X86FastISel.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GetElementPtrTypeIterator.h"
33#include "llvm/IR/GlobalAlias.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Target/TargetOptions.h"
40using namespace llvm;
41
42namespace {
43
44class X86FastISel final : public FastISel {
45  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
46  /// make the right decision when generating code for different targets.
47  const X86Subtarget *Subtarget;
48
49  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
50  /// floating point ops.
51  /// When SSE is available, use it for f32 operations.
52  /// When SSE2 is available, use it for f64 operations.
53  bool X86ScalarSSEf64;
54  bool X86ScalarSSEf32;
55
56public:
57  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
58                       const TargetLibraryInfo *libInfo)
59    : FastISel(funcInfo, libInfo) {
60    Subtarget = &TM.getSubtarget<X86Subtarget>();
61    X86ScalarSSEf64 = Subtarget->hasSSE2();
62    X86ScalarSSEf32 = Subtarget->hasSSE1();
63  }
64
65  bool TargetSelectInstruction(const Instruction *I) override;
66
67  /// \brief The specified machine instr operand is a vreg, and that
68  /// vreg is being provided by the specified load instruction.  If possible,
69  /// try to fold the load as an operand to the instruction, returning true if
70  /// possible.
71  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
72                           const LoadInst *LI) override;
73
74  bool FastLowerArguments() override;
75
76#include "X86GenFastISel.inc"
77
78private:
79  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
80
81  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
82
83  bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
84                        bool Aligned = false);
85  bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM,
86                        bool Aligned = false);
87
88  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
89                         unsigned &ResultReg);
90
91  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
92  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
93
94  bool X86SelectLoad(const Instruction *I);
95
96  bool X86SelectStore(const Instruction *I);
97
98  bool X86SelectRet(const Instruction *I);
99
100  bool X86SelectCmp(const Instruction *I);
101
102  bool X86SelectZExt(const Instruction *I);
103
104  bool X86SelectBranch(const Instruction *I);
105
106  bool X86SelectShift(const Instruction *I);
107
108  bool X86SelectDivRem(const Instruction *I);
109
110  bool X86SelectSelect(const Instruction *I);
111
112  bool X86SelectTrunc(const Instruction *I);
113
114  bool X86SelectFPExt(const Instruction *I);
115  bool X86SelectFPTrunc(const Instruction *I);
116
117  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
118  bool X86SelectCall(const Instruction *I);
119
120  bool DoSelectCall(const Instruction *I, const char *MemIntName);
121
122  const X86InstrInfo *getInstrInfo() const {
123    return getTargetMachine()->getInstrInfo();
124  }
125  const X86TargetMachine *getTargetMachine() const {
126    return static_cast<const X86TargetMachine *>(&TM);
127  }
128
129  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
130
131  unsigned TargetMaterializeConstant(const Constant *C) override;
132
133  unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
134
135  unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override;
136
137  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
138  /// computed in an SSE register, not on the X87 floating point stack.
139  bool isScalarFPTypeInSSEReg(EVT VT) const {
140    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
141      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
142  }
143
144  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
145
146  bool IsMemcpySmall(uint64_t Len);
147
148  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
149                          X86AddressMode SrcAM, uint64_t Len);
150};
151
152} // end anonymous namespace.
153
154bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
155  EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
156  if (evt == MVT::Other || !evt.isSimple())
157    // Unhandled type. Halt "fast" selection and bail.
158    return false;
159
160  VT = evt.getSimpleVT();
161  // For now, require SSE/SSE2 for performing floating-point operations,
162  // since x87 requires additional work.
163  if (VT == MVT::f64 && !X86ScalarSSEf64)
164    return false;
165  if (VT == MVT::f32 && !X86ScalarSSEf32)
166    return false;
167  // Similarly, no f80 support yet.
168  if (VT == MVT::f80)
169    return false;
170  // We only handle legal types. For example, on x86-32 the instruction
171  // selector contains all of the 64-bit instructions from x86-64,
172  // under the assumption that i64 won't be used if the target doesn't
173  // support it.
174  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
175}
176
177#include "X86GenCallingConv.inc"
178
179/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
180/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
181/// Return true and the result register by reference if it is possible.
182bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
183                                  unsigned &ResultReg) {
184  // Get opcode and regclass of the output for the given load instruction.
185  unsigned Opc = 0;
186  const TargetRegisterClass *RC = nullptr;
187  switch (VT.getSimpleVT().SimpleTy) {
188  default: return false;
189  case MVT::i1:
190  case MVT::i8:
191    Opc = X86::MOV8rm;
192    RC  = &X86::GR8RegClass;
193    break;
194  case MVT::i16:
195    Opc = X86::MOV16rm;
196    RC  = &X86::GR16RegClass;
197    break;
198  case MVT::i32:
199    Opc = X86::MOV32rm;
200    RC  = &X86::GR32RegClass;
201    break;
202  case MVT::i64:
203    // Must be in x86-64 mode.
204    Opc = X86::MOV64rm;
205    RC  = &X86::GR64RegClass;
206    break;
207  case MVT::f32:
208    if (X86ScalarSSEf32) {
209      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
210      RC  = &X86::FR32RegClass;
211    } else {
212      Opc = X86::LD_Fp32m;
213      RC  = &X86::RFP32RegClass;
214    }
215    break;
216  case MVT::f64:
217    if (X86ScalarSSEf64) {
218      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
219      RC  = &X86::FR64RegClass;
220    } else {
221      Opc = X86::LD_Fp64m;
222      RC  = &X86::RFP64RegClass;
223    }
224    break;
225  case MVT::f80:
226    // No f80 support yet.
227    return false;
228  }
229
230  ResultReg = createResultReg(RC);
231  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
232                         DbgLoc, TII.get(Opc), ResultReg), AM);
233  return true;
234}
235
236/// X86FastEmitStore - Emit a machine instruction to store a value Val of
237/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
238/// and a displacement offset, or a GlobalAddress,
239/// i.e. V. Return true if it is possible.
240bool
241X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg,
242                              const X86AddressMode &AM, bool Aligned) {
243  // Get opcode and regclass of the output for the given store instruction.
244  unsigned Opc = 0;
245  switch (VT.getSimpleVT().SimpleTy) {
246  case MVT::f80: // No f80 support yet.
247  default: return false;
248  case MVT::i1: {
249    // Mask out all but lowest bit.
250    unsigned AndResult = createResultReg(&X86::GR8RegClass);
251    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
252            TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1);
253    ValReg = AndResult;
254  }
255  // FALLTHROUGH, handling i1 as i8.
256  case MVT::i8:  Opc = X86::MOV8mr;  break;
257  case MVT::i16: Opc = X86::MOV16mr; break;
258  case MVT::i32: Opc = X86::MOV32mr; break;
259  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
260  case MVT::f32:
261    Opc = X86ScalarSSEf32 ?
262          (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
263    break;
264  case MVT::f64:
265    Opc = X86ScalarSSEf64 ?
266          (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
267    break;
268  case MVT::v4f32:
269    if (Aligned)
270      Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
271    else
272      Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
273    break;
274  case MVT::v2f64:
275    if (Aligned)
276      Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
277    else
278      Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
279    break;
280  case MVT::v4i32:
281  case MVT::v2i64:
282  case MVT::v8i16:
283  case MVT::v16i8:
284    if (Aligned)
285      Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
286    else
287      Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
288    break;
289  }
290
291  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
292                         DbgLoc, TII.get(Opc)), AM).addReg(ValReg);
293  return true;
294}
295
296bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
297                                   const X86AddressMode &AM, bool Aligned) {
298  // Handle 'null' like i32/i64 0.
299  if (isa<ConstantPointerNull>(Val))
300    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
301
302  // If this is a store of a simple constant, fold the constant into the store.
303  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
304    unsigned Opc = 0;
305    bool Signed = true;
306    switch (VT.getSimpleVT().SimpleTy) {
307    default: break;
308    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
309    case MVT::i8:  Opc = X86::MOV8mi;  break;
310    case MVT::i16: Opc = X86::MOV16mi; break;
311    case MVT::i32: Opc = X86::MOV32mi; break;
312    case MVT::i64:
313      // Must be a 32-bit sign extended value.
314      if (isInt<32>(CI->getSExtValue()))
315        Opc = X86::MOV64mi32;
316      break;
317    }
318
319    if (Opc) {
320      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
321                             DbgLoc, TII.get(Opc)), AM)
322                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
323                                              CI->getZExtValue());
324      return true;
325    }
326  }
327
328  unsigned ValReg = getRegForValue(Val);
329  if (ValReg == 0)
330    return false;
331
332  return X86FastEmitStore(VT, ValReg, AM, Aligned);
333}
334
335/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
336/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
337/// ISD::SIGN_EXTEND).
338bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
339                                    unsigned Src, EVT SrcVT,
340                                    unsigned &ResultReg) {
341  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
342                           Src, /*TODO: Kill=*/false);
343  if (RR == 0)
344    return false;
345
346  ResultReg = RR;
347  return true;
348}
349
350bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
351  // Handle constant address.
352  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
353    // Can't handle alternate code models yet.
354    if (TM.getCodeModel() != CodeModel::Small)
355      return false;
356
357    // Can't handle TLS yet.
358    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
359      if (GVar->isThreadLocal())
360        return false;
361
362    // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
363    // it works...).
364    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
365      if (const GlobalVariable *GVar =
366              dyn_cast_or_null<GlobalVariable>(GA->getAliasee()))
367        if (GVar->isThreadLocal())
368          return false;
369
370    // RIP-relative addresses can't have additional register operands, so if
371    // we've already folded stuff into the addressing mode, just force the
372    // global value into its own register, which we can use as the basereg.
373    if (!Subtarget->isPICStyleRIPRel() ||
374        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
375      // Okay, we've committed to selecting this global. Set up the address.
376      AM.GV = GV;
377
378      // Allow the subtarget to classify the global.
379      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
380
381      // If this reference is relative to the pic base, set it now.
382      if (isGlobalRelativeToPICBase(GVFlags)) {
383        // FIXME: How do we know Base.Reg is free??
