X86FastISel.cpp revision 7962e856d1460cc61ce246e31ca77e99f85228a3
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Instructions.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31
32using namespace llvm;
33
34class X86FastISel : public FastISel {
35  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
36  /// make the right decision when generating code for different targets.
37  const X86Subtarget *Subtarget;
38
39  /// StackPtr - Register used as the stack pointer.
40  ///
41  unsigned StackPtr;
42
43  /// GlobalBaseReg - keeps track of the virtual register mapped onto global
44  /// base register.
45  unsigned GlobalBaseReg;
46
47  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
48  /// floating point ops.
49  /// When SSE is available, use it for f32 operations.
50  /// When SSE2 is available, use it for f64 operations.
51  bool X86ScalarSSEf64;
52  bool X86ScalarSSEf32;
53
54public:
55  explicit X86FastISel(MachineFunction &mf,
56                       MachineModuleInfo *mmi,
57                       DenseMap<const Value *, unsigned> &vm,
58                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
59                       DenseMap<const AllocaInst *, int> &am)
60    : FastISel(mf, mmi, vm, bm, am) {
61    Subtarget = &TM.getSubtarget<X86Subtarget>();
62    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
63    GlobalBaseReg = 0;
64    X86ScalarSSEf64 = Subtarget->hasSSE2();
65    X86ScalarSSEf32 = Subtarget->hasSSE1();
66  }
67
68  virtual bool TargetSelectInstruction(Instruction *I);
69
70#include "X86GenFastISel.inc"
71
72private:
73  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
74
75  bool X86FastEmitStore(MVT VT, unsigned Val,
76                        const X86AddressMode &AM);
77
78  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
79                         unsigned &ResultReg);
80
81  bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
82
83  bool X86SelectLoad(Instruction *I);
84
85  bool X86SelectStore(Instruction *I);
86
87  bool X86SelectCmp(Instruction *I);
88
89  bool X86SelectZExt(Instruction *I);
90
91  bool X86SelectBranch(Instruction *I);
92
93  bool X86SelectShift(Instruction *I);
94
95  bool X86SelectSelect(Instruction *I);
96
97  bool X86SelectTrunc(Instruction *I);
98
99  bool X86SelectFPExt(Instruction *I);
100  bool X86SelectFPTrunc(Instruction *I);
101
102  bool X86SelectCall(Instruction *I);
103
104  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
105
106  unsigned getGlobalBaseReg();
107
108  const X86InstrInfo *getInstrInfo() const {
109    return getTargetMachine()->getInstrInfo();
110  }
111  const X86TargetMachine *getTargetMachine() const {
112    return static_cast<const X86TargetMachine *>(&TM);
113  }
114
115  unsigned TargetMaterializeConstant(Constant *C);
116
117  unsigned TargetMaterializeAlloca(AllocaInst *C);
118
119  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
120  /// computed in an SSE register, not on the X87 floating point stack.
121  bool isScalarFPTypeInSSEReg(MVT VT) const {
122    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
123      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
124  }
125
126};
127
128static bool isTypeLegal(const Type *Ty, const TargetLowering &TLI, MVT &VT,
129                        bool AllowI1 = false) {
130  VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
131  if (VT == MVT::Other || !VT.isSimple())
132    // Unhandled type. Halt "fast" selection and bail.
133    return false;
134  if (VT == MVT::iPTR)
135    // Use pointer type.
136    VT = TLI.getPointerTy();
137  // We only handle legal types. For example, on x86-32 the instruction
138  // selector contains all of the 64-bit instructions from x86-64,
139  // under the assumption that i64 won't be used if the target doesn't
140  // support it.
141  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
142}
143
144/// getGlobalBaseReg - Return the the global base register. Output
145/// instructions required to initialize the global base register, if necessary.
146///
147unsigned X86FastISel::getGlobalBaseReg() {
148  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
149  if (!GlobalBaseReg)
150    GlobalBaseReg = getInstrInfo()->initializeGlobalBaseReg(MBB->getParent());
151  return GlobalBaseReg;
152}
153
154#include "X86GenCallingConv.inc"
155
156/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
157/// convention.
158CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
159  if (Subtarget->is64Bit()) {
160    if (Subtarget->isTargetWin64())
161      return CC_X86_Win64_C;
162    else if (CC == CallingConv::Fast && isTaillCall)
163      return CC_X86_64_TailCall;
164    else
165      return CC_X86_64_C;
166  }
167
168  if (CC == CallingConv::X86_FastCall)
169    return CC_X86_32_FastCall;
170  else if (CC == CallingConv::Fast)
171    return CC_X86_32_FastCC;
172  else
173    return CC_X86_32_C;
174}
175
176/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
177/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
178/// Return true and the result register by reference if it is possible.
179bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
180                                  unsigned &ResultReg) {
181  // Get opcode and regclass of the output for the given load instruction.
