X86FastISel.cpp revision e922c0201916e0b980ab3cfe91e1413e68d55647
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace {
38
39class X86FastISel : public FastISel {
40  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41  /// make the right decision when generating code for different targets.
42  const X86Subtarget *Subtarget;
43
44  /// StackPtr - Register used as the stack pointer.
45  ///
46  unsigned StackPtr;
47
48  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49  /// floating point ops.
50  /// When SSE is available, use it for f32 operations.
51  /// When SSE2 is available, use it for f64 operations.
52  bool X86ScalarSSEf64;
53  bool X86ScalarSSEf32;
54
55public:
56  explicit X86FastISel(MachineFunction &mf,
57                       MachineModuleInfo *mmi,
58                       DwarfWriter *dw,
59                       DenseMap<const Value *, unsigned> &vm,
60                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
61                       DenseMap<const AllocaInst *, int> &am
62#ifndef NDEBUG
63                       , SmallSet<Instruction*, 8> &cil
64#endif
65                       )
66    : FastISel(mf, mmi, dw, vm, bm, am
67#ifndef NDEBUG
68               , cil
69#endif
70               ) {
71    Subtarget = &TM.getSubtarget<X86Subtarget>();
72    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
73    X86ScalarSSEf64 = Subtarget->hasSSE2();
74    X86ScalarSSEf32 = Subtarget->hasSSE1();
75  }
76
77  virtual bool TargetSelectInstruction(Instruction *I);
78
79#include "X86GenFastISel.inc"
80
81private:
82  bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
83
84  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
85
86  bool X86FastEmitStore(MVT VT, Value *Val,
87                        const X86AddressMode &AM);
88  bool X86FastEmitStore(MVT VT, unsigned Val,
89                        const X86AddressMode &AM);
90
91  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
92                         unsigned &ResultReg);
93
94  bool X86SelectAddress(Value *V, X86AddressMode &AM);
95  bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
96
97  bool X86SelectLoad(Instruction *I);
98
99  bool X86SelectStore(Instruction *I);
100
101  bool X86SelectCmp(Instruction *I);
102
103  bool X86SelectZExt(Instruction *I);
104
105  bool X86SelectBranch(Instruction *I);
106
107  bool X86SelectShift(Instruction *I);
108
109  bool X86SelectSelect(Instruction *I);
110
111  bool X86SelectTrunc(Instruction *I);
112
113  bool X86SelectFPExt(Instruction *I);
114  bool X86SelectFPTrunc(Instruction *I);
115
116  bool X86SelectExtractValue(Instruction *I);
117
118  bool X86VisitIntrinsicCall(IntrinsicInst &I);
119  bool X86SelectCall(Instruction *I);
120
121  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
122
123  const X86InstrInfo *getInstrInfo() const {
124    return getTargetMachine()->getInstrInfo();
125  }
126  const X86TargetMachine *getTargetMachine() const {
127    return static_cast<const X86TargetMachine *>(&TM);
128  }
129
130  unsigned TargetMaterializeConstant(Constant *C);
131
132  unsigned TargetMaterializeAlloca(AllocaInst *C);
133
134  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135  /// computed in an SSE register, not on the X87 floating point stack.
136  bool isScalarFPTypeInSSEReg(MVT VT) const {
137    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
138      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
139  }
140
141  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
142};
143
144} // end anonymous namespace.
145
146bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
147  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
148  if (VT == MVT::Other || !VT.isSimple())
149    // Unhandled type. Halt "fast" selection and bail.
150    return false;
151
152  // For now, require SSE/SSE2 for performing floating-point operations,
153  // since x87 requires additional work.
154  if (VT == MVT::f64 && !X86ScalarSSEf64)
155     return false;
156  if (VT == MVT::f32 && !X86ScalarSSEf32)
157     return false;
158  // Similarly, no f80 support yet.
159  if (VT == MVT::f80)
160    return false;
161  // We only handle legal types. For example, on x86-32 the instruction
162  // selector contains all of the 64-bit instructions from x86-64,
163  // under the assumption that i64 won't be used if the target doesn't
164  // support it.
165  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
166}
167
168#include "X86GenCallingConv.inc"
169
170/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
171/// convention.
172CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
173  if (Subtarget->is64Bit()) {
174    if (Subtarget->isTargetWin64())
175      return CC_X86_Win64_C;
176    else
177      return CC_X86_64_C;
178  }
179
180  if (CC == CallingConv::X86_FastCall)
181    return CC_X86_32_FastCall;
182  else if (CC == CallingConv::Fast)
183    return CC_X86_32_FastCC;
184  else
185    return CC_X86_32_C;
186}
187
188/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
189/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
190/// Return true and the result register by reference if it is possible.
191bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
192                                  unsigned &ResultReg) {
193  // Get opcode and regclass of the output for the given load instruction.
194  unsigned Opc = 0;
195  const TargetRegisterClass *RC = NULL;
196  switch (VT.getSimpleVT()) {
197  default: return false;
198  case MVT::i8:
199    Opc = X86::MOV8rm;
200    RC  = X86::GR8RegisterClass;
201    break;
202  case MVT::i16:
203    Opc = X86::MOV16rm;
204    RC  = X86::GR16RegisterClass;
205    break;
206  case MVT::i32:
207    Opc = X86::MOV32rm;
208    RC  = X86::GR32RegisterClass;
209    break;
210  case MVT::i64:
211    // Must be in x86-64 mode.
212    Opc = X86::MOV64rm;
213    RC  = X86::GR64RegisterClass;
214    break;
215  case MVT::f32:
216    if (Subtarget->hasSSE1()) {
217      Opc = X86::MOVSSrm;
218      RC  = X86::FR32RegisterClass;
219    } else {
220      Opc = X86::LD_Fp32m;
221      RC  = X86::RFP32RegisterClass;
222    }
223    break;
224  case MVT::f64:
225    if (Subtarget->hasSSE2()) {
226      Opc = X86::MOVSDrm;
227      RC  = X86::FR64RegisterClass;
228    } else {
229      Opc = X86::LD_Fp64m;
230      RC  = X86::RFP64RegisterClass;
231    }
232    break;
233  case MVT::f80:
234    // No f80 support yet.
