X86FastISel.cpp revision eaf77254d4d6dd8dfc461c3e6078f44da881291c
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Operator.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineConstantPool.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Target/TargetOptions.h"
39using namespace llvm;
40
41namespace {
42
43class X86FastISel : public FastISel {
44  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
45  /// make the right decision when generating code for different targets.
46  const X86Subtarget *Subtarget;
47
48  /// RegInfo - X86 register info.
49  ///
50  const X86RegisterInfo *RegInfo;
51
52  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53  /// floating point ops.
54  /// When SSE is available, use it for f32 operations.
55  /// When SSE2 is available, use it for f64 operations.
56  bool X86ScalarSSEf64;
57  bool X86ScalarSSEf32;
58
59public:
60  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61                       const TargetLibraryInfo *libInfo)
62    : FastISel(funcInfo, libInfo) {
63    Subtarget = &TM.getSubtarget<X86Subtarget>();
64    X86ScalarSSEf64 = Subtarget->hasSSE2();
65    X86ScalarSSEf32 = Subtarget->hasSSE1();
66    RegInfo = static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
67  }
68
69  virtual bool TargetSelectInstruction(const Instruction *I);
70
71  /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
72  /// vreg is being provided by the specified load instruction.  If possible,
73  /// try to fold the load as an operand to the instruction, returning true if
74  /// possible.
75  virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
76                             const LoadInst *LI);
77
78#include "X86GenFastISel.inc"
79
80private:
81  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
82
83  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
84
85  bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM);
86  bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM);
87
88  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
89                         unsigned &ResultReg);
90
91  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
92  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
93
94  bool X86SelectLoad(const Instruction *I);
95
96  bool X86SelectStore(const Instruction *I);
97
98  bool X86SelectRet(const Instruction *I);
99
100  bool X86SelectCmp(const Instruction *I);
101
102  bool X86SelectZExt(const Instruction *I);
103
104  bool X86SelectBranch(const Instruction *I);
105
106  bool X86SelectShift(const Instruction *I);
107
108  bool X86SelectSelect(const Instruction *I);
109
110  bool X86SelectTrunc(const Instruction *I);
111
112  bool X86SelectFPExt(const Instruction *I);
113  bool X86SelectFPTrunc(const Instruction *I);
114
115  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
116  bool X86SelectCall(const Instruction *I);
117
118  bool DoSelectCall(const Instruction *I, const char *MemIntName);
119
120  const X86InstrInfo *getInstrInfo() const {
121    return getTargetMachine()->getInstrInfo();
122  }
123  const X86TargetMachine *getTargetMachine() const {
124    return static_cast<const X86TargetMachine *>(&TM);
125  }
126
127  unsigned TargetMaterializeConstant(const Constant *C);
128
129  unsigned TargetMaterializeAlloca(const AllocaInst *C);
130
131  unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
132
133  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
134  /// computed in an SSE register, not on the X87 floating point stack.
135  bool isScalarFPTypeInSSEReg(EVT VT) const {
136    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
137      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
138  }
139
140  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
141
142  bool IsMemcpySmall(uint64_t Len);
143
144  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
145                          X86AddressMode SrcAM, uint64_t Len);
146};
147
148} // end anonymous namespace.
149
150bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
151  EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
152  if (evt == MVT::Other || !evt.isSimple())
153    // Unhandled type. Halt "fast" selection and bail.
154    return false;
155
156  VT = evt.getSimpleVT();
157  // For now, require SSE/SSE2 for performing floating-point operations,
158  // since x87 requires additional work.
159  if (VT == MVT::f64 && !X86ScalarSSEf64)
160    return false;
161  if (VT == MVT::f32 && !X86ScalarSSEf32)
162    return false;
163  // Similarly, no f80 support yet.
164  if (VT == MVT::f80)
165    return false;
166  // We only handle legal types. For example, on x86-32 the instruction
167  // selector contains all of the 64-bit instructions from x86-64,
168  // under the assumption that i64 won't be used if the target doesn't
169  // support it.
170  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
171}
172
173#include "X86GenCallingConv.inc"
174
175/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
176/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
177/// Return true and the result register by reference if it is possible.
178bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
179                                  unsigned &ResultReg) {
180  // Get opcode and regclass of the output for the given load instruction.
181  unsigned Opc = 0;
182  const TargetRegisterClass *RC = NULL;
183  switch (VT.getSimpleVT().SimpleTy) {
184  default: return false;
185  case MVT::i1:
186  case MVT::i8:
187    Opc = X86::MOV8rm;
188    RC  = &X86::GR8RegClass;
189    break;
190  case MVT::i16:
191    Opc = X86::MOV16rm;
192    RC  = &X86::GR16RegClass;
193    break;
194  case MVT::i32:
195    Opc = X86::MOV32rm;
196    RC  = &X86::GR32RegClass;
197    break;
198  case MVT::i64:
199    // Must be in x86-64 mode.
200    Opc = X86::MOV64rm;
201    RC  = &X86::GR64RegClass;
202    break;
203  case MVT::f32:
204    if (X86ScalarSSEf32) {
205      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
206      RC  = &X86::FR32RegClass;
207    } else {
208      Opc = X86::LD_Fp32m;
209      RC  = &X86::RFP32RegClass;
210    }
211    break;
212  case MVT::f64:
213    if (X86ScalarSSEf64) {
214      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
215      RC  = &X86::FR64RegClass;
216    } else {
217      Opc = X86::LD_Fp64m;
218      RC  = &X86::RFP64RegClass;
219    }
220    break;
221  case MVT::f80:
222    // No f80 support yet.
223    return false;
224  }
225
226  ResultReg = createResultReg(RC);
227  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
228                         DL, TII.get(Opc), ResultReg), AM);
229  return true;
230}
231
232/// X86FastEmitStore - Emit a machine instruction to store a value Val of
233/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
234/// and a displacement offset, or a GlobalAddress,
235/// i.e. V. Return true if it is possible.
236bool
237X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
238  // Get opcode and regclass of the output for the given store instruction.
239  unsigned Opc = 0;
240  switch (VT.getSimpleVT().SimpleTy) {
241  case MVT::f80: // No f80 support yet.
242  default: return false;
243  case MVT::i1: {
244    // Mask out all but lowest bit.
245    unsigned AndResult = createResultReg(&X86::GR8RegClass);
246    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
247            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
248    Val = AndResult;
249  }
250  // FALLTHROUGH, handling i1 as i8.
251  case MVT::i8:  Opc = X86::MOV8mr;  break;
252  case MVT::i16: Opc = X86::MOV16mr; break;
253  case MVT::i32: Opc = X86::MOV32mr; break;
254  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
255  case MVT::f32:
256    Opc = X86ScalarSSEf32 ?
257          (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
258    break;
259  case MVT::f64:
260    Opc = X86ScalarSSEf64 ?
261          (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
262    break;
263  case MVT::v4f32:
264    Opc = X86::MOVAPSmr;
265    break;
266  case MVT::v2f64:
267    Opc = X86::MOVAPDmr;
268    break;
269  case MVT::v4i32:
270  case MVT::v2i64:
271  case MVT::v8i16:
272  case MVT::v16i8:
273    Opc = X86::MOVDQAmr;
274    break;
275  }
276
277  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
278                         DL, TII.get(Opc)), AM).addReg(Val);
279  return true;
280}
281
282bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
283                                   const X86AddressMode &AM) {
284  // Handle 'null' like i32/i64 0.
285  if (isa<ConstantPointerNull>(Val))
286    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
287
288  // If this is a store of a simple constant, fold the constant into the store.