182  unsigned Opc = 0;
183  const TargetRegisterClass *RC = NULL;
184  switch (VT.getSimpleVT()) {
185  default: return false;
186  case MVT::i8:
187    Opc = X86::MOV8rm;
188    RC  = X86::GR8RegisterClass;
189    break;
190  case MVT::i16:
191    Opc = X86::MOV16rm;
192    RC  = X86::GR16RegisterClass;
193    break;
194  case MVT::i32:
195    Opc = X86::MOV32rm;
196    RC  = X86::GR32RegisterClass;
197    break;
198  case MVT::i64:
199    // Must be in x86-64 mode.
200    Opc = X86::MOV64rm;
201    RC  = X86::GR64RegisterClass;
202    break;
203  case MVT::f32:
204    if (Subtarget->hasSSE1()) {
205      Opc = X86::MOVSSrm;
206      RC  = X86::FR32RegisterClass;
207    } else {
208      Opc = X86::LD_Fp32m;
209      RC  = X86::RFP32RegisterClass;
210    }
211    break;
212  case MVT::f64:
213    if (Subtarget->hasSSE2()) {
214      Opc = X86::MOVSDrm;
215      RC  = X86::FR64RegisterClass;
216    } else {
217      Opc = X86::LD_Fp64m;
218      RC  = X86::RFP64RegisterClass;
219    }
220    break;
221  case MVT::f80:
222    // No f80 support yet.
223    return false;
224  }
225
226  ResultReg = createResultReg(RC);
227  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
228  return true;
229}
230
231/// X86FastEmitStore - Emit a machine instruction to store a value Val of
232/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
233/// and a displacement offset, or a GlobalAddress,
234/// i.e. V. Return true if it is possible.
235bool
236X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
237                              const X86AddressMode &AM) {
238  // Get opcode and regclass of the output for the given store instruction.
239  unsigned Opc = 0;
240  const TargetRegisterClass *RC = NULL;
241  switch (VT.getSimpleVT()) {
242  default: return false;
243  case MVT::i8:
244    Opc = X86::MOV8mr;
245    RC  = X86::GR8RegisterClass;
246    break;
247  case MVT::i16:
248    Opc = X86::MOV16mr;
249    RC  = X86::GR16RegisterClass;
250    break;
251  case MVT::i32:
252    Opc = X86::MOV32mr;
253    RC  = X86::GR32RegisterClass;
254    break;
255  case MVT::i64:
256    // Must be in x86-64 mode.
257    Opc = X86::MOV64mr;
258    RC  = X86::GR64RegisterClass;
259    break;
260  case MVT::f32:
261    if (Subtarget->hasSSE1()) {
262      Opc = X86::MOVSSmr;
263      RC  = X86::FR32RegisterClass;
264    } else {
265      Opc = X86::ST_Fp32m;
266      RC  = X86::RFP32RegisterClass;
267    }
268    break;
269  case MVT::f64:
270    if (Subtarget->hasSSE2()) {
271      Opc = X86::MOVSDmr;
272      RC  = X86::FR64RegisterClass;
273    } else {
274      Opc = X86::ST_Fp64m;
275      RC  = X86::RFP64RegisterClass;
276    }
277    break;
278  case MVT::f80:
279    // No f80 support yet.
280    return false;
281  }
282
283  addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val);
284  return true;
285}
286
287/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
288/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
289/// ISD::SIGN_EXTEND).
290bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
291                                    unsigned Src, MVT SrcVT,
292                                    unsigned &ResultReg) {
293  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
294
295  if (RR != 0) {
296    ResultReg = RR;
297    return true;
298  } else
299    return false;
300}
301
302/// X86SelectAddress - Attempt to fill in an address from the given value.
303///
304bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
305  User *U;
306  unsigned Opcode = Instruction::UserOp1;
307  if (Instruction *I = dyn_cast<Instruction>(V)) {
308    Opcode = I->getOpcode();
309    U = I;
310  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
311    Opcode = C->getOpcode();
312    U = C;
313  }
314
315  switch (Opcode) {
316  default: break;
317  case Instruction::BitCast:
318    // Look past bitcasts.
319    return X86SelectAddress(U->getOperand(0), AM, isCall);
320
321  case Instruction::IntToPtr:
322    // Look past no-op inttoptrs.
323    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
324      return X86SelectAddress(U->getOperand(0), AM, isCall);
325
326  case Instruction::PtrToInt:
327    // Look past no-op ptrtoints.
328    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
329      return X86SelectAddress(U->getOperand(0), AM, isCall);
330
331  case Instruction::Alloca: {
332    if (isCall) break;
333    // Do static allocas.
334    const AllocaInst *A = cast<AllocaInst>(V);
335    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
336    if (SI != StaticAllocaMap.end()) {
337      AM.BaseType = X86AddressMode::FrameIndexBase;
338      AM.Base.FrameIndex = SI->second;
339      return true;
340    }
341    break;
342  }
343
344  case Instruction::Add: {
345    if (isCall) break;
346    // Adds of constants are common and easy enough.
347    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
348      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
349      // They have to fit in the 32-bit signed displacement field though.