235    return false;
236  }
237
238  ResultReg = createResultReg(RC);
239  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
240  return true;
241}
242
243/// X86FastEmitStore - Emit a machine instruction to store a value Val of
244/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
245/// and a displacement offset, or a GlobalAddress,
246/// i.e. V. Return true if it is possible.
247bool
248X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
249                              const X86AddressMode &AM) {
250  // Get opcode and regclass of the output for the given store instruction.
251  unsigned Opc = 0;
252  switch (VT.getSimpleVT()) {
253  case MVT::f80: // No f80 support yet.
254  default: return false;
255  case MVT::i8:  Opc = X86::MOV8mr;  break;
256  case MVT::i16: Opc = X86::MOV16mr; break;
257  case MVT::i32: Opc = X86::MOV32mr; break;
258  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
259  case MVT::f32:
260    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
261    break;
262  case MVT::f64:
263    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
264    break;
265  }
266
267  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
268  return true;
269}
270
271bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
272                                   const X86AddressMode &AM) {
273  // Handle 'null' like i32/i64 0.
274  if (isa<ConstantPointerNull>(Val))
275    Val = Val->getContext().getNullValue(TD.getIntPtrType());
276
277  // If this is a store of a simple constant, fold the constant into the store.
278  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
279    unsigned Opc = 0;
280    switch (VT.getSimpleVT()) {
281    default: break;
282    case MVT::i8:  Opc = X86::MOV8mi;  break;
283    case MVT::i16: Opc = X86::MOV16mi; break;
284    case MVT::i32: Opc = X86::MOV32mi; break;
285    case MVT::i64:
286      // Must be a 32-bit sign extended value.
287      if ((int)CI->getSExtValue() == CI->getSExtValue())
288        Opc = X86::MOV64mi32;
289      break;
290    }
291
292    if (Opc) {
293      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
294                             .addImm(CI->getSExtValue());
295      return true;
296    }
297  }
298
299  unsigned ValReg = getRegForValue(Val);
300  if (ValReg == 0)
301    return false;
302
303  return X86FastEmitStore(VT, ValReg, AM);
304}
305
306/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
307/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
308/// ISD::SIGN_EXTEND).
309bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
310                                    unsigned Src, MVT SrcVT,
311                                    unsigned &ResultReg) {
312  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
313
314  if (RR != 0) {
315    ResultReg = RR;
316    return true;
317  } else
318    return false;
319}
320
321/// X86SelectAddress - Attempt to fill in an address from the given value.
322///
323bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
324  User *U = NULL;
325  unsigned Opcode = Instruction::UserOp1;
326  if (Instruction *I = dyn_cast<Instruction>(V)) {
327    Opcode = I->getOpcode();
328    U = I;
329  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
330    Opcode = C->getOpcode();
331    U = C;
332  }
333
334  switch (Opcode) {
335  default: break;
336  case Instruction::BitCast:
337    // Look past bitcasts.
338    return X86SelectAddress(U->getOperand(0), AM);
339
340  case Instruction::IntToPtr:
341    // Look past no-op inttoptrs.
342    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
343      return X86SelectAddress(U->getOperand(0), AM);
344    break;
345
346  case Instruction::PtrToInt:
347    // Look past no-op ptrtoints.
348    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
349      return X86SelectAddress(U->getOperand(0), AM);
350    break;
351
352  case Instruction::Alloca: {
353    // Do static allocas.
354    const AllocaInst *A = cast<AllocaInst>(V);
355    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
356    if (SI != StaticAllocaMap.end()) {
357      AM.BaseType = X86AddressMode::FrameIndexBase;
358      AM.Base.FrameIndex = SI->second;
359      return true;
360    }
361    break;
362  }
363
364  case Instruction::Add: {
365    // Adds of constants are common and easy enough.
366    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
367      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
368      // They have to fit in the 32-bit signed displacement field though.
369      if (isInt32(Disp)) {
370        AM.Disp = (uint32_t)Disp;
371        return X86SelectAddress(U->getOperand(0), AM);
372      }
373    }
374    break;
375  }
376
377  case Instruction::GetElementPtr: {
378    // Pattern-match simple GEPs.
379    uint64_t Disp = (int32_t)AM.Disp;
380    unsigned IndexReg = AM.IndexReg;
381    unsigned Scale = AM.Scale;
382    gep_type_iterator GTI = gep_type_begin(U);
383    // Iterate through the indices, folding what we can. Constants can be
384    // folded, and one dynamic index can be handled, if the scale is supported.
385    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
386         i != e; ++i, ++GTI) {
387      Value *Op = *i;
388      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
389        const StructLayout *SL = TD.getStructLayout(STy);
390        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
391        Disp += SL->getElementOffset(Idx);
392      } else {
393        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
394        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
395          // Constant-offset addressing.
396          Disp += CI->getSExtValue() * S;
397        } else if (IndexReg == 0 &&
398                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
399                   (S == 1 || S == 2 || S == 4 || S == 8)) {
400          // Scaled-index addressing.
401          Scale = S;
402          IndexReg = getRegForGEPIndex(Op);
403          if (IndexReg == 0)
404            return false;
405        } else
406          // Unsupported.
407          goto unsupported_gep;
408      }
409    }
410    // Check for displacement overflow.
411    if (!isInt32(Disp))
412      break;
413    // Ok, the GEP indices were covered by constant-offset and scaled-index
414    // addressing. Update the address state and move on to examining the base.
415    AM.IndexReg = IndexReg;
416    AM.Scale = Scale;
417    AM.Disp = (uint32_t)Disp;
418    return X86SelectAddress(U->getOperand(0), AM);
419  unsupported_gep:
420    // Ok, the GEP indices weren't all covered.
421    break;
422  }
423  }
424
425  // Handle constant address.
426  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
427    // Can't handle alternate code models yet.
428    if (TM.getCodeModel() != CodeModel::Small)
429      return false;
430
431    // RIP-relative addresses can't have additional register operands.
432    if (Subtarget->isPICStyleRIPRel() &&
433        (AM.Base.Reg != 0 || AM.IndexReg != 0))
434      return false;
435
436    // Can't handle TLS yet.
437    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
438      if (GVar->isThreadLocal())
439        return false;
440
441    // Okay, we've committed to selecting this global. Set up the basic address.
442    AM.GV = GV;
443
444    // Allow the subtarget to classify the global.
445    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
446
447    // If this reference is relative to the pic base, set it now.
448    if (isGlobalRelativeToPICBase(GVFlags)) {
449      // FIXME: How do we know Base.Reg is free??
