X86FastISel.cpp revision 12513889fdeebc5d835aa6a46f75c73ea8ba1ba3
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36namespace {
37
38class X86FastISel : public FastISel {
39  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
40  /// make the right decision when generating code for different targets.
41  const X86Subtarget *Subtarget;
42
43  /// StackPtr - Register used as the stack pointer.
44  ///
45  unsigned StackPtr;
46
47  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
48  /// floating point ops.
49  /// When SSE is available, use it for f32 operations.
50  /// When SSE2 is available, use it for f64 operations.
51  bool X86ScalarSSEf64;
52  bool X86ScalarSSEf32;
53
54public:
55  explicit X86FastISel(MachineFunction &mf,
56                       MachineModuleInfo *mmi,
57                       DwarfWriter *dw,
58                       DenseMap<const Value *, unsigned> &vm,
59                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
60                       DenseMap<const AllocaInst *, int> &am
61#ifndef NDEBUG
62                       , SmallSet<Instruction*, 8> &cil
63#endif
64                       )
65    : FastISel(mf, mmi, dw, vm, bm, am
66#ifndef NDEBUG
67               , cil
68#endif
69               ) {
70    Subtarget = &TM.getSubtarget<X86Subtarget>();
71    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
72    X86ScalarSSEf64 = Subtarget->hasSSE2();
73    X86ScalarSSEf32 = Subtarget->hasSSE1();
74  }
75
76  virtual bool TargetSelectInstruction(Instruction *I);
77
78#include "X86GenFastISel.inc"
79
80private:
81  bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
82
83  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
84
85  bool X86FastEmitStore(MVT VT, Value *Val,
86                        const X86AddressMode &AM);
87  bool X86FastEmitStore(MVT VT, unsigned Val,
88                        const X86AddressMode &AM);
89
90  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
91                         unsigned &ResultReg);
92
93  bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
94
95  bool X86SelectLoad(Instruction *I);
96
97  bool X86SelectStore(Instruction *I);
98
99  bool X86SelectCmp(Instruction *I);
100
101  bool X86SelectZExt(Instruction *I);
102
103  bool X86SelectBranch(Instruction *I);
104
105  bool X86SelectShift(Instruction *I);
106
107  bool X86SelectSelect(Instruction *I);
108
109  bool X86SelectTrunc(Instruction *I);
110
111  bool X86SelectFPExt(Instruction *I);
112  bool X86SelectFPTrunc(Instruction *I);
113
114  bool X86SelectExtractValue(Instruction *I);
115
116  bool X86VisitIntrinsicCall(IntrinsicInst &I);
117  bool X86SelectCall(Instruction *I);
118
119  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
120
121  const X86InstrInfo *getInstrInfo() const {
122    return getTargetMachine()->getInstrInfo();
123  }
124  const X86TargetMachine *getTargetMachine() const {
125    return static_cast<const X86TargetMachine *>(&TM);
126  }
127
128  unsigned TargetMaterializeConstant(Constant *C);
129
130  unsigned TargetMaterializeAlloca(AllocaInst *C);
131
132  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
133  /// computed in an SSE register, not on the X87 floating point stack.
134  bool isScalarFPTypeInSSEReg(MVT VT) const {
135    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
136      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
137  }
138
139  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
140};
141
142} // end anonymous namespace.
143
144bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
145  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
146  if (VT == MVT::Other || !VT.isSimple())
147    // Unhandled type. Halt "fast" selection and bail.
148    return false;
149
150  // For now, require SSE/SSE2 for performing floating-point operations,
151  // since x87 requires additional work.
152  if (VT == MVT::f64 && !X86ScalarSSEf64)
153     return false;
154  if (VT == MVT::f32 && !X86ScalarSSEf32)
155     return false;
156  // Similarly, no f80 support yet.
157  if (VT == MVT::f80)
158    return false;
159  // We only handle legal types. For example, on x86-32 the instruction
160  // selector contains all of the 64-bit instructions from x86-64,
161  // under the assumption that i64 won't be used if the target doesn't
162  // support it.
163  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
164}
165
166#include "X86GenCallingConv.inc"
167
168/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
169/// convention.
170CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
171  if (Subtarget->is64Bit()) {
172    if (Subtarget->isTargetWin64())
173      return CC_X86_Win64_C;
174    else if (CC == CallingConv::Fast && isTaillCall)
175      return CC_X86_64_TailCall;
176    else
177      return CC_X86_64_C;
178  }
179
180  if (CC == CallingConv::X86_FastCall)
181    return CC_X86_32_FastCall;
182  else if (CC == CallingConv::Fast)
183    return CC_X86_32_FastCC;
184  else
185    return CC_X86_32_C;
186}
187
188/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
189/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
190/// Return true and the result register by reference if it is possible.
191bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
192                                  unsigned &ResultReg) {
193  // Get opcode and regclass of the output for the given load instruction.
194  unsigned Opc = 0;
195  const TargetRegisterClass *RC = NULL;
196  switch (VT.getSimpleVT()) {
197  default: return false;
198  case MVT::i8:
199    Opc = X86::MOV8rm;
200    RC  = X86::GR8RegisterClass;
201    break;
202  case MVT::i16:
203    Opc = X86::MOV16rm;
204    RC  = X86::GR16RegisterClass;
205    break;
206  case MVT::i32:
207    Opc = X86::MOV32rm;
208    RC  = X86::GR32RegisterClass;
209    break;
210  case MVT::i64:
211    // Must be in x86-64 mode.
212    Opc = X86::MOV64rm;
213    RC  = X86::GR64RegisterClass;
214    break;
215  case MVT::f32:
216    if (Subtarget->hasSSE1()) {
217      Opc = X86::MOVSSrm;
218      RC  = X86::FR32RegisterClass;
219    } else {
220      Opc = X86::LD_Fp32m;
221      RC  = X86::RFP32RegisterClass;
222    }
223    break;
224  case MVT::f64:
225    if (Subtarget->hasSSE2()) {
226      Opc = X86::MOVSDrm;
227      RC  = X86::FR64RegisterClass;
228    } else {
229      Opc = X86::LD_Fp64m;
230      RC  = X86::RFP64RegisterClass;
231    }
232    break;
233  case MVT::f80:
234    // No f80 support yet.