350      if (isInt32(Disp)) {
351        AM.Disp = (uint32_t)Disp;
352        return X86SelectAddress(U->getOperand(0), AM, isCall);
353      }
354    }
355    break;
356  }
357
358  case Instruction::GetElementPtr: {
359    if (isCall) break;
360    // Pattern-match simple GEPs.
361    uint64_t Disp = (int32_t)AM.Disp;
362    unsigned IndexReg = AM.IndexReg;
363    unsigned Scale = AM.Scale;
364    gep_type_iterator GTI = gep_type_begin(U);
365    // Look at all but the last index. Constants can be folded,
366    // and one dynamic index can be handled, if the scale is supported.
367    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
368         i != e; ++i, ++GTI) {
369      Value *Op = *i;
370      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
371        const StructLayout *SL = TD.getStructLayout(STy);
372        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
373        Disp += SL->getElementOffset(Idx);
374      } else {
375        uint64_t S = TD.getABITypeSize(GTI.getIndexedType());
376        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
377          // Constant-offset addressing.
378          Disp += CI->getSExtValue() * S;
379        } else if (IndexReg == 0 &&
380                   (!AM.GV ||
381                    !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
382                   (S == 1 || S == 2 || S == 4 || S == 8)) {
383          // Scaled-index addressing.
384          Scale = S;
385          IndexReg = getRegForValue(Op);
386          if (IndexReg == 0)
387            return false;
388        } else
389          // Unsupported.
390          goto unsupported_gep;
391      }
392    }
393    // Check for displacement overflow.
394    if (!isInt32(Disp))
395      break;
396    // Ok, the GEP indices were covered by constant-offset and scaled-index
397    // addressing. Update the address state and move on to examining the base.
398    AM.IndexReg = IndexReg;
399    AM.Scale = Scale;
400    AM.Disp = (uint32_t)Disp;
401    return X86SelectAddress(U->getOperand(0), AM, isCall);
402  unsupported_gep:
403    // Ok, the GEP indices weren't all covered.
404    break;
405  }
406  }
407
408  // Handle constant address.
409  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
410    // Can't handle alternate code models yet.
411    if (TM.getCodeModel() != CodeModel::Default &&
412        TM.getCodeModel() != CodeModel::Small)
413      return false;
414
415    // RIP-relative addresses can't have additional register operands.
416    if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
417        (AM.Base.Reg != 0 || AM.IndexReg != 0))
418      return false;
419
420    // Set up the basic address.
421    AM.GV = GV;
422    if (!isCall &&
423        TM.getRelocationModel() == Reloc::PIC_ &&
424        !Subtarget->is64Bit())
425      AM.Base.Reg = getGlobalBaseReg();
426
427    // Emit an extra load if the ABI requires it.
428    if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
429      // Check to see if we've already materialized this
430      // value in a register in this block.
431      if (unsigned Reg = LocalValueMap[V]) {
432        AM.Base.Reg = Reg;
433        AM.GV = 0;
434        return true;
435      }
436      // Issue load from stub if necessary.
437      unsigned Opc = 0;
438      const TargetRegisterClass *RC = NULL;
439      if (TLI.getPointerTy() == MVT::i32) {
440        Opc = X86::MOV32rm;
441        RC  = X86::GR32RegisterClass;
442      } else {
443        Opc = X86::MOV64rm;
444        RC  = X86::GR64RegisterClass;
445      }
446
447      X86AddressMode StubAM;
448      StubAM.Base.Reg = AM.Base.Reg;
449      StubAM.GV = AM.GV;
450      unsigned ResultReg = createResultReg(RC);
451      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), StubAM);
452
453      // Now construct the final address. Note that the Disp, Scale,
454      // and Index values may already be set here.
455      AM.Base.Reg = ResultReg;
456      AM.GV = 0;
457
458      // Prevent loading GV stub multiple times in same MBB.
459      LocalValueMap[V] = AM.Base.Reg;
460    }
461    return true;
462  }
463
464  // If all else fails, try to materialize the value in a register.
465  if (!AM.GV || !getTargetMachine()->symbolicAddressesAreRIPRel()) {
466    if (AM.Base.Reg == 0) {
467      AM.Base.Reg = getRegForValue(V);
468      return AM.Base.Reg != 0;
469    }
470    if (AM.IndexReg == 0) {
471      assert(AM.Scale == 1 && "Scale with no index!");
472      AM.IndexReg = getRegForValue(V);
473      return AM.IndexReg != 0;
474    }
475  }
476
477  return false;
478}
479
480/// X86SelectStore - Select and emit code to implement store instructions.
481bool X86FastISel::X86SelectStore(Instruction* I) {
482  MVT VT;
483  if (!isTypeLegal(I->getOperand(0)->getType(), TLI, VT))
484    return false;
485  unsigned Val = getRegForValue(I->getOperand(0));
486  if (Val == 0)
487    // Unhandled operand. Halt "fast" selection and bail.
488    return false;
489
490  X86AddressMode AM;
491  if (!X86SelectAddress(I->getOperand(1), AM, false))
492    return false;
493
494  return X86FastEmitStore(VT, Val, AM);
495}
496
497/// X86SelectLoad - Select and emit code to implement load instructions.