450      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
451    }
452
453    // Unless the ABI requires an extra load, return a direct reference to
454    // the global.
455    if (!isGlobalStubReference(GVFlags)) {
456      if (Subtarget->isPICStyleRIPRel()) {
457        // Use rip-relative addressing if we can.  Above we verified that the
458        // base and index registers are unused.
459        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
460        AM.Base.Reg = X86::RIP;
461      }
462      AM.GVOpFlags = GVFlags;
463      return true;
464    }
465
466    // Ok, we need to do a load from a stub.  If we've already loaded from this
467    // stub, reuse the loaded pointer, otherwise emit the load now.
468    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
469    unsigned LoadReg;
470    if (I != LocalValueMap.end() && I->second != 0) {
471      LoadReg = I->second;
472    } else {
473      // Issue load from stub.
474      unsigned Opc = 0;
475      const TargetRegisterClass *RC = NULL;
476      X86AddressMode StubAM;
477      StubAM.Base.Reg = AM.Base.Reg;
478      StubAM.GV = GV;
479      StubAM.GVOpFlags = GVFlags;
480
481      if (TLI.getPointerTy() == MVT::i64) {
482        Opc = X86::MOV64rm;
483        RC  = X86::GR64RegisterClass;
484
485        if (Subtarget->isPICStyleRIPRel())
486          StubAM.Base.Reg = X86::RIP;
487      } else {
488        Opc = X86::MOV32rm;
489        RC  = X86::GR32RegisterClass;
490      }
491
492      LoadReg = createResultReg(RC);
493      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
494
495      // Prevent loading GV stub multiple times in same MBB.
496      LocalValueMap[V] = LoadReg;
497    }
498
499    // Now construct the final address. Note that the Disp, Scale,
500    // and Index values may already be set here.
501    AM.Base.Reg = LoadReg;
502    AM.GV = 0;
503    return true;
504  }
505
506  // If all else fails, try to materialize the value in a register.
507  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
508    if (AM.Base.Reg == 0) {
509      AM.Base.Reg = getRegForValue(V);
510      return AM.Base.Reg != 0;
511    }
512    if (AM.IndexReg == 0) {
513      assert(AM.Scale == 1 && "Scale with no index!");
514      AM.IndexReg = getRegForValue(V);
515      return AM.IndexReg != 0;
516    }
517  }
518
519  return false;
520}
521
522/// X86SelectCallAddress - Attempt to fill in an address from the given value.
523///
524bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
525  User *U = NULL;
526  unsigned Opcode = Instruction::UserOp1;
527  if (Instruction *I = dyn_cast<Instruction>(V)) {
528    Opcode = I->getOpcode();
529    U = I;
530  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
531    Opcode = C->getOpcode();
532    U = C;
533  }
534
535  switch (Opcode) {
536  default: break;
537  case Instruction::BitCast:
538    // Look past bitcasts.
539    return X86SelectCallAddress(U->getOperand(0), AM);
540
541  case Instruction::IntToPtr:
542    // Look past no-op inttoptrs.
543    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
544      return X86SelectCallAddress(U->getOperand(0), AM);
545    break;
546
547  case Instruction::PtrToInt:
548    // Look past no-op ptrtoints.
549    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
550      return X86SelectCallAddress(U->getOperand(0), AM);
551    break;
552  }
553
554  // Handle constant address.
555  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
556    // Can't handle alternate code models yet.
557    if (TM.getCodeModel() != CodeModel::Small)
558      return false;
559
560    // RIP-relative addresses can't have additional register operands.
561    if (Subtarget->isPICStyleRIPRel() &&
562        (AM.Base.Reg != 0 || AM.IndexReg != 0))
563      return false;
564
565    // Can't handle TLS or DLLImport.
566    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
567      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
568        return false;
569
570    // Okay, we've committed to selecting this global. Set up the basic address.
571    AM.GV = GV;
572
573    // No ABI requires an extra load for anything other than DLLImport, which
574    // we rejected above. Return a direct reference to the global.
575    if (Subtarget->isPICStyleRIPRel()) {
576      // Use rip-relative addressing if we can.  Above we verified that the
577      // base and index registers are unused.
578      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
579      AM.Base.Reg = X86::RIP;
580    } else if (Subtarget->isPICStyleStubPIC()) {
581      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
582    } else if (Subtarget->isPICStyleGOT()) {
583      AM.GVOpFlags = X86II::MO_GOTOFF;
584    }
585
586    return true;
587  }
588
589  // If all else fails, try to materialize the value in a register.
590  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
591    if (AM.Base.Reg == 0) {
592      AM.Base.Reg = getRegForValue(V);
593      return AM.Base.Reg != 0;
594    }
595    if (AM.IndexReg == 0) {
596      assert(AM.Scale == 1 && "Scale with no index!");
597      AM.IndexReg = getRegForValue(V);
598      return AM.IndexReg != 0;
599    }
600  }
601
602  return false;
603}
604
605
606/// X86SelectStore - Select and emit code to implement store instructions.
607bool X86FastISel::X86SelectStore(Instruction* I) {
608  MVT VT;
609  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
610    return false;
611
612  X86AddressMode AM;
613  if (!X86SelectAddress(I->getOperand(1), AM))
614    return false;
615
616  return X86FastEmitStore(VT, I->getOperand(0), AM);
617}
618
619/// X86SelectLoad - Select and emit code to implement load instructions.
620///
621bool X86FastISel::X86SelectLoad(Instruction *I)  {
622  MVT VT;
623  if (!isTypeLegal(I->getType(), VT))
624    return false;
625
626  X86AddressMode AM;
627  if (!X86SelectAddress(I->getOperand(0), AM))
628    return false;
629
630  unsigned ResultReg = 0;
631  if (X86FastEmitLoad(VT, AM, ResultReg)) {
632    UpdateValueMap(I, ResultReg);
633    return true;
634  }
635  return false;
636}
637
638static unsigned X86ChooseCmpOpcode(MVT VT) {
639  switch (VT.getSimpleVT()) {
640  default:       return 0;
641  case MVT::i8:  return X86::CMP8rr;
642  case MVT::i16: return X86::CMP16rr;
643  case MVT::i32: return X86::CMP32rr;
644  case MVT::i64: return X86::CMP64rr;
645  case MVT::f32: return X86::UCOMISSrr;
646  case MVT::f64: return X86::UCOMISDrr;
647  }
648}
649
650/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
651/// of the comparison, return an opcode that works for the compare (e.g.