235    return false;
236  }
237
238  ResultReg = createResultReg(RC);
239  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
240  return true;
241}
242
243/// X86FastEmitStore - Emit a machine instruction to store a value Val of
244/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
245/// and a displacement offset, or a GlobalAddress,
246/// i.e. V. Return true if it is possible.
247bool
248X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
249                              const X86AddressMode &AM) {
250  // Get opcode and regclass of the output for the given store instruction.
251  unsigned Opc = 0;
252  switch (VT.getSimpleVT()) {
253  case MVT::f80: // No f80 support yet.
254  default: return false;
255  case MVT::i8:  Opc = X86::MOV8mr;  break;
256  case MVT::i16: Opc = X86::MOV16mr; break;
257  case MVT::i32: Opc = X86::MOV32mr; break;
258  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
259  case MVT::f32:
260    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
261    break;
262  case MVT::f64:
263    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
264    break;
265  }
266
267  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
268  return true;
269}
270
271bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
272                                   const X86AddressMode &AM) {
273  // Handle 'null' like i32/i64 0.
274  if (isa<ConstantPointerNull>(Val))
275    Val = Constant::getNullValue(TD.getIntPtrType());
276
277  // If this is a store of a simple constant, fold the constant into the store.
278  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
279    unsigned Opc = 0;
280    switch (VT.getSimpleVT()) {
281    default: break;
282    case MVT::i8:  Opc = X86::MOV8mi;  break;
283    case MVT::i16: Opc = X86::MOV16mi; break;
284    case MVT::i32: Opc = X86::MOV32mi; break;
285    case MVT::i64:
286      // Must be a 32-bit sign extended value.
287      if ((int)CI->getSExtValue() == CI->getSExtValue())
288        Opc = X86::MOV64mi32;
289      break;
290    }
291
292    if (Opc) {
293      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
294                             .addImm(CI->getSExtValue());
295      return true;
296    }
297  }
298
299  unsigned ValReg = getRegForValue(Val);
300  if (ValReg == 0)
301    return false;
302
303  return X86FastEmitStore(VT, ValReg, AM);
304}
305
306/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
307/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
308/// ISD::SIGN_EXTEND).
309bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
310                                    unsigned Src, MVT SrcVT,
311                                    unsigned &ResultReg) {
312  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
313
314  if (RR != 0) {
315    ResultReg = RR;
316    return true;
317  } else
318    return false;
319}
320
321/// X86SelectAddress - Attempt to fill in an address from the given value.
322///
323bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
324  User *U = NULL;
325  unsigned Opcode = Instruction::UserOp1;
326  if (Instruction *I = dyn_cast<Instruction>(V)) {
327    Opcode = I->getOpcode();
328    U = I;
329  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
330    Opcode = C->getOpcode();
331    U = C;
332  }
333
334  switch (Opcode) {
335  default: break;
336  case Instruction::BitCast:
337    // Look past bitcasts.
338    return X86SelectAddress(U->getOperand(0), AM, isCall);
339
340  case Instruction::IntToPtr:
341    // Look past no-op inttoptrs.
342    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
343      return X86SelectAddress(U->getOperand(0), AM, isCall);
344    break;
345
346  case Instruction::PtrToInt:
347    // Look past no-op ptrtoints.
348    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
349      return X86SelectAddress(U->getOperand(0), AM, isCall);
350    break;
351
352  case Instruction::Alloca: {
353    if (isCall) break;
354    // Do static allocas.
355    const AllocaInst *A = cast<AllocaInst>(V);
356    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
357    if (SI != StaticAllocaMap.end()) {
358      AM.BaseType = X86AddressMode::FrameIndexBase;
359      AM.Base.FrameIndex = SI->second;
360      return true;
361    }
362    break;
363  }
364
365  case Instruction::Add: {
366    if (isCall) break;
367    // Adds of constants are common and easy enough.
368    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
369      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
370      // They have to fit in the 32-bit signed displacement field though.
371      if (isInt32(Disp)) {
372        AM.Disp = (uint32_t)Disp;
373        return X86SelectAddress(U->getOperand(0), AM, isCall);
374      }
375    }
376    break;
377  }
378
379  case Instruction::GetElementPtr: {
380    if (isCall) break;
381    // Pattern-match simple GEPs.
382    uint64_t Disp = (int32_t)AM.Disp;
383    unsigned IndexReg = AM.IndexReg;
384    unsigned Scale = AM.Scale;
385    gep_type_iterator GTI = gep_type_begin(U);
386    // Iterate through the indices, folding what we can. Constants can be
387    // folded, and one dynamic index can be handled, if the scale is supported.
388    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
389         i != e; ++i, ++GTI) {
390      Value *Op = *i;
391      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
392        const StructLayout *SL = TD.getStructLayout(STy);
393        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
394        Disp += SL->getElementOffset(Idx);
395      } else {
396        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
397        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
398          // Constant-offset addressing.
399          Disp += CI->getSExtValue() * S;
400        } else if (IndexReg == 0 &&
401                   (!AM.GV ||
402                    !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
403                   (S == 1 || S == 2 || S == 4 || S == 8)) {
404          // Scaled-index addressing.
405          Scale = S;
406          IndexReg = getRegForGEPIndex(Op);
407          if (IndexReg == 0)
408            return false;
409        } else
410          // Unsupported.
411          goto unsupported_gep;
412      }
413    }
414    // Check for displacement overflow.
415    if (!isInt32(Disp))
416      break;
417    // Ok, the GEP indices were covered by constant-offset and scaled-index
418    // addressing. Update the address state and move on to examining the base.
