiff
272};
273static GlobalOffsetTableExprKind
274StartsWithGlobalOffsetTable(const MCExpr *Expr) {
275  const MCExpr *RHS = 0;
276  if (Expr->getKind() == MCExpr::Binary) {
277    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
278    Expr = BE->getLHS();
279    RHS = BE->getRHS();
280  }
281
282  if (Expr->getKind() != MCExpr::SymbolRef)
283    return GOT_None;
284
285  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
286  const MCSymbol &S = Ref->getSymbol();
287  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
288    return GOT_None;
289  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
290    return GOT_SymDiff;
291  return GOT_Normal;
292}
293
294static bool HasSecRelSymbolRef(const MCExpr *Expr) {
295  if (Expr->getKind() == MCExpr::SymbolRef) {
296    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
297    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
298  }
299  return false;
300}
301
302void X86MCCodeEmitter::
303EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
304              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
305              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
306  const MCExpr *Expr = NULL;
307  if (DispOp.isImm()) {
308    // If this is a simple integer displacement that doesn't require a
309    // relocation, emit it now.
310    if (FixupKind != FK_PCRel_1 &&
311        FixupKind != FK_PCRel_2 &&
312        FixupKind != FK_PCRel_4) {
313      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
314      return;
315    }
316    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
317  } else {
318    Expr = DispOp.getExpr();
319  }
320
321  // If we have an immoffset, add it to the expression.
322  if ((FixupKind == FK_Data_4 ||
323       FixupKind == FK_Data_8 ||
324       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
325    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
326    if (Kind != GOT_None) {
327      assert(ImmOffset == 0);
328
329      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
330      if (Kind == GOT_Normal)
331        ImmOffset = CurByte;
332    } else if (Expr->getKind() == MCExpr::SymbolRef) {
333      if (HasSecRelSymbolRef(Expr)) {
334        FixupKind = MCFixupKind(FK_SecRel_4);
335      }
336    } else if (Expr->getKind() == MCExpr::Binary) {
337      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
338      if (HasSecRelSymbolRef(Bin->getLHS())
339          || HasSecRelSymbolRef(Bin->getRHS())) {
340        FixupKind = MCFixupKind(FK_SecRel_4);
341      }
342    }
343  }
344
345  // If the fixup is pc-relative, we need to bias the value to be relative to
346  // the start of the field, not the end of the field.
347  if (FixupKind == FK_PCRel_4 ||
348      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
349      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
350    ImmOffset -= 4;
351  if (FixupKind == FK_PCRel_2)
352    ImmOffset -= 2;
353  if (FixupKind == FK_PCRel_1)
354    ImmOffset -= 1;
355
356  if (ImmOffset)
357    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
358                                   Ctx);
359
360  // Emit a symbolic constant as a fixup and 4 zeros.
361  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
362  EmitConstant(0, Size, CurByte, OS);
363}
364
365void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
366                                        unsigned RegOpcodeField,
367                                        uint64_t TSFlags, unsigned &CurByte,
368                                        raw_ostream &OS,
369                                        SmallVectorImpl<MCFixup> &Fixups) const{
370  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
371  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
372  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
373  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
374  unsigned BaseReg = Base.getReg();
375  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
376
377  // Handle %rip relative addressing.
378  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
379    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
380    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
381    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
382
383    unsigned FixupKind = X86::reloc_riprel_4byte;
384
385    // movq loads are handled with a special relocation form which allows the
386    // linker to eliminate some loads for GOT references which end up in the
387    // same linkage unit.
388    if (MI.getOpcode() == X86::MOV64rm)
389      FixupKind = X86::reloc_riprel_4byte_movq_load;
390
391    // rip-relative addressing is actually relative to the *next* instruction.
392    // Since an immediate can follow the mod/rm byte for an instruction, this
393    // means that we need to bias the immediate field of the instruction with
394    // the size of the immediate field.  If we have this case, add it into the
395    // expression to emit.
396    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
397
398    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
399                  CurByte, OS, Fixups, -ImmSize);
400    return;
401  }
402
403  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
404
405  // Determine whether a SIB byte is needed.
406  // If no BaseReg, issue a RIP relative instruction only if the MCE can
407  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
408  // 2-7) and absolute references.
409
410  if (// The SIB byte must be used if there is an index register.
411      IndexReg.getReg() == 0 &&
412      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
413      // encode to an R/M value of 4, which indicates that a SIB byte is
414      // present.
415      BaseRegNo != N86::ESP &&
416      // If there is no base register and we're in 64-bit mode, we need a SIB
417      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
418      (!is64BitMode() || BaseReg != 0)) {
419
420    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
421      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
422      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
423      return;
424    }
425
426    // If the base is not EBP/ESP and there is no displacement, use simple
427    // indirect register encoding, this handles addresses like [EAX].  The
428    // encoding for [EBP] with no displacement means [disp32] so we handle it
429    // by emitting a displacement of 0 below.