652/// CMP32ri) otherwise return 0.
653static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
654  switch (VT.getSimpleVT()) {
655  // Otherwise, we can't fold the immediate into this comparison.
656  default: return 0;
657  case MVT::i8: return X86::CMP8ri;
658  case MVT::i16: return X86::CMP16ri;
659  case MVT::i32: return X86::CMP32ri;
660  case MVT::i64:
661    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
662    // field.
663    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
664      return X86::CMP64ri32;
665    return 0;
666  }
667}
668
669bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
670  unsigned Op0Reg = getRegForValue(Op0);
671  if (Op0Reg == 0) return false;
672
673  // Handle 'null' like i32/i64 0.
674  if (isa<ConstantPointerNull>(Op1))
675    Op1 = Op0->getContext().getNullValue(TD.getIntPtrType());
676
677  // We have two options: compare with register or immediate.  If the RHS of
678  // the compare is an immediate that we can fold into this compare, use
679  // CMPri, otherwise use CMPrr.
680  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
681    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
682      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
683                                          .addImm(Op1C->getSExtValue());
684      return true;
685    }
686  }
687
688  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
689  if (CompareOpc == 0) return false;
690
691  unsigned Op1Reg = getRegForValue(Op1);
692  if (Op1Reg == 0) return false;
693  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
694
695  return true;
696}
697
698bool X86FastISel::X86SelectCmp(Instruction *I) {
699  CmpInst *CI = cast<CmpInst>(I);
700
701  MVT VT;
702  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
703    return false;
704
705  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
706  unsigned SetCCOpc;
707  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
708  switch (CI->getPredicate()) {
709  case CmpInst::FCMP_OEQ: {
710    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
711      return false;
712
713    unsigned EReg = createResultReg(&X86::GR8RegClass);
714    unsigned NPReg = createResultReg(&X86::GR8RegClass);
715    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
716    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
717    BuildMI(MBB, DL,
718            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
719    UpdateValueMap(I, ResultReg);
720    return true;
721  }
722  case CmpInst::FCMP_UNE: {
723    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
724      return false;
725
726    unsigned NEReg = createResultReg(&X86::GR8RegClass);
727    unsigned PReg = createResultReg(&X86::GR8RegClass);
728    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
729    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
730    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
731    UpdateValueMap(I, ResultReg);
732    return true;
733  }
734  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
735  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
736  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
737  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
738  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
739  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
740  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
741  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
742  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
743  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
744  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
745  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
746
747  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
748  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
749  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
750  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
751  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
752  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
753  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
754  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
755  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
756  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
757  default:
758    return false;
759  }
760
761  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
762  if (SwapArgs)
763    std::swap(Op0, Op1);
764
765  // Emit a compare of Op0/Op1.
766  if (!X86FastEmitCompare(Op0, Op1, VT))
767    return false;
768
769  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
770  UpdateValueMap(I, ResultReg);
771  return true;
772}
773
774bool X86FastISel::X86SelectZExt(Instruction *I) {
775  // Handle zero-extension from i1 to i8, which is common.
776  if (I->getType() == Type::Int8Ty &&
777      I->getOperand(0)->getType() == Type::Int1Ty) {
778    unsigned ResultReg = getRegForValue(I->getOperand(0));
779    if (ResultReg == 0) return false;
780    // Set the high bits to zero.
781    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
782    if (ResultReg == 0) return false;
783    UpdateValueMap(I, ResultReg);
784    return true;
785  }
786
787  return false;
788}
789
790
791bool X86FastISel::X86SelectBranch(Instruction *I) {
792  // Unconditional branches are selected by tablegen-generated code.
793  // Handle a conditional branch.
794  BranchInst *BI = cast<BranchInst>(I);
795  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
796  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
797
798  // Fold the common case of a conditional branch with a comparison.
799  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
800    if (CI->hasOneUse()) {
801      MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
802
803      // Try to take advantage of fallthrough opportunities.
804      CmpInst::Predicate Predicate = CI->getPredicate();
805      if (MBB->isLayoutSuccessor(TrueMBB)) {
806        std::swap(TrueMBB, FalseMBB);
807        Predicate = CmpInst::getInversePredicate(Predicate);
808      }
809
810      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
811      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
812
813      switch (Predicate) {
814      case CmpInst::FCMP_OEQ:
815        std::swap(TrueMBB, FalseMBB);
816        Predicate = CmpInst::FCMP_UNE;
817        // FALL THROUGH
818      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
819      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
820      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
821      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
822      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
823      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
824      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
825      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
826      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
827      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
828      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
829      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
830      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
831
832      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
833      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
834      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
835      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
836      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
837      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
838      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
839      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
840      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
841      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
842      default:
843        return false;
844      }
845
846      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
847      if (SwapArgs)
848        std::swap(Op0, Op1);
849
850      // Emit a compare of the LHS and RHS, setting the flags.
851      if (!X86FastEmitCompare(Op0, Op1, VT))
852        return false;
853
854      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
855
856      if (Predicate == CmpInst::FCMP_UNE) {
857        // X86 requires a second branch to handle UNE (and OEQ,
858        // which is mapped to UNE above).
859        BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
860      }
861
862      FastEmitBranch(FalseMBB);
863      MBB->addSuccessor(TrueMBB);
864      return true;
865    }
866  } else if (ExtractValueInst *EI =
867             dyn_cast<ExtractValueInst>(BI->getCondition())) {
868    // Check to see if the branch instruction is from an "arithmetic with
869    // overflow" intrinsic. The main way these intrinsics are used is:
870    //
871    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
872    //   %sum = extractvalue { i32, i1 } %t, 0
873    //   %obit = extractvalue { i32, i1 } %t, 1
874    //   br i1 %obit, label %overflow, label %normal
875    //
876    // The %sum and %obit are converted in an ADD and a SETO/SETB before
877    // reaching the branch. Therefore, we search backwards through the MBB
878    // looking for the SETO/SETB instruction. If an instruction modifies the
879    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
880    // convert the branch into a JO/JB instruction.