419    AM.IndexReg = IndexReg;
420    AM.Scale = Scale;
421    AM.Disp = (uint32_t)Disp;
422    return X86SelectAddress(U->getOperand(0), AM, isCall);
423  unsupported_gep:
424    // Ok, the GEP indices weren't all covered.
425    break;
426  }
427  }
428
429  // Handle constant address.
430  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
431    // Can't handle alternate code models yet.
432    if (TM.getCodeModel() != CodeModel::Default &&
433        TM.getCodeModel() != CodeModel::Small)
434      return false;
435
436    // RIP-relative addresses can't have additional register operands.
437    if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
438        (AM.Base.Reg != 0 || AM.IndexReg != 0))
439      return false;
440
441    // Can't handle TLS yet.
442    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
443      if (GVar->isThreadLocal())
444        return false;
445
446    // Set up the basic address.
447    AM.GV = GV;
448    if (!isCall &&
449        TM.getRelocationModel() == Reloc::PIC_ &&
450        !Subtarget->is64Bit())
451      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
452
453    // Emit an extra load if the ABI requires it.
454    if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
455      // Check to see if we've already materialized this
456      // value in a register in this block.
457      if (unsigned Reg = LocalValueMap[V]) {
458        AM.Base.Reg = Reg;
459        AM.GV = 0;
460        return true;
461      }
462      // Issue load from stub if necessary.
463      unsigned Opc = 0;
464      const TargetRegisterClass *RC = NULL;
465      if (TLI.getPointerTy() == MVT::i32) {
466        Opc = X86::MOV32rm;
467        RC  = X86::GR32RegisterClass;
468      } else {
469        Opc = X86::MOV64rm;
470        RC  = X86::GR64RegisterClass;
471      }
472
473      X86AddressMode StubAM;
474      StubAM.Base.Reg = AM.Base.Reg;
475      StubAM.GV = AM.GV;
476      unsigned ResultReg = createResultReg(RC);
477      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), StubAM);
478
479      // Now construct the final address. Note that the Disp, Scale,
480      // and Index values may already be set here.
481      AM.Base.Reg = ResultReg;
482      AM.GV = 0;
483
484      // Prevent loading GV stub multiple times in same MBB.
485      LocalValueMap[V] = AM.Base.Reg;
486    }
487    return true;
488  }
489
490  // If all else fails, try to materialize the value in a register.
491  if (!AM.GV || !getTargetMachine()->symbolicAddressesAreRIPRel()) {
492    if (AM.Base.Reg == 0) {
493      AM.Base.Reg = getRegForValue(V);
494      return AM.Base.Reg != 0;
495    }
496    if (AM.IndexReg == 0) {
497      assert(AM.Scale == 1 && "Scale with no index!");
498      AM.IndexReg = getRegForValue(V);
499      return AM.IndexReg != 0;
500    }
501  }
502
503  return false;
504}
505
506/// X86SelectStore - Select and emit code to implement store instructions.
507bool X86FastISel::X86SelectStore(Instruction* I) {
508  MVT VT;
509  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
510    return false;
511
512  X86AddressMode AM;
513  if (!X86SelectAddress(I->getOperand(1), AM, false))
514    return false;
515
516  return X86FastEmitStore(VT, I->getOperand(0), AM);
517}
518
519/// X86SelectLoad - Select and emit code to implement load instructions.
520///
521bool X86FastISel::X86SelectLoad(Instruction *I)  {
522  MVT VT;
523  if (!isTypeLegal(I->getType(), VT))
524    return false;
525
526  X86AddressMode AM;
527  if (!X86SelectAddress(I->getOperand(0), AM, false))
528    return false;
529
530  unsigned ResultReg = 0;
531  if (X86FastEmitLoad(VT, AM, ResultReg)) {
532    UpdateValueMap(I, ResultReg);
533    return true;
534  }
535  return false;
536}
537
538static unsigned X86ChooseCmpOpcode(MVT VT) {
539  switch (VT.getSimpleVT()) {
540  default:       return 0;
541  case MVT::i8:  return X86::CMP8rr;
542  case MVT::i16: return X86::CMP16rr;
543  case MVT::i32: return X86::CMP32rr;
544  case MVT::i64: return X86::CMP64rr;
545  case MVT::f32: return X86::UCOMISSrr;
546  case MVT::f64: return X86::UCOMISDrr;
547  }
548}
549
550/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
551/// of the comparison, return an opcode that works for the compare (e.g.
552/// CMP32ri) otherwise return 0.
553static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
554  switch (VT.getSimpleVT()) {
555  // Otherwise, we can't fold the immediate into this comparison.
556  default: return 0;
557  case MVT::i8: return X86::CMP8ri;
558  case MVT::i16: return X86::CMP16ri;
559  case MVT::i32: return X86::CMP32ri;
560  case MVT::i64:
561    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
562    // field.
563    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
564      return X86::CMP64ri32;
565    return 0;
566  }
567}
568
569bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
570  unsigned Op0Reg = getRegForValue(Op0);
571  if (Op0Reg == 0) return false;
572
573  // Handle 'null' like i32/i64 0.
574  if (isa<ConstantPointerNull>(Op1))
575    Op1 = Constant::getNullValue(TD.getIntPtrType());
576
577  // We have two options: compare with register or immediate.  If the RHS of
578  // the compare is an immediate that we can fold into this compare, use
579  // CMPri, otherwise use CMPrr.