498///
499bool X86FastISel::X86SelectLoad(Instruction *I)  {
500  MVT VT;
501  if (!isTypeLegal(I->getType(), TLI, VT))
502    return false;
503
504  X86AddressMode AM;
505  if (!X86SelectAddress(I->getOperand(0), AM, false))
506    return false;
507
508  unsigned ResultReg = 0;
509  if (X86FastEmitLoad(VT, AM, ResultReg)) {
510    UpdateValueMap(I, ResultReg);
511    return true;
512  }
513  return false;
514}
515
516bool X86FastISel::X86SelectCmp(Instruction *I) {
517  CmpInst *CI = cast<CmpInst>(I);
518
519  MVT VT = TLI.getValueType(I->getOperand(0)->getType());
520  if (!TLI.isTypeLegal(VT))
521    return false;
522
523  unsigned Op0Reg = getRegForValue(CI->getOperand(0));
524  if (Op0Reg == 0) return false;
525  unsigned Op1Reg = getRegForValue(CI->getOperand(1));
526  if (Op1Reg == 0) return false;
527
528  unsigned Opc;
529  switch (VT.getSimpleVT()) {
530  case MVT::i8: Opc = X86::CMP8rr; break;
531  case MVT::i16: Opc = X86::CMP16rr; break;
532  case MVT::i32: Opc = X86::CMP32rr; break;
533  case MVT::i64: Opc = X86::CMP64rr; break;
534  case MVT::f32: Opc = X86::UCOMISSrr; break;
535  case MVT::f64: Opc = X86::UCOMISDrr; break;
536  default: return false;
537  }
538
539  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
540  switch (CI->getPredicate()) {
541  case CmpInst::FCMP_OEQ: {
542    unsigned EReg = createResultReg(&X86::GR8RegClass);
543    unsigned NPReg = createResultReg(&X86::GR8RegClass);
544    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
545    BuildMI(MBB, TII.get(X86::SETEr), EReg);
546    BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
547    BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
548    break;
549  }
550  case CmpInst::FCMP_UNE: {
551    unsigned NEReg = createResultReg(&X86::GR8RegClass);
552    unsigned PReg = createResultReg(&X86::GR8RegClass);
553    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
554    BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
555    BuildMI(MBB, TII.get(X86::SETPr), PReg);
556    BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
557    break;
558  }
559  case CmpInst::FCMP_OGT:
560    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
561    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
562    break;
563  case CmpInst::FCMP_OGE:
564    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
565    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
566    break;
567  case CmpInst::FCMP_OLT:
568    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
569    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
570    break;
571  case CmpInst::FCMP_OLE:
572    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
573    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
574    break;
575  case CmpInst::FCMP_ONE:
576    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
577    BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
578    break;
579  case CmpInst::FCMP_ORD:
580    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
581    BuildMI(MBB, TII.get(X86::SETNPr), ResultReg);
582    break;
583  case CmpInst::FCMP_UNO:
584    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
585    BuildMI(MBB, TII.get(X86::SETPr), ResultReg);
586    break;
587  case CmpInst::FCMP_UEQ:
588    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
589    BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
590    break;
591  case CmpInst::FCMP_UGT:
592    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
593    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
594    break;
595  case CmpInst::FCMP_UGE:
596    BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
597    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
598    break;
599  case CmpInst::FCMP_ULT:
600    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
601    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
602    break;
603  case CmpInst::FCMP_ULE:
604    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
605    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
606    break;
607  case CmpInst::ICMP_EQ:
608    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
609    BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
610    break;
611  case CmpInst::ICMP_NE:
612    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
613    BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
614    break;
615  case CmpInst::ICMP_UGT:
616    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
617    BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
618    break;
619  case CmpInst::ICMP_UGE:
620    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
621    BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
622    break;
623  case CmpInst::ICMP_ULT:
624    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
625    BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
626    break;
627  case CmpInst::ICMP_ULE:
628    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
629    BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
630    break;
631  case CmpInst::ICMP_SGT:
632    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
633    BuildMI(MBB, TII.get(X86::SETGr), ResultReg);
634    break;
635  case CmpInst::ICMP_SGE:
636    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
637    BuildMI(MBB, TII.get(X86::SETGEr), ResultReg);
638    break;
639  case CmpInst::ICMP_SLT:
640    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
641    BuildMI(MBB, TII.get(X86::SETLr), ResultReg);
642    break;
643  case CmpInst::ICMP_SLE:
644    BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
645    BuildMI(MBB, TII.get(X86::SETLEr), ResultReg);
646    break;
647  default:
648    return false;
649  }
650
651  UpdateValueMap(I, ResultReg);
652  return true;
653}
654
655bool X86FastISel::X86SelectZExt(Instruction *I) {
656  // Special-case hack: The only i1 values we know how to produce currently
657  // set the upper bits of an i8 value to zero.