384        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
385      }
386
387      // Unless the ABI requires an extra load, return a direct reference to
388      // the global.
389      if (!isGlobalStubReference(GVFlags)) {
390        if (Subtarget->isPICStyleRIPRel()) {
391          // Use rip-relative addressing if we can.  Above we verified that the
392          // base and index registers are unused.
393          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
394          AM.Base.Reg = X86::RIP;
395        }
396        AM.GVOpFlags = GVFlags;
397        return true;
398      }
399
400      // Ok, we need to do a load from a stub.  If we've already loaded from
401      // this stub, reuse the loaded pointer, otherwise emit the load now.
402      DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
403      unsigned LoadReg;
404      if (I != LocalValueMap.end() && I->second != 0) {
405        LoadReg = I->second;
406      } else {
407        // Issue load from stub.
408        unsigned Opc = 0;
409        const TargetRegisterClass *RC = nullptr;
410        X86AddressMode StubAM;
411        StubAM.Base.Reg = AM.Base.Reg;
412        StubAM.GV = GV;
413        StubAM.GVOpFlags = GVFlags;
414
415        // Prepare for inserting code in the local-value area.
416        SavePoint SaveInsertPt = enterLocalValueArea();
417
418        if (TLI.getPointerTy() == MVT::i64) {
419          Opc = X86::MOV64rm;
420          RC  = &X86::GR64RegClass;
421
422          if (Subtarget->isPICStyleRIPRel())
423            StubAM.Base.Reg = X86::RIP;
424        } else {
425          Opc = X86::MOV32rm;
426          RC  = &X86::GR32RegClass;
427        }
428
429        LoadReg = createResultReg(RC);
430        MachineInstrBuilder LoadMI =
431          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
432        addFullAddress(LoadMI, StubAM);
433
434        // Ok, back to normal mode.
435        leaveLocalValueArea(SaveInsertPt);
436
437        // Prevent loading GV stub multiple times in same MBB.
438        LocalValueMap[V] = LoadReg;
439      }
440
441      // Now construct the final address. Note that the Disp, Scale,
442      // and Index values may already be set here.
443      AM.Base.Reg = LoadReg;
444      AM.GV = nullptr;
445      return true;
446    }
447  }
448
449  // If all else fails, try to materialize the value in a register.
450  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
451    if (AM.Base.Reg == 0) {
452      AM.Base.Reg = getRegForValue(V);
453      return AM.Base.Reg != 0;
454    }
455    if (AM.IndexReg == 0) {
456      assert(AM.Scale == 1 && "Scale with no index!");
457      AM.IndexReg = getRegForValue(V);
458      return AM.IndexReg != 0;
459    }
460  }
461
462  return false;
463}
464
465/// X86SelectAddress - Attempt to fill in an address from the given value.
466///
467bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
468  SmallVector<const Value *, 32> GEPs;
469redo_gep:
470  const User *U = nullptr;
471  unsigned Opcode = Instruction::UserOp1;
472  if (const Instruction *I = dyn_cast<Instruction>(V)) {
473    // Don't walk into other basic blocks; it's possible we haven't
474    // visited them yet, so the instructions may not yet be assigned
475    // virtual registers.
476    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
477        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
478      Opcode = I->getOpcode();
479      U = I;
480    }
481  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
482    Opcode = C->getOpcode();
483    U = C;
484  }
485
486  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
487    if (Ty->getAddressSpace() > 255)
488      // Fast instruction selection doesn't support the special
489      // address spaces.
490      return false;
491
492  switch (Opcode) {
493  default: break;
494  case Instruction::BitCast:
495    // Look past bitcasts.
496    return X86SelectAddress(U->getOperand(0), AM);
497
498  case Instruction::IntToPtr:
499    // Look past no-op inttoptrs.
500    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
501      return X86SelectAddress(U->getOperand(0), AM);
502    break;
503
504  case Instruction::PtrToInt:
505    // Look past no-op ptrtoints.
506    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
507      return X86SelectAddress(U->getOperand(0), AM);
508    break;
509
510  case Instruction::Alloca: {
511    // Do static allocas.
512    const AllocaInst *A = cast<AllocaInst>(V);
513    DenseMap<const AllocaInst*, int>::iterator SI =
514      FuncInfo.StaticAllocaMap.find(A);
515    if (SI != FuncInfo.StaticAllocaMap.end()) {
516      AM.BaseType = X86AddressMode::FrameIndexBase;
517      AM.Base.FrameIndex = SI->second;
518      return true;
519    }
520    break;
521  }
522
523  case Instruction::Add: {
524    // Adds of constants are common and easy enough.
525    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
526      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
527      // They have to fit in the 32-bit signed displacement field though.
528      if (isInt<32>(Disp)) {
529        AM.Disp = (uint32_t)Disp;
530        return X86SelectAddress(U->getOperand(0), AM);
531      }
532    }
533    break;
534  }
535
536  case Instruction::GetElementPtr: {
537    X86AddressMode SavedAM = AM;
538
539    // Pattern-match simple GEPs.
540    uint64_t Disp = (int32_t)AM.Disp;
541    unsigned IndexReg = AM.IndexReg;
542    unsigned Scale = AM.Scale;
543    gep_type_iterator GTI = gep_type_begin(U);
544    // Iterate through the indices, folding what we can. Constants can be
545    // folded, and one dynamic index can be handled, if the scale is supported.
546    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
547         i != e; ++i, ++GTI) {
548      const Value *Op = *i;
549      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
550        const StructLayout *SL = DL.getStructLayout(STy);
551        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
552        continue;
553      }
554
555      // A array/variable index is always of the form i*S where S is the
556      // constant scale size.  See if we can push the scale into immediates.
557      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
558      for (;;) {
559        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
560          // Constant-offset addressing.
561          Disp += CI->getSExtValue() * S;
562          break;
563        }
564        if (canFoldAddIntoGEP(U, Op)) {
565          // A compatible add with a constant operand. Fold the constant.
566          ConstantInt *CI =
567            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
568          Disp += CI->getSExtValue() * S;
569          // Iterate on the other operand.
570          Op = cast<AddOperator>(Op)->getOperand(0);
571          continue;
572        }
573        if (IndexReg == 0 &&
574            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
575            (S == 1 || S == 2 || S == 4 || S == 8)) {
576          // Scaled-index addressing.
577          Scale = S;
578          IndexReg = getRegForGEPIndex(Op).first;
579          if (IndexReg == 0)
580            return false;
581          break;
582        }
583        // Unsupported.
584        goto unsupported_gep;
585      }
586    }
587
588    // Check for displacement overflow.
589    if (!isInt<32>(Disp))
590      break;
591
592    AM.IndexReg = IndexReg;
593    AM.Scale = Scale;
594    AM.Disp = (uint32_t)Disp;
595    GEPs.push_back(V);
596
597    if (const GetElementPtrInst *GEP =
598          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
599      // Ok, the GEP indices were covered by constant-offset and scaled-index
600      // addressing. Update the address state and move on to examining the base.
601      V = GEP;
602      goto redo_gep;
603    } else if (X86SelectAddress(U->getOperand(0), AM)) {
604      return true;
605    }
606
607    // If we couldn't merge the gep value into this addr mode, revert back to
608    // our address and just match the value instead of completely failing.
609    AM = SavedAM;
610
611    for (SmallVectorImpl<const Value *>::reverse_iterator
612           I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
613      if (handleConstantAddresses(*I, AM))
614        return true;
615
616    return false;
617  unsupported_gep:
618    // Ok, the GEP indices weren't all covered.
619    break;
620  }
621  }
622
623  return handleConstantAddresses(V, AM);
624}
625
626/// X86SelectCallAddress - Attempt to fill in an address from the given value.
627///
628bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
629  const User *U = nullptr;
630  unsigned Opcode = Instruction::UserOp1;
631  const Instruction *I = dyn_cast<Instruction>(V);
632  // Record if the value is defined in the same basic block.
633  //
634  // This information is crucial to know whether or not folding an
635  // operand is valid.
636  // Indeed, FastISel generates or reuses a virtual register for all
637  // operands of all instructions it selects. Obviously, the definition and
638  // its uses must use the same virtual register otherwise the produced
639  // code is incorrect.
640  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
641  // registers for values that are alive across basic blocks. This ensures
642  // that the values are consistently set between across basic block, even
643  // if different instruction selection mechanisms are used (e.g., a mix of
644  // SDISel and FastISel).
645  // For values local to a basic block, the instruction selection process
646  // generates these virtual registers with whatever method is appropriate
647  // for its needs. In particular, FastISel and SDISel do not share the way
648  // local virtual registers are set.
649  // Therefore, this is impossible (or at least unsafe) to share values
650  // between basic blocks unless they use the same instruction selection
651  // method, which is not guarantee for X86.
652  // Moreover, things like hasOneUse could not be used accurately, if we
653  // allow to reference values across basic blocks whereas they are not
654  // alive across basic blocks initially.
655  bool InMBB = true;
656  if (I) {
657    Opcode = I->getOpcode();
658    U = I;
659    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
660  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
661    Opcode = C->getOpcode();
662    U = C;
663  }
664
665  switch (Opcode) {
666  default: break;
667  case Instruction::BitCast:
668    // Look past bitcasts if its operand is in the same BB.
669    if (InMBB)
670      return X86SelectCallAddress(U->getOperand(0), AM);
671    break;
672
673  case Instruction::IntToPtr:
674    // Look past no-op inttoptrs if its operand is in the same BB.
675    if (InMBB &&
676        TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
677      return X86SelectCallAddress(U->getOperand(0), AM);
678    break;
679
680  case Instruction::PtrToInt:
681    // Look past no-op ptrtoints if its operand is in the same BB.
682    if (InMBB &&
683        TLI.getValueType(U->getType()) == TLI.getPointerTy())
684      return X86SelectCallAddress(U->getOperand(0), AM);
685    break;
686  }
687
688  // Handle constant address.
689  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
690    // Can't handle alternate code models yet.