580  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
581    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
582      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
583                                          .addImm(Op1C->getSExtValue());
584      return true;
585    }
586  }
587
588  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
589  if (CompareOpc == 0) return false;
590
591  unsigned Op1Reg = getRegForValue(Op1);
592  if (Op1Reg == 0) return false;
593  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
594
595  return true;
596}
597
598bool X86FastISel::X86SelectCmp(Instruction *I) {
599  CmpInst *CI = cast<CmpInst>(I);
600
601  MVT VT;
602  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
603    return false;
604
605  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
606  unsigned SetCCOpc;
607  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
608  switch (CI->getPredicate()) {
609  case CmpInst::FCMP_OEQ: {
610    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
611      return false;
612
613    unsigned EReg = createResultReg(&X86::GR8RegClass);
614    unsigned NPReg = createResultReg(&X86::GR8RegClass);
615    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
616    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
617    BuildMI(MBB, DL,
618            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
619    UpdateValueMap(I, ResultReg);
620    return true;
621  }
622  case CmpInst::FCMP_UNE: {
623    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
624      return false;
625
626    unsigned NEReg = createResultReg(&X86::GR8RegClass);
627    unsigned PReg = createResultReg(&X86::GR8RegClass);
628    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
629    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
630    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
631    UpdateValueMap(I, ResultReg);
632    return true;
633  }
634  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
635  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
636  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
637  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
638  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
639  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
640  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
641  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
642  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
643  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
644  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
645  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
646
647  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
648  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
649  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
650  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
651  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
652  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
653  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
654  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
655  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
656  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
657  default:
658    return false;
659  }
660
661  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
662  if (SwapArgs)
663    std::swap(Op0, Op1);
664
665  // Emit a compare of Op0/Op1.
666  if (!X86FastEmitCompare(Op0, Op1, VT))
667    return false;
668
669  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
670  UpdateValueMap(I, ResultReg);
671  return true;
672}
673
674bool X86FastISel::X86SelectZExt(Instruction *I) {
675  // Handle zero-extension from i1 to i8, which is common.
676  if (I->getType() == Type::Int8Ty &&
677      I->getOperand(0)->getType() == Type::Int1Ty) {
678    unsigned ResultReg = getRegForValue(I->getOperand(0));
679    if (ResultReg == 0) return false;
680    // Set the high bits to zero.
681    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
682    if (ResultReg == 0) return false;
683    UpdateValueMap(I, ResultReg);
684    return true;
685  }
686
687  return false;
688}
689
690
691bool X86FastISel::X86SelectBranch(Instruction *I) {
692  // Unconditional branches are selected by tablegen-generated code.
693  // Handle a conditional branch.
694  BranchInst *BI = cast<BranchInst>(I);
695  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
696  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
697
698  // Fold the common case of a conditional branch with a comparison.
699  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
700    if (CI->hasOneUse()) {
701      MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
702
703      // Try to take advantage of fallthrough opportunities.
704      CmpInst::Predicate Predicate = CI->getPredicate();
705      if (MBB->isLayoutSuccessor(TrueMBB)) {
706        std::swap(TrueMBB, FalseMBB);
707        Predicate = CmpInst::getInversePredicate(Predicate);
708      }
709
710      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
711      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
712
713      switch (Predicate) {
714      case CmpInst::FCMP_OEQ:
715        std::swap(TrueMBB, FalseMBB);
716        Predicate = CmpInst::FCMP_UNE;
717        // FALL THROUGH
718      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
719      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
720      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
721      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
722      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
723      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
724      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
725      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
726      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
727      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
728      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
729      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
730      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
731
732      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
733      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
734      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
735      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
736      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
737      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
738      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
739      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
740      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
741      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
742      default:
743        return false;
744      }
745
746      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
747      if (SwapArgs)
748        std::swap(Op0, Op1);
749
750      // Emit a compare of the LHS and RHS, setting the flags.
751      if (!X86FastEmitCompare(Op0, Op1, VT))
752        return false;
753
754      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
755
756      if (Predicate == CmpInst::FCMP_UNE) {
757        // X86 requires a second branch to handle UNE (and OEQ,
758        // which is mapped to UNE above).
759        BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
760      }
761
762      FastEmitBranch(FalseMBB);
763      MBB->addSuccessor(TrueMBB);
764      return true;
765    }
766  } else if (ExtractValueInst *EI =
767             dyn_cast<ExtractValueInst>(BI->getCondition())) {
768    // Check to see if the branch instruction is from an "arithmetic with
769    // overflow" intrinsic. The main way these intrinsics are used is:
770    //
771    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
772    //   %sum = extractvalue { i32, i1 } %t, 0
773    //   %obit = extractvalue { i32, i1 } %t, 1
774    //   br i1 %obit, label %overflow, label %normal
775    //
776    // The %sum and %obit are converted in an ADD and a SETO/SETB before
777    // reaching the branch. Therefore, we search backwards through the MBB
778    // looking for the SETO/SETB instruction. If an instruction modifies the
779    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
780    // convert the branch into a JO/JB instruction.
781    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
782      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
783          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
784        const MachineInstr *SetMI = 0;
785        unsigned Reg = lookUpRegForValue(EI);
786
787        for (MachineBasicBlock::const_reverse_iterator
788               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
789          const MachineInstr &MI = *RI;
790
791          if (MI.modifiesRegister(Reg)) {
792            unsigned Src, Dst, SrcSR, DstSR;
793
794            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
795              Reg = Src;
796              continue;
797            }
798
799            SetMI = &MI;
800            break;
801          }
802
803          const TargetInstrDesc &TID = MI.getDesc();
804          if (TID.hasUnmodeledSideEffects() ||
805              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
806            break;
807        }
808
809        if (SetMI) {
810          unsigned OpCode = SetMI->getOpcode();
811
812          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
813            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
814              .addMBB(TrueMBB);
815            FastEmitBranch(FalseMBB);
816            MBB->addSuccessor(TrueMBB);
817            return true;
818          }
819        }
820      }
821    }
822  }
823
824  // Otherwise do a clumsy setcc and re-test it.