881    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
882      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
883          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
884        const MachineInstr *SetMI = 0;
885        unsigned Reg = lookUpRegForValue(EI);
886
887        for (MachineBasicBlock::const_reverse_iterator
888               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
889          const MachineInstr &MI = *RI;
890
891          if (MI.modifiesRegister(Reg)) {
892            unsigned Src, Dst, SrcSR, DstSR;
893
894            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
895              Reg = Src;
896              continue;
897            }
898
899            SetMI = &MI;
900            break;
901          }
902
903          const TargetInstrDesc &TID = MI.getDesc();
904          if (TID.hasUnmodeledSideEffects() ||
905              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
906            break;
907        }
908
909        if (SetMI) {
910          unsigned OpCode = SetMI->getOpcode();
911
912          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
913            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
914              .addMBB(TrueMBB);
915            FastEmitBranch(FalseMBB);
916            MBB->addSuccessor(TrueMBB);
917            return true;
918          }
919        }
920      }
921    }
922  }
923
924  // Otherwise do a clumsy setcc and re-test it.
925  unsigned OpReg = getRegForValue(BI->getCondition());
926  if (OpReg == 0) return false;
927
928  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
929  BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
930  FastEmitBranch(FalseMBB);
931  MBB->addSuccessor(TrueMBB);
932  return true;
933}
934
935bool X86FastISel::X86SelectShift(Instruction *I) {
936  unsigned CReg = 0, OpReg = 0, OpImm = 0;
937  const TargetRegisterClass *RC = NULL;
938  if (I->getType() == Type::Int8Ty) {
939    CReg = X86::CL;
940    RC = &X86::GR8RegClass;
941    switch (I->getOpcode()) {
942    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
943    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
944    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
945    default: return false;
946    }
947  } else if (I->getType() == Type::Int16Ty) {
948    CReg = X86::CX;
949    RC = &X86::GR16RegClass;
950    switch (I->getOpcode()) {
951    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
952    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
953    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
954    default: return false;
955    }
956  } else if (I->getType() == Type::Int32Ty) {
957    CReg = X86::ECX;
958    RC = &X86::GR32RegClass;
959    switch (I->getOpcode()) {
960    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
961    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
962    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
963    default: return false;
964    }
965  } else if (I->getType() == Type::Int64Ty) {
966    CReg = X86::RCX;
967    RC = &X86::GR64RegClass;
968    switch (I->getOpcode()) {
969    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
970    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
971    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
972    default: return false;
973    }
974  } else {
975    return false;
976  }
977
978  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
979  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
980    return false;
981
982  unsigned Op0Reg = getRegForValue(I->getOperand(0));
983  if (Op0Reg == 0) return false;
984
985  // Fold immediate in shl(x,3).
986  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
987    unsigned ResultReg = createResultReg(RC);
988    BuildMI(MBB, DL, TII.get(OpImm),
989            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
990    UpdateValueMap(I, ResultReg);
991    return true;
992  }
993
994  unsigned Op1Reg = getRegForValue(I->getOperand(1));
995  if (Op1Reg == 0) return false;
996  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
997
998  // The shift instruction uses X86::CL. If we defined a super-register
999  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1000  // we're doing here.
1001  if (CReg != X86::CL)
1002    BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
1003      .addReg(CReg).addImm(X86::SUBREG_8BIT);
1004
1005  unsigned ResultReg = createResultReg(RC);
1006  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1007  UpdateValueMap(I, ResultReg);
1008  return true;
1009}
1010
1011bool X86FastISel::X86SelectSelect(Instruction *I) {
1012  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1013  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1014    return false;
1015
1016  unsigned Opc = 0;
1017  const TargetRegisterClass *RC = NULL;
1018  if (VT.getSimpleVT() == MVT::i16) {
1019    Opc = X86::CMOVE16rr;
1020    RC = &X86::GR16RegClass;
1021  } else if (VT.getSimpleVT() == MVT::i32) {
1022    Opc = X86::CMOVE32rr;
1023    RC = &X86::GR32RegClass;
1024  } else if (VT.getSimpleVT() == MVT::i64) {
1025    Opc = X86::CMOVE64rr;
1026    RC = &X86::GR64RegClass;
1027  } else {
1028    return false;
1029  }
1030
1031  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1032  if (Op0Reg == 0) return false;
1033  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1034  if (Op1Reg == 0) return false;
1035  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1036  if (Op2Reg == 0) return false;
1037
1038  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1039  unsigned ResultReg = createResultReg(RC);
1040  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1041  UpdateValueMap(I, ResultReg);
1042  return true;
1043}
1044
1045bool X86FastISel::X86SelectFPExt(Instruction *I) {
1046  // fpext from float to double.
1047  if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
1048    Value *V = I->getOperand(0);
1049    if (V->getType() == Type::FloatTy) {
1050      unsigned OpReg = getRegForValue(V);
1051      if (OpReg == 0) return false;
1052      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1053      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1054      UpdateValueMap(I, ResultReg);
1055      return true;
1056    }
1057  }
1058
1059  return false;
1060}
1061
1062bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1063  if (Subtarget->hasSSE2()) {
1064    if (I->getType() == Type::FloatTy) {
1065      Value *V = I->getOperand(0);
1066      if (V->getType() == Type::DoubleTy) {
1067        unsigned OpReg = getRegForValue(V);
1068        if (OpReg == 0) return false;
1069        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1070        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1071        UpdateValueMap(I, ResultReg);
1072        return true;
1073      }
1074    }
1075  }
1076
1077  return false;
1078}
1079
1080bool X86FastISel::X86SelectTrunc(Instruction *I) {
1081  if (Subtarget->is64Bit())
1082    // All other cases should be handled by the tblgen generated code.
1083    return false;
1084  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1085  MVT DstVT = TLI.getValueType(I->getType());
1086
1087  // This code only handles truncation to byte right now.
1088  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1089    // All other cases should be handled by the tblgen generated code.
1090    return false;
1091  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1092    // All other cases should be handled by the tblgen generated code.
1093    return false;
1094
1095  unsigned InputReg = getRegForValue(I->getOperand(0));
1096  if (!InputReg)
1097    // Unhandled operand.  Halt "fast" selection and bail.
1098    return false;
1099
1100  // First issue a copy to GR16_ABCD or GR32_ABCD.
1101  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1102  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1103    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1104  unsigned CopyReg = createResultReg(CopyRC);
1105  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1106
1107  // Then issue an extract_subreg.