691    if (TM.getCodeModel() != CodeModel::Small)
692      return false;
693
694    // RIP-relative addresses can't have additional register operands.
695    if (Subtarget->isPICStyleRIPRel() &&
696        (AM.Base.Reg != 0 || AM.IndexReg != 0))
697      return false;
698
699    // Can't handle DbgLocLImport.
700    if (GV->hasDLLImportStorageClass())
701      return false;
702
703    // Can't handle TLS.
704    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
705      if (GVar->isThreadLocal())
706        return false;
707
708    // Okay, we've committed to selecting this global. Set up the basic address.
709    AM.GV = GV;
710
711    // No ABI requires an extra load for anything other than DLLImport, which
712    // we rejected above. Return a direct reference to the global.
713    if (Subtarget->isPICStyleRIPRel()) {
714      // Use rip-relative addressing if we can.  Above we verified that the
715      // base and index registers are unused.
716      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
717      AM.Base.Reg = X86::RIP;
718    } else if (Subtarget->isPICStyleStubPIC()) {
719      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
720    } else if (Subtarget->isPICStyleGOT()) {
721      AM.GVOpFlags = X86II::MO_GOTOFF;
722    }
723
724    return true;
725  }
726
727  // If all else fails, try to materialize the value in a register.
728  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
729    if (AM.Base.Reg == 0) {
730      AM.Base.Reg = getRegForValue(V);
731      return AM.Base.Reg != 0;
732    }
733    if (AM.IndexReg == 0) {
734      assert(AM.Scale == 1 && "Scale with no index!");
735      AM.IndexReg = getRegForValue(V);
736      return AM.IndexReg != 0;
737    }
738  }
739
740  return false;
741}
742
743
744/// X86SelectStore - Select and emit code to implement store instructions.
745bool X86FastISel::X86SelectStore(const Instruction *I) {
746  // Atomic stores need special handling.
747  const StoreInst *S = cast<StoreInst>(I);
748
749  if (S->isAtomic())
750    return false;
751
752  unsigned SABIAlignment =
753    DL.getABITypeAlignment(S->getValueOperand()->getType());
754  bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment;
755
756  MVT VT;
757  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
758    return false;
759
760  X86AddressMode AM;
761  if (!X86SelectAddress(I->getOperand(1), AM))
762    return false;
763
764  return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned);
765}
766
767/// X86SelectRet - Select and emit code to implement ret instructions.
768bool X86FastISel::X86SelectRet(const Instruction *I) {
769  const ReturnInst *Ret = cast<ReturnInst>(I);
770  const Function &F = *I->getParent()->getParent();
771  const X86MachineFunctionInfo *X86MFInfo =
772      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
773
774  if (!FuncInfo.CanLowerReturn)
775    return false;
776
777  CallingConv::ID CC = F.getCallingConv();
778  if (CC != CallingConv::C &&
779      CC != CallingConv::Fast &&
780      CC != CallingConv::X86_FastCall &&
781      CC != CallingConv::X86_64_SysV)
782    return false;
783
784  if (Subtarget->isCallingConvWin64(CC))
785    return false;
786
787  // Don't handle popping bytes on return for now.
788  if (X86MFInfo->getBytesToPopOnReturn() != 0)
789    return false;
790
791  // fastcc with -tailcallopt is intended to provide a guaranteed
792  // tail call optimization. Fastisel doesn't know how to do that.
793  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
794    return false;
795
796  // Let SDISel handle vararg functions.
797  if (F.isVarArg())
798    return false;
799
800  // Build a list of return value registers.
801  SmallVector<unsigned, 4> RetRegs;
802
803  if (Ret->getNumOperands() > 0) {
804    SmallVector<ISD::OutputArg, 4> Outs;
805    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
806
807    // Analyze operands of the call, assigning locations to each operand.
808    SmallVector<CCValAssign, 16> ValLocs;
809    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
810                   I->getContext());
811    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
812
813    const Value *RV = Ret->getOperand(0);
814    unsigned Reg = getRegForValue(RV);
815    if (Reg == 0)
816      return false;
817
818    // Only handle a single return value for now.
819    if (ValLocs.size() != 1)
820      return false;
821
822    CCValAssign &VA = ValLocs[0];
823
824    // Don't bother handling odd stuff for now.
825    if (VA.getLocInfo() != CCValAssign::Full)
826      return false;
827    // Only handle register returns for now.
828    if (!VA.isRegLoc())
829      return false;
830
831    // The calling-convention tables for x87 returns don't tell
832    // the whole story.
833    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
834      return false;
835
836    unsigned SrcReg = Reg + VA.getValNo();
837    EVT SrcVT = TLI.getValueType(RV->getType());
838    EVT DstVT = VA.getValVT();
839    // Special handling for extended integers.
840    if (SrcVT != DstVT) {
841      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
842        return false;
843
844      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
845        return false;
846
847      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
848
849      if (SrcVT == MVT::i1) {
850        if (Outs[0].Flags.isSExt())
851          return false;
852        SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
853        SrcVT = MVT::i8;
854      }
855      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
856                                             ISD::SIGN_EXTEND;
857      SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
858                          SrcReg, /*TODO: Kill=*/false);
859    }
860
861    // Make the copy.
862    unsigned DstReg = VA.getLocReg();
863    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
864    // Avoid a cross-class copy. This is very unlikely.
865    if (!SrcRC->contains(DstReg))
866      return false;
867    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
868            DstReg).addReg(SrcReg);
869
870    // Add register to return instruction.
871    RetRegs.push_back(VA.getLocReg());
872  }
873
874  // The x86-64 ABI for returning structs by value requires that we copy
875  // the sret argument into %rax for the return. We saved the argument into
876  // a virtual register in the entry block, so now we copy the value out
877  // and into %rax. We also do the same with %eax for Win32.
878  if (F.hasStructRetAttr() &&
879      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
880    unsigned Reg = X86MFInfo->getSRetReturnReg();
881    assert(Reg &&
882           "SRetReturnReg should have been set in LowerFormalArguments()!");
883    unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
884    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
885            RetReg).addReg(Reg);
886    RetRegs.push_back(RetReg);
887  }
888
889  // Now emit the RET.
890  MachineInstrBuilder MIB =
891    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
892  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
893    MIB.addReg(RetRegs[i], RegState::Implicit);
894  return true;
895}
896
897/// X86SelectLoad - Select and emit code to implement load instructions.
898///
899bool X86FastISel::X86SelectLoad(const Instruction *I)  {
900  // Atomic loads need special handling.
901  if (cast<LoadInst>(I)->isAtomic())
902    return false;
903
904  MVT VT;
905  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
906    return false;
907
908  X86AddressMode AM;
909  if (!X86SelectAddress(I->getOperand(0), AM))
910    return false;
911
912  unsigned ResultReg = 0;
913  if (X86FastEmitLoad(VT, AM, ResultReg)) {
914    UpdateValueMap(I, ResultReg);
915    return true;
916  }
917  return false;
918}
919
920static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
921  bool HasAVX = Subtarget->hasAVX();
922  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
923  bool X86ScalarSSEf64 = Subtarget->hasSSE2();
924
925  switch (VT.getSimpleVT().SimpleTy) {
926  default:       return 0;
927  case MVT::i8:  return X86::CMP8rr;
928  case MVT::i16: return X86::CMP16rr;
929  case MVT::i32: return X86::CMP32rr;
930  case MVT::i64: return X86::CMP64rr;
931  case MVT::f32:
932    return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
933  case MVT::f64:
934    return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
935  }
936}
937
938/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
939/// of the comparison, return an opcode that works for the compare (e.g.
940/// CMP32ri) otherwise return 0.
941static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
942  switch (VT.getSimpleVT().SimpleTy) {
943  // Otherwise, we can't fold the immediate into this comparison.
944  default: return 0;
945  case MVT::i8: return X86::CMP8ri;
946  case MVT::i16: return X86::CMP16ri;
947  case MVT::i32: return X86::CMP32ri;
948  case MVT::i64:
949    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
950    // field.
951    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
952      return X86::CMP64ri32;
953    return 0;
954  }
955}
956
957bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
958                                     EVT VT) {
959  unsigned Op0Reg = getRegForValue(Op0);
960  if (Op0Reg == 0) return false;
961
962  // Handle 'null' like i32/i64 0.
963  if (isa<ConstantPointerNull>(Op1))
964    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
965
966  // We have two options: compare with register or immediate.  If the RHS of
967  // the compare is an immediate that we can fold into this compare, use
968  // CMPri, otherwise use CMPrr.
969  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
970    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
971      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareImmOpc))
972        .addReg(Op0Reg)
973        .addImm(Op1C->getSExtValue());
974      return true;
975    }
976  }
977
978  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
979  if (CompareOpc == 0) return false;
980
981  unsigned Op1Reg = getRegForValue(Op1);
982  if (Op1Reg == 0) return false;
983  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareOpc))
984    .addReg(Op0Reg)
985    .addReg(Op1Reg);
986
987  return true;
988}
989
990bool X86FastISel::X86SelectCmp(const Instruction *I) {
991  const CmpInst *CI = cast<CmpInst>(I);
992
993  MVT VT;
994  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
995    return false;
996
997  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
998  unsigned SetCCOpc;
999  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
1000  switch (CI->getPredicate()) {
1001  case CmpInst::FCMP_OEQ: {
1002    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
1003      return false;
1004
1005    unsigned EReg = createResultReg(&X86::GR8RegClass);
1006    unsigned NPReg = createResultReg(&X86::GR8RegClass);
1007    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETEr), EReg);
1008    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1009            TII.get(X86::SETNPr), NPReg);
1010    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1011            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
1012    UpdateValueMap(I, ResultReg);
1013    return true;
1014  }
1015  case CmpInst::FCMP_UNE: {
1016    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
1017      return false;
1018
1019    unsigned NEReg = createResultReg(&X86::GR8RegClass);
1020    unsigned PReg = createResultReg(&X86::GR8RegClass);
1021    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETNEr), NEReg);
1022    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETPr), PReg);
1023    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::OR8rr),ResultReg)
1024      .addReg(PReg).addReg(NEReg);
1025    UpdateValueMap(I, ResultReg);
1026    return true;
1027  }
1028  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
1029  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
1030  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
1031  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
1032  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
1033  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
1034  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
1035  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
1036  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
1037  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
1038  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
1039  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
1040
1041  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
1042  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
1043  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
1044  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
1045  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
1046  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
1047  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
1048  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
1049  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
1050  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
1051  default:
1052    return false;
1053  }
1054
1055  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1056  if (SwapArgs)
1057    std::swap(Op0, Op1);
1058
1059  // Emit a compare of Op0/Op1.