825  unsigned OpReg = getRegForValue(BI->getCondition());
826  if (OpReg == 0) return false;
827
828  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
829  BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
830  FastEmitBranch(FalseMBB);
831  MBB->addSuccessor(TrueMBB);
832  return true;
833}
834
835bool X86FastISel::X86SelectShift(Instruction *I) {
836  unsigned CReg = 0, OpReg = 0, OpImm = 0;
837  const TargetRegisterClass *RC = NULL;
838  if (I->getType() == Type::Int8Ty) {
839    CReg = X86::CL;
840    RC = &X86::GR8RegClass;
841    switch (I->getOpcode()) {
842    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
843    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
844    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
845    default: return false;
846    }
847  } else if (I->getType() == Type::Int16Ty) {
848    CReg = X86::CX;
849    RC = &X86::GR16RegClass;
850    switch (I->getOpcode()) {
851    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
852    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
853    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
854    default: return false;
855    }
856  } else if (I->getType() == Type::Int32Ty) {
857    CReg = X86::ECX;
858    RC = &X86::GR32RegClass;
859    switch (I->getOpcode()) {
860    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
861    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
862    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
863    default: return false;
864    }
865  } else if (I->getType() == Type::Int64Ty) {
866    CReg = X86::RCX;
867    RC = &X86::GR64RegClass;
868    switch (I->getOpcode()) {
869    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
870    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
871    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
872    default: return false;
873    }
874  } else {
875    return false;
876  }
877
878  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
879  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
880    return false;
881
882  unsigned Op0Reg = getRegForValue(I->getOperand(0));
883  if (Op0Reg == 0) return false;
884
885  // Fold immediate in shl(x,3).
886  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
887    unsigned ResultReg = createResultReg(RC);
888    BuildMI(MBB, DL, TII.get(OpImm),
889            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
890    UpdateValueMap(I, ResultReg);
891    return true;
892  }
893
894  unsigned Op1Reg = getRegForValue(I->getOperand(1));
895  if (Op1Reg == 0) return false;
896  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
897
898  // The shift instruction uses X86::CL. If we defined a super-register
899  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
900  // we're doing here.
901  if (CReg != X86::CL)
902    BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
903      .addReg(CReg).addImm(X86::SUBREG_8BIT);
904
905  unsigned ResultReg = createResultReg(RC);
906  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
907  UpdateValueMap(I, ResultReg);
908  return true;
909}
910
911bool X86FastISel::X86SelectSelect(Instruction *I) {
912  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
913  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
914    return false;
915
916  unsigned Opc = 0;
917  const TargetRegisterClass *RC = NULL;
918  if (VT.getSimpleVT() == MVT::i16) {
919    Opc = X86::CMOVE16rr;
920    RC = &X86::GR16RegClass;
921  } else if (VT.getSimpleVT() == MVT::i32) {
922    Opc = X86::CMOVE32rr;
923    RC = &X86::GR32RegClass;
924  } else if (VT.getSimpleVT() == MVT::i64) {
925    Opc = X86::CMOVE64rr;
926    RC = &X86::GR64RegClass;
927  } else {
928    return false;
929  }
930
931  unsigned Op0Reg = getRegForValue(I->getOperand(0));
932  if (Op0Reg == 0) return false;
933  unsigned Op1Reg = getRegForValue(I->getOperand(1));
934  if (Op1Reg == 0) return false;
935  unsigned Op2Reg = getRegForValue(I->getOperand(2));
936  if (Op2Reg == 0) return false;
937
938  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
939  unsigned ResultReg = createResultReg(RC);
940  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
941  UpdateValueMap(I, ResultReg);
942  return true;
943}
944
945bool X86FastISel::X86SelectFPExt(Instruction *I) {
946  // fpext from float to double.
947  if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
948    Value *V = I->getOperand(0);
949    if (V->getType() == Type::FloatTy) {
950      unsigned OpReg = getRegForValue(V);
951      if (OpReg == 0) return false;
952      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
953      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
954      UpdateValueMap(I, ResultReg);
955      return true;
956    }
957  }
958
959  return false;
960}
961
962bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
963  if (Subtarget->hasSSE2()) {
964    if (I->getType() == Type::FloatTy) {
965      Value *V = I->getOperand(0);
966      if (V->getType() == Type::DoubleTy) {
967        unsigned OpReg = getRegForValue(V);
968        if (OpReg == 0) return false;
969        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
970        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
971        UpdateValueMap(I, ResultReg);
972        return true;
973      }
974    }
975  }
976
977  return false;
978}
979
980bool X86FastISel::X86SelectTrunc(Instruction *I) {
981  if (Subtarget->is64Bit())
982    // All other cases should be handled by the tblgen generated code.
983    return false;
984  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
985  MVT DstVT = TLI.getValueType(I->getType());
986
987  // This code only handles truncation to byte right now.
988  if (DstVT != MVT::i8 && DstVT != MVT::i1)
989    // All other cases should be handled by the tblgen generated code.
990    return false;
991  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
992    // All other cases should be handled by the tblgen generated code.
993    return false;
994
995  unsigned InputReg = getRegForValue(I->getOperand(0));
996  if (!InputReg)
997    // Unhandled operand.  Halt "fast" selection and bail.
998    return false;
999
1000  // First issue a copy to GR16_ABCD or GR32_ABCD.
1001  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1002  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1003    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1004  unsigned CopyReg = createResultReg(CopyRC);
1005  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1006
1007  // Then issue an extract_subreg.
1008  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1009                                                  CopyReg, X86::SUBREG_8BIT);
1010  if (!ResultReg)
1011    return false;
1012
1013  UpdateValueMap(I, ResultReg);
1014  return true;
1015}
1016
1017bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1018  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1019  Value *Agg = EI->getAggregateOperand();
1020
1021  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1022    switch (CI->getIntrinsicID()) {
1023    default: break;
1024    case Intrinsic::sadd_with_overflow:
1025    case Intrinsic::uadd_with_overflow:
1026      // Cheat a little. We know that the registers for "add" and "seto" are
1027      // allocated sequentially. However, we only keep track of the register
1028      // for "add" in the value map. Use extractvalue's index to get the
1029      // correct register for "seto".