289  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
290    unsigned Opc = 0;
291    bool Signed = true;
292    switch (VT.getSimpleVT().SimpleTy) {
293    default: break;
294    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
295    case MVT::i8:  Opc = X86::MOV8mi;  break;
296    case MVT::i16: Opc = X86::MOV16mi; break;
297    case MVT::i32: Opc = X86::MOV32mi; break;
298    case MVT::i64:
299      // Must be a 32-bit sign extended value.
300      if (isInt<32>(CI->getSExtValue()))
301        Opc = X86::MOV64mi32;
302      break;
303    }
304
305    if (Opc) {
306      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
307                             DL, TII.get(Opc)), AM)
308                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
309                                              CI->getZExtValue());
310      return true;
311    }
312  }
313
314  unsigned ValReg = getRegForValue(Val);
315  if (ValReg == 0)
316    return false;
317
318  return X86FastEmitStore(VT, ValReg, AM);
319}
320
321/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
322/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
323/// ISD::SIGN_EXTEND).
324bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
325                                    unsigned Src, EVT SrcVT,
326                                    unsigned &ResultReg) {
327  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
328                           Src, /*TODO: Kill=*/false);
329
330  if (RR != 0) {
331    ResultReg = RR;
332    return true;
333  } else
334    return false;
335}
336
337/// X86SelectAddress - Attempt to fill in an address from the given value.
338///
339bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
340  const User *U = NULL;
341  unsigned Opcode = Instruction::UserOp1;
342  if (const Instruction *I = dyn_cast<Instruction>(V)) {
343    // Don't walk into other basic blocks; it's possible we haven't
344    // visited them yet, so the instructions may not yet be assigned
345    // virtual registers.
346    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
347        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
348      Opcode = I->getOpcode();
349      U = I;
350    }
351  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
352    Opcode = C->getOpcode();
353    U = C;
354  }
355
356  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
357    if (Ty->getAddressSpace() > 255)
358      // Fast instruction selection doesn't support the special
359      // address spaces.
360      return false;
361
362  switch (Opcode) {
363  default: break;
364  case Instruction::BitCast:
365    // Look past bitcasts.
366    return X86SelectAddress(U->getOperand(0), AM);
367
368  case Instruction::IntToPtr:
369    // Look past no-op inttoptrs.
370    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
371      return X86SelectAddress(U->getOperand(0), AM);
372    break;
373
374  case Instruction::PtrToInt:
375    // Look past no-op ptrtoints.
376    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
377      return X86SelectAddress(U->getOperand(0), AM);
378    break;
379
380  case Instruction::Alloca: {
381    // Do static allocas.
382    const AllocaInst *A = cast<AllocaInst>(V);
383    DenseMap<const AllocaInst*, int>::iterator SI =
384      FuncInfo.StaticAllocaMap.find(A);
385    if (SI != FuncInfo.StaticAllocaMap.end()) {
386      AM.BaseType = X86AddressMode::FrameIndexBase;
387      AM.Base.FrameIndex = SI->second;
388      return true;
389    }
390    break;
391  }
392
393  case Instruction::Add: {
394    // Adds of constants are common and easy enough.
395    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
396      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
397      // They have to fit in the 32-bit signed displacement field though.
398      if (isInt<32>(Disp)) {
399        AM.Disp = (uint32_t)Disp;
400        return X86SelectAddress(U->getOperand(0), AM);
401      }
402    }
403    break;
404  }
405
406  case Instruction::GetElementPtr: {
407    X86AddressMode SavedAM = AM;
408
409    // Pattern-match simple GEPs.
410    uint64_t Disp = (int32_t)AM.Disp;
411    unsigned IndexReg = AM.IndexReg;
412    unsigned Scale = AM.Scale;
413    gep_type_iterator GTI = gep_type_begin(U);
414    // Iterate through the indices, folding what we can. Constants can be
415    // folded, and one dynamic index can be handled, if the scale is supported.
416    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
417         i != e; ++i, ++GTI) {
418      const Value *Op = *i;
419      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
420        const StructLayout *SL = TD.getStructLayout(STy);
421        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
422        continue;
423      }
424
425      // A array/variable index is always of the form i*S where S is the
426      // constant scale size.  See if we can push the scale into immediates.
427      uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
428      for (;;) {
429        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
430          // Constant-offset addressing.
431          Disp += CI->getSExtValue() * S;
432          break;
433        }
434        if (isa<AddOperator>(Op) &&
435            (!isa<Instruction>(Op) ||
436             FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
437               == FuncInfo.MBB) &&
438            isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
439          // An add (in the same block) with a constant operand. Fold the
440          // constant.
441          ConstantInt *CI =
442            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
443          Disp += CI->getSExtValue() * S;
444          // Iterate on the other operand.
445          Op = cast<AddOperator>(Op)->getOperand(0);
446          continue;
447        }
448        if (IndexReg == 0 &&
449            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
450            (S == 1 || S == 2 || S == 4 || S == 8)) {
451          // Scaled-index addressing.
452          Scale = S;
453          IndexReg = getRegForGEPIndex(Op).first;
454          if (IndexReg == 0)
455            return false;
456          break;
457        }
458        // Unsupported.
459        goto unsupported_gep;
460      }
461    }
462    // Check for displacement overflow.
463    if (!isInt<32>(Disp))
464      break;
465    // Ok, the GEP indices were covered by constant-offset and scaled-index
466    // addressing. Update the address state and move on to examining the base.
467    AM.IndexReg = IndexReg;
468    AM.Scale = Scale;
469    AM.Disp = (uint32_t)Disp;
470    if (X86SelectAddress(U->getOperand(0), AM))
471      return true;
472
473    // If we couldn't merge the gep value into this addr mode, revert back to
474    // our address and just match the value instead of completely failing.
475    AM = SavedAM;
476    break;
477  unsupported_gep:
478    // Ok, the GEP indices weren't all covered.
479    break;
480  }
481  }
482
483  // Handle constant address.
484  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
485    // Can't handle alternate code models yet.
486    if (TM.getCodeModel() != CodeModel::Small)
487      return false;
488
489    // Can't handle TLS yet.
490    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
491      if (GVar->isThreadLocal())
492        return false;
493
494    // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
495    // it works...).
496    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
497      if (const GlobalVariable *GVar =
498            dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)))
499        if (GVar->isThreadLocal())
500          return false;
501
502    // RIP-relative addresses can't have additional register operands, so if
503    // we've already folded stuff into the addressing mode, just force the
504    // global value into its own register, which we can use as the basereg.
505    if (!Subtarget->isPICStyleRIPRel() ||
506        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
507      // Okay, we've committed to selecting this global. Set up the address.
508      AM.GV = GV;
509
510      // Allow the subtarget to classify the global.
511      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
512
513      // If this reference is relative to the pic base, set it now.
514      if (isGlobalRelativeToPICBase(GVFlags)) {
515        // FIXME: How do we know Base.Reg is free??
516        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
517      }
518
519      // Unless the ABI requires an extra load, return a direct reference to
520      // the global.
521      if (!isGlobalStubReference(GVFlags)) {
522        if (Subtarget->isPICStyleRIPRel()) {
523          // Use rip-relative addressing if we can.  Above we verified that the
524          // base and index registers are unused.
525          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
526          AM.Base.Reg = X86::RIP;
527        }
528        AM.GVOpFlags = GVFlags;
529        return true;
530      }
531
532      // Ok, we need to do a load from a stub.  If we've already loaded from
533      // this stub, reuse the loaded pointer, otherwise emit the load now.
534      DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
535      unsigned LoadReg;
536      if (I != LocalValueMap.end() && I->second != 0) {
537        LoadReg = I->second;
538      } else {
539        // Issue load from stub.