1060  if (!X86FastEmitCompare(Op0, Op1, VT))
1061    return false;
1062
1063  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SetCCOpc), ResultReg);
1064  UpdateValueMap(I, ResultReg);
1065  return true;
1066}
1067
1068bool X86FastISel::X86SelectZExt(const Instruction *I) {
1069  EVT DstVT = TLI.getValueType(I->getType());
1070  if (!TLI.isTypeLegal(DstVT))
1071    return false;
1072
1073  unsigned ResultReg = getRegForValue(I->getOperand(0));
1074  if (ResultReg == 0)
1075    return false;
1076
1077  // Handle zero-extension from i1 to i8, which is common.
1078  MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
1079  if (SrcVT.SimpleTy == MVT::i1) {
1080    // Set the high bits to zero.
1081    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1082    SrcVT = MVT::i8;
1083
1084    if (ResultReg == 0)
1085      return false;
1086  }
1087
1088  if (DstVT == MVT::i64) {
1089    // Handle extension to 64-bits via sub-register shenanigans.
1090    unsigned MovInst;
1091
1092    switch (SrcVT.SimpleTy) {
1093    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1094    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1095    case MVT::i32: MovInst = X86::MOV32rr;     break;
1096    default: llvm_unreachable("Unexpected zext to i64 source type");
1097    }
1098
1099    unsigned Result32 = createResultReg(&X86::GR32RegClass);
1100    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1101      .addReg(ResultReg);
1102
1103    ResultReg = createResultReg(&X86::GR64RegClass);
1104    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1105            ResultReg)
1106      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1107  } else if (DstVT != MVT::i8) {
1108    ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1109                           ResultReg, /*Kill=*/true);
1110    if (ResultReg == 0)
1111      return false;
1112  }
1113
1114  UpdateValueMap(I, ResultReg);
1115  return true;
1116}
1117
1118
1119bool X86FastISel::X86SelectBranch(const Instruction *I) {
1120  // Unconditional branches are selected by tablegen-generated code.
1121  // Handle a conditional branch.
1122  const BranchInst *BI = cast<BranchInst>(I);
1123  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1124  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1125
1126  // Fold the common case of a conditional branch with a comparison
1127  // in the same block (values defined on other blocks may not have
1128  // initialized registers).
1129  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1130    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1131      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
1132
1133      // Try to take advantage of fallthrough opportunities.
1134      CmpInst::Predicate Predicate = CI->getPredicate();
1135      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1136        std::swap(TrueMBB, FalseMBB);
1137        Predicate = CmpInst::getInversePredicate(Predicate);
1138      }
1139
1140      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
1141      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
1142
1143      switch (Predicate) {
1144      case CmpInst::FCMP_OEQ:
1145        std::swap(TrueMBB, FalseMBB);
1146        Predicate = CmpInst::FCMP_UNE;
1147        // FALL THROUGH
1148      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1149      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1150      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1151      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
1152      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
1153      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1154      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
1155      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
1156      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
1157      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
1158      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
1159      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1160      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1161
1162      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
1163      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
1164      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1165      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1166      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1167      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1168      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
1169      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
1170      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
1171      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
1172      default:
1173        return false;
1174      }
1175
1176      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1177      if (SwapArgs)
1178        std::swap(Op0, Op1);
1179
1180      // Emit a compare of the LHS and RHS, setting the flags.
1181      if (!X86FastEmitCompare(Op0, Op1, VT))
1182        return false;
1183
1184      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1185        .addMBB(TrueMBB);
1186
1187      if (Predicate == CmpInst::FCMP_UNE) {
1188        // X86 requires a second branch to handle UNE (and OEQ,
1189        // which is mapped to UNE above).
1190        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4))
1191          .addMBB(TrueMBB);
1192      }
1193
1194      FastEmitBranch(FalseMBB, DbgLoc);
1195      FuncInfo.MBB->addSuccessor(TrueMBB);
1196      return true;
1197    }
1198  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1199    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1200    // typically happen for _Bool and C++ bools.
1201    MVT SourceVT;
1202    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1203        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1204      unsigned TestOpc = 0;
1205      switch (SourceVT.SimpleTy) {
1206      default: break;
1207      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1208      case MVT::i16: TestOpc = X86::TEST16ri; break;
1209      case MVT::i32: TestOpc = X86::TEST32ri; break;
1210      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1211      }
1212      if (TestOpc) {
1213        unsigned OpReg = getRegForValue(TI->getOperand(0));
1214        if (OpReg == 0) return false;
1215        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1216          .addReg(OpReg).addImm(1);
1217
1218        unsigned JmpOpc = X86::JNE_4;
1219        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1220          std::swap(TrueMBB, FalseMBB);
1221          JmpOpc = X86::JE_4;
1222        }
1223
1224        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1225          .addMBB(TrueMBB);
1226        FastEmitBranch(FalseMBB, DbgLoc);
1227        FuncInfo.MBB->addSuccessor(TrueMBB);
1228        return true;
1229      }
1230    }
1231  }
1232
1233  // Otherwise do a clumsy setcc and re-test it.
1234  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1235  // in an explicit cast, so make sure to handle that correctly.
1236  unsigned OpReg = getRegForValue(BI->getCondition());
1237  if (OpReg == 0) return false;
1238
1239  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1240    .addReg(OpReg).addImm(1);
1241  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4))
1242    .addMBB(TrueMBB);
1243  FastEmitBranch(FalseMBB, DbgLoc);
1244  FuncInfo.MBB->addSuccessor(TrueMBB);
1245  return true;
1246}
1247
1248bool X86FastISel::X86SelectShift(const Instruction *I) {
1249  unsigned CReg = 0, OpReg = 0;
1250  const TargetRegisterClass *RC = nullptr;
1251  if (I->getType()->isIntegerTy(8)) {
1252    CReg = X86::CL;
1253    RC = &X86::GR8RegClass;
1254    switch (I->getOpcode()) {
1255    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1256    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1257    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1258    default: return false;
1259    }
1260  } else if (I->getType()->isIntegerTy(16)) {
1261    CReg = X86::CX;
1262    RC = &X86::GR16RegClass;
1263    switch (I->getOpcode()) {
1264    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1265    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1266    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1267    default: return false;
1268    }
1269  } else if (I->getType()->isIntegerTy(32)) {
1270    CReg = X86::ECX;
1271    RC = &X86::GR32RegClass;
1272    switch (I->getOpcode()) {
1273    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1274    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1275    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1276    default: return false;
1277    }
1278  } else if (I->getType()->isIntegerTy(64)) {
1279    CReg = X86::RCX;
1280    RC = &X86::GR64RegClass;
1281    switch (I->getOpcode()) {
1282    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1283    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1284    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1285    default: return false;
1286    }
1287  } else {
1288    return false;
1289  }
1290
1291  MVT VT;
1292  if (!isTypeLegal(I->getType(), VT))
1293    return false;
1294
1295  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1296  if (Op0Reg == 0) return false;
1297
1298  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1299  if (Op1Reg == 0) return false;
1300  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1301          CReg).addReg(Op1Reg);
1302
1303  // The shift instruction uses X86::CL. If we defined a super-register
1304  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1305  if (CReg != X86::CL)
1306    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1307            TII.get(TargetOpcode::KILL), X86::CL)
1308      .addReg(CReg, RegState::Kill);
1309
1310  unsigned ResultReg = createResultReg(RC);
1311  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1312    .addReg(Op0Reg);
1313  UpdateValueMap(I, ResultReg);
1314  return true;
1315}
1316
1317bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1318  const static unsigned NumTypes = 4; // i8, i16, i32, i64
1319  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1320  const static bool S = true;  // IsSigned
1321  const static bool U = false; // !IsSigned
1322  const static unsigned Copy = TargetOpcode::COPY;
1323  // For the X86 DIV/IDIV instruction, in most cases the dividend
1324  // (numerator) must be in a specific register pair highreg:lowreg,
1325  // producing the quotient in lowreg and the remainder in highreg.
1326  // For most data types, to set up the instruction, the dividend is
1327  // copied into lowreg, and lowreg is sign-extended or zero-extended
1328  // into highreg.  The exception is i8, where the dividend is defined
1329  // as a single register rather than a register pair, and we
1330  // therefore directly sign-extend or zero-extend the dividend into
1331  // lowreg, instead of copying, and ignore the highreg.
1332  const static struct DivRemEntry {
1333    // The following portion depends only on the data type.
1334    const TargetRegisterClass *RC;
1335    unsigned LowInReg;  // low part of the register pair
1336    unsigned HighInReg; // high part of the register pair
1337    // The following portion depends on both the data type and the operation.
1338    struct DivRemResult {
1339    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1340    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1341                              // highreg, or copying a zero into highreg.
1342    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1343                              // zero/sign-extending into lowreg for i8.
1344    unsigned DivRemResultReg; // Register containing the desired result.
1345    bool IsOpSigned;          // Whether to use signed or unsigned form.