430    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
431      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
432      return;
433    }
434
435    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
436    if (Disp.isImm()) {
437      if (!HasEVEX && isDisp8(Disp.getImm())) {
438        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
439        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
440        return;
441      }
442      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
443      // 32-bit displacement.
444      int CDisp8 = 0;
445      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
446        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
447        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
448                      CDisp8 - Disp.getImm());
449        return;
450      }
451    }
452
453    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
454    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
455    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
456                  Fixups);
457    return;
458  }
459
460  // We need a SIB byte, so start by outputting the ModR/M byte first
461  assert(IndexReg.getReg() != X86::ESP &&
462         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
463
464  bool ForceDisp32 = false;
465  bool ForceDisp8  = false;
466  int CDisp8 = 0;
467  int ImmOffset = 0;
468  if (BaseReg == 0) {
469    // If there is no base register, we emit the special case SIB byte with
470    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
471    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
472    ForceDisp32 = true;
473  } else if (!Disp.isImm()) {
474    // Emit the normal disp32 encoding.
475    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
476    ForceDisp32 = true;
477  } else if (Disp.getImm() == 0 &&
478             // Base reg can't be anything that ends up with '5' as the base
479             // reg, it is the magic [*] nomenclature that indicates no base.
480             BaseRegNo != N86::EBP) {
481    // Emit no displacement ModR/M byte
482    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
483  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
484    // Emit the disp8 encoding.
485    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
486    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
487  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
488    // Emit the disp8 encoding.
489    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
490    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
491    ImmOffset = CDisp8 - Disp.getImm();
492  } else {
493    // Emit the normal disp32 encoding.
494    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
495  }
496
497  // Calculate what the SS field value should be...
498  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
499  unsigned SS = SSTable[Scale.getImm()];
500
501  if (BaseReg == 0) {
502    // Handle the SIB byte for the case where there is no base, see Intel
503    // Manual 2A, table 2-7. The displacement has already been output.
504    unsigned IndexRegNo;
505    if (IndexReg.getReg())
506      IndexRegNo = GetX86RegNum(IndexReg);
507    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
508      IndexRegNo = 4;
509    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
510  } else {
511    unsigned IndexRegNo;
512    if (IndexReg.getReg())
513      IndexRegNo = GetX86RegNum(IndexReg);
514    else
515      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
516    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
517  }
518
519  // Do we need to output a displacement?
520  if (ForceDisp8)
521    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
522  else if (ForceDisp32 || Disp.getImm() != 0)
523    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
524                  CurByte, OS, Fixups);
525}
526
527/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
528/// called VEX.
529void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
530                                           int MemOperand, const MCInst &MI,
531                                           const MCInstrDesc &Desc,
532                                           raw_ostream &OS) const {
533  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
534  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
535  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
536  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
537  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
538
539  // VEX_R: opcode externsion equivalent to REX.R in
540  // 1's complement (inverted) form
541  //
542  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
543  //  0: Same as REX_R=1 (64 bit mode only)
544  //
545  unsigned char VEX_R = 0x1;
546  unsigned char EVEX_R2 = 0x1;
547
548  // VEX_X: equivalent to REX.X, only used when a
549  // register is used for index in SIB Byte.
550  //
551  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
552  //  0: Same as REX.X=1 (64-bit mode only)
553  unsigned char VEX_X = 0x1;
554
555  // VEX_B:
556  //
557  //  1: Same as REX_B=0 (ignored in 32-bit mode)
558  //  0: Same as REX_B=1 (64 bit mode only)
559  //
560  unsigned char VEX_B = 0x1;
561
562  // VEX_W: opcode specific (use like REX.W, or used for
563  // opcode extension, or ignored, depending on the opcode byte)
564  unsigned char VEX_W = 0;
565
566  // XOP: Use XOP prefix byte 0x8f instead of VEX.
567  unsigned char XOP = 0;
568
569  // VEX_5M (VEX m-mmmmm field):
570  //
571  //  0b00000: Reserved for future use
572  //  0b00001: implied 0F leading opcode
573  //  0b00010: implied 0F 38 leading opcode bytes
574  //  0b00011: implied 0F 3A leading opcode bytes
575  //  0b00100-0b11111: Reserved for future use
576  //  0b01000: XOP map select - 08h instructions with imm byte
577  //  0b01001: XOP map select - 09h instructions with no imm byte
578  //  0b01010: XOP map select - 0Ah instructions with imm dword
579  unsigned char VEX_5M = 0x1;
580
581  // VEX_4V (VEX vvvv field): a register specifier
582  // (in 1's complement form) or 1111 if unused.