540        unsigned Opc = 0;
541        const TargetRegisterClass *RC = NULL;
542        X86AddressMode StubAM;
543        StubAM.Base.Reg = AM.Base.Reg;
544        StubAM.GV = GV;
545        StubAM.GVOpFlags = GVFlags;
546
547        // Prepare for inserting code in the local-value area.
548        SavePoint SaveInsertPt = enterLocalValueArea();
549
550        if (TLI.getPointerTy() == MVT::i64) {
551          Opc = X86::MOV64rm;
552          RC  = &X86::GR64RegClass;
553
554          if (Subtarget->isPICStyleRIPRel())
555            StubAM.Base.Reg = X86::RIP;
556        } else {
557          Opc = X86::MOV32rm;
558          RC  = &X86::GR32RegClass;
559        }
560
561        LoadReg = createResultReg(RC);
562        MachineInstrBuilder LoadMI =
563          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
564        addFullAddress(LoadMI, StubAM);
565
566        // Ok, back to normal mode.
567        leaveLocalValueArea(SaveInsertPt);
568
569        // Prevent loading GV stub multiple times in same MBB.
570        LocalValueMap[V] = LoadReg;
571      }
572
573      // Now construct the final address. Note that the Disp, Scale,
574      // and Index values may already be set here.
575      AM.Base.Reg = LoadReg;
576      AM.GV = 0;
577      return true;
578    }
579  }
580
581  // If all else fails, try to materialize the value in a register.
582  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
583    if (AM.Base.Reg == 0) {
584      AM.Base.Reg = getRegForValue(V);
585      return AM.Base.Reg != 0;
586    }
587    if (AM.IndexReg == 0) {
588      assert(AM.Scale == 1 && "Scale with no index!");
589      AM.IndexReg = getRegForValue(V);
590      return AM.IndexReg != 0;
591    }
592  }
593
594  return false;
595}
596
597/// X86SelectCallAddress - Attempt to fill in an address from the given value.
598///
599bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
600  const User *U = NULL;
601  unsigned Opcode = Instruction::UserOp1;
602  if (const Instruction *I = dyn_cast<Instruction>(V)) {
603    Opcode = I->getOpcode();
604    U = I;
605  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
606    Opcode = C->getOpcode();
607    U = C;
608  }
609
610  switch (Opcode) {
611  default: break;
612  case Instruction::BitCast:
613    // Look past bitcasts.
614    return X86SelectCallAddress(U->getOperand(0), AM);
615
616  case Instruction::IntToPtr:
617    // Look past no-op inttoptrs.
618    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
619      return X86SelectCallAddress(U->getOperand(0), AM);
620    break;
621
622  case Instruction::PtrToInt:
623    // Look past no-op ptrtoints.
624    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
625      return X86SelectCallAddress(U->getOperand(0), AM);
626    break;
627  }
628
629  // Handle constant address.
630  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
631    // Can't handle alternate code models yet.
632    if (TM.getCodeModel() != CodeModel::Small)
633      return false;
634
635    // RIP-relative addresses can't have additional register operands.
636    if (Subtarget->isPICStyleRIPRel() &&
637        (AM.Base.Reg != 0 || AM.IndexReg != 0))
638      return false;
639
640    // Can't handle DLLImport.
641    if (GV->hasDLLImportLinkage())
642      return false;
643
644    // Can't handle TLS.
645    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
646      if (GVar->isThreadLocal())
647        return false;
648
649    // Okay, we've committed to selecting this global. Set up the basic address.
650    AM.GV = GV;
651
652    // No ABI requires an extra load for anything other than DLLImport, which
653    // we rejected above. Return a direct reference to the global.
654    if (Subtarget->isPICStyleRIPRel()) {
655      // Use rip-relative addressing if we can.  Above we verified that the
656      // base and index registers are unused.
657      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
658      AM.Base.Reg = X86::RIP;
659    } else if (Subtarget->isPICStyleStubPIC()) {
660      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
661    } else if (Subtarget->isPICStyleGOT()) {
662      AM.GVOpFlags = X86II::MO_GOTOFF;
663    }
664
665    return true;
666  }
667
668  // If all else fails, try to materialize the value in a register.
669  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
670    if (AM.Base.Reg == 0) {
671      AM.Base.Reg = getRegForValue(V);
672      return AM.Base.Reg != 0;
673    }
674    if (AM.IndexReg == 0) {
675      assert(AM.Scale == 1 && "Scale with no index!");
676      AM.IndexReg = getRegForValue(V);
677      return AM.IndexReg != 0;
678    }
679  }
680
681  return false;
682}
683
684
685/// X86SelectStore - Select and emit code to implement store instructions.
686bool X86FastISel::X86SelectStore(const Instruction *I) {
687  // Atomic stores need special handling.
688  const StoreInst *S = cast<StoreInst>(I);
689
690  if (S->isAtomic())
691    return false;
692
693  unsigned SABIAlignment =
694    TD.getABITypeAlignment(S->getValueOperand()->getType());
695  if (S->getAlignment() != 0 && S->getAlignment() < SABIAlignment)
696    return false;
697
698  MVT VT;
699  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
700    return false;
701
702  X86AddressMode AM;
703  if (!X86SelectAddress(I->getOperand(1), AM))
704    return false;
705
706  return X86FastEmitStore(VT, I->getOperand(0), AM);
707}
708
709/// X86SelectRet - Select and emit code to implement ret instructions.
710bool X86FastISel::X86SelectRet(const Instruction *I) {
711  const ReturnInst *Ret = cast<ReturnInst>(I);
712  const Function &F = *I->getParent()->getParent();
713  const X86MachineFunctionInfo *X86MFInfo =
714      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
715
716  if (!FuncInfo.CanLowerReturn)
717    return false;
718
719  CallingConv::ID CC = F.getCallingConv();
720  if (CC != CallingConv::C &&
721      CC != CallingConv::Fast &&
722      CC != CallingConv::X86_FastCall)
723    return false;
724
725  if (Subtarget->isTargetWin64())
726    return false;
727
728  // Don't handle popping bytes on return for now.
729  if (X86MFInfo->getBytesToPopOnReturn() != 0)
730    return 0;
731
732  // fastcc with -tailcallopt is intended to provide a guaranteed
733  // tail call optimization. Fastisel doesn't know how to do that.
734  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
735    return false;
736
737  // Let SDISel handle vararg functions.
738  if (F.isVarArg())
739    return false;
740
741  if (Ret->getNumOperands() > 0) {
742    SmallVector<ISD::OutputArg, 4> Outs;
743    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
744                  Outs, TLI);
745
746    // Analyze operands of the call, assigning locations to each operand.
747    SmallVector<CCValAssign, 16> ValLocs;
748    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
749                   I->getContext());
750    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
751
752    const Value *RV = Ret->getOperand(0);
753    unsigned Reg = getRegForValue(RV);
754    if (Reg == 0)
755      return false;
756
757    // Only handle a single return value for now.
758    if (ValLocs.size() != 1)
759      return false;
760
761    CCValAssign &VA = ValLocs[0];
762
763    // Don't bother handling odd stuff for now.
764    if (VA.getLocInfo() != CCValAssign::Full)
765      return false;
766    // Only handle register returns for now.
767    if (!VA.isRegLoc())
768      return false;
769
770    // The calling-convention tables for x87 returns don't tell
771    // the whole story.
772    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
773      return false;
774
775    unsigned SrcReg = Reg + VA.getValNo();
776    EVT SrcVT = TLI.getValueType(RV->getType());
777    EVT DstVT = VA.getValVT();
778    // Special handling for extended integers.
