X86CodeEmitter.cpp revision facc9fb9ba7317ac376bfb2518b7abde18de3764
1//===-- X86/MachineCodeEmitter.cpp - Convert X86 code to machine code -----===//
2//
3// This file contains the pass that transforms the X86 machine instructions into
4// actual executable machine code.
5//
6//===----------------------------------------------------------------------===//
7
8#include "X86TargetMachine.h"
9#include "X86.h"
10#include "llvm/PassManager.h"
11#include "llvm/CodeGen/MachineCodeEmitter.h"
12#include "llvm/CodeGen/MachineFunction.h"
13#include "llvm/CodeGen/MachineInstr.h"
14#include "llvm/Value.h"
15
16namespace {
17  class Emitter : public FunctionPass {
18    X86TargetMachine    &TM;
19    const X86InstrInfo  ⅈ
20    MachineCodeEmitter  &MCE;
21  public:
22
23    Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce)
24      : TM(tm), II(TM.getInstrInfo()), MCE(mce) {}
25
26    bool runOnFunction(Function &F);
27
28    virtual const char *getPassName() const {
29      return "X86 Machine Code Emitter";
30    }
31
32  private:
33    void emitBasicBlock(MachineBasicBlock &MBB);
34    void emitInstruction(MachineInstr &MI);
35
36    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
37    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
38    void emitConstant(unsigned Val, unsigned Size);
39
40    void emitMemModRMByte(const MachineInstr &MI,
41                          unsigned Op, unsigned RegOpcodeField);
42
43  };
44}
45
46
47/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
48/// machine code emitted.  This uses a MAchineCodeEmitter object to handle
49/// actually outputting the machine code and resolving things like the address
50/// of functions.  This method should returns true if machine code emission is
51/// not supported.
52///
53bool X86TargetMachine::addPassesToEmitMachineCode(PassManager &PM,
54                                                  MachineCodeEmitter &MCE) {
55  PM.add(new Emitter(*this, MCE));
56  return false;
57}
58
59bool Emitter::runOnFunction(Function &F) {
60  MachineFunction &MF = MachineFunction::get(&F);
61
62  MCE.startFunction(MF);
63  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
64    emitBasicBlock(*I);
65  MCE.finishFunction(MF);
66  return false;
67}
68
69void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
70  MCE.startBasicBlock(MBB);
71  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
72    emitInstruction(**I);
73}
74
75
76namespace N86 {  // Native X86 Register numbers...
77  enum {
78    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
79  };
80}
81
82
83// getX86RegNum - This function maps LLVM register identifiers to their X86
84// specific numbering, which is used in various places encoding instructions.
85//
86static unsigned getX86RegNum(unsigned RegNo) {
87  switch(RegNo) {
88  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
89  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
90  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
91  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
92  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
93  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
94  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
95  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
96  default:
97    assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
98           "Unknown physical register!");
99    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
100    return 0;
101  }
102}
103
104inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
105                                      unsigned RM) {
106  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
107  return RM | (RegOpcode << 3) | (Mod << 6);
108}
109
110void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
111  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
112}
113
114void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
115  // SIB byte is in the same format as the ModRMByte...
116  MCE.emitByte(ModRMByte(SS, Index, Base));
117}
118
119void Emitter::emitConstant(unsigned Val, unsigned Size) {
120  // Output the constant in little endian byte order...
121  for (unsigned i = 0; i != Size; ++i) {
122    MCE.emitByte(Val & 255);
123    Val >>= 8;
124  }
125}
126
127static bool isDisp8(int Value) {
128  return Value == (signed char)Value;
129}
130
131void Emitter::emitMemModRMByte(const MachineInstr &MI,
132                               unsigned Op, unsigned RegOpcodeField) {
133  const MachineOperand &BaseReg  = MI.getOperand(Op);
134  const MachineOperand &Scale    = MI.getOperand(Op+1);
135  const MachineOperand &IndexReg = MI.getOperand(Op+2);
136  const MachineOperand &Disp     = MI.getOperand(Op+3);
137
138  // Is a SIB byte needed?
139  if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
140    if (BaseReg.getReg() == 0) {  // Just a displacement?
141      // Emit special case [disp32] encoding
142      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
143      emitConstant(Disp.getImmedValue(), 4);
144    } else {
145      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
146      if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
147        // Emit simple indirect register encoding... [EAX] f.e.