583  unsigned char VEX_4V = 0xf;
584  unsigned char EVEX_V2 = 0x1;
585
586  // VEX_L (Vector Length):
587  //
588  //  0: scalar or 128-bit vector
589  //  1: 256-bit vector
590  //
591  unsigned char VEX_L = 0;
592  unsigned char EVEX_L2 = 0;
593
594  // VEX_PP: opcode extension providing equivalent
595  // functionality of a SIMD prefix
596  //
597  //  0b00: None
598  //  0b01: 66
599  //  0b10: F3
600  //  0b11: F2
601  //
602  unsigned char VEX_PP = 0;
603
604  // EVEX_U
605  unsigned char EVEX_U = 1; // Always '1' so far
606
607  // EVEX_z
608  unsigned char EVEX_z = 0;
609
610  // EVEX_b
611  unsigned char EVEX_b = 0;
612
613  // EVEX_aaa
614  unsigned char EVEX_aaa = 0;
615
616  // Encode the operand size opcode prefix as needed.
617  if (TSFlags & X86II::OpSize)
618    VEX_PP = 0x01;
619
620  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
621    VEX_W = 1;
622
623  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
624    XOP = 1;
625
626  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
627    VEX_L = 1;
628  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
629    EVEX_L2 = 1;
630
631  if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
632    EVEX_z = 1;
633
634  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
635    EVEX_b = 1;
636
637  switch (TSFlags & X86II::Op0Mask) {
638  default: llvm_unreachable("Invalid prefix!");
639  case X86II::T8:  // 0F 38
640    VEX_5M = 0x2;
641    break;
642  case X86II::TA:  // 0F 3A
643    VEX_5M = 0x3;
644    break;
645  case X86II::T8XS: // F3 0F 38
646    VEX_PP = 0x2;
647    VEX_5M = 0x2;
648    break;
649  case X86II::T8XD: // F2 0F 38
650    VEX_PP = 0x3;
651    VEX_5M = 0x2;
652    break;
653  case X86II::TAXD: // F2 0F 3A
654    VEX_PP = 0x3;
655    VEX_5M = 0x3;
656    break;
657  case X86II::XS:  // F3 0F
658    VEX_PP = 0x2;
659    break;
660  case X86II::XD:  // F2 0F
661    VEX_PP = 0x3;
662    break;
663  case X86II::XOP8:
664    VEX_5M = 0x8;
665    break;
666  case X86II::XOP9:
667    VEX_5M = 0x9;
668    break;
669  case X86II::XOPA:
670    VEX_5M = 0xA;
671    break;
672  case X86II::A6:  // Bypass: Not used by VEX
673  case X86II::A7:  // Bypass: Not used by VEX
674  case X86II::TB:  // Bypass: Not used by VEX
675  case 0:
676    break;  // No prefix!
677  }
678
679
680  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
681  unsigned NumOps = Desc.getNumOperands();
682  unsigned CurOp = 0;
683  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
684    ++CurOp;
685  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
686           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
687    // Special case for AVX-512 GATHER with 2 TIED_TO operands
688    // Skip the first 2 operands: dst, mask_wb
689    CurOp += 2;
690  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
691           Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
692    // Special case for GATHER with 2 TIED_TO operands
693    // Skip the first 2 operands: dst, mask_wb
694    CurOp += 2;
695  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
696    // SCATTER
697    ++CurOp;
698
699  switch (TSFlags & X86II::FormMask) {
700  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
701  case X86II::MRMDestMem: {
702    // MRMDestMem instructions forms:
703    //  MemAddr, src1(ModR/M)
704    //  MemAddr, src1(VEX_4V), src2(ModR/M)
705    //  MemAddr, src1(ModR/M), imm8
706    //
707    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
708                                                 X86::AddrBaseReg).getReg()))
709      VEX_B = 0x0;
710    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
711                                                 X86::AddrIndexReg).getReg()))
712      VEX_X = 0x0;
713    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
714                                          X86::AddrIndexReg).getReg()))
715      EVEX_V2 = 0x0;
716
717    CurOp += X86::AddrNumOperands;
718
719    if (HasEVEX_K)
720      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
721
722    if (HasVEX_4V) {
723      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
724      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
725        EVEX_V2 = 0x0;
726      CurOp++;
727    }
728
729    const MCOperand &MO = MI.getOperand(CurOp);
730    if (MO.isReg()) {
731      if (X86II::isX86_64ExtendedReg(MO.getReg()))
732        VEX_R = 0x0;
733      if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
734        EVEX_R2 = 0x0;
735    }
736    break;
737  }
738  case X86II::MRMSrcMem:
739    // MRMSrcMem instructions forms:
740    //  src1(ModR/M), MemAddr
741    //  src1(ModR/M), src2(VEX_4V), MemAddr
742    //  src1(ModR/M), MemAddr, imm8
743    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
744    //
745    //  FMA4:
746    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
747    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
748    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
749      VEX_R = 0x0;
750    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
751      EVEX_R2 = 0x0;
752    CurOp++;
753
754    if (HasEVEX_K)
755      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
756
757    if (HasVEX_4V) {
758      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
759      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
760        EVEX_V2 = 0x0;
761      CurOp++;
762    }
763
764    if (X86II::isX86_64ExtendedReg(
765               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
766      VEX_B = 0x0;
767    if (X86II::isX86_64ExtendedReg(
768               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
769      VEX_X = 0x0;
770    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
771                                          X86::AddrIndexReg).getReg()))
772      EVEX_V2 = 0x0;
773
774    if (HasVEX_4VOp3)
775      // Instruction format for 4VOp3:
776      //   src1(ModR/M), MemAddr, src3(VEX_4V)
777      // CurOp points to start of the MemoryOperand,
778      //   it skips TIED_TO operands if exist, then increments past src1.