779    if (SrcVT != DstVT) {
780      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
781        return false;
782
783      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
784        return false;
785
786      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
787
788      if (SrcVT == MVT::i1) {
789        if (Outs[0].Flags.isSExt())
790          return false;
791        SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
792        SrcVT = MVT::i8;
793      }
794      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
795                                             ISD::SIGN_EXTEND;
796      SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
797                          SrcReg, /*TODO: Kill=*/false);
798    }
799
800    // Make the copy.
801    unsigned DstReg = VA.getLocReg();
802    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
803    // Avoid a cross-class copy. This is very unlikely.
804    if (!SrcRC->contains(DstReg))
805      return false;
806    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
807            DstReg).addReg(SrcReg);
808
809    // Mark the register as live out of the function.
810    MRI.addLiveOut(VA.getLocReg());
811  }
812
813  // The x86-64 ABI for returning structs by value requires that we copy
814  // the sret argument into %rax for the return. We saved the argument into
815  // a virtual register in the entry block, so now we copy the value out
816  // and into %rax.
817  if (Subtarget->is64Bit() && F.hasStructRetAttr()) {
818    unsigned Reg = X86MFInfo->getSRetReturnReg();
819    assert(Reg &&
820           "SRetReturnReg should have been set in LowerFormalArguments()!");
821    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
822            X86::RAX).addReg(Reg);
823    MRI.addLiveOut(X86::RAX);
824  }
825
826  // Now emit the RET.
827  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
828  return true;
829}
830
831/// X86SelectLoad - Select and emit code to implement load instructions.
832///
833bool X86FastISel::X86SelectLoad(const Instruction *I)  {
834  // Atomic loads need special handling.
835  if (cast<LoadInst>(I)->isAtomic())
836    return false;
837
838  MVT VT;
839  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
840    return false;
841
842  X86AddressMode AM;
843  if (!X86SelectAddress(I->getOperand(0), AM))
844    return false;
845
846  unsigned ResultReg = 0;
847  if (X86FastEmitLoad(VT, AM, ResultReg)) {
848    UpdateValueMap(I, ResultReg);
849    return true;
850  }
851  return false;
852}
853
854static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
855  bool HasAVX = Subtarget->hasAVX();
856  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
857  bool X86ScalarSSEf64 = Subtarget->hasSSE2();
858
859  switch (VT.getSimpleVT().SimpleTy) {
860  default:       return 0;
861  case MVT::i8:  return X86::CMP8rr;
862  case MVT::i16: return X86::CMP16rr;
863  case MVT::i32: return X86::CMP32rr;
864  case MVT::i64: return X86::CMP64rr;
865  case MVT::f32:
866    return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
867  case MVT::f64:
868    return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
869  }
870}
871
872/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
873/// of the comparison, return an opcode that works for the compare (e.g.
874/// CMP32ri) otherwise return 0.
875static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
876  switch (VT.getSimpleVT().SimpleTy) {
877  // Otherwise, we can't fold the immediate into this comparison.
878  default: return 0;
879  case MVT::i8: return X86::CMP8ri;
880  case MVT::i16: return X86::CMP16ri;
881  case MVT::i32: return X86::CMP32ri;
882  case MVT::i64:
883    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
884    // field.
885    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
886      return X86::CMP64ri32;
887    return 0;
888  }
889}
890
891bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
892                                     EVT VT) {
893  unsigned Op0Reg = getRegForValue(Op0);
894  if (Op0Reg == 0) return false;
895
896  // Handle 'null' like i32/i64 0.
897  if (isa<ConstantPointerNull>(Op1))
898    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
899
900  // We have two options: compare with register or immediate.  If the RHS of
901  // the compare is an immediate that we can fold into this compare, use
902  // CMPri, otherwise use CMPrr.
903  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
904    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
905      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
906        .addReg(Op0Reg)
907        .addImm(Op1C->getSExtValue());
908      return true;
909    }
910  }
911
912  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
913  if (CompareOpc == 0) return false;
914
915  unsigned Op1Reg = getRegForValue(Op1);
916  if (Op1Reg == 0) return false;
917  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
918    .addReg(Op0Reg)
919    .addReg(Op1Reg);
920
921  return true;
922}
923
924bool X86FastISel::X86SelectCmp(const Instruction *I) {
925  const CmpInst *CI = cast<CmpInst>(I);
926
927  MVT VT;
928  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
929    return false;
930
931  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
932  unsigned SetCCOpc;
933  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
934  switch (CI->getPredicate()) {
935  case CmpInst::FCMP_OEQ: {
936    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
937      return false;
938
939    unsigned EReg = createResultReg(&X86::GR8RegClass);
940    unsigned NPReg = createResultReg(&X86::GR8RegClass);
941    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
942    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
943            TII.get(X86::SETNPr), NPReg);
944    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
945            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
946    UpdateValueMap(I, ResultReg);
947    return true;
948  }
949  case CmpInst::FCMP_UNE: {
950    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
951      return false;
952
953    unsigned NEReg = createResultReg(&X86::GR8RegClass);
954    unsigned PReg = createResultReg(&X86::GR8RegClass);
955    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
956    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
957    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
958      .addReg(PReg).addReg(NEReg);
959    UpdateValueMap(I, ResultReg);
960    return true;
961  }
962  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
963  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
964  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
965  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
966  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
967  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
968  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
969  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
970  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
971  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
972  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
973  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
974
975  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
976  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
977  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
978  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
979  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
980  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
981  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
982  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
983  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
984  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
985  default:
986    return false;
987  }
988
989  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
990  if (SwapArgs)
991    std::swap(Op0, Op1);
992
993  // Emit a compare of Op0/Op1.
994  if (!X86FastEmitCompare(Op0, Op1, VT))
995    return false;
996
997  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
998  UpdateValueMap(I, ResultReg);
999  return true;
1000}
1001
1002bool X86FastISel::X86SelectZExt(const Instruction *I) {
1003  // Handle zero-extension from i1 to i8, which is common.
1004  if (!I->getOperand(0)->getType()->isIntegerTy(1))
1005    return false;
1006
1007  EVT DstVT = TLI.getValueType(I->getType());
1008  if (!TLI.isTypeLegal(DstVT))
1009    return false;
1010
1011  unsigned ResultReg = getRegForValue(I->getOperand(0));
1012  if (ResultReg == 0)
1013    return false;
1014
1015  // Set the high bits to zero.
1016  ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1017  if (ResultReg == 0)
1018    return false;
1019
1020  if (DstVT != MVT::i8) {
1021    ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1022                           ResultReg, /*Kill=*/true);
1023    if (ResultReg == 0)
1024      return false;
1025  }
1026
1027  UpdateValueMap(I, ResultReg);
1028  return true;
1029}
1030
1031
1032bool X86FastISel::X86SelectBranch(const Instruction *I) {
1033  // Unconditional branches are selected by tablegen-generated code.
1034  // Handle a conditional branch.
1035  const BranchInst *BI = cast<BranchInst>(I);
1036  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1037  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1038
1039  // Fold the common case of a conditional branch with a comparison
1040  // in the same block (values defined on other blocks may not have
1041  // initialized registers).
1042  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1043    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1044      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
1045
1046      // Try to take advantage of fallthrough opportunities.