1030      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1031      return true;
1032    }
1033  }
1034
1035  return false;
1036}
1037
1038bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1039  // FIXME: Handle more intrinsics.
1040  switch (I.getIntrinsicID()) {
1041  default: return false;
1042  case Intrinsic::sadd_with_overflow:
1043  case Intrinsic::uadd_with_overflow: {
1044    // Replace "add with overflow" intrinsics with an "add" instruction followed
1045    // by a seto/setc instruction. Later on, when the "extractvalue"
1046    // instructions are encountered, we use the fact that two registers were
1047    // created sequentially to get the correct registers for the "sum" and the
1048    // "overflow bit".
1049    const Function *Callee = I.getCalledFunction();
1050    const Type *RetTy =
1051      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1052
1053    MVT VT;
1054    if (!isTypeLegal(RetTy, VT))
1055      return false;
1056
1057    Value *Op1 = I.getOperand(1);
1058    Value *Op2 = I.getOperand(2);
1059    unsigned Reg1 = getRegForValue(Op1);
1060    unsigned Reg2 = getRegForValue(Op2);
1061
1062    if (Reg1 == 0 || Reg2 == 0)
1063      // FIXME: Handle values *not* in registers.
1064      return false;
1065
1066    unsigned OpC = 0;
1067    if (VT == MVT::i32)
1068      OpC = X86::ADD32rr;
1069    else if (VT == MVT::i64)
1070      OpC = X86::ADD64rr;
1071    else
1072      return false;
1073
1074    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1075    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1076    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1077
1078    // If the add with overflow is an intra-block value then we just want to
1079    // create temporaries for it like normal.  If it is a cross-block value then
1080    // UpdateValueMap will return the cross-block register used.  Since we
1081    // *really* want the value to be live in the register pair known by
1082    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1083    // the cross block case.  In the non-cross-block case, we should just make
1084    // another register for the value.
1085    if (DestReg1 != ResultReg)
1086      ResultReg = DestReg1+1;
1087    else
1088      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1089
1090    unsigned Opc = X86::SETBr;
1091    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1092      Opc = X86::SETOr;
1093    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1094    return true;
1095  }
1096  }
1097}
1098
1099bool X86FastISel::X86SelectCall(Instruction *I) {
1100  CallInst *CI = cast<CallInst>(I);
1101  Value *Callee = I->getOperand(0);
1102
1103  // Can't handle inline asm yet.
1104  if (isa<InlineAsm>(Callee))
1105    return false;
1106
1107  // Handle intrinsic calls.
1108  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1109    return X86VisitIntrinsicCall(*II);
1110
1111  // Handle only C and fastcc calling conventions for now.
1112  CallSite CS(CI);
1113  unsigned CC = CS.getCallingConv();
1114  if (CC != CallingConv::C &&
1115      CC != CallingConv::Fast &&
1116      CC != CallingConv::X86_FastCall)
1117    return false;
1118
1119  // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1120  // handle this for now.
1121  if (CC == CallingConv::Fast && PerformTailCallOpt)
1122    return false;
1123
1124  // Let SDISel handle vararg functions.
1125  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1126  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1127  if (FTy->isVarArg())
1128    return false;
1129
1130  // Handle *simple* calls for now.
1131  const Type *RetTy = CS.getType();
1132  MVT RetVT;
1133  if (RetTy == Type::VoidTy)
1134    RetVT = MVT::isVoid;
1135  else if (!isTypeLegal(RetTy, RetVT, true))
1136    return false;
1137
1138  // Materialize callee address in a register. FIXME: GV address can be
1139  // handled with a CALLpcrel32 instead.
1140  X86AddressMode CalleeAM;
1141  if (!X86SelectAddress(Callee, CalleeAM, true))
1142    return false;
1143  unsigned CalleeOp = 0;
1144  GlobalValue *GV = 0;
1145  if (CalleeAM.Base.Reg != 0) {
1146    assert(CalleeAM.GV == 0);
1147    CalleeOp = CalleeAM.Base.Reg;
1148  } else if (CalleeAM.GV != 0) {
1149    assert(CalleeAM.GV != 0);
1150    GV = CalleeAM.GV;
1151  } else
1152    return false;
1153
1154  // Allow calls which produce i1 results.
1155  bool AndToI1 = false;
1156  if (RetVT == MVT::i1) {
1157    RetVT = MVT::i8;
1158    AndToI1 = true;
1159  }
1160
1161  // Deal with call operands first.
1162  SmallVector<Value*, 8> ArgVals;
1163  SmallVector<unsigned, 8> Args;
1164  SmallVector<MVT, 8> ArgVTs;
1165  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1166  Args.reserve(CS.arg_size());
1167  ArgVals.reserve(CS.arg_size());
1168  ArgVTs.reserve(CS.arg_size());
1169  ArgFlags.reserve(CS.arg_size());
1170  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1171       i != e; ++i) {
1172    unsigned Arg = getRegForValue(*i);
1173    if (Arg == 0)
1174      return false;
1175    ISD::ArgFlagsTy Flags;
1176    unsigned AttrInd = i - CS.arg_begin() + 1;
1177    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1178      Flags.setSExt();
1179    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1180      Flags.setZExt();
1181
1182    // FIXME: Only handle *easy* calls for now.
1183    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1184        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1185        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1186        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1187      return false;
1188
1189    const Type *ArgTy = (*i)->getType();
1190    MVT ArgVT;
1191    if (!isTypeLegal(ArgTy, ArgVT))
1192      return false;
1193    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1194    Flags.setOrigAlign(OriginalAlignment);
1195
1196    Args.push_back(Arg);
1197    ArgVals.push_back(*i);
1198    ArgVTs.push_back(ArgVT);
1199    ArgFlags.push_back(Flags);
1200  }
1201
1202  // Analyze operands of the call, assigning locations to each operand.