779      // CurOp + X86::AddrNumOperands will point to src3.
780      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
781    break;
782  case X86II::MRM0m: case X86II::MRM1m:
783  case X86II::MRM2m: case X86II::MRM3m:
784  case X86II::MRM4m: case X86II::MRM5m:
785  case X86II::MRM6m: case X86II::MRM7m: {
786    // MRM[0-9]m instructions forms:
787    //  MemAddr
788    //  src1(VEX_4V), MemAddr
789    if (HasVEX_4V) {
790      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
791      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
792        EVEX_V2 = 0x0;
793      CurOp++;
794    }
795
796    if (HasEVEX_K)
797      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
798
799    if (X86II::isX86_64ExtendedReg(
800               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
801      VEX_B = 0x0;
802    if (X86II::isX86_64ExtendedReg(
803               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
804      VEX_X = 0x0;
805    break;
806  }
807  case X86II::MRMSrcReg:
808    // MRMSrcReg instructions forms:
809    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
810    //  dst(ModR/M), src1(ModR/M)
811    //  dst(ModR/M), src1(ModR/M), imm8
812    //
813    //  FMA4:
814    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
815    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
816    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
817      VEX_R = 0x0;
818    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
819      EVEX_R2 = 0x0;
820    CurOp++;
821
822    if (HasEVEX_K)
823      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
824
825    if (HasVEX_4V) {
826      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
827      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
828        EVEX_V2 = 0x0;
829      CurOp++;
830    }
831
832    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
833      CurOp++;
834
835    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
836      VEX_B = 0x0;
837    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
838      VEX_X = 0x0;
839    CurOp++;
840    if (HasVEX_4VOp3)
841      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
842    break;
843  case X86II::MRMDestReg:
844    // MRMDestReg instructions forms:
845    //  dst(ModR/M), src(ModR/M)
846    //  dst(ModR/M), src(ModR/M), imm8
847    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
848    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
849      VEX_B = 0x0;
850    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
851      VEX_X = 0x0;
852    CurOp++;
853
854    if (HasEVEX_K)
855      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
856
857    if (HasVEX_4V) {
858      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
859      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
860        EVEX_V2 = 0x0;
861      CurOp++;
862    }
863
864    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
865      VEX_R = 0x0;
866    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
867      EVEX_R2 = 0x0;
868    break;
869  case X86II::MRM0r: case X86II::MRM1r:
870  case X86II::MRM2r: case X86II::MRM3r:
871  case X86II::MRM4r: case X86II::MRM5r:
872  case X86II::MRM6r: case X86II::MRM7r:
873    // MRM0r-MRM7r instructions forms:
874    //  dst(VEX_4V), src(ModR/M), imm8
875    if (HasVEX_4V) {
876      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
877      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
878          EVEX_V2 = 0x0;
879      CurOp++;
880    }
881    if (HasEVEX_K)
882      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
883
884    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
885      VEX_B = 0x0;
886    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
887      VEX_X = 0x0;
888    break;
889  default: // RawFrm
890    break;
891  }
892
893  // Emit segment override opcode prefix as needed.