1047      CmpInst::Predicate Predicate = CI->getPredicate();
1048      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1049        std::swap(TrueMBB, FalseMBB);
1050        Predicate = CmpInst::getInversePredicate(Predicate);
1051      }
1052
1053      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
1054      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
1055
1056      switch (Predicate) {
1057      case CmpInst::FCMP_OEQ:
1058        std::swap(TrueMBB, FalseMBB);
1059        Predicate = CmpInst::FCMP_UNE;
1060        // FALL THROUGH
1061      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1062      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1063      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1064      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
1065      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
1066      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1067      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
1068      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
1069      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
1070      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
1071      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
1072      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1073      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1074
1075      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
1076      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
1077      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1078      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1079      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1080      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1081      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
1082      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
1083      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
1084      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
1085      default:
1086        return false;
1087      }
1088
1089      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1090      if (SwapArgs)
1091        std::swap(Op0, Op1);
1092
1093      // Emit a compare of the LHS and RHS, setting the flags.
1094      if (!X86FastEmitCompare(Op0, Op1, VT))
1095        return false;
1096
1097      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
1098        .addMBB(TrueMBB);
1099
1100      if (Predicate == CmpInst::FCMP_UNE) {
1101        // X86 requires a second branch to handle UNE (and OEQ,
1102        // which is mapped to UNE above).
1103        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
1104          .addMBB(TrueMBB);
1105      }
1106
1107      FastEmitBranch(FalseMBB, DL);
1108      FuncInfo.MBB->addSuccessor(TrueMBB);
1109      return true;
1110    }
1111  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1112    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1113    // typically happen for _Bool and C++ bools.
1114    MVT SourceVT;
1115    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1116        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1117      unsigned TestOpc = 0;
1118      switch (SourceVT.SimpleTy) {
1119      default: break;
1120      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1121      case MVT::i16: TestOpc = X86::TEST16ri; break;
1122      case MVT::i32: TestOpc = X86::TEST32ri; break;
1123      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1124      }
1125      if (TestOpc) {
1126        unsigned OpReg = getRegForValue(TI->getOperand(0));
1127        if (OpReg == 0) return false;
1128        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
1129          .addReg(OpReg).addImm(1);
1130
1131        unsigned JmpOpc = X86::JNE_4;
1132        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1133          std::swap(TrueMBB, FalseMBB);
1134          JmpOpc = X86::JE_4;
1135        }
1136
1137        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
1138          .addMBB(TrueMBB);
1139        FastEmitBranch(FalseMBB, DL);
1140        FuncInfo.MBB->addSuccessor(TrueMBB);
1141        return true;
1142      }
1143    }
1144  }
1145
1146  // Otherwise do a clumsy setcc and re-test it.
1147  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1148  // in an explicit cast, so make sure to handle that correctly.
1149  unsigned OpReg = getRegForValue(BI->getCondition());
1150  if (OpReg == 0) return false;
1151
1152  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
1153    .addReg(OpReg).addImm(1);
1154  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1155    .addMBB(TrueMBB);
1156  FastEmitBranch(FalseMBB, DL);
1157  FuncInfo.MBB->addSuccessor(TrueMBB);
1158  return true;
1159}
1160
1161bool X86FastISel::X86SelectShift(const Instruction *I) {
1162  unsigned CReg = 0, OpReg = 0;
1163  const TargetRegisterClass *RC = NULL;
1164  if (I->getType()->isIntegerTy(8)) {
1165    CReg = X86::CL;
1166    RC = &X86::GR8RegClass;
1167    switch (I->getOpcode()) {
1168    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1169    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1170    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1171    default: return false;
1172    }
1173  } else if (I->getType()->isIntegerTy(16)) {
1174    CReg = X86::CX;
1175    RC = &X86::GR16RegClass;
1176    switch (I->getOpcode()) {
1177    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1178    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1179    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1180    default: return false;
1181    }
1182  } else if (I->getType()->isIntegerTy(32)) {
1183    CReg = X86::ECX;
1184    RC = &X86::GR32RegClass;
1185    switch (I->getOpcode()) {
1186    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1187    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1188    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1189    default: return false;
1190    }
1191  } else if (I->getType()->isIntegerTy(64)) {
1192    CReg = X86::RCX;
1193    RC = &X86::GR64RegClass;
1194    switch (I->getOpcode()) {
1195    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1196    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1197    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1198    default: return false;
1199    }
1200  } else {
1201    return false;
1202  }
1203
1204  MVT VT;
1205  if (!isTypeLegal(I->getType(), VT))
1206    return false;
1207
1208  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1209  if (Op0Reg == 0) return false;
1210
1211  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1212  if (Op1Reg == 0) return false;
1213  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1214          CReg).addReg(Op1Reg);
1215
1216  // The shift instruction uses X86::CL. If we defined a super-register
1217  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1218  if (CReg != X86::CL)
1219    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1220            TII.get(TargetOpcode::KILL), X86::CL)
1221      .addReg(CReg, RegState::Kill);
1222
1223  unsigned ResultReg = createResultReg(RC);
1224  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1225    .addReg(Op0Reg);
1226  UpdateValueMap(I, ResultReg);
1227  return true;
1228}
1229
1230bool X86FastISel::X86SelectSelect(const Instruction *I) {
1231  MVT VT;
1232  if (!isTypeLegal(I->getType(), VT))
1233    return false;
1234
1235  // We only use cmov here, if we don't have a cmov instruction bail.
1236  if (!Subtarget->hasCMov()) return false;
1237
1238  unsigned Opc = 0;
1239  const TargetRegisterClass *RC = NULL;
1240  if (VT == MVT::i16) {
1241    Opc = X86::CMOVE16rr;
1242    RC = &X86::GR16RegClass;
1243  } else if (VT == MVT::i32) {
1244    Opc = X86::CMOVE32rr;
1245    RC = &X86::GR32RegClass;
1246  } else if (VT == MVT::i64) {
1247    Opc = X86::CMOVE64rr;
1248    RC = &X86::GR64RegClass;
1249  } else {
1250    return false;
1251  }
1252
1253  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1254  if (Op0Reg == 0) return false;
1255  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1256  if (Op1Reg == 0) return false;
1257  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1258  if (Op2Reg == 0) return false;
1259
1260  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1261    .addReg(Op0Reg).addReg(Op0Reg);
1262  unsigned ResultReg = createResultReg(RC);
1263  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1264    .addReg(Op1Reg).addReg(Op2Reg);
1265  UpdateValueMap(I, ResultReg);
1266  return true;
1267}
1268
1269bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1270  // fpext from float to double.
1271  if (X86ScalarSSEf64 &&
1272      I->getType()->isDoubleTy()) {
1273    const Value *V = I->getOperand(0);
1274    if (V->getType()->isFloatTy()) {
1275      unsigned OpReg = getRegForValue(V);
1276      if (OpReg == 0) return false;
1277      unsigned ResultReg = createResultReg(&X86::FR64RegClass);
1278      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1279              TII.get(X86::CVTSS2SDrr), ResultReg)
1280        .addReg(OpReg);
1281      UpdateValueMap(I, ResultReg);
1282      return true;
1283    }
1284  }
1285
1286  return false;
1287}
1288
1289bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1290  if (X86ScalarSSEf64) {
1291    if (I->getType()->isFloatTy()) {
1292      const Value *V = I->getOperand(0);
1293      if (V->getType()->isDoubleTy()) {
1294        unsigned OpReg = getRegForValue(V);
1295        if (OpReg == 0) return false;
1296        unsigned ResultReg = createResultReg(&X86::FR32RegClass);
1297        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1298                TII.get(X86::CVTSD2SSrr), ResultReg)
1299          .addReg(OpReg);
1300        UpdateValueMap(I, ResultReg);
1301        return true;
1302      }
1303    }
1304  }
1305
1306  return false;
1307}
1308
1309bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1310  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1311  EVT DstVT = TLI.getValueType(I->getType());
1312
1313  // This code only handles truncation to byte.