1108  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1109                                                  CopyReg, X86::SUBREG_8BIT);
1110  if (!ResultReg)
1111    return false;
1112
1113  UpdateValueMap(I, ResultReg);
1114  return true;
1115}
1116
1117bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1118  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1119  Value *Agg = EI->getAggregateOperand();
1120
1121  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1122    switch (CI->getIntrinsicID()) {
1123    default: break;
1124    case Intrinsic::sadd_with_overflow:
1125    case Intrinsic::uadd_with_overflow:
1126      // Cheat a little. We know that the registers for "add" and "seto" are
1127      // allocated sequentially. However, we only keep track of the register
1128      // for "add" in the value map. Use extractvalue's index to get the
1129      // correct register for "seto".
1130      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1131      return true;
1132    }
1133  }
1134
1135  return false;
1136}
1137
1138bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1139  // FIXME: Handle more intrinsics.
1140  switch (I.getIntrinsicID()) {
1141  default: return false;
1142  case Intrinsic::sadd_with_overflow:
1143  case Intrinsic::uadd_with_overflow: {
1144    // Replace "add with overflow" intrinsics with an "add" instruction followed
1145    // by a seto/setc instruction. Later on, when the "extractvalue"
1146    // instructions are encountered, we use the fact that two registers were
1147    // created sequentially to get the correct registers for the "sum" and the
1148    // "overflow bit".
1149    const Function *Callee = I.getCalledFunction();
1150    const Type *RetTy =
1151      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1152
1153    MVT VT;
1154    if (!isTypeLegal(RetTy, VT))
1155      return false;
1156
1157    Value *Op1 = I.getOperand(1);
1158    Value *Op2 = I.getOperand(2);
1159    unsigned Reg1 = getRegForValue(Op1);
1160    unsigned Reg2 = getRegForValue(Op2);
1161
1162    if (Reg1 == 0 || Reg2 == 0)
1163      // FIXME: Handle values *not* in registers.
1164      return false;
1165
1166    unsigned OpC = 0;
1167    if (VT == MVT::i32)
1168      OpC = X86::ADD32rr;
1169    else if (VT == MVT::i64)
1170      OpC = X86::ADD64rr;
1171    else
1172      return false;
1173
1174    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1175    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1176    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1177
1178    // If the add with overflow is an intra-block value then we just want to
1179    // create temporaries for it like normal.  If it is a cross-block value then
1180    // UpdateValueMap will return the cross-block register used.  Since we
1181    // *really* want the value to be live in the register pair known by
1182    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1183    // the cross block case.  In the non-cross-block case, we should just make
1184    // another register for the value.
1185    if (DestReg1 != ResultReg)
1186      ResultReg = DestReg1+1;
1187    else
1188      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1189
1190    unsigned Opc = X86::SETBr;
1191    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1192      Opc = X86::SETOr;
1193    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1194    return true;
1195  }
1196  }
1197}
1198
1199bool X86FastISel::X86SelectCall(Instruction *I) {
1200  CallInst *CI = cast<CallInst>(I);
1201  Value *Callee = I->getOperand(0);
1202
1203  // Can't handle inline asm yet.
1204  if (isa<InlineAsm>(Callee))
1205    return false;
1206
1207  // Handle intrinsic calls.
1208  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1209    return X86VisitIntrinsicCall(*II);
1210
1211  // Handle only C and fastcc calling conventions for now.
1212  CallSite CS(CI);
1213  unsigned CC = CS.getCallingConv();
1214  if (CC != CallingConv::C &&
1215      CC != CallingConv::Fast &&
1216      CC != CallingConv::X86_FastCall)
1217    return false;
1218
1219  // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1220  // handle this for now.
1221  if (CC == CallingConv::Fast && PerformTailCallOpt)
1222    return false;
1223
1224  // Let SDISel handle vararg functions.
1225  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1226  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1227  if (FTy->isVarArg())
1228    return false;
1229
1230  // Handle *simple* calls for now.
1231  const Type *RetTy = CS.getType();
1232  MVT RetVT;
1233  if (RetTy == Type::VoidTy)
1234    RetVT = MVT::isVoid;
1235  else if (!isTypeLegal(RetTy, RetVT, true))
1236    return false;
1237
1238  // Materialize callee address in a register. FIXME: GV address can be
1239  // handled with a CALLpcrel32 instead.
1240  X86AddressMode CalleeAM;
1241  if (!X86SelectCallAddress(Callee, CalleeAM))
1242    return false;
1243  unsigned CalleeOp = 0;
1244  GlobalValue *GV = 0;
1245  if (CalleeAM.GV != 0) {
1246    GV = CalleeAM.GV;
1247  } else if (CalleeAM.Base.Reg != 0) {
1248    CalleeOp = CalleeAM.Base.Reg;
1249  } else
1250    return false;
1251
1252  // Allow calls which produce i1 results.
1253  bool AndToI1 = false;
1254  if (RetVT == MVT::i1) {
1255    RetVT = MVT::i8;
1256    AndToI1 = true;
1257  }
1258
1259  // Deal with call operands first.
1260  SmallVector<Value*, 8> ArgVals;
1261  SmallVector<unsigned, 8> Args;
1262  SmallVector<MVT, 8> ArgVTs;
1263  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1264  Args.reserve(CS.arg_size());
1265  ArgVals.reserve(CS.arg_size());
1266  ArgVTs.reserve(CS.arg_size());
1267  ArgFlags.reserve(CS.arg_size());
1268  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1269       i != e; ++i) {
1270    unsigned Arg = getRegForValue(*i);
1271    if (Arg == 0)
1272      return false;
1273    ISD::ArgFlagsTy Flags;
1274    unsigned AttrInd = i - CS.arg_begin() + 1;
1275    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1276      Flags.setSExt();
1277    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1278      Flags.setZExt();
1279
1280    // FIXME: Only handle *easy* calls for now.
1281    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1282        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1283        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1284        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1285      return false;
1286
1287    const Type *ArgTy = (*i)->getType();
1288    MVT ArgVT;
1289    if (!isTypeLegal(ArgTy, ArgVT))
1290      return false;
1291    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1292    Flags.setOrigAlign(OriginalAlignment);
1293
1294    Args.push_back(Arg);
1295    ArgVals.push_back(*i);
1296    ArgVTs.push_back(ArgVT);
1297    ArgFlags.push_back(Flags);
1298  }
1299
1300  // Analyze operands of the call, assigning locations to each operand.