894  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
895
896  if (!HasEVEX) {
897    // VEX opcode prefix can have 2 or 3 bytes
898    //
899    //  3 bytes:
900    //    +-----+ +--------------+ +-------------------+
901    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
902    //    +-----+ +--------------+ +-------------------+
903    //  2 bytes:
904    //    +-----+ +-------------------+
905    //    | C5h | | R | vvvv | L | pp |
906    //    +-----+ +-------------------+
907    //
908    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
909
910    if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
911      EmitByte(0xC5, CurByte, OS);
912      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
913      return;
914    }
915
916    // 3 byte VEX prefix
917    EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
918    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
919    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
920  } else {
921    // EVEX opcode prefix can have 4 bytes
922    //
923    // +-----+ +--------------+ +-------------------+ +------------------------+
924    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
925    // +-----+ +--------------+ +-------------------+ +------------------------+
926    assert((VEX_5M & 0x3) == VEX_5M
927           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
928
929    VEX_5M &= 0x3;
930
931    EmitByte(0x62, CurByte, OS);
932    EmitByte((VEX_R   << 7) |
933             (VEX_X   << 6) |
934             (VEX_B   << 5) |
935             (EVEX_R2 << 4) |
936             VEX_5M, CurByte, OS);
937    EmitByte((VEX_W   << 7) |
938             (VEX_4V  << 3) |
939             (EVEX_U  << 2) |
940             VEX_PP, CurByte, OS);
941    EmitByte((EVEX_z  << 7) |
942             (EVEX_L2 << 6) |
943             (VEX_L   << 5) |
944             (EVEX_b  << 4) |
945             (EVEX_V2 << 3) |
946             EVEX_aaa, CurByte, OS);
947  }
948}
949
950/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
951/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
952/// size, and 3) use of X86-64 extended registers.
953static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
954                                   const MCInstrDesc &Desc) {
955  unsigned REX = 0;
956  if (TSFlags & X86II::REX_W)
957    REX |= 1 << 3; // set REX.W
958
959  if (MI.getNumOperands() == 0) return REX;
960
961  unsigned NumOps = MI.getNumOperands();
962  // FIXME: MCInst should explicitize the two-addrness.
963  bool isTwoAddr = NumOps > 1 &&
964                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
965
966  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
967  unsigned i = isTwoAddr ? 1 : 0;
968  for (; i != NumOps; ++i) {
969    const MCOperand &MO = MI.getOperand(i);
970    if (!MO.isReg()) continue;
971    unsigned Reg = MO.getReg();
972    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
973    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
974    // that returns non-zero.
975    REX |= 0x40; // REX fixed encoding prefix
976    break;
977  }
978
979  switch (TSFlags & X86II::FormMask) {
980  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
981  case X86II::MRMSrcReg:
982    if (MI.getOperand(0).isReg() &&
983        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
984      REX |= 1 << 2; // set REX.R
985    i = isTwoAddr ? 2 : 1;
986    for (; i != NumOps; ++i) {
987      const MCOperand &MO = MI.getOperand(i);
988      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
989        REX |= 1 << 0; // set REX.B
990    }
991    break;
992  case X86II::MRMSrcMem: {
993    if (MI.getOperand(0).isReg() &&
994        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
995      REX |= 1 << 2; // set REX.R
996    unsigned Bit = 0;
997    i = isTwoAddr ? 2 : 1;
998    for (; i != NumOps; ++i) {
999      const MCOperand &MO = MI.getOperand(i);
1000      if (MO.isReg()) {
1001        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1002          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1003        Bit++;
1004      }
1005    }
1006    break;
1007  }
1008  case X86II::MRM0m: case X86II::MRM1m:
1009  case X86II::MRM2m: case X86II::MRM3m:
1010  case X86II::MRM4m: case X86II::MRM5m:
1011  case X86II::MRM6m: case X86II::MRM7m:
1012  case X86II::MRMDestMem: {
1013    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1014    i = isTwoAddr ? 1 : 0;
1015    if (NumOps > e && MI.getOperand(e).isReg() &&
1016        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1017      REX |= 1 << 2; // set REX.R
1018    unsigned Bit = 0;
1019    for (; i != e; ++i) {
1020      const MCOperand &MO = MI.getOperand(i);
1021      if (MO.isReg()) {
1022        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1023          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1024        Bit++;
1025      }
1026    }
1027    break;
1028  }
1029  default:
1030    if (MI.getOperand(0).isReg() &&
1031        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1032      REX |= 1 << 0; // set REX.B
1033    i = isTwoAddr ? 2 : 1;
1034    for (unsigned e = NumOps; i != e; ++i) {
1035      const MCOperand &MO = MI.getOperand(i);
1036      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1037        REX |= 1 << 2; // set REX.R
1038    }
1039    break;
1040  }
1041  return REX;
1042}
1043
1044/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1045void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
1046                                        unsigned &CurByte, int MemOperand,
1047                                        const MCInst &MI,
1048                                        raw_ostream &OS) const {
1049  switch (TSFlags & X86II::SegOvrMask) {
1050  default: llvm_unreachable("Invalid segment!");
1051  case 0:
1052    // No segment override, check for explicit one on memory operand.
1053    if (MemOperand != -1) {   // If the instruction has a memory operand.