1203  SmallVector<CCValAssign, 16> ArgLocs;
1204  CCState CCInfo(CC, false, TM, ArgLocs);
1205  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1206
1207  // Get a count of how many bytes are to be pushed on the stack.
1208  unsigned NumBytes = CCInfo.getNextStackOffset();
1209
1210  // Issue CALLSEQ_START
1211  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1212  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1213
1214  // Process argument: walk the register/memloc assignments, inserting
1215  // copies / loads.
1216  SmallVector<unsigned, 4> RegArgs;
1217  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1218    CCValAssign &VA = ArgLocs[i];
1219    unsigned Arg = Args[VA.getValNo()];
1220    MVT ArgVT = ArgVTs[VA.getValNo()];
1221
1222    // Promote the value if needed.
1223    switch (VA.getLocInfo()) {
1224    default: assert(0 && "Unknown loc info!");
1225    case CCValAssign::Full: break;
1226    case CCValAssign::SExt: {
1227      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1228                                       Arg, ArgVT, Arg);
1229      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1230      Emitted = true;
1231      ArgVT = VA.getLocVT();
1232      break;
1233    }
1234    case CCValAssign::ZExt: {
1235      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1236                                       Arg, ArgVT, Arg);
1237      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1238      Emitted = true;
1239      ArgVT = VA.getLocVT();
1240      break;
1241    }
1242    case CCValAssign::AExt: {
1243      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1244                                       Arg, ArgVT, Arg);
1245      if (!Emitted)
1246        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1247                                    Arg, ArgVT, Arg);
1248      if (!Emitted)
1249        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1250                                    Arg, ArgVT, Arg);
1251
1252      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1253      ArgVT = VA.getLocVT();
1254      break;
1255    }
1256    }
1257
1258    if (VA.isRegLoc()) {
1259      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1260      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1261                                      Arg, RC, RC);
1262      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1263      Emitted = true;
1264      RegArgs.push_back(VA.getLocReg());
1265    } else {
1266      unsigned LocMemOffset = VA.getLocMemOffset();
1267      X86AddressMode AM;
1268      AM.Base.Reg = StackPtr;
1269      AM.Disp = LocMemOffset;
1270      Value *ArgVal = ArgVals[VA.getValNo()];
1271
1272      // If this is a really simple value, emit this with the Value* version of
1273      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1274      // can cause us to reevaluate the argument.
1275      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1276        X86FastEmitStore(ArgVT, ArgVal, AM);
1277      else
1278        X86FastEmitStore(ArgVT, Arg, AM);
1279    }
1280  }
1281
1282  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1283  // GOT pointer.
1284  if (!Subtarget->is64Bit() &&
1285      TM.getRelocationModel() == Reloc::PIC_ &&
1286      Subtarget->isPICStyleGOT()) {
1287    TargetRegisterClass *RC = X86::GR32RegisterClass;
1288    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1289    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1290    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1291    Emitted = true;
1292  }
1293
1294  // Issue the call.
1295  unsigned CallOpc = CalleeOp
1296    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
1297    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
1298  MachineInstrBuilder MIB = CalleeOp
1299    ? BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp)
1300    : BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV);
1301
1302  // Add an implicit use GOT pointer in EBX.
1303  if (!Subtarget->is64Bit() &&
1304      TM.getRelocationModel() == Reloc::PIC_ &&
1305      Subtarget->isPICStyleGOT())
1306    MIB.addReg(X86::EBX);
1307
1308  // Add implicit physical register uses to the call.
1309  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1310    MIB.addReg(RegArgs[i]);
1311
1312  // Issue CALLSEQ_END
1313  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1314  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1315
1316  // Now handle call return value (if any).
1317  if (RetVT.getSimpleVT() != MVT::isVoid) {
1318    SmallVector<CCValAssign, 16> RVLocs;
1319    CCState CCInfo(CC, false, TM, RVLocs);
1320    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1321
1322    // Copy all of the result registers out of their specified physreg.
1323    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1324    MVT CopyVT = RVLocs[0].getValVT();
1325    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1326    TargetRegisterClass *SrcRC = DstRC;
1327
1328    // If this is a call to a function that returns an fp value on the x87 fp
1329    // stack, but where we prefer to use the value in xmm registers, copy it
1330    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1331    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1332         RVLocs[0].getLocReg() == X86::ST1) &&
1333        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1334      CopyVT = MVT::f80;
1335      SrcRC = X86::RSTRegisterClass;
1336      DstRC = X86::RFP80RegisterClass;
1337    }
1338
1339    unsigned ResultReg = createResultReg(DstRC);
1340    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1341                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1342    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1343    Emitted = true;
1344    if (CopyVT != RVLocs[0].getValVT()) {
1345      // Round the F80 the right size, which also moves to the appropriate xmm
1346      // register. This is accomplished by storing the F80 value in memory and
1347      // then loading it back. Ewww...
1348      MVT ResVT = RVLocs[0].getValVT();
1349      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1350      unsigned MemSize = ResVT.getSizeInBits()/8;
1351      int FI = MFI.CreateStackObject(MemSize, MemSize);
1352      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1353      DstRC = ResVT == MVT::f32
1354        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1355      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1356      ResultReg = createResultReg(DstRC);
1357      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1358    }
1359
1360    if (AndToI1) {
1361      // Mask out all but lowest bit for some call which produces an i1.