1301  SmallVector<CCValAssign, 16> ArgLocs;
1302  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1303  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1304
1305  // Get a count of how many bytes are to be pushed on the stack.
1306  unsigned NumBytes = CCInfo.getNextStackOffset();
1307
1308  // Issue CALLSEQ_START
1309  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1310  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1311
1312  // Process argument: walk the register/memloc assignments, inserting
1313  // copies / loads.
1314  SmallVector<unsigned, 4> RegArgs;
1315  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1316    CCValAssign &VA = ArgLocs[i];
1317    unsigned Arg = Args[VA.getValNo()];
1318    MVT ArgVT = ArgVTs[VA.getValNo()];
1319
1320    // Promote the value if needed.
1321    switch (VA.getLocInfo()) {
1322    default: llvm_unreachable("Unknown loc info!");
1323    case CCValAssign::Full: break;
1324    case CCValAssign::SExt: {
1325      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1326                                       Arg, ArgVT, Arg);
1327      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1328      Emitted = true;
1329      ArgVT = VA.getLocVT();
1330      break;
1331    }
1332    case CCValAssign::ZExt: {
1333      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1334                                       Arg, ArgVT, Arg);
1335      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1336      Emitted = true;
1337      ArgVT = VA.getLocVT();
1338      break;
1339    }
1340    case CCValAssign::AExt: {
1341      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1342                                       Arg, ArgVT, Arg);
1343      if (!Emitted)
1344        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1345                                    Arg, ArgVT, Arg);
1346      if (!Emitted)
1347        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1348                                    Arg, ArgVT, Arg);
1349
1350      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1351      ArgVT = VA.getLocVT();
1352      break;
1353    }
1354    }
1355
1356    if (VA.isRegLoc()) {
1357      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1358      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1359                                      Arg, RC, RC);
1360      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1361      Emitted = true;
1362      RegArgs.push_back(VA.getLocReg());
1363    } else {
1364      unsigned LocMemOffset = VA.getLocMemOffset();
1365      X86AddressMode AM;
1366      AM.Base.Reg = StackPtr;
1367      AM.Disp = LocMemOffset;
1368      Value *ArgVal = ArgVals[VA.getValNo()];
1369
1370      // If this is a really simple value, emit this with the Value* version of
1371      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1372      // can cause us to reevaluate the argument.
1373      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1374        X86FastEmitStore(ArgVT, ArgVal, AM);
1375      else
1376        X86FastEmitStore(ArgVT, Arg, AM);
1377    }
1378  }
1379
1380  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1381  // GOT pointer.
1382  if (Subtarget->isPICStyleGOT()) {
1383    TargetRegisterClass *RC = X86::GR32RegisterClass;
1384    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1385    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1386    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1387    Emitted = true;
1388  }
1389
1390  // Issue the call.
1391  MachineInstrBuilder MIB;
1392  if (CalleeOp) {
1393    // Register-indirect call.
1394    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1395    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1396
1397  } else {
1398    // Direct call.
1399    assert(GV && "Not a direct call");
1400    unsigned CallOpc =
1401      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1402
1403    // See if we need any target-specific flags on the GV operand.
1404    unsigned char OpFlags = 0;
1405
1406    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1407    // external symbols most go through the PLT in PIC mode.  If the symbol
1408    // has hidden or protected visibility, or if it is static or local, then
1409    // we don't need to use the PLT - we can directly call it.
1410    if (Subtarget->isTargetELF() &&
1411        TM.getRelocationModel() == Reloc::PIC_ &&
1412        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1413      OpFlags = X86II::MO_PLT;
1414    } else if (Subtarget->isPICStyleStubAny() &&
1415               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1416               Subtarget->getDarwinVers() < 9) {
1417      // PC-relative references to external symbols should go through $stub,
1418      // unless we're building with the leopard linker or later, which
1419      // automatically synthesizes these stubs.
1420      OpFlags = X86II::MO_DARWIN_STUB;
1421    }
1422
1423
1424    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1425  }
1426
1427  // Add an implicit use GOT pointer in EBX.
1428  if (Subtarget->isPICStyleGOT())
1429    MIB.addReg(X86::EBX);
1430
1431  // Add implicit physical register uses to the call.
1432  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1433    MIB.addReg(RegArgs[i]);
1434
1435  // Issue CALLSEQ_END
1436  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1437  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1438
1439  // Now handle call return value (if any).
1440  if (RetVT.getSimpleVT() != MVT::isVoid) {
1441    SmallVector<CCValAssign, 16> RVLocs;
1442    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1443    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1444
1445    // Copy all of the result registers out of their specified physreg.
1446    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1447    MVT CopyVT = RVLocs[0].getValVT();
1448    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1449    TargetRegisterClass *SrcRC = DstRC;
1450
1451    // If this is a call to a function that returns an fp value on the x87 fp
1452    // stack, but where we prefer to use the value in xmm registers, copy it
1453    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1454    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1455         RVLocs[0].getLocReg() == X86::ST1) &&
1456        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1457      CopyVT = MVT::f80;
1458      SrcRC = X86::RSTRegisterClass;
1459      DstRC = X86::RFP80RegisterClass;
1460    }
1461
1462    unsigned ResultReg = createResultReg(DstRC);
1463    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1464                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1465    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1466    Emitted = true;
1467    if (CopyVT != RVLocs[0].getValVT()) {
1468      // Round the F80 the right size, which also moves to the appropriate xmm
1469      // register. This is accomplished by storing the F80 value in memory and
1470      // then loading it back. Ewww...
1471      MVT ResVT = RVLocs[0].getValVT();
1472      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1473      unsigned MemSize = ResVT.getSizeInBits()/8;
1474      int FI = MFI.CreateStackObject(MemSize, MemSize);
1475      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1476      DstRC = ResVT == MVT::f32
1477        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1478      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1479      ResultReg = createResultReg(DstRC);
1480      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1481    }
1482
1483    if (AndToI1) {
1484      // Mask out all but lowest bit for some call which produces an i1.