1054      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
1055      default: llvm_unreachable("Unknown segment register!");
1056      case 0: break;
1057      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1058      case X86::SS: EmitByte(0x36, CurByte, OS); break;
1059      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1060      case X86::ES: EmitByte(0x26, CurByte, OS); break;
1061      case X86::FS: EmitByte(0x64, CurByte, OS); break;
1062      case X86::GS: EmitByte(0x65, CurByte, OS); break;
1063      }
1064    }
1065    break;
1066  case X86II::FS:
1067    EmitByte(0x64, CurByte, OS);
1068    break;
1069  case X86II::GS:
1070    EmitByte(0x65, CurByte, OS);
1071    break;
1072  }
1073}
1074
1075/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1076///
1077/// MemOperand is the operand # of the start of a memory operand if present.  If
1078/// Not present, it is -1.
1079void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1080                                        int MemOperand, const MCInst &MI,
1081                                        const MCInstrDesc &Desc,
1082                                        raw_ostream &OS) const {
1083
1084  // Emit the lock opcode prefix as needed.
1085  if (TSFlags & X86II::LOCK)
1086    EmitByte(0xF0, CurByte, OS);
1087
1088  // Emit segment override opcode prefix as needed.
1089  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
1090
1091  // Emit the repeat opcode prefix as needed.
1092  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
1093    EmitByte(0xF3, CurByte, OS);
1094
1095  // Emit the address size opcode prefix as needed.
1096  bool need_address_override;
1097  if (TSFlags & X86II::AdSize) {
1098    need_address_override = true;
1099  } else if (MemOperand == -1) {
1100    need_address_override = false;
1101  } else if (is64BitMode()) {
1102    assert(!Is16BitMemOperand(MI, MemOperand));
1103    need_address_override = Is32BitMemOperand(MI, MemOperand);
1104  } else if (is32BitMode()) {
1105    assert(!Is64BitMemOperand(MI, MemOperand));
1106    need_address_override = Is16BitMemOperand(MI, MemOperand);
1107  } else {
1108    need_address_override = false;
1109  }
1110
1111  if (need_address_override)
1112    EmitByte(0x67, CurByte, OS);
1113
1114  // Emit the operand size opcode prefix as needed.
1115  if (TSFlags & X86II::OpSize)
1116    EmitByte(0x66, CurByte, OS);
1117
1118  bool Need0FPrefix = false;
1119  switch (TSFlags & X86II::Op0Mask) {
1120  default: llvm_unreachable("Invalid prefix!");
1121  case 0: break;  // No prefix!
1122  case X86II::REP: break; // already handled.
1123  case X86II::TB:  // Two-byte opcode prefix
1124  case X86II::T8:  // 0F 38
1125  case X86II::TA:  // 0F 3A
1126  case X86II::A6:  // 0F A6
1127  case X86II::A7:  // 0F A7
1128    Need0FPrefix = true;
1129    break;
1130  case X86II::T8XS: // F3 0F 38
1131    EmitByte(0xF3, CurByte, OS);
1132    Need0FPrefix = true;
1133    break;
1134  case X86II::T8XD: // F2 0F 38
1135    EmitByte(0xF2, CurByte, OS);
1136    Need0FPrefix = true;
1137    break;
1138  case X86II::TAXD: // F2 0F 3A
1139    EmitByte(0xF2, CurByte, OS);
1140    Need0FPrefix = true;
1141    break;
1142  case X86II::XS:   // F3 0F
1143    EmitByte(0xF3, CurByte, OS);
1144    Need0FPrefix = true;
1145    break;
1146  case X86II::XD:   // F2 0F
1147    EmitByte(0xF2, CurByte, OS);
1148    Need0FPrefix = true;
1149    break;
1150  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
1151  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
1152  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
1153  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
1154  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
1155  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
1156  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
1157  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
1158  }
1159
1160  // Handle REX prefix.
1161  // FIXME: Can this come before F2 etc to simplify emission?
1162  if (is64BitMode()) {
1163    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1164      EmitByte(0x40 | REX, CurByte, OS);
1165  }
1166
1167  // 0x0F escape code must be emitted just before the opcode.
1168  if (Need0FPrefix)
1169    EmitByte(0x0F, CurByte, OS);
1170
1171  // FIXME: Pull this up into previous switch if REX can be moved earlier.
1172  switch (TSFlags & X86II::Op0Mask) {
1173  case X86II::T8XS:  // F3 0F 38
1174  case X86II::T8XD:  // F2 0F 38
1175  case X86II::T8:    // 0F 38
1176    EmitByte(0x38, CurByte, OS);
1177    break;
1178  case X86II::TAXD:  // F2 0F 3A
1179  case X86II::TA:    // 0F 3A
1180    EmitByte(0x3A, CurByte, OS);
1181    break;
1182  case X86II::A6:    // 0F A6
1183    EmitByte(0xA6, CurByte, OS);
1184    break;
1185  case X86II::A7:    // 0F A7
1186    EmitByte(0xA7, CurByte, OS);
1187    break;
1188  }
1189}
1190
1191void X86MCCodeEmitter::
1192EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1193                  SmallVectorImpl<MCFixup> &Fixups) const {
1194  unsigned Opcode = MI.getOpcode();
1195  const MCInstrDesc &Desc = MCII.get(Opcode);
1196  uint64_t TSFlags = Desc.TSFlags;
1197
1198  // Pseudo instructions don't get encoded.