1346    } ResultTable[NumOps];
1347  } OpTable[NumTypes] = {
1348    { &X86::GR8RegClass,  X86::AX,  0, {
1349        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1350        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1351        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1352        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1353      }
1354    }, // i8
1355    { &X86::GR16RegClass, X86::AX,  X86::DX, {
1356        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1357        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1358        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1359        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1360      }
1361    }, // i16
1362    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1363        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1364        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1365        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1366        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1367      }
1368    }, // i32
1369    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1370        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1371        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1372        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1373        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1374      }
1375    }, // i64
1376  };
1377
1378  MVT VT;
1379  if (!isTypeLegal(I->getType(), VT))
1380    return false;
1381
1382  unsigned TypeIndex, OpIndex;
1383  switch (VT.SimpleTy) {
1384  default: return false;
1385  case MVT::i8:  TypeIndex = 0; break;
1386  case MVT::i16: TypeIndex = 1; break;
1387  case MVT::i32: TypeIndex = 2; break;
1388  case MVT::i64: TypeIndex = 3;
1389    if (!Subtarget->is64Bit())
1390      return false;
1391    break;
1392  }
1393
1394  switch (I->getOpcode()) {
1395  default: llvm_unreachable("Unexpected div/rem opcode");
1396  case Instruction::SDiv: OpIndex = 0; break;
1397  case Instruction::SRem: OpIndex = 1; break;
1398  case Instruction::UDiv: OpIndex = 2; break;
1399  case Instruction::URem: OpIndex = 3; break;
1400  }
1401
1402  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1403  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1404  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1405  if (Op0Reg == 0)
1406    return false;
1407  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1408  if (Op1Reg == 0)
1409    return false;
1410
1411  // Move op0 into low-order input register.
1412  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1413          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1414  // Zero-extend or sign-extend into high-order input register.
1415  if (OpEntry.OpSignExtend) {
1416    if (OpEntry.IsOpSigned)
1417      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1418              TII.get(OpEntry.OpSignExtend));
1419    else {
1420      unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1421      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1422              TII.get(X86::MOV32r0), Zero32);
1423
1424      // Copy the zero into the appropriate sub/super/identical physical
1425      // register. Unfortunately the operations needed are not uniform enough to
1426      // fit neatly into the table above.
1427      if (VT.SimpleTy == MVT::i16) {
1428        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1429                TII.get(Copy), TypeEntry.HighInReg)
1430          .addReg(Zero32, 0, X86::sub_16bit);
1431      } else if (VT.SimpleTy == MVT::i32) {
1432        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1433                TII.get(Copy), TypeEntry.HighInReg)
1434            .addReg(Zero32);
1435      } else if (VT.SimpleTy == MVT::i64) {
1436        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1437                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1438            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1439      }
1440    }
1441  }
1442  // Generate the DIV/IDIV instruction.
1443  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1444          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1445  // For i8 remainder, we can't reference AH directly, as we'll end
1446  // up with bogus copies like %R9B = COPY %AH. Reference AX
1447  // instead to prevent AH references in a REX instruction.
1448  //
1449  // The current assumption of the fast register allocator is that isel
1450  // won't generate explicit references to the GPR8_NOREX registers. If
1451  // the allocator and/or the backend get enhanced to be more robust in
1452  // that regard, this can be, and should be, removed.
1453  unsigned ResultReg = 0;
1454  if ((I->getOpcode() == Instruction::SRem ||
1455       I->getOpcode() == Instruction::URem) &&
1456      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1457    unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1458    unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1459    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1460            TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1461
1462    // Shift AX right by 8 bits instead of using AH.
1463    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1464            ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1465
1466    // Now reference the 8-bit subreg of the result.
1467    ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1468                                           /*Kill=*/true, X86::sub_8bit);
1469  }
1470  // Copy the result out of the physreg if we haven't already.
1471  if (!ResultReg) {
1472    ResultReg = createResultReg(TypeEntry.RC);
1473    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1474        .addReg(OpEntry.DivRemResultReg);
1475  }
1476  UpdateValueMap(I, ResultReg);
1477
1478  return true;
1479}
1480
1481bool X86FastISel::X86SelectSelect(const Instruction *I) {
1482  MVT VT;
1483  if (!isTypeLegal(I->getType(), VT))
1484    return false;
1485
1486  // We only use cmov here, if we don't have a cmov instruction bail.
1487  if (!Subtarget->hasCMov()) return false;
1488
1489  unsigned Opc = 0;
1490  const TargetRegisterClass *RC = nullptr;
1491  if (VT == MVT::i16) {
1492    Opc = X86::CMOVE16rr;
1493    RC = &X86::GR16RegClass;
1494  } else if (VT == MVT::i32) {
1495    Opc = X86::CMOVE32rr;
1496    RC = &X86::GR32RegClass;
1497  } else if (VT == MVT::i64) {
1498    Opc = X86::CMOVE64rr;
1499    RC = &X86::GR64RegClass;
1500  } else {
1501    return false;
1502  }
1503
1504  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1505  if (Op0Reg == 0) return false;
1506  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1507  if (Op1Reg == 0) return false;
1508  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1509  if (Op2Reg == 0) return false;
1510
1511  // Selects operate on i1, however, Op0Reg is 8 bits width and may contain
1512  // garbage. Indeed, only the less significant bit is supposed to be accurate.
1513  // If we read more than the lsb, we may see non-zero values whereas lsb
1514  // is zero. Therefore, we have to truncate Op0Reg to i1 for the select.
1515  // This is achieved by performing TEST against 1.
1516  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1517    .addReg(Op0Reg).addImm(1);
1518  unsigned ResultReg = createResultReg(RC);
1519  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1520    .addReg(Op1Reg).addReg(Op2Reg);
1521  UpdateValueMap(I, ResultReg);
1522  return true;
1523}
1524
1525bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1526  // fpext from float to double.
1527  if (X86ScalarSSEf64 &&
1528      I->getType()->isDoubleTy()) {
1529    const Value *V = I->getOperand(0);
1530    if (V->getType()->isFloatTy()) {
1531      unsigned OpReg = getRegForValue(V);
1532      if (OpReg == 0) return false;
1533      unsigned ResultReg = createResultReg(&X86::FR64RegClass);
1534      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1535              TII.get(X86::CVTSS2SDrr), ResultReg)
1536        .addReg(OpReg);
1537      UpdateValueMap(I, ResultReg);
1538      return true;
1539    }
1540  }
1541
1542  return false;
1543}
1544
1545bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1546  if (X86ScalarSSEf64) {
1547    if (I->getType()->isFloatTy()) {
1548      const Value *V = I->getOperand(0);
1549      if (V->getType()->isDoubleTy()) {
1550        unsigned OpReg = getRegForValue(V);
1551        if (OpReg == 0) return false;
1552        unsigned ResultReg = createResultReg(&X86::FR32RegClass);
1553        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1554                TII.get(X86::CVTSD2SSrr), ResultReg)
1555          .addReg(OpReg);
1556        UpdateValueMap(I, ResultReg);
1557        return true;
1558      }
1559    }
1560  }
1561
1562  return false;
1563}
1564
1565bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1566  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1567  EVT DstVT = TLI.getValueType(I->getType());
1568
1569  // This code only handles truncation to byte.
1570  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1571    return false;
1572  if (!TLI.isTypeLegal(SrcVT))
1573    return false;
1574
1575  unsigned InputReg = getRegForValue(I->getOperand(0));
1576  if (!InputReg)
1577    // Unhandled operand.  Halt "fast" selection and bail.
1578    return false;
1579
1580  if (SrcVT == MVT::i8) {
1581    // Truncate from i8 to i1; no code needed.
1582    UpdateValueMap(I, InputReg);
1583    return true;
1584  }
1585
1586  if (!Subtarget->is64Bit()) {
1587    // If we're on x86-32; we can't extract an i8 from a general register.
1588    // First issue a copy to GR16_ABCD or GR32_ABCD.
1589    const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
1590      (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
1591      (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
1592    unsigned CopyReg = createResultReg(CopyRC);
1593    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1594            CopyReg).addReg(InputReg);
1595    InputReg = CopyReg;
1596  }
1597
1598  // Issue an extract_subreg.
1599  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1600                                                  InputReg, /*Kill=*/true,
1601                                                  X86::sub_8bit);
1602  if (!ResultReg)
1603    return false;
1604
1605  UpdateValueMap(I, ResultReg);
1606  return true;
1607}
1608
1609bool X86FastISel::IsMemcpySmall(uint64_t Len) {
1610  return Len <= (Subtarget->is64Bit() ? 32 : 16);
1611}
1612
1613bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
1614                                     X86AddressMode SrcAM, uint64_t Len) {
1615
1616  // Make sure we don't bloat code by inlining very large memcpy's.
1617  if (!IsMemcpySmall(Len))
1618    return false;
1619
1620  bool i64Legal = Subtarget->is64Bit();
1621
1622  // We don't care about alignment here since we just emit integer accesses.
1623  while (Len) {
1624    MVT VT;
1625    if (Len >= 8 && i64Legal)
1626      VT = MVT::i64;
1627    else if (Len >= 4)
1628      VT = MVT::i32;
1629    else if (Len >= 2)
1630      VT = MVT::i16;
1631    else {
1632      VT = MVT::i8;
1633    }
1634
1635    unsigned Reg;
1636    bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
1637    RV &= X86FastEmitStore(VT, Reg, DestAM);
1638    assert(RV && "Failed to emit load or store??");
1639
1640    unsigned Size = VT.getSizeInBits()/8;
1641    Len -= Size;
1642    DestAM.Disp += Size;
1643    SrcAM.Disp += Size;
1644  }
1645
1646  return true;
1647}
1648
1649bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1650  // FIXME: Handle more intrinsics.
1651  switch (I.getIntrinsicID()) {
1652  default: return false;
1653  case Intrinsic::memcpy: {
1654    const MemCpyInst &MCI = cast<MemCpyInst>(I);
1655    // Don't handle volatile or variable length memcpys.
1656    if (MCI.isVolatile())
1657      return false;
1658
1659    if (isa<ConstantInt>(MCI.getLength())) {
1660      // Small memcpy's are common enough that we want to do them
1661      // without a call if possible.