1485      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1486      BuildMI(MBB, DL,
1487              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1488      ResultReg = AndResult;
1489    }
1490
1491    UpdateValueMap(I, ResultReg);
1492  }
1493
1494  return true;
1495}
1496
1497
1498bool
1499X86FastISel::TargetSelectInstruction(Instruction *I)  {
1500  switch (I->getOpcode()) {
1501  default: break;
1502  case Instruction::Load:
1503    return X86SelectLoad(I);
1504  case Instruction::Store:
1505    return X86SelectStore(I);
1506  case Instruction::ICmp:
1507  case Instruction::FCmp:
1508    return X86SelectCmp(I);
1509  case Instruction::ZExt:
1510    return X86SelectZExt(I);
1511  case Instruction::Br:
1512    return X86SelectBranch(I);
1513  case Instruction::Call:
1514    return X86SelectCall(I);
1515  case Instruction::LShr:
1516  case Instruction::AShr:
1517  case Instruction::Shl:
1518    return X86SelectShift(I);
1519  case Instruction::Select:
1520    return X86SelectSelect(I);
1521  case Instruction::Trunc:
1522    return X86SelectTrunc(I);
1523  case Instruction::FPExt:
1524    return X86SelectFPExt(I);
1525  case Instruction::FPTrunc:
1526    return X86SelectFPTrunc(I);
1527  case Instruction::ExtractValue:
1528    return X86SelectExtractValue(I);
1529  case Instruction::IntToPtr: // Deliberate fall-through.
1530  case Instruction::PtrToInt: {
1531    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1532    MVT DstVT = TLI.getValueType(I->getType());
1533    if (DstVT.bitsGT(SrcVT))
1534      return X86SelectZExt(I);
1535    if (DstVT.bitsLT(SrcVT))
1536      return X86SelectTrunc(I);
1537    unsigned Reg = getRegForValue(I->getOperand(0));
1538    if (Reg == 0) return false;
1539    UpdateValueMap(I, Reg);
1540    return true;
1541  }
1542  }
1543
1544  return false;
1545}
1546
1547unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1548  MVT VT;
1549  if (!isTypeLegal(C->getType(), VT))
1550    return false;
1551
1552  // Get opcode and regclass of the output for the given load instruction.
1553  unsigned Opc = 0;
1554  const TargetRegisterClass *RC = NULL;
1555  switch (VT.getSimpleVT()) {
1556  default: return false;
1557  case MVT::i8:
1558    Opc = X86::MOV8rm;
1559    RC  = X86::GR8RegisterClass;
1560    break;
1561  case MVT::i16:
1562    Opc = X86::MOV16rm;
1563    RC  = X86::GR16RegisterClass;
1564    break;
1565  case MVT::i32:
1566    Opc = X86::MOV32rm;
1567    RC  = X86::GR32RegisterClass;
1568    break;
1569  case MVT::i64:
1570    // Must be in x86-64 mode.
1571    Opc = X86::MOV64rm;
1572    RC  = X86::GR64RegisterClass;
1573    break;
1574  case MVT::f32:
1575    if (Subtarget->hasSSE1()) {
1576      Opc = X86::MOVSSrm;
1577      RC  = X86::FR32RegisterClass;
1578    } else {
1579      Opc = X86::LD_Fp32m;
1580      RC  = X86::RFP32RegisterClass;
1581    }
1582    break;
1583  case MVT::f64:
1584    if (Subtarget->hasSSE2()) {
1585      Opc = X86::MOVSDrm;
1586      RC  = X86::FR64RegisterClass;
1587    } else {
1588      Opc = X86::LD_Fp64m;
1589      RC  = X86::RFP64RegisterClass;
1590    }
1591    break;
1592  case MVT::f80:
1593    // No f80 support yet.
1594    return false;
1595  }
1596
1597  // Materialize addresses with LEA instructions.
1598  if (isa<GlobalValue>(C)) {
1599    X86AddressMode AM;
1600    if (X86SelectAddress(C, AM)) {
1601      if (TLI.getPointerTy() == MVT::i32)
1602        Opc = X86::LEA32r;
1603      else
1604        Opc = X86::LEA64r;
1605      unsigned ResultReg = createResultReg(RC);
1606      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1607      return ResultReg;
1608    }
1609    return 0;
1610  }
1611
1612  // MachineConstantPool wants an explicit alignment.
1613  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1614  if (Align == 0) {
1615    // Alignment of vector types.  FIXME!
1616    Align = TD.getTypeAllocSize(C->getType());
1617  }
1618
1619  // x86-32 PIC requires a PIC base register for constant pools.
1620  unsigned PICBase = 0;
1621  unsigned char OpFlag = 0;
1622  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1623    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1624    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1625  } else if (Subtarget->isPICStyleGOT()) {
1626    OpFlag = X86II::MO_GOTOFF;
1627    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1628  } else if (Subtarget->isPICStyleRIPRel() &&
1629             TM.getCodeModel() == CodeModel::Small) {
1630    PICBase = X86::RIP;
1631  }
1632
1633  // Create the load from the constant pool.
1634  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1635  unsigned ResultReg = createResultReg(RC);
1636  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1637                           MCPOffset, PICBase, OpFlag);
1638
1639  return ResultReg;
1640}
1641
1642unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1643  // Fail on dynamic allocas. At this point, getRegForValue has already
1644  // checked its CSE maps, so if we're here trying to handle a dynamic
1645  // alloca, we're not going to succeed. X86SelectAddress has a
1646  // check for dynamic allocas, because it's called directly from
1647  // various places, but TargetMaterializeAlloca also needs a check
1648  // in order to avoid recursion between getRegForValue,
1649  // X86SelectAddrss, and TargetMaterializeAlloca.
1650  if (!StaticAllocaMap.count(C))
1651    return 0;
1652
1653  X86AddressMode AM;
1654  if (!X86SelectAddress(C, AM))
1655    return 0;
1656  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1657  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1658  unsigned ResultReg = createResultReg(RC);
1659  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1660  return ResultReg;
1661}
1662
1663namespace llvm {
1664  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1665                        MachineModuleInfo *mmi,
1666                        DwarfWriter *dw,
1667                        DenseMap<const Value *, unsigned> &vm,
1668                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1669                        DenseMap<const AllocaInst *, int> &am
1670#ifndef NDEBUG
1671                        , SmallSet<Instruction*, 8> &cil
1672#endif
1673                        ) {
1674    return new X86FastISel(mf, mmi, dw, vm, bm, am
1675#ifndef NDEBUG
1676                           , cil
1677#endif
1678                           );
1679  }
1680}
1681