148        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
149      } else if (isDisp8(Disp.getImmedValue())) {
150        // Emit the disp8 encoding... [REG+disp8]
151        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
152        emitConstant(Disp.getImmedValue(), 1);
153      } else {
154        // Emit the most general non-SIB encoding: [REG+disp32]
155        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
156        emitConstant(Disp.getImmedValue(), 4);
157      }
158    }
159
160  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
161    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
162
163    bool ForceDisp32 = false;
164    bool ForceDisp8  = false;
165    if (BaseReg.getReg() == 0) {
166      // If there is no base register, we emit the special case SIB byte with
167      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
168      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
169      ForceDisp32 = true;
170    } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
171      // Emit no displacement ModR/M byte
172      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
173    } else if (isDisp8(Disp.getImmedValue())) {
174      // Emit the disp8 encoding...
175      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
176      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
177    } else {
178      // Emit the normal disp32 encoding...
179      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
180    }
181
182    // Calculate what the SS field value should be...
183    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
184    unsigned SS = SSTable[Scale.getImmedValue()];
185
186    if (BaseReg.getReg() == 0) {
187      // Handle the SIB byte for the case where there is no base.  The
188      // displacement has already been output.
189      assert(IndexReg.getReg() && "Index register must be specified!");
190      emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
191    } else {
192      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
193      unsigned IndexRegNo = getX86RegNum(IndexReg.getReg());
194      emitSIBByte(SS, IndexRegNo, BaseRegNo);
195    }
196
197    // Do we need to output a displacement?
198    if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
199      if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
200        emitConstant(Disp.getImmedValue(), 1);
201      else
202        emitConstant(Disp.getImmedValue(), 4);
203    }
204  }
205}
206
207unsigned sizeOfPtr (const MachineInstrDescriptor &Desc) {
208  switch (Desc.TSFlags & X86II::ArgMask) {
209  case X86II::Arg8:   return 1;
210  case X86II::Arg16:  return 2;
211  case X86II::Arg32:  return 4;
212  case X86II::Arg64:  return 8;
213  case X86II::Arg80:  return 10;
214  case X86II::Arg128: return 16;
215  default: assert(0 && "Memory size not set!");
216    return 0;
217  }
218}
219
220
221void Emitter::emitInstruction(MachineInstr &MI) {
222  unsigned Opcode = MI.getOpcode();
223  const MachineInstrDescriptor &Desc = II.get(Opcode);
224
225  // Emit instruction prefixes if neccesary
226  if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
227  if (Desc.TSFlags & X86II::TB)     MCE.emitByte(0x0F);// Two-byte opcode prefix
228
229  unsigned char BaseOpcode = II.getBaseOpcodeFor(Opcode);
230  switch (Desc.TSFlags & X86II::FormMask) {
231  case X86II::RawFrm:
232    MCE.emitByte(BaseOpcode);
233
234    if (MI.getNumOperands() == 1) {
235      assert(MI.getOperand(0).getType() == MachineOperand::MO_PCRelativeDisp);
236      MCE.emitPCRelativeDisp(MI.getOperand(0).getVRegValue());
237    }
238    break;
239  case X86II::AddRegFrm:
240    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
241    if (MI.getNumOperands() == 2 && (MI.getOperand(1).isImmediate() ||
242	MI.getOperand(1).getVRegValueOrNull())) {
243      unsigned Size = sizeOfPtr(Desc);
244      if (Value *V = MI.getOperand(1).getVRegValueOrNull()) {
245        assert(Size == 4 && "Don't know how to emit non-pointer values!");
246        MCE.emitGlobalAddress(cast<GlobalValue>(V));
247      } else {
248        emitConstant(MI.getOperand(1).getImmedValue(), Size);
249      }
250    }
251    break;
252  case X86II::MRMDestReg:
253    MCE.emitByte(BaseOpcode);
254    emitRegModRMByte(MI.getOperand(0).getReg(),
255               getX86RegNum(MI.getOperand(MI.getNumOperands()-1).getReg()));
256    break;
257  case X86II::MRMDestMem:
258    MCE.emitByte(BaseOpcode);
259    emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
260    break;
261  case X86II::MRMSrcReg:
262    MCE.emitByte(BaseOpcode);
263    emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
264                     getX86RegNum(MI.getOperand(0).getReg()));
265    break;
266  case X86II::MRMSrcMem:
267    MCE.emitByte(BaseOpcode);
268    emitMemModRMByte(MI, MI.getNumOperands()-4,
269                     getX86RegNum(MI.getOperand(0).getReg()));
270    break;
271
272  case X86II::MRMS0r: case X86II::MRMS1r:
273  case X86II::MRMS2r: case X86II::MRMS3r:
274  case X86II::MRMS4r: case X86II::MRMS5r:
275  case X86II::MRMS6r: case X86II::MRMS7r:
276    MCE.emitByte(BaseOpcode);
277    emitRegModRMByte(MI.getOperand(0).getReg(),
278                     (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
279
280    if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
281      unsigned Size = sizeOfPtr(Desc);
282      emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
283    }
284    break;
285  }
286}
287