1314  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1315    return false;
1316  if (!TLI.isTypeLegal(SrcVT))
1317    return false;
1318
1319  unsigned InputReg = getRegForValue(I->getOperand(0));
1320  if (!InputReg)
1321    // Unhandled operand.  Halt "fast" selection and bail.
1322    return false;
1323
1324  if (SrcVT == MVT::i8) {
1325    // Truncate from i8 to i1; no code needed.
1326    UpdateValueMap(I, InputReg);
1327    return true;
1328  }
1329
1330  if (!Subtarget->is64Bit()) {
1331    // If we're on x86-32; we can't extract an i8 from a general register.
1332    // First issue a copy to GR16_ABCD or GR32_ABCD.
1333    const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
1334      (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
1335      (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
1336    unsigned CopyReg = createResultReg(CopyRC);
1337    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1338            CopyReg).addReg(InputReg);
1339    InputReg = CopyReg;
1340  }
1341
1342  // Issue an extract_subreg.
1343  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1344                                                  InputReg, /*Kill=*/true,
1345                                                  X86::sub_8bit);
1346  if (!ResultReg)
1347    return false;
1348
1349  UpdateValueMap(I, ResultReg);
1350  return true;
1351}
1352
1353bool X86FastISel::IsMemcpySmall(uint64_t Len) {
1354  return Len <= (Subtarget->is64Bit() ? 32 : 16);
1355}
1356
1357bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
1358                                     X86AddressMode SrcAM, uint64_t Len) {
1359
1360  // Make sure we don't bloat code by inlining very large memcpy's.
1361  if (!IsMemcpySmall(Len))
1362    return false;
1363
1364  bool i64Legal = Subtarget->is64Bit();
1365
1366  // We don't care about alignment here since we just emit integer accesses.
1367  while (Len) {
1368    MVT VT;
1369    if (Len >= 8 && i64Legal)
1370      VT = MVT::i64;
1371    else if (Len >= 4)
1372      VT = MVT::i32;
1373    else if (Len >= 2)
1374      VT = MVT::i16;
1375    else {
1376      assert(Len == 1);
1377      VT = MVT::i8;
1378    }
1379
1380    unsigned Reg;
1381    bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
1382    RV &= X86FastEmitStore(VT, Reg, DestAM);
1383    assert(RV && "Failed to emit load or store??");
1384
1385    unsigned Size = VT.getSizeInBits()/8;
1386    Len -= Size;
1387    DestAM.Disp += Size;
1388    SrcAM.Disp += Size;
1389  }
1390
1391  return true;
1392}
1393
1394bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1395  // FIXME: Handle more intrinsics.
1396  switch (I.getIntrinsicID()) {
1397  default: return false;
1398  case Intrinsic::memcpy: {
1399    const MemCpyInst &MCI = cast<MemCpyInst>(I);
1400    // Don't handle volatile or variable length memcpys.
1401    if (MCI.isVolatile())
1402      return false;
1403
1404    if (isa<ConstantInt>(MCI.getLength())) {
1405      // Small memcpy's are common enough that we want to do them
1406      // without a call if possible.
1407      uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
1408      if (IsMemcpySmall(Len)) {
1409        X86AddressMode DestAM, SrcAM;
1410        if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
1411            !X86SelectAddress(MCI.getRawSource(), SrcAM))
1412          return false;
1413        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
1414        return true;
1415      }
1416    }
1417
1418    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1419    if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
1420      return false;
1421
1422    if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
1423      return false;
1424
1425    return DoSelectCall(&I, "memcpy");
1426  }
1427  case Intrinsic::memset: {
1428    const MemSetInst &MSI = cast<MemSetInst>(I);
1429
1430    if (MSI.isVolatile())
1431      return false;
1432
1433    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1434    if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
1435      return false;
1436
1437    if (MSI.getDestAddressSpace() > 255)
1438      return false;
1439
1440    return DoSelectCall(&I, "memset");
1441  }
1442  case Intrinsic::stackprotector: {
1443    // Emit code to store the stack guard onto the stack.
1444    EVT PtrTy = TLI.getPointerTy();
1445
1446    const Value *Op1 = I.getArgOperand(0); // The guard's value.
1447    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1448
1449    // Grab the frame index.
1450    X86AddressMode AM;
1451    if (!X86SelectAddress(Slot, AM)) return false;
1452    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1453    return true;
1454  }
1455  case Intrinsic::dbg_declare: {
1456    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1457    X86AddressMode AM;
1458    assert(DI->getAddress() && "Null address should be checked earlier!");
1459    if (!X86SelectAddress(DI->getAddress(), AM))
1460      return false;
1461    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1462    // FIXME may need to add RegState::Debug to any registers produced,
1463    // although ESP/EBP should be the only ones at the moment.
1464    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1465      addImm(0).addMetadata(DI->getVariable());
1466    return true;
1467  }
1468  case Intrinsic::trap: {
1469    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1470    return true;
1471  }
1472  case Intrinsic::sadd_with_overflow:
1473  case Intrinsic::uadd_with_overflow: {
1474    // FIXME: Should fold immediates.
1475
1476    // Replace "add with overflow" intrinsics with an "add" instruction followed
1477    // by a seto/setc instruction.
1478    const Function *Callee = I.getCalledFunction();
1479    Type *RetTy =
1480      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1481
1482    MVT VT;
1483    if (!isTypeLegal(RetTy, VT))
1484      return false;
1485
1486    const Value *Op1 = I.getArgOperand(0);
1487    const Value *Op2 = I.getArgOperand(1);
1488    unsigned Reg1 = getRegForValue(Op1);
1489    unsigned Reg2 = getRegForValue(Op2);
1490
1491    if (Reg1 == 0 || Reg2 == 0)
1492      // FIXME: Handle values *not* in registers.
1493      return false;
1494
1495    unsigned OpC = 0;
1496    if (VT == MVT::i32)
1497      OpC = X86::ADD32rr;
1498    else if (VT == MVT::i64)
1499      OpC = X86::ADD64rr;
1500    else
1501      return false;
1502
1503    // The call to CreateRegs builds two sequential registers, to store the
1504    // both the returned values.
1505    unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
1506    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1507      .addReg(Reg1).addReg(Reg2);
1508
1509    unsigned Opc = X86::SETBr;
1510    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1511      Opc = X86::SETOr;
1512    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
1513
1514    UpdateValueMap(&I, ResultReg, 2);
1515    return true;
1516  }
1517  }
1518}
1519
1520bool X86FastISel::X86SelectCall(const Instruction *I) {
1521  const CallInst *CI = cast<CallInst>(I);
1522  const Value *Callee = CI->getCalledValue();
1523
1524  // Can't handle inline asm yet.
1525  if (isa<InlineAsm>(Callee))
1526    return false;
1527
1528  // Handle intrinsic calls.
1529  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1530    return X86VisitIntrinsicCall(*II);
1531
1532  return DoSelectCall(I, 0);
1533}
1534
1535static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
1536                                           const ImmutableCallSite &CS) {
1537  if (Subtarget.is64Bit())
1538    return 0;
1539  if (Subtarget.isTargetWindows())
1540    return 0;
1541  CallingConv::ID CC = CS.getCallingConv();
1542  if (CC == CallingConv::Fast || CC == CallingConv::GHC)
1543    return 0;
1544  if (!CS.paramHasAttr(1, Attributes::StructRet))
1545    return 0;
1546  if (CS.paramHasAttr(1, Attributes::InReg))
1547    return 0;
1548  return 4;
1549}
1550
1551// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
1552bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
1553  const CallInst *CI = cast<CallInst>(I);
1554  const Value *Callee = CI->getCalledValue();
1555
1556  // Handle only C and fastcc calling conventions for now.