1362      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1363      BuildMI(MBB, DL,
1364              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1365      ResultReg = AndResult;
1366    }
1367
1368    UpdateValueMap(I, ResultReg);
1369  }
1370
1371  return true;
1372}
1373
1374
1375bool
1376X86FastISel::TargetSelectInstruction(Instruction *I)  {
1377  switch (I->getOpcode()) {
1378  default: break;
1379  case Instruction::Load:
1380    return X86SelectLoad(I);
1381  case Instruction::Store:
1382    return X86SelectStore(I);
1383  case Instruction::ICmp:
1384  case Instruction::FCmp:
1385    return X86SelectCmp(I);
1386  case Instruction::ZExt:
1387    return X86SelectZExt(I);
1388  case Instruction::Br:
1389    return X86SelectBranch(I);
1390  case Instruction::Call:
1391    return X86SelectCall(I);
1392  case Instruction::LShr:
1393  case Instruction::AShr:
1394  case Instruction::Shl:
1395    return X86SelectShift(I);
1396  case Instruction::Select:
1397    return X86SelectSelect(I);
1398  case Instruction::Trunc:
1399    return X86SelectTrunc(I);
1400  case Instruction::FPExt:
1401    return X86SelectFPExt(I);
1402  case Instruction::FPTrunc:
1403    return X86SelectFPTrunc(I);
1404  case Instruction::ExtractValue:
1405    return X86SelectExtractValue(I);
1406  case Instruction::IntToPtr: // Deliberate fall-through.
1407  case Instruction::PtrToInt: {
1408    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1409    MVT DstVT = TLI.getValueType(I->getType());
1410    if (DstVT.bitsGT(SrcVT))
1411      return X86SelectZExt(I);
1412    if (DstVT.bitsLT(SrcVT))
1413      return X86SelectTrunc(I);
1414    unsigned Reg = getRegForValue(I->getOperand(0));
1415    if (Reg == 0) return false;
1416    UpdateValueMap(I, Reg);
1417    return true;
1418  }
1419  }
1420
1421  return false;
1422}
1423
1424unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1425  MVT VT;
1426  if (!isTypeLegal(C->getType(), VT))
1427    return false;
1428
1429  // Get opcode and regclass of the output for the given load instruction.
1430  unsigned Opc = 0;
1431  const TargetRegisterClass *RC = NULL;
1432  switch (VT.getSimpleVT()) {
1433  default: return false;
1434  case MVT::i8:
1435    Opc = X86::MOV8rm;
1436    RC  = X86::GR8RegisterClass;
1437    break;
1438  case MVT::i16:
1439    Opc = X86::MOV16rm;
1440    RC  = X86::GR16RegisterClass;
1441    break;
1442  case MVT::i32:
1443    Opc = X86::MOV32rm;
1444    RC  = X86::GR32RegisterClass;
1445    break;
1446  case MVT::i64:
1447    // Must be in x86-64 mode.
1448    Opc = X86::MOV64rm;
1449    RC  = X86::GR64RegisterClass;
1450    break;
1451  case MVT::f32:
1452    if (Subtarget->hasSSE1()) {
1453      Opc = X86::MOVSSrm;
1454      RC  = X86::FR32RegisterClass;
1455    } else {
1456      Opc = X86::LD_Fp32m;
1457      RC  = X86::RFP32RegisterClass;
1458    }
1459    break;
1460  case MVT::f64:
1461    if (Subtarget->hasSSE2()) {
1462      Opc = X86::MOVSDrm;
1463      RC  = X86::FR64RegisterClass;
1464    } else {
1465      Opc = X86::LD_Fp64m;
1466      RC  = X86::RFP64RegisterClass;
1467    }
1468    break;
1469  case MVT::f80:
1470    // No f80 support yet.
1471    return false;
1472  }
1473
1474  // Materialize addresses with LEA instructions.
1475  if (isa<GlobalValue>(C)) {
1476    X86AddressMode AM;
1477    if (X86SelectAddress(C, AM, false)) {
1478      if (TLI.getPointerTy() == MVT::i32)
1479        Opc = X86::LEA32r;
1480      else
1481        Opc = X86::LEA64r;
1482      unsigned ResultReg = createResultReg(RC);
1483      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1484      return ResultReg;
1485    }
1486    return 0;
1487  }
1488
1489  // MachineConstantPool wants an explicit alignment.
1490  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1491  if (Align == 0) {
1492    // Alignment of vector types.  FIXME!
1493    Align = TD.getTypeAllocSize(C->getType());
1494  }
1495
1496  // x86-32 PIC requires a PIC base register for constant pools.
1497  unsigned PICBase = 0;
1498  if (TM.getRelocationModel() == Reloc::PIC_ &&
1499      !Subtarget->is64Bit())
1500    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1501
1502  // Create the load from the constant pool.
1503  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1504  unsigned ResultReg = createResultReg(RC);
1505  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), MCPOffset,
1506                           PICBase);
1507
1508  return ResultReg;
1509}
1510
1511unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1512  // Fail on dynamic allocas. At this point, getRegForValue has already
1513  // checked its CSE maps, so if we're here trying to handle a dynamic
1514  // alloca, we're not going to succeed. X86SelectAddress has a
1515  // check for dynamic allocas, because it's called directly from
1516  // various places, but TargetMaterializeAlloca also needs a check
1517  // in order to avoid recursion between getRegForValue,
1518  // X86SelectAddrss, and TargetMaterializeAlloca.
1519  if (!StaticAllocaMap.count(C))
1520    return 0;
1521
1522  X86AddressMode AM;
1523  if (!X86SelectAddress(C, AM, false))
1524    return 0;
1525  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1526  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1527  unsigned ResultReg = createResultReg(RC);
1528  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1529  return ResultReg;
1530}
1531
1532namespace llvm {
1533  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1534                        MachineModuleInfo *mmi,
1535                        DwarfWriter *dw,
1536                        DenseMap<const Value *, unsigned> &vm,
1537                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1538                        DenseMap<const AllocaInst *, int> &am
1539#ifndef NDEBUG
1540                        , SmallSet<Instruction*, 8> &cil
1541#endif
1542                        ) {
1543    return new X86FastISel(mf, mmi, dw, vm, bm, am
1544#ifndef NDEBUG
1545                           , cil
1546#endif
1547                           );
1548  }
1549}
1550