658  if (I->getType() == Type::Int8Ty &&
659      I->getOperand(0)->getType() == Type::Int1Ty) {
660    unsigned ResultReg = getRegForValue(I->getOperand(0));
661    if (ResultReg == 0) return false;
662    UpdateValueMap(I, ResultReg);
663    return true;
664  }
665
666  return false;
667}
668
669bool X86FastISel::X86SelectBranch(Instruction *I) {
670  BranchInst *BI = cast<BranchInst>(I);
671  // Unconditional branches are selected by tablegen-generated code.
672  unsigned OpReg = getRegForValue(BI->getCondition());
673  if (OpReg == 0) return false;
674  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
675  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
676
677  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
678  BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
679  BuildMI(MBB, TII.get(X86::JMP)).addMBB(FalseMBB);
680
681  MBB->addSuccessor(TrueMBB);
682  MBB->addSuccessor(FalseMBB);
683
684  return true;
685}
686
687bool X86FastISel::X86SelectShift(Instruction *I) {
688  unsigned CReg = 0, OpReg = 0, OpImm = 0;
689  const TargetRegisterClass *RC = NULL;
690  if (I->getType() == Type::Int8Ty) {
691    CReg = X86::CL;
692    RC = &X86::GR8RegClass;
693    switch (I->getOpcode()) {
694    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
695    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
696    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
697    default: return false;
698    }
699  } else if (I->getType() == Type::Int16Ty) {
700    CReg = X86::CX;
701    RC = &X86::GR16RegClass;
702    switch (I->getOpcode()) {
703    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
704    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
705    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
706    default: return false;
707    }
708  } else if (I->getType() == Type::Int32Ty) {
709    CReg = X86::ECX;
710    RC = &X86::GR32RegClass;
711    switch (I->getOpcode()) {
712    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
713    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
714    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
715    default: return false;
716    }
717  } else if (I->getType() == Type::Int64Ty) {
718    CReg = X86::RCX;
719    RC = &X86::GR64RegClass;
720    switch (I->getOpcode()) {
721    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
722    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
723    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
724    default: return false;
725    }
726  } else {
727    return false;
728  }
729
730  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
731  if (VT == MVT::Other || !TLI.isTypeLegal(VT))
732    return false;
733
734  unsigned Op0Reg = getRegForValue(I->getOperand(0));
735  if (Op0Reg == 0) return false;
736
737  // Fold immediate in shl(x,3).
738  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
739    unsigned ResultReg = createResultReg(RC);
740    BuildMI(MBB, TII.get(OpImm),
741            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue());
742    UpdateValueMap(I, ResultReg);
743    return true;
744  }
745
746  unsigned Op1Reg = getRegForValue(I->getOperand(1));
747  if (Op1Reg == 0) return false;
748  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
749  unsigned ResultReg = createResultReg(RC);
750  BuildMI(MBB, TII.get(OpReg), ResultReg).addReg(Op0Reg);
751  UpdateValueMap(I, ResultReg);
752  return true;
753}
754
755bool X86FastISel::X86SelectSelect(Instruction *I) {
756  const Type *Ty = I->getType();
757  if (isa<PointerType>(Ty))
758    Ty = TD.getIntPtrType();
759
760  unsigned Opc = 0;
761  const TargetRegisterClass *RC = NULL;
762  if (Ty == Type::Int16Ty) {
763    Opc = X86::CMOVE16rr;
764    RC = &X86::GR16RegClass;
765  } else if (Ty == Type::Int32Ty) {
766    Opc = X86::CMOVE32rr;
767    RC = &X86::GR32RegClass;
768  } else if (Ty == Type::Int64Ty) {
769    Opc = X86::CMOVE64rr;
770    RC = &X86::GR64RegClass;
771  } else {
772    return false;
773  }
774
775  MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
776  if (VT == MVT::Other || !TLI.isTypeLegal(VT))
777    return false;
778
779  unsigned Op0Reg = getRegForValue(I->getOperand(0));
780  if (Op0Reg == 0) return false;
781  unsigned Op1Reg = getRegForValue(I->getOperand(1));
782  if (Op1Reg == 0) return false;
783  unsigned Op2Reg = getRegForValue(I->getOperand(2));
784  if (Op2Reg == 0) return false;
785
786  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
787  unsigned ResultReg = createResultReg(RC);
788  BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
789  UpdateValueMap(I, ResultReg);
790  return true;
791}
792
793bool X86FastISel::X86SelectFPExt(Instruction *I) {
794  if (Subtarget->hasSSE2()) {
795    if (I->getType() == Type::DoubleTy) {
796      Value *V = I->getOperand(0);
797      if (V->getType() == Type::FloatTy) {
798        unsigned OpReg = getRegForValue(V);
799        if (OpReg == 0) return false;
800        unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
801        BuildMI(MBB, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
802        UpdateValueMap(I, ResultReg);
803        return true;
804      }
805    }
806  }
807
808  return false;
809}
810
811bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
812  if (Subtarget->hasSSE2()) {
813    if (I->getType() == Type::FloatTy) {
814      Value *V = I->getOperand(0);
815      if (V->getType() == Type::DoubleTy) {
816        unsigned OpReg = getRegForValue(V);
817        if (OpReg == 0) return false;
818        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
819        BuildMI(MBB, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
820        UpdateValueMap(I, ResultReg);
821        return true;
822      }
823    }
824  }
825
826  return false;
827}
828
829bool X86FastISel::X86SelectTrunc(Instruction *I) {
830  if (Subtarget->is64Bit())
831    // All other cases should be handled by the tblgen generated code.