1662      uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
1663      if (IsMemcpySmall(Len)) {
1664        X86AddressMode DestAM, SrcAM;
1665        if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
1666            !X86SelectAddress(MCI.getRawSource(), SrcAM))
1667          return false;
1668        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
1669        return true;
1670      }
1671    }
1672
1673    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1674    if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
1675      return false;
1676
1677    if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
1678      return false;
1679
1680    return DoSelectCall(&I, "memcpy");
1681  }
1682  case Intrinsic::memset: {
1683    const MemSetInst &MSI = cast<MemSetInst>(I);
1684
1685    if (MSI.isVolatile())
1686      return false;
1687
1688    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1689    if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
1690      return false;
1691
1692    if (MSI.getDestAddressSpace() > 255)
1693      return false;
1694
1695    return DoSelectCall(&I, "memset");
1696  }
1697  case Intrinsic::stackprotector: {
1698    // Emit code to store the stack guard onto the stack.
1699    EVT PtrTy = TLI.getPointerTy();
1700
1701    const Value *Op1 = I.getArgOperand(0); // The guard's value.
1702    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1703
1704    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
1705
1706    // Grab the frame index.
1707    X86AddressMode AM;
1708    if (!X86SelectAddress(Slot, AM)) return false;
1709    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1710    return true;
1711  }
1712  case Intrinsic::dbg_declare: {
1713    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1714    X86AddressMode AM;
1715    assert(DI->getAddress() && "Null address should be checked earlier!");
1716    if (!X86SelectAddress(DI->getAddress(), AM))
1717      return false;
1718    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1719    // FIXME may need to add RegState::Debug to any registers produced,
1720    // although ESP/EBP should be the only ones at the moment.
1721    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM).
1722      addImm(0).addMetadata(DI->getVariable());
1723    return true;
1724  }
1725  case Intrinsic::trap: {
1726    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
1727    return true;
1728  }
1729  case Intrinsic::sadd_with_overflow:
1730  case Intrinsic::uadd_with_overflow: {
1731    // FIXME: Should fold immediates.
1732
1733    // Replace "add with overflow" intrinsics with an "add" instruction followed
1734    // by a seto/setc instruction.
1735    const Function *Callee = I.getCalledFunction();
1736    Type *RetTy =
1737      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1738
1739    MVT VT;
1740    if (!isTypeLegal(RetTy, VT))
1741      return false;
1742
1743    const Value *Op1 = I.getArgOperand(0);
1744    const Value *Op2 = I.getArgOperand(1);
1745    unsigned Reg1 = getRegForValue(Op1);
1746    unsigned Reg2 = getRegForValue(Op2);
1747
1748    if (Reg1 == 0 || Reg2 == 0)
1749      // FIXME: Handle values *not* in registers.
1750      return false;
1751
1752    unsigned OpC = 0;
1753    if (VT == MVT::i32)
1754      OpC = X86::ADD32rr;
1755    else if (VT == MVT::i64)
1756      OpC = X86::ADD64rr;
1757    else
1758      return false;
1759
1760    // The call to CreateRegs builds two sequential registers, to store the
1761    // both the returned values.
1762    unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
1763    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpC), ResultReg)
1764      .addReg(Reg1).addReg(Reg2);
1765
1766    unsigned Opc = X86::SETBr;
1767    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1768      Opc = X86::SETOr;
1769    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1770            ResultReg + 1);
1771
1772    UpdateValueMap(&I, ResultReg, 2);
1773    return true;
1774  }
1775  }
1776}
1777
1778bool X86FastISel::FastLowerArguments() {
1779  if (!FuncInfo.CanLowerReturn)
1780    return false;
1781
1782  const Function *F = FuncInfo.Fn;
1783  if (F->isVarArg())
1784    return false;
1785
1786  CallingConv::ID CC = F->getCallingConv();
1787  if (CC != CallingConv::C)
1788    return false;
1789
1790  if (Subtarget->isCallingConvWin64(CC))
1791    return false;
1792
1793  if (!Subtarget->is64Bit())
1794    return false;
1795
1796  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
1797  unsigned Idx = 1;
1798  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1799       I != E; ++I, ++Idx) {
1800    if (Idx > 6)
1801      return false;
1802
1803    if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
1804        F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
1805        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
1806        F->getAttributes().hasAttribute(Idx, Attribute::Nest))
1807      return false;
1808
1809    Type *ArgTy = I->getType();
1810    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
1811      return false;
1812
1813    EVT ArgVT = TLI.getValueType(ArgTy);
1814    if (!ArgVT.isSimple()) return false;
1815    switch (ArgVT.getSimpleVT().SimpleTy) {
1816    case MVT::i32:
1817    case MVT::i64:
1818      break;
1819    default:
1820      return false;
1821    }
1822  }
1823
1824  static const MCPhysReg GPR32ArgRegs[] = {
1825    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1826  };
1827  static const MCPhysReg GPR64ArgRegs[] = {
1828    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
1829  };
1830
1831  Idx = 0;
1832  const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32);
1833  const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64);
1834  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1835       I != E; ++I, ++Idx) {
1836    bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32;
1837    const TargetRegisterClass *RC = is32Bit ? RC32 : RC64;
1838    unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx];
1839    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
1840    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1841    // Without this, EmitLiveInCopies may eliminate the livein if its only
1842    // use is a bitcast (which isn't turned into an instruction).
1843    unsigned ResultReg = createResultReg(RC);
1844    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1845            TII.get(TargetOpcode::COPY),
1846            ResultReg).addReg(DstReg, getKillRegState(true));
1847    UpdateValueMap(I, ResultReg);
1848  }
1849  return true;
1850}
1851
1852bool X86FastISel::X86SelectCall(const Instruction *I) {
1853  const CallInst *CI = cast<CallInst>(I);
1854  const Value *Callee = CI->getCalledValue();
1855
1856  // Can't handle inline asm yet.
1857  if (isa<InlineAsm>(Callee))
1858    return false;
1859
1860  // Handle intrinsic calls.
1861  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1862    return X86VisitIntrinsicCall(*II);
1863
1864  // Allow SelectionDAG isel to handle tail calls.
1865  if (cast<CallInst>(I)->isTailCall())
1866    return false;
1867
1868  return DoSelectCall(I, nullptr);
1869}
1870
1871static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
1872                                           const ImmutableCallSite &CS) {
1873  if (Subtarget.is64Bit())
1874    return 0;
1875  if (Subtarget.getTargetTriple().isOSMSVCRT())
1876    return 0;
1877  CallingConv::ID CC = CS.getCallingConv();
1878  if (CC == CallingConv::Fast || CC == CallingConv::GHC)
1879    return 0;
1880  if (!CS.paramHasAttr(1, Attribute::StructRet))
1881    return 0;
1882  if (CS.paramHasAttr(1, Attribute::InReg))
1883    return 0;
1884  return 4;
1885}
1886
1887// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
1888bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
1889  const CallInst *CI = cast<CallInst>(I);
1890  const Value *Callee = CI->getCalledValue();
1891
1892  // Handle only C and fastcc calling conventions for now.
1893  ImmutableCallSite CS(CI);
1894  CallingConv::ID CC = CS.getCallingConv();
1895  bool isWin64 = Subtarget->isCallingConvWin64(CC);
1896  if (CC != CallingConv::C && CC != CallingConv::Fast &&
1897      CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
1898      CC != CallingConv::X86_64_SysV)
1899    return false;
1900
1901  // fastcc with -tailcallopt is intended to provide a guaranteed
1902  // tail call optimization. Fastisel doesn't know how to do that.
1903  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1904    return false;
1905
1906  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1907  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1908  bool isVarArg = FTy->isVarArg();
1909
1910  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
1911  // x86-32.  Special handling for x86-64 is implemented.
1912  if (isVarArg && isWin64)
1913    return false;
1914
1915  // Don't know about inalloca yet.
1916  if (CS.hasInAllocaArgument())
1917    return false;
1918
1919  // Fast-isel doesn't know about callee-pop yet.
1920  if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
1921                       TM.Options.GuaranteedTailCallOpt))
1922    return false;
1923
1924  // Check whether the function can return without sret-demotion.
1925  SmallVector<ISD::OutputArg, 4> Outs;
1926  GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
1927  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
1928                                           *FuncInfo.MF, FTy->isVarArg(),
1929                                           Outs, FTy->getContext());
1930  if (!CanLowerReturn)
1931    return false;
1932
1933  // Materialize callee address in a register. FIXME: GV address can be
1934  // handled with a CALLpcrel32 instead.
1935  X86AddressMode CalleeAM;
1936  if (!X86SelectCallAddress(Callee, CalleeAM))
1937    return false;
1938  unsigned CalleeOp = 0;
1939  const GlobalValue *GV = nullptr;
1940  if (CalleeAM.GV != nullptr) {
1941    GV = CalleeAM.GV;
1942  } else if (CalleeAM.Base.Reg != 0) {
1943    CalleeOp = CalleeAM.Base.Reg;
1944  } else
1945    return false;
1946
1947  // Deal with call operands first.
1948  SmallVector<const Value *, 8> ArgVals;
1949  SmallVector<unsigned, 8> Args;
1950  SmallVector<MVT, 8> ArgVTs;
1951  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1952  unsigned arg_size = CS.arg_size();
1953  Args.reserve(arg_size);
1954  ArgVals.reserve(arg_size);
1955  ArgVTs.reserve(arg_size);
1956  ArgFlags.reserve(arg_size);
1957  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1958       i != e; ++i) {
1959    // If we're lowering a mem intrinsic instead of a regular call, skip the
1960    // last two arguments, which should not passed to the underlying functions.
1961    if (MemIntName && e-i <= 2)
1962      break;
1963    Value *ArgVal = *i;
1964    ISD::ArgFlagsTy Flags;
1965    unsigned AttrInd = i - CS.arg_begin() + 1;
1966    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1967      Flags.setSExt();
1968    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1969      Flags.setZExt();
1970
1971    if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
1972      PointerType *Ty = cast<PointerType>(ArgVal->getType());
1973      Type *ElementTy = Ty->getElementType();
1974      unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1975      unsigned FrameAlign = CS.getParamAlignment(AttrInd);
1976      if (!FrameAlign)
1977        FrameAlign = TLI.getByValTypeAlignment(ElementTy);
1978      Flags.setByVal();
1979      Flags.setByValSize(FrameSize);
1980      Flags.setByValAlign(FrameAlign);
1981      if (!IsMemcpySmall(FrameSize))
1982        return false;
1983    }
1984
1985    if (CS.paramHasAttr(AttrInd, Attribute::InReg))
1986      Flags.setInReg();
1987    if (CS.paramHasAttr(AttrInd, Attribute::Nest))
1988      Flags.setNest();
1989
1990    // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
1991    // instruction.  This is safe because it is common to all fastisel supported
1992    // calling conventions on x86.