1199  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1200    return;
1201
1202  unsigned NumOps = Desc.getNumOperands();
1203  unsigned CurOp = X86II::getOperandBias(Desc);
1204
1205  // Keep track of the current byte being emitted.
1206  unsigned CurByte = 0;
1207
1208  // Is this instruction encoded using the AVX VEX prefix?
1209  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1210
1211  // It uses the VEX.VVVV field?
1212  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1213  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1214  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1215  const unsigned MemOp4_I8IMMOperand = 2;
1216
1217  // It uses the EVEX.aaa field?
1218  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
1219  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
1220
1221  // Determine where the memory operand starts, if present.
1222  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1223  if (MemoryOperand != -1) MemoryOperand += CurOp;
1224
1225  if (!HasVEXPrefix)
1226    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1227  else
1228    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1229
1230  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1231
1232  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1233    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1234
1235  unsigned SrcRegNum = 0;
1236  switch (TSFlags & X86II::FormMask) {
1237  case X86II::MRMInitReg:
1238    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1239  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1240    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1241  case X86II::Pseudo:
1242    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1243  case X86II::RawFrm:
1244    EmitByte(BaseOpcode, CurByte, OS);
1245    break;
1246  case X86II::RawFrmImm8:
1247    EmitByte(BaseOpcode, CurByte, OS);
1248    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1249                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1250                  CurByte, OS, Fixups);
1251    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1252                  OS, Fixups);
1253    break;
1254  case X86II::RawFrmImm16:
1255    EmitByte(BaseOpcode, CurByte, OS);
1256    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1257                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1258                  CurByte, OS, Fixups);
1259    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1260                  OS, Fixups);
1261    break;
1262
1263  case X86II::AddRegFrm:
1264    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1265    break;
1266
1267  case X86II::MRMDestReg:
1268    EmitByte(BaseOpcode, CurByte, OS);
1269    SrcRegNum = CurOp + 1;
1270
1271    if (HasEVEX_K) // Skip writemask
1272      SrcRegNum++;
1273
1274    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1275      ++SrcRegNum;
1276
1277    EmitRegModRMByte(MI.getOperand(CurOp),
1278                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1279    CurOp = SrcRegNum + 1;
1280    break;
1281
1282  case X86II::MRMDestMem:
1283    EmitByte(BaseOpcode, CurByte, OS);
1284    SrcRegNum = CurOp + X86::AddrNumOperands;
1285
1286    if (HasEVEX_K) // Skip writemask
1287      SrcRegNum++;
1288
1289    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1290      ++SrcRegNum;
1291
1292    EmitMemModRMByte(MI, CurOp,
1293                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1294                     TSFlags, CurByte, OS, Fixups);
1295    CurOp = SrcRegNum + 1;
1296    break;
1297
1298  case X86II::MRMSrcReg:
1299    EmitByte(BaseOpcode, CurByte, OS);
1300    SrcRegNum = CurOp + 1;
1301
1302    if (HasEVEX_K) // Skip writemask
1303      SrcRegNum++;
1304
1305    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1306      ++SrcRegNum;
1307
1308    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1309      ++SrcRegNum;
1310
1311    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1312                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1313
1314    // 2 operands skipped with HasMemOp4, compensate accordingly
1315    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1316    if (HasVEX_4VOp3)
1317      ++CurOp;
1318    break;
1319
1320  case X86II::MRMSrcMem: {
1321    int AddrOperands = X86::AddrNumOperands;
1322    unsigned FirstMemOp = CurOp+1;
1323
1324    if (HasEVEX_K) { // Skip writemask
1325      ++AddrOperands;
1326      ++FirstMemOp;
1327    }
1328
1329    if (HasVEX_4V) {
1330      ++AddrOperands;
1331      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1332    }
1333    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1334      ++FirstMemOp;
1335
1336    EmitByte(BaseOpcode, CurByte, OS);
1337
1338    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1339                     TSFlags, CurByte, OS, Fixups);
1340    CurOp += AddrOperands + 1;
1341    if (HasVEX_4VOp3)
1342      ++CurOp;
1343    break;
1344  }
1345
1346  case X86II::MRM0r: case X86II::MRM1r:
1347  case X86II::MRM2r: case X86II::MRM3r:
1348  case X86II::MRM4r: case X86II::MRM5r:
1349  case X86II::MRM6r: case X86II::MRM7r:
1350    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1351      ++CurOp;
1352    EmitByte(BaseOpcode, CurByte, OS);
1353    EmitRegModRMByte(MI.getOperand(CurOp++),
1354                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1355                     CurByte, OS);
1356    break;
1357  case X86II::MRM0m: case X86II::MRM1m:
1358  case X86II::MRM2m: case X86II::MRM3m:
1359  case X86II::MRM4m: case X86II::MRM5m:
1360  case X86II::MRM6m: case X86II::MRM7m:
1361    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1362      ++CurOp;
1363    EmitByte(BaseOpcode, CurByte, OS);
1364    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1365                     TSFlags, CurByte, OS, Fixups);
1366    CurOp += X86::AddrNumOperands;
1367    break;
1368  case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
1369  case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
1370  case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
1371  case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
1372  case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
1373  case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
1374  case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
1375  case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
1376  case X86II::MRM_F9:
1377    EmitByte(BaseOpcode, CurByte, OS);
1378
1379    unsigned char MRM;
1380    switch (TSFlags & X86II::FormMask) {
1381    default: llvm_unreachable("Invalid Form");
1382    case X86II::MRM_C1: MRM = 0xC1; break;
1383    case X86II::MRM_C2: MRM = 0xC2; break;
1384    case X86II::MRM_C3: MRM = 0xC3; break;
1385    case X86II::MRM_C4: MRM = 0xC4; break;
1386    case X86II::MRM_C8: MRM = 0xC8; break;
1387    case X86II::MRM_C9: MRM = 0xC9; break;
1388    case X86II::MRM_CA: MRM = 0xCA; break;
1389    case X86II::MRM_CB: MRM = 0xCB; break;
1390    case X86II::MRM_D0: MRM = 0xD0; break;
1391    case X86II::MRM_D1: MRM = 0xD1; break;
1392    case X86II::MRM_D4: MRM = 0xD4; break;
1393    case X86II::MRM_D5: MRM = 0xD5; break;
1394    case X86II::MRM_D6: MRM = 0xD6; break;
1395    case X86II::MRM_D8: MRM = 0xD8; break;
1396    case X86II::MRM_D9: MRM = 0xD9; break;
1397    case X86II::MRM_DA: MRM = 0xDA; break;
1398    case X86II::MRM_DB: MRM = 0xDB; break;
1399    case X86II::MRM_DC: MRM = 0xDC; break;
1400    case X86II::MRM_DD: MRM = 0xDD; break;
1401    case X86II::MRM_DE: MRM = 0xDE; break;
1402    case X86II::MRM_DF: MRM = 0xDF; break;
1403    case X86II::MRM_E8: MRM = 0xE8; break;
1404    case X86II::MRM_F0: MRM = 0xF0; break;
1405    case X86II::MRM_F8: MRM = 0xF8; break;
1406    case X86II::MRM_F9: MRM = 0xF9; break;
1407    }
1408    EmitByte(MRM, CurByte, OS);
1409    break;
1410  }
1411
1412  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1413  // according to the right size for the instruction. Some instructions
1414  // (SSE4a extrq and insertq) have two trailing immediates.
1415  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1416    // The last source register of a 4 operand instruction in AVX is encoded
1417    // in bits[7:4] of a immediate byte.
1418    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1419      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1420                                                    : CurOp);
1421      ++CurOp;
1422      unsigned RegNum = GetX86RegNum(MO) << 4;
1423      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1424        RegNum |= 1 << 7;
1425      // If there is an additional 5th operand it must be an immediate, which
1426      // is encoded in bits[3:0]
1427      if (CurOp != NumOps) {
1428        const MCOperand &MIMM = MI.getOperand(CurOp++);
1429        if (MIMM.isImm()) {
1430          unsigned Val = MIMM.getImm();
1431          assert(Val < 16 && "Immediate operand value out of range");
1432          RegNum |= Val;
1433        }
1434      }
1435      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1436                    CurByte, OS, Fixups);
1437    } else {
1438      unsigned FixupKind;
1439      // FIXME: Is there a better way to know that we need a signed relocation?
1440      if (MI.getOpcode() == X86::ADD64ri32 ||
1441          MI.getOpcode() == X86::MOV64ri32 ||
1442          MI.getOpcode() == X86::MOV64mi32 ||
1443          MI.getOpcode() == X86::PUSH64i32)
1444        FixupKind = X86::reloc_signed_4byte;
1445      else
1446        FixupKind = getImmFixupKind(TSFlags);
1447      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1448                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1449                    CurByte, OS, Fixups);
1450    }
1451  }
1452
1453  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1454    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1455
1456#ifndef NDEBUG
1457  // FIXME: Verify.
1458  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1459    errs() << "Cannot encode all operands of: ";
1460    MI.dump();
1461    errs() << '\n';
1462    abort();
1463  }
1464#endif
1465}
1466