832    return false;
833  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
834  MVT DstVT = TLI.getValueType(I->getType());
835  if (DstVT != MVT::i8)
836    // All other cases should be handled by the tblgen generated code.
837    return false;
838  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
839    // All other cases should be handled by the tblgen generated code.
840    return false;
841
842  unsigned InputReg = getRegForValue(I->getOperand(0));
843  if (!InputReg)
844    // Unhandled operand.  Halt "fast" selection and bail.
845    return false;
846
847  // First issue a copy to GR16_ or GR32_.
848  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_;
849  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
850    ? X86::GR16_RegisterClass : X86::GR32_RegisterClass;
851  unsigned CopyReg = createResultReg(CopyRC);
852  BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
853
854  // Then issue an extract_subreg.
855  unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg,1); // x86_subreg_8bit
856  if (!ResultReg)
857    return false;
858
859  UpdateValueMap(I, ResultReg);
860  return true;
861}
862
863bool X86FastISel::X86SelectCall(Instruction *I) {
864  CallInst *CI = cast<CallInst>(I);
865  Value *Callee = I->getOperand(0);
866
867  // Can't handle inline asm yet.
868  if (isa<InlineAsm>(Callee))
869    return false;
870
871  // FIXME: Handle some intrinsics.
872  if (Function *F = CI->getCalledFunction()) {
873    if (F->isDeclaration() &&F->getIntrinsicID())
874      return false;
875  }
876
877  // Handle only C and fastcc calling conventions for now.
878  CallSite CS(CI);
879  unsigned CC = CS.getCallingConv();
880  if (CC != CallingConv::C &&
881      CC != CallingConv::Fast &&
882      CC != CallingConv::X86_FastCall)
883    return false;
884
885  // Let SDISel handle vararg functions.
886  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
887  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
888  if (FTy->isVarArg())
889    return false;
890
891  // Handle *simple* calls for now.
892  const Type *RetTy = CS.getType();
893  MVT RetVT;
894  if (RetTy == Type::VoidTy)
895    RetVT = MVT::isVoid;
896  else if (!isTypeLegal(RetTy, TLI, RetVT, true))
897    return false;
898
899  // Materialize callee address in a register. FIXME: GV address can be
900  // handled with a CALLpcrel32 instead.
901  X86AddressMode CalleeAM;
902  if (!X86SelectAddress(Callee, CalleeAM, true))
903    return false;
904  unsigned CalleeOp = 0;
905  GlobalValue *GV = 0;
906  if (CalleeAM.Base.Reg != 0) {
907    assert(CalleeAM.GV == 0);
908    CalleeOp = CalleeAM.Base.Reg;
909  } else if (CalleeAM.GV != 0) {
910    assert(CalleeAM.GV != 0);
911    GV = CalleeAM.GV;
912  } else
913    return false;
914
915  // Allow calls which produce i1 results.
916  bool AndToI1 = false;
917  if (RetVT == MVT::i1) {
918    RetVT = MVT::i8;
919    AndToI1 = true;
920  }
921
922  // Deal with call operands first.
923  SmallVector<unsigned, 4> Args;
924  SmallVector<MVT, 4> ArgVTs;
925  SmallVector<ISD::ArgFlagsTy, 4> ArgFlags;
926  Args.reserve(CS.arg_size());
927  ArgVTs.reserve(CS.arg_size());
928  ArgFlags.reserve(CS.arg_size());
929  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
930       i != e; ++i) {
931    unsigned Arg = getRegForValue(*i);
932    if (Arg == 0)
933      return false;
934    ISD::ArgFlagsTy Flags;
935    unsigned AttrInd = i - CS.arg_begin() + 1;
936    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
937      Flags.setSExt();
938    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
939      Flags.setZExt();
940
941    // FIXME: Only handle *easy* calls for now.
942    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
943        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
944        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
945        CS.paramHasAttr(AttrInd, Attribute::ByVal))
946      return false;
947
948    const Type *ArgTy = (*i)->getType();
949    MVT ArgVT;
950    if (!isTypeLegal(ArgTy, TLI, ArgVT))
951      return false;
952    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
953    Flags.setOrigAlign(OriginalAlignment);
954
955    Args.push_back(Arg);
956    ArgVTs.push_back(ArgVT);
957    ArgFlags.push_back(Flags);
958  }
959
960  // Analyze operands of the call, assigning locations to each operand.
961  SmallVector<CCValAssign, 16> ArgLocs;
962  CCState CCInfo(CC, false, TM, ArgLocs);
963  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
964
965  // Get a count of how many bytes are to be pushed on the stack.