1993    if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
1994      if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
1995          CI->getBitWidth() == 16) {
1996        if (Flags.isSExt())
1997          ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
1998        else
1999          ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
2000      }
2001    }
2002
2003    unsigned ArgReg;
2004
2005    // Passing bools around ends up doing a trunc to i1 and passing it.
2006    // Codegen this as an argument + "and 1".
2007    if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
2008        cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
2009        ArgVal->hasOneUse()) {
2010      ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
2011      ArgReg = getRegForValue(ArgVal);
2012      if (ArgReg == 0) return false;
2013
2014      MVT ArgVT;
2015      if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
2016
2017      ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
2018                           ArgVal->hasOneUse(), 1);
2019    } else {
2020      ArgReg = getRegForValue(ArgVal);
2021    }
2022
2023    if (ArgReg == 0) return false;
2024
2025    Type *ArgTy = ArgVal->getType();
2026    MVT ArgVT;
2027    if (!isTypeLegal(ArgTy, ArgVT))
2028      return false;
2029    if (ArgVT == MVT::x86mmx)
2030      return false;
2031    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2032    Flags.setOrigAlign(OriginalAlignment);
2033
2034    Args.push_back(ArgReg);
2035    ArgVals.push_back(ArgVal);
2036    ArgVTs.push_back(ArgVT);
2037    ArgFlags.push_back(Flags);
2038  }
2039
2040  // Analyze operands of the call, assigning locations to each operand.
2041  SmallVector<CCValAssign, 16> ArgLocs;
2042  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
2043                 I->getParent()->getContext());
2044
2045  // Allocate shadow area for Win64
2046  if (isWin64)
2047    CCInfo.AllocateStack(32, 8);
2048
2049  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
2050
2051  // Get a count of how many bytes are to be pushed on the stack.
2052  unsigned NumBytes = CCInfo.getNextStackOffset();
2053
2054  // Issue CALLSEQ_START
2055  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2056  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2057    .addImm(NumBytes);
2058
2059  // Process argument: walk the register/memloc assignments, inserting
2060  // copies / loads.
2061  SmallVector<unsigned, 4> RegArgs;
2062  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2063    CCValAssign &VA = ArgLocs[i];
2064    unsigned Arg = Args[VA.getValNo()];
2065    EVT ArgVT = ArgVTs[VA.getValNo()];
2066
2067    // Promote the value if needed.
2068    switch (VA.getLocInfo()) {
2069    case CCValAssign::Full: break;
2070    case CCValAssign::SExt: {
2071      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2072             "Unexpected extend");
2073      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
2074                                       Arg, ArgVT, Arg);
2075      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
2076      ArgVT = VA.getLocVT();
2077      break;
2078    }
2079    case CCValAssign::ZExt: {
2080      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2081             "Unexpected extend");
2082      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
2083                                       Arg, ArgVT, Arg);
2084      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
2085      ArgVT = VA.getLocVT();
2086      break;
2087    }
2088    case CCValAssign::AExt: {
2089      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2090             "Unexpected extend");
2091      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
2092                                       Arg, ArgVT, Arg);
2093      if (!Emitted)
2094        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
2095                                    Arg, ArgVT, Arg);
2096      if (!Emitted)
2097        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
2098                                    Arg, ArgVT, Arg);
2099
2100      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
2101      ArgVT = VA.getLocVT();
2102      break;
2103    }
2104    case CCValAssign::BCvt: {
2105      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
2106                               ISD::BITCAST, Arg, /*TODO: Kill=*/false);
2107      assert(BC != 0 && "Failed to emit a bitcast!");
2108      Arg = BC;
2109      ArgVT = VA.getLocVT();
2110      break;
2111    }
2112    case CCValAssign::VExt:
2113      // VExt has not been implemented, so this should be impossible to reach
2114      // for now.  However, fallback to Selection DAG isel once implemented.
2115      return false;
2116    case CCValAssign::Indirect:
2117      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
2118      // support this.
2119      return false;
2120    case CCValAssign::FPExt:
2121      llvm_unreachable("Unexpected loc info!");
2122    }
2123
2124    if (VA.isRegLoc()) {
2125      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2126              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
2127      RegArgs.push_back(VA.getLocReg());
2128    } else {
2129      unsigned LocMemOffset = VA.getLocMemOffset();
2130      X86AddressMode AM;
2131      const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
2132          getTargetMachine()->getRegisterInfo());
2133      AM.Base.Reg = RegInfo->getStackRegister();
2134      AM.Disp = LocMemOffset;
2135      const Value *ArgVal = ArgVals[VA.getValNo()];
2136      ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
2137
2138      if (Flags.isByVal()) {
2139        X86AddressMode SrcAM;
2140        SrcAM.Base.Reg = Arg;
2141        bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
2142        assert(Res && "memcpy length already checked!"); (void)Res;
2143      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
2144        // If this is a really simple value, emit this with the Value* version
2145        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
2146        // as it can cause us to reevaluate the argument.
2147        if (!X86FastEmitStore(ArgVT, ArgVal, AM))
2148          return false;
2149      } else {
2150        if (!X86FastEmitStore(ArgVT, Arg, AM))
2151          return false;
2152      }
2153    }
2154  }
2155
2156  // ELF / PIC requires GOT in the EBX register before function calls via PLT
2157  // GOT pointer.
2158  if (Subtarget->isPICStyleGOT()) {
2159    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2161            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
2162  }
2163
2164  if (Subtarget->is64Bit() && isVarArg && !isWin64) {
2165    // Count the number of XMM registers allocated.
2166    static const MCPhysReg XMMArgRegs[] = {
2167      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2168      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2169    };
2170    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2171    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
2172            X86::AL).addImm(NumXMMRegs);
2173  }
2174
2175  // Issue the call.
2176  MachineInstrBuilder MIB;
2177  if (CalleeOp) {
2178    // Register-indirect call.
2179    unsigned CallOpc;
2180    if (Subtarget->is64Bit())
2181      CallOpc = X86::CALL64r;
2182    else
2183      CallOpc = X86::CALL32r;
2184    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
2185      .addReg(CalleeOp);
2186
2187  } else {
2188    // Direct call.
2189    assert(GV && "Not a direct call");
2190    unsigned CallOpc;
2191    if (Subtarget->is64Bit())
2192      CallOpc = X86::CALL64pcrel32;
2193    else
2194      CallOpc = X86::CALLpcrel32;
2195
2196    // See if we need any target-specific flags on the GV operand.
2197    unsigned char OpFlags = 0;
2198
2199    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2200    // external symbols most go through the PLT in PIC mode.  If the symbol
2201    // has hidden or protected visibility, or if it is static or local, then
2202    // we don't need to use the PLT - we can directly call it.
2203    if (Subtarget->isTargetELF() &&
2204        TM.getRelocationModel() == Reloc::PIC_ &&
2205        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2206      OpFlags = X86II::MO_PLT;
2207    } else if (Subtarget->isPICStyleStubAny() &&
2208               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2209               (!Subtarget->getTargetTriple().isMacOSX() ||
2210                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2211      // PC-relative references to external symbols should go through $stub,
2212      // unless we're building with the leopard linker or later, which
2213      // automatically synthesizes these stubs.
2214      OpFlags = X86II::MO_DARWIN_STUB;
2215    }
2216
2217
2218    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
2219    if (MemIntName)
2220      MIB.addExternalSymbol(MemIntName, OpFlags);
2221    else
2222      MIB.addGlobalAddress(GV, 0, OpFlags);
2223  }
2224
2225  // Add a register mask with the call-preserved registers.
2226  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2227  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
2228
2229  // Add an implicit use GOT pointer in EBX.
2230  if (Subtarget->isPICStyleGOT())
2231    MIB.addReg(X86::EBX, RegState::Implicit);
2232
2233  if (Subtarget->is64Bit() && isVarArg && !isWin64)
2234    MIB.addReg(X86::AL, RegState::Implicit);
2235
2236  // Add implicit physical register uses to the call.
2237  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2238    MIB.addReg(RegArgs[i], RegState::Implicit);
2239
2240  // Issue CALLSEQ_END
2241  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2242  const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
2243  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
2244    .addImm(NumBytes).addImm(NumBytesCallee);
2245
2246  // Build info for return calling conv lowering code.
2247  // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
2248  SmallVector<ISD::InputArg, 32> Ins;
2249  SmallVector<EVT, 4> RetTys;
2250  ComputeValueVTs(TLI, I->getType(), RetTys);
2251  for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
2252    EVT VT = RetTys[i];
2253    MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
2254    unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
2255    for (unsigned j = 0; j != NumRegs; ++j) {
2256      ISD::InputArg MyFlags;
2257      MyFlags.VT = RegisterVT;
2258      MyFlags.Used = !CS.getInstruction()->use_empty();
2259      if (CS.paramHasAttr(0, Attribute::SExt))
2260        MyFlags.Flags.setSExt();
2261      if (CS.paramHasAttr(0, Attribute::ZExt))
2262        MyFlags.Flags.setZExt();
2263      if (CS.paramHasAttr(0, Attribute::InReg))
2264        MyFlags.Flags.setInReg();
2265      Ins.push_back(MyFlags);
2266    }
2267  }
2268
2269  // Now handle call return values.