1557  ImmutableCallSite CS(CI);
1558  CallingConv::ID CC = CS.getCallingConv();
1559  if (CC != CallingConv::C && CC != CallingConv::Fast &&
1560      CC != CallingConv::X86_FastCall)
1561    return false;
1562
1563  // fastcc with -tailcallopt is intended to provide a guaranteed
1564  // tail call optimization. Fastisel doesn't know how to do that.
1565  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1566    return false;
1567
1568  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1569  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1570  bool isVarArg = FTy->isVarArg();
1571
1572  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
1573  // x86-32.  Special handling for x86-64 is implemented.
1574  if (isVarArg && Subtarget->isTargetWin64())
1575    return false;
1576
1577  // Fast-isel doesn't know about callee-pop yet.
1578  if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
1579                       TM.Options.GuaranteedTailCallOpt))
1580    return false;
1581
1582  // Check whether the function can return without sret-demotion.
1583  SmallVector<ISD::OutputArg, 4> Outs;
1584  GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(),
1585                Outs, TLI);
1586  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
1587                                           *FuncInfo.MF, FTy->isVarArg(),
1588                                           Outs, FTy->getContext());
1589  if (!CanLowerReturn)
1590    return false;
1591
1592  // Materialize callee address in a register. FIXME: GV address can be
1593  // handled with a CALLpcrel32 instead.
1594  X86AddressMode CalleeAM;
1595  if (!X86SelectCallAddress(Callee, CalleeAM))
1596    return false;
1597  unsigned CalleeOp = 0;
1598  const GlobalValue *GV = 0;
1599  if (CalleeAM.GV != 0) {
1600    GV = CalleeAM.GV;
1601  } else if (CalleeAM.Base.Reg != 0) {
1602    CalleeOp = CalleeAM.Base.Reg;
1603  } else
1604    return false;
1605
1606  // Deal with call operands first.
1607  SmallVector<const Value *, 8> ArgVals;
1608  SmallVector<unsigned, 8> Args;
1609  SmallVector<MVT, 8> ArgVTs;
1610  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1611  unsigned arg_size = CS.arg_size();
1612  Args.reserve(arg_size);
1613  ArgVals.reserve(arg_size);
1614  ArgVTs.reserve(arg_size);
1615  ArgFlags.reserve(arg_size);
1616  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1617       i != e; ++i) {
1618    // If we're lowering a mem intrinsic instead of a regular call, skip the
1619    // last two arguments, which should not passed to the underlying functions.
1620    if (MemIntName && e-i <= 2)
1621      break;
1622    Value *ArgVal = *i;
1623    ISD::ArgFlagsTy Flags;
1624    unsigned AttrInd = i - CS.arg_begin() + 1;
1625    if (CS.paramHasAttr(AttrInd, Attributes::SExt))
1626      Flags.setSExt();
1627    if (CS.paramHasAttr(AttrInd, Attributes::ZExt))
1628      Flags.setZExt();
1629
1630    if (CS.paramHasAttr(AttrInd, Attributes::ByVal)) {
1631      PointerType *Ty = cast<PointerType>(ArgVal->getType());
1632      Type *ElementTy = Ty->getElementType();
1633      unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
1634      unsigned FrameAlign = CS.getParamAlignment(AttrInd);
1635      if (!FrameAlign)
1636        FrameAlign = TLI.getByValTypeAlignment(ElementTy);
1637      Flags.setByVal();
1638      Flags.setByValSize(FrameSize);
1639      Flags.setByValAlign(FrameAlign);
1640      if (!IsMemcpySmall(FrameSize))
1641        return false;
1642    }
1643
1644    if (CS.paramHasAttr(AttrInd, Attributes::InReg))
1645      Flags.setInReg();
1646    if (CS.paramHasAttr(AttrInd, Attributes::Nest))
1647      Flags.setNest();
1648
1649    // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
1650    // instruction.  This is safe because it is common to all fastisel supported
1651    // calling conventions on x86.
1652    if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
1653      if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
1654          CI->getBitWidth() == 16) {
1655        if (Flags.isSExt())
1656          ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
1657        else
1658          ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
1659      }
1660    }
1661
1662    unsigned ArgReg;
1663
1664    // Passing bools around ends up doing a trunc to i1 and passing it.
1665    // Codegen this as an argument + "and 1".
1666    if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
1667        cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
1668        ArgVal->hasOneUse()) {
1669      ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
1670      ArgReg = getRegForValue(ArgVal);
1671      if (ArgReg == 0) return false;
1672
1673      MVT ArgVT;
1674      if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
1675
1676      ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
1677                           ArgVal->hasOneUse(), 1);
1678    } else {
1679      ArgReg = getRegForValue(ArgVal);
1680    }
1681
1682    if (ArgReg == 0) return false;
1683
1684    Type *ArgTy = ArgVal->getType();
1685    MVT ArgVT;
1686    if (!isTypeLegal(ArgTy, ArgVT))
1687      return false;
1688    if (ArgVT == MVT::x86mmx)
1689      return false;
1690    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1691    Flags.setOrigAlign(OriginalAlignment);
1692
1693    Args.push_back(ArgReg);
1694    ArgVals.push_back(ArgVal);
1695    ArgVTs.push_back(ArgVT);
1696    ArgFlags.push_back(Flags);
1697  }
1698
1699  // Analyze operands of the call, assigning locations to each operand.
1700  SmallVector<CCValAssign, 16> ArgLocs;
1701  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
1702                 I->getParent()->getContext());
1703
1704  // Allocate shadow area for Win64
1705  if (Subtarget->isTargetWin64())
1706    CCInfo.AllocateStack(32, 8);
1707
1708  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
1709
1710  // Get a count of how many bytes are to be pushed on the stack.
1711  unsigned NumBytes = CCInfo.getNextStackOffset();
1712
1713  // Issue CALLSEQ_START
1714  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1715  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1716    .addImm(NumBytes);
1717
1718  // Process argument: walk the register/memloc assignments, inserting
1719  // copies / loads.
1720  SmallVector<unsigned, 4> RegArgs;
1721  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1722    CCValAssign &VA = ArgLocs[i];
1723    unsigned Arg = Args[VA.getValNo()];
1724    EVT ArgVT = ArgVTs[VA.getValNo()];
1725
1726    // Promote the value if needed.
1727    switch (VA.getLocInfo()) {
1728    case CCValAssign::Full: break;
1729    case CCValAssign::SExt: {
1730      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1731             "Unexpected extend");
1732      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1733                                       Arg, ArgVT, Arg);
1734      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1735      ArgVT = VA.getLocVT();
1736      break;
1737    }
1738    case CCValAssign::ZExt: {
1739      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1740             "Unexpected extend");
1741      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1742                                       Arg, ArgVT, Arg);
1743      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1744      ArgVT = VA.getLocVT();
1745      break;
1746    }
1747    case CCValAssign::AExt: {
1748      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1749             "Unexpected extend");
1750      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1751                                       Arg, ArgVT, Arg);
1752      if (!Emitted)
1753        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1754                                    Arg, ArgVT, Arg);
1755      if (!Emitted)
1756        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1757                                    Arg, ArgVT, Arg);
1758
1759      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1760      ArgVT = VA.getLocVT();
1761      break;
1762    }
1763    case CCValAssign::BCvt: {
1764      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
1765                               ISD::BITCAST, Arg, /*TODO: Kill=*/false);
1766      assert(BC != 0 && "Failed to emit a bitcast!");
1767      Arg = BC;
1768      ArgVT = VA.getLocVT();
1769      break;
1770    }
1771    case CCValAssign::VExt:
1772      // VExt has not been implemented, so this should be impossible to reach
1773      // for now.  However, fallback to Selection DAG isel once implemented.