966  unsigned NumBytes = CCInfo.getNextStackOffset();
967
968  // Issue CALLSEQ_START
969  BuildMI(MBB, TII.get(X86::ADJCALLSTACKDOWN)).addImm(NumBytes);
970
971  // Process argumenet: walk the register/memloc assignments, inserting
972  // copies / loads.
973  SmallVector<unsigned, 4> RegArgs;
974  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
975    CCValAssign &VA = ArgLocs[i];
976    unsigned Arg = Args[VA.getValNo()];
977    MVT ArgVT = ArgVTs[VA.getValNo()];
978
979    // Promote the value if needed.
980    switch (VA.getLocInfo()) {
981    default: assert(0 && "Unknown loc info!");
982    case CCValAssign::Full: break;
983    case CCValAssign::SExt: {
984      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
985                                       Arg, ArgVT, Arg);
986      assert(Emitted && "Failed to emit a sext!");
987      ArgVT = VA.getLocVT();
988      break;
989    }
990    case CCValAssign::ZExt: {
991      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
992                                       Arg, ArgVT, Arg);
993      assert(Emitted && "Failed to emit a zext!");
994      ArgVT = VA.getLocVT();
995      break;
996    }
997    case CCValAssign::AExt: {
998      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
999                                       Arg, ArgVT, Arg);
1000      if (!Emitted)
1001        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1002                                         Arg, ArgVT, Arg);
1003      if (!Emitted)
1004        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1005                                    Arg, ArgVT, Arg);
1006
1007      assert(Emitted && "Failed to emit a aext!");
1008      ArgVT = VA.getLocVT();
1009      break;
1010    }
1011    }
1012
1013    if (VA.isRegLoc()) {
1014      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1015      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1016                                      Arg, RC, RC);
1017      assert(Emitted && "Failed to emit a copy instruction!");
1018      RegArgs.push_back(VA.getLocReg());
1019    } else {
1020      unsigned LocMemOffset = VA.getLocMemOffset();
1021      X86AddressMode AM;
1022      AM.Base.Reg = StackPtr;
1023      AM.Disp = LocMemOffset;
1024      X86FastEmitStore(ArgVT, Arg, AM);
1025    }
1026  }
1027
1028  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1029  // GOT pointer.
1030  if (!Subtarget->is64Bit() &&
1031      TM.getRelocationModel() == Reloc::PIC_ &&
1032      Subtarget->isPICStyleGOT()) {
1033    TargetRegisterClass *RC = X86::GR32RegisterClass;
1034    unsigned Base = getGlobalBaseReg();
1035    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1036    assert(Emitted && "Failed to emit a copy instruction!");
1037  }
1038
1039  // Issue the call.
1040  unsigned CallOpc = CalleeOp
1041    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
1042    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
1043  MachineInstrBuilder MIB = CalleeOp
1044    ? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp)
1045    : BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(GV);
1046
1047  // Add an implicit use GOT pointer in EBX.
1048  if (!Subtarget->is64Bit() &&
1049      TM.getRelocationModel() == Reloc::PIC_ &&
1050      Subtarget->isPICStyleGOT())
1051    MIB.addReg(X86::EBX);
1052
1053  // Add implicit physical register uses to the call.
1054  while (!RegArgs.empty()) {
1055    MIB.addReg(RegArgs.back());
1056    RegArgs.pop_back();
1057  }
1058
1059  // Issue CALLSEQ_END
1060  BuildMI(MBB, TII.get(X86::ADJCALLSTACKUP)).addImm(NumBytes).addImm(0);
1061
1062  // Now handle call return value (if any).
1063  if (RetVT.getSimpleVT() != MVT::isVoid) {
1064    SmallVector<CCValAssign, 16> RVLocs;
1065    CCState CCInfo(CC, false, TM, RVLocs);
1066    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1067
1068    // Copy all of the result registers out of their specified physreg.
1069    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1070    MVT CopyVT = RVLocs[0].getValVT();
1071    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1072    TargetRegisterClass *SrcRC = DstRC;
1073
1074    // If this is a call to a function that returns an fp value on the x87 fp
1075    // stack, but where we prefer to use the value in xmm registers, copy it
1076    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1077    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1078         RVLocs[0].getLocReg() == X86::ST1) &&
1079        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1080      CopyVT = MVT::f80;
1081      SrcRC = X86::RSTRegisterClass;
1082      DstRC = X86::RFP80RegisterClass;
1083    }
1084
1085    unsigned ResultReg = createResultReg(DstRC);
1086    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1087                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1088    assert(Emitted && "Failed to emit a copy instruction!");
1089    if (CopyVT != RVLocs[0].getValVT()) {
1090      // Round the F80 the right size, which also moves to the appropriate xmm
1091      // register. This is accomplished by storing the F80 value in memory and
1092      // then loading it back. Ewww...