2270  SmallVector<unsigned, 4> UsedRegs;
2271  SmallVector<CCValAssign, 16> RVLocs;
2272  CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
2273                    I->getParent()->getContext());
2274  unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
2275  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
2276  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2277    EVT CopyVT = RVLocs[i].getValVT();
2278    unsigned CopyReg = ResultReg + i;
2279
2280    // If this is a call to a function that returns an fp value on the x87 fp
2281    // stack, but where we prefer to use the value in xmm registers, copy it
2282    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
2283    if ((RVLocs[i].getLocReg() == X86::ST0 ||
2284         RVLocs[i].getLocReg() == X86::ST1)) {
2285      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
2286        CopyVT = MVT::f80;
2287        CopyReg = createResultReg(&X86::RFP80RegClass);
2288      }
2289      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2290              TII.get(X86::FpPOP_RETVAL), CopyReg);
2291    } else {
2292      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2293              TII.get(TargetOpcode::COPY),
2294              CopyReg).addReg(RVLocs[i].getLocReg());
2295      UsedRegs.push_back(RVLocs[i].getLocReg());
2296    }
2297
2298    if (CopyVT != RVLocs[i].getValVT()) {
2299      // Round the F80 the right size, which also moves to the appropriate xmm
2300      // register. This is accomplished by storing the F80 value in memory and
2301      // then loading it back. Ewww...
2302      EVT ResVT = RVLocs[i].getValVT();
2303      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
2304      unsigned MemSize = ResVT.getSizeInBits()/8;
2305      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
2306      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2307                                TII.get(Opc)), FI)
2308        .addReg(CopyReg);
2309      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
2310      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2311                                TII.get(Opc), ResultReg + i), FI);
2312    }
2313  }
2314
2315  if (RVLocs.size())
2316    UpdateValueMap(I, ResultReg, RVLocs.size());
2317
2318  // Set all unused physreg defs as dead.
2319  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2320
2321  return true;
2322}
2323
2324
2325bool
2326X86FastISel::TargetSelectInstruction(const Instruction *I)  {
2327  switch (I->getOpcode()) {
2328  default: break;
2329  case Instruction::Load:
2330    return X86SelectLoad(I);
2331  case Instruction::Store:
2332    return X86SelectStore(I);
2333  case Instruction::Ret:
2334    return X86SelectRet(I);
2335  case Instruction::ICmp:
2336  case Instruction::FCmp:
2337    return X86SelectCmp(I);
2338  case Instruction::ZExt:
2339    return X86SelectZExt(I);
2340  case Instruction::Br:
2341    return X86SelectBranch(I);
2342  case Instruction::Call:
2343    return X86SelectCall(I);
2344  case Instruction::LShr:
2345  case Instruction::AShr:
2346  case Instruction::Shl:
2347    return X86SelectShift(I);
2348  case Instruction::SDiv:
2349  case Instruction::UDiv:
2350  case Instruction::SRem:
2351  case Instruction::URem:
2352    return X86SelectDivRem(I);
2353  case Instruction::Select:
2354    return X86SelectSelect(I);
2355  case Instruction::Trunc:
2356    return X86SelectTrunc(I);
2357  case Instruction::FPExt:
2358    return X86SelectFPExt(I);
2359  case Instruction::FPTrunc:
2360    return X86SelectFPTrunc(I);
2361  case Instruction::IntToPtr: // Deliberate fall-through.
2362  case Instruction::PtrToInt: {
2363    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
2364    EVT DstVT = TLI.getValueType(I->getType());
2365    if (DstVT.bitsGT(SrcVT))
2366      return X86SelectZExt(I);
2367    if (DstVT.bitsLT(SrcVT))
2368      return X86SelectTrunc(I);
2369    unsigned Reg = getRegForValue(I->getOperand(0));
2370    if (Reg == 0) return false;
2371    UpdateValueMap(I, Reg);
2372    return true;
2373  }
2374  }
2375
2376  return false;
2377}
2378
2379unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
2380  MVT VT;
2381  if (!isTypeLegal(C->getType(), VT))
2382    return 0;
2383
2384  // Can't handle alternate code models yet.
2385  if (TM.getCodeModel() != CodeModel::Small)
2386    return 0;
2387
2388  // Get opcode and regclass of the output for the given load instruction.
2389  unsigned Opc = 0;
2390  const TargetRegisterClass *RC = nullptr;
2391  switch (VT.SimpleTy) {
2392  default: return 0;
2393  case MVT::i8:
2394    Opc = X86::MOV8rm;
2395    RC  = &X86::GR8RegClass;
2396    break;
2397  case MVT::i16:
2398    Opc = X86::MOV16rm;
2399    RC  = &X86::GR16RegClass;
2400    break;
2401  case MVT::i32:
2402    Opc = X86::MOV32rm;
2403    RC  = &X86::GR32RegClass;
2404    break;
2405  case MVT::i64:
2406    // Must be in x86-64 mode.
2407    Opc = X86::MOV64rm;
2408    RC  = &X86::GR64RegClass;
2409    break;
2410  case MVT::f32:
2411    if (X86ScalarSSEf32) {
2412      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
2413      RC  = &X86::FR32RegClass;
2414    } else {
2415      Opc = X86::LD_Fp32m;
2416      RC  = &X86::RFP32RegClass;
2417    }
2418    break;
2419  case MVT::f64:
2420    if (X86ScalarSSEf64) {
2421      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
2422      RC  = &X86::FR64RegClass;
2423    } else {
2424      Opc = X86::LD_Fp64m;
2425      RC  = &X86::RFP64RegClass;
2426    }
2427    break;
2428  case MVT::f80:
2429    // No f80 support yet.
2430    return 0;
2431  }
2432
2433  // Materialize addresses with LEA instructions.
2434  if (isa<GlobalValue>(C)) {
2435    X86AddressMode AM;
2436    if (X86SelectAddress(C, AM)) {
2437      // If the expression is just a basereg, then we're done, otherwise we need
2438      // to emit an LEA.
2439      if (AM.BaseType == X86AddressMode::RegBase &&
2440          AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
2441        return AM.Base.Reg;
2442
2443      Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
2444      unsigned ResultReg = createResultReg(RC);
2445      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2446                             TII.get(Opc), ResultReg), AM);
2447      return ResultReg;
2448    }
2449    return 0;
2450  }
2451
2452  // MachineConstantPool wants an explicit alignment.
2453  unsigned Align = DL.getPrefTypeAlignment(C->getType());
2454  if (Align == 0) {
2455    // Alignment of vector types.  FIXME!
2456    Align = DL.getTypeAllocSize(C->getType());
2457  }
2458
2459  // x86-32 PIC requires a PIC base register for constant pools.
2460  unsigned PICBase = 0;
2461  unsigned char OpFlag = 0;
2462  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
2463    OpFlag = X86II::MO_PIC_BASE_OFFSET;
2464    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2465  } else if (Subtarget->isPICStyleGOT()) {
2466    OpFlag = X86II::MO_GOTOFF;
2467    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2468  } else if (Subtarget->isPICStyleRIPRel() &&
2469             TM.getCodeModel() == CodeModel::Small) {
2470    PICBase = X86::RIP;
2471  }
2472
2473  // Create the load from the constant pool.
2474  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
2475  unsigned ResultReg = createResultReg(RC);
2476  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2477                                   TII.get(Opc), ResultReg),
2478                           MCPOffset, PICBase, OpFlag);
2479
2480  return ResultReg;
2481}
2482
2483unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
2484  // Fail on dynamic allocas. At this point, getRegForValue has already
2485  // checked its CSE maps, so if we're here trying to handle a dynamic
2486  // alloca, we're not going to succeed. X86SelectAddress has a
2487  // check for dynamic allocas, because it's called directly from
2488  // various places, but TargetMaterializeAlloca also needs a check
2489  // in order to avoid recursion between getRegForValue,
2490  // X86SelectAddrss, and TargetMaterializeAlloca.
2491  if (!FuncInfo.StaticAllocaMap.count(C))
2492    return 0;
2493  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
2494
2495  X86AddressMode AM;
2496  if (!X86SelectAddress(C, AM))
2497    return 0;
2498  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
2499  const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
2500  unsigned ResultReg = createResultReg(RC);
2501  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2502                         TII.get(Opc), ResultReg), AM);
2503  return ResultReg;
2504}
2505
2506unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
2507  MVT VT;
2508  if (!isTypeLegal(CF->getType(), VT))
2509    return 0;
2510
2511  // Get opcode and regclass for the given zero.
2512  unsigned Opc = 0;
2513  const TargetRegisterClass *RC = nullptr;
2514  switch (VT.SimpleTy) {
2515  default: return 0;
2516  case MVT::f32:
2517    if (X86ScalarSSEf32) {
2518      Opc = X86::FsFLD0SS;
2519      RC  = &X86::FR32RegClass;
2520    } else {
2521      Opc = X86::LD_Fp032;
2522      RC  = &X86::RFP32RegClass;
2523    }
2524    break;
2525  case MVT::f64:
2526    if (X86ScalarSSEf64) {
2527      Opc = X86::FsFLD0SD;
2528      RC  = &X86::FR64RegClass;
2529    } else {
2530      Opc = X86::LD_Fp064;
2531      RC  = &X86::RFP64RegClass;
2532    }
2533    break;
2534  case MVT::f80:
2535    // No f80 support yet.
2536    return 0;
2537  }
2538
2539  unsigned ResultReg = createResultReg(RC);
2540  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
2541  return ResultReg;
2542}
2543
2544
2545bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2546                                      const LoadInst *LI) {
2547  X86AddressMode AM;
2548  if (!X86SelectAddress(LI->getOperand(0), AM))
2549    return false;
2550
2551  const X86InstrInfo &XII = (const X86InstrInfo&)TII;
2552
2553  unsigned Size = DL.getTypeAllocSize(LI->getType());
2554  unsigned Alignment = LI->getAlignment();
2555
2556  SmallVector<MachineOperand, 8> AddrOps;
2557  AM.getFullAddress(AddrOps);
2558
2559  MachineInstr *Result =
2560    XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
2561  if (!Result) return false;
2562
2563  FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
2564  MI->eraseFromParent();
2565  return true;
2566}
2567
2568
2569namespace llvm {
2570  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
2571                                const TargetLibraryInfo *libInfo) {
2572    return new X86FastISel(funcInfo, libInfo);
2573  }
2574}
2575