1774      return false;
1775    case CCValAssign::Indirect:
1776      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
1777      // support this.
1778      return false;
1779    }
1780
1781    if (VA.isRegLoc()) {
1782      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1783              VA.getLocReg()).addReg(Arg);
1784      RegArgs.push_back(VA.getLocReg());
1785    } else {
1786      unsigned LocMemOffset = VA.getLocMemOffset();
1787      X86AddressMode AM;
1788      AM.Base.Reg = RegInfo->getStackRegister();
1789      AM.Disp = LocMemOffset;
1790      const Value *ArgVal = ArgVals[VA.getValNo()];
1791      ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
1792
1793      if (Flags.isByVal()) {
1794        X86AddressMode SrcAM;
1795        SrcAM.Base.Reg = Arg;
1796        bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
1797        assert(Res && "memcpy length already checked!"); (void)Res;
1798      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
1799        // If this is a really simple value, emit this with the Value* version
1800        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
1801        // as it can cause us to reevaluate the argument.
1802        if (!X86FastEmitStore(ArgVT, ArgVal, AM))
1803          return false;
1804      } else {
1805        if (!X86FastEmitStore(ArgVT, Arg, AM))
1806          return false;
1807      }
1808    }
1809  }
1810
1811  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1812  // GOT pointer.
1813  if (Subtarget->isPICStyleGOT()) {
1814    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1815    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1816            X86::EBX).addReg(Base);
1817  }
1818
1819  if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) {
1820    // Count the number of XMM registers allocated.
1821    static const uint16_t XMMArgRegs[] = {
1822      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1823      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1824    };
1825    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1826    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
1827            X86::AL).addImm(NumXMMRegs);
1828  }
1829
1830  // Issue the call.
1831  MachineInstrBuilder MIB;
1832  if (CalleeOp) {
1833    // Register-indirect call.
1834    unsigned CallOpc;
1835    if (Subtarget->is64Bit())
1836      CallOpc = X86::CALL64r;
1837    else
1838      CallOpc = X86::CALL32r;
1839    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1840      .addReg(CalleeOp);
1841
1842  } else {
1843    // Direct call.
1844    assert(GV && "Not a direct call");
1845    unsigned CallOpc;
1846    if (Subtarget->is64Bit())
1847      CallOpc = X86::CALL64pcrel32;
1848    else
1849      CallOpc = X86::CALLpcrel32;
1850
1851    // See if we need any target-specific flags on the GV operand.
1852    unsigned char OpFlags = 0;
1853
1854    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1855    // external symbols most go through the PLT in PIC mode.  If the symbol
1856    // has hidden or protected visibility, or if it is static or local, then
1857    // we don't need to use the PLT - we can directly call it.
1858    if (Subtarget->isTargetELF() &&
1859        TM.getRelocationModel() == Reloc::PIC_ &&
1860        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1861      OpFlags = X86II::MO_PLT;
1862    } else if (Subtarget->isPICStyleStubAny() &&
1863               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1864               (!Subtarget->getTargetTriple().isMacOSX() ||
1865                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
1866      // PC-relative references to external symbols should go through $stub,
1867      // unless we're building with the leopard linker or later, which
1868      // automatically synthesizes these stubs.
1869      OpFlags = X86II::MO_DARWIN_STUB;
1870    }
1871
1872
1873    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
1874    if (MemIntName)
1875      MIB.addExternalSymbol(MemIntName, OpFlags);
1876    else
1877      MIB.addGlobalAddress(GV, 0, OpFlags);
1878  }
1879
1880  // Add a register mask with the call-preserved registers.
1881  // Proper defs for return values will be added by setPhysRegsDeadExcept().
1882  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
1883
1884  // Add an implicit use GOT pointer in EBX.
1885  if (Subtarget->isPICStyleGOT())
1886    MIB.addReg(X86::EBX, RegState::Implicit);
1887
1888  if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64())
1889    MIB.addReg(X86::AL, RegState::Implicit);
1890
1891  // Add implicit physical register uses to the call.
1892  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1893    MIB.addReg(RegArgs[i], RegState::Implicit);
1894
1895  // Issue CALLSEQ_END
1896  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1897  const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
1898  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1899    .addImm(NumBytes).addImm(NumBytesCallee);
1900
1901  // Build info for return calling conv lowering code.
1902  // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
1903  SmallVector<ISD::InputArg, 32> Ins;
1904  SmallVector<EVT, 4> RetTys;
1905  ComputeValueVTs(TLI, I->getType(), RetTys);
1906  for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
1907    EVT VT = RetTys[i];
1908    EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
1909    unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
1910    for (unsigned j = 0; j != NumRegs; ++j) {
1911      ISD::InputArg MyFlags;
1912      MyFlags.VT = RegisterVT.getSimpleVT();
1913      MyFlags.Used = !CS.getInstruction()->use_empty();
1914      if (CS.paramHasAttr(0, Attributes::SExt))
1915        MyFlags.Flags.setSExt();
1916      if (CS.paramHasAttr(0, Attributes::ZExt))
1917        MyFlags.Flags.setZExt();
1918      if (CS.paramHasAttr(0, Attributes::InReg))
1919        MyFlags.Flags.setInReg();
1920      Ins.push_back(MyFlags);
1921    }
1922  }
1923
1924  // Now handle call return values.
1925  SmallVector<unsigned, 4> UsedRegs;
1926  SmallVector<CCValAssign, 16> RVLocs;
1927  CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
1928                    I->getParent()->getContext());
1929  unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
1930  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
1931  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1932    EVT CopyVT = RVLocs[i].getValVT();
1933    unsigned CopyReg = ResultReg + i;
1934
1935    // If this is a call to a function that returns an fp value on the x87 fp
1936    // stack, but where we prefer to use the value in xmm registers, copy it
1937    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1938    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1939         RVLocs[i].getLocReg() == X86::ST1)) {
1940      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1941        CopyVT = MVT::f80;
1942        CopyReg = createResultReg(&X86::RFP80RegClass);
1943      }
1944      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
1945              CopyReg);
1946    } else {
1947      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1948              CopyReg).addReg(RVLocs[i].getLocReg());
1949      UsedRegs.push_back(RVLocs[i].getLocReg());
1950    }
1951
1952    if (CopyVT != RVLocs[i].getValVT()) {
1953      // Round the F80 the right size, which also moves to the appropriate xmm
1954      // register. This is accomplished by storing the F80 value in memory and
1955      // then loading it back. Ewww...
1956      EVT ResVT = RVLocs[i].getValVT();
1957      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1958      unsigned MemSize = ResVT.getSizeInBits()/8;
1959      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1960      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1961                                TII.get(Opc)), FI)
1962        .addReg(CopyReg);
1963      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1964      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1965                                TII.get(Opc), ResultReg + i), FI);
1966    }
1967  }
1968
1969  if (RVLocs.size())
1970    UpdateValueMap(I, ResultReg, RVLocs.size());
1971
1972  // Set all unused physreg defs as dead.
1973  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1974
1975  return true;
1976}
1977
1978
1979bool
1980X86FastISel::TargetSelectInstruction(const Instruction *I)  {
1981  switch (I->getOpcode()) {
1982  default: break;
1983  case Instruction::Load:
1984    return X86SelectLoad(I);
1985  case Instruction::Store:
1986    return X86SelectStore(I);
1987  case Instruction::Ret:
1988    return X86SelectRet(I);
1989  case Instruction::ICmp:
1990  