1093      MVT ResVT = RVLocs[0].getValVT();
1094      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1095      unsigned MemSize = ResVT.getSizeInBits()/8;
1096      int FI = MFI.CreateStackObject(MemSize, MemSize);
1097      addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg);
1098      DstRC = ResVT == MVT::f32
1099        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1100      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1101      ResultReg = createResultReg(DstRC);
1102      addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI);
1103    }
1104
1105    if (AndToI1) {
1106      // Mask out all but lowest bit for some call which produces an i1.
1107      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1108      BuildMI(MBB, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1109      ResultReg = AndResult;
1110    }
1111
1112    UpdateValueMap(I, ResultReg);
1113  }
1114
1115  return true;
1116}
1117
1118
1119bool
1120X86FastISel::TargetSelectInstruction(Instruction *I)  {
1121  switch (I->getOpcode()) {
1122  default: break;
1123  case Instruction::Load:
1124    return X86SelectLoad(I);
1125  case Instruction::Store:
1126    return X86SelectStore(I);
1127  case Instruction::ICmp:
1128  case Instruction::FCmp:
1129    return X86SelectCmp(I);
1130  case Instruction::ZExt:
1131    return X86SelectZExt(I);
1132  case Instruction::Br:
1133    return X86SelectBranch(I);
1134  case Instruction::Call:
1135    return X86SelectCall(I);
1136  case Instruction::LShr:
1137  case Instruction::AShr:
1138  case Instruction::Shl:
1139    return X86SelectShift(I);
1140  case Instruction::Select:
1141    return X86SelectSelect(I);
1142  case Instruction::Trunc:
1143    return X86SelectTrunc(I);
1144  case Instruction::FPExt:
1145    return X86SelectFPExt(I);
1146  case Instruction::FPTrunc:
1147    return X86SelectFPTrunc(I);
1148  }
1149
1150  return false;
1151}
1152
1153unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1154  MVT VT;
1155  if (!isTypeLegal(C->getType(), TLI, VT))
1156    return false;
1157
1158  // Get opcode and regclass of the output for the given load instruction.
1159  unsigned Opc = 0;
1160  const TargetRegisterClass *RC = NULL;
1161  switch (VT.getSimpleVT()) {
1162  default: return false;
1163  case MVT::i8:
1164    Opc = X86::MOV8rm;
1165    RC  = X86::GR8RegisterClass;
1166    break;
1167  case MVT::i16:
1168    Opc = X86::MOV16rm;
1169    RC  = X86::GR16RegisterClass;
1170    break;
1171  case MVT::i32:
1172    Opc = X86::MOV32rm;
1173    RC  = X86::GR32RegisterClass;
1174    break;
1175  case MVT::i64:
1176    // Must be in x86-64 mode.
1177    Opc = X86::MOV64rm;
1178    RC  = X86::GR64RegisterClass;
1179    break;
1180  case MVT::f32:
1181    if (Subtarget->hasSSE1()) {
1182      Opc = X86::MOVSSrm;
1183      RC  = X86::FR32RegisterClass;
1184    } else {
1185      Opc = X86::LD_Fp32m;
1186      RC  = X86::RFP32RegisterClass;
1187    }
1188    break;
1189  case MVT::f64:
1190    if (Subtarget->hasSSE2()) {
1191      Opc = X86::MOVSDrm;
1192      RC  = X86::FR64RegisterClass;
1193    } else {
1194      Opc = X86::LD_Fp64m;
1195      RC  = X86::RFP64RegisterClass;
1196    }
1197    break;
1198  case MVT::f80:
1199    // No f80 support yet.
1200    return false;
1201  }
1202
1203  // Materialize addresses with LEA instructions.
1204  if (isa<GlobalValue>(C)) {
1205    X86AddressMode AM;
1206    if (X86SelectAddress(C, AM, false)) {
1207      if (TLI.getPointerTy() == MVT::i32)
1208        Opc = X86::LEA32r;
1209      else
1210        Opc = X86::LEA64r;
1211      unsigned ResultReg = createResultReg(RC);
1212      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
1213      return ResultReg;
1214    }
1215    return 0;
1216  }
1217
1218  // MachineConstantPool wants an explicit alignment.
1219  unsigned Align = TD.getPreferredTypeAlignmentShift(C->getType());
1220  if (Align == 0) {
1221    // Alignment of vector types.  FIXME!
1222    Align = TD.getABITypeSize(C->getType());
1223    Align = Log2_64(Align);
1224  }
1225
1226  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1227  unsigned ResultReg = createResultReg(RC);
1228  addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset);
1229  return ResultReg;
1230}
1231
1232unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1233  X86AddressMode AM;
1234  if (!X86SelectAddress(C, AM, false))
1235    return 0;
1236  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1237  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1238  unsigned ResultReg = createResultReg(RC);
1239  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
1240  return ResultReg;
1241}
1242
1243namespace llvm {
1244  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1245                        MachineModuleInfo *mmi,
1246                        DenseMap<const Value *, unsigned> &vm,
1247                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1248                        DenseMap<const AllocaInst *, int> &am) {
1249    return new X86FastISel(mf, mmi, vm, bm, am);
1250  }
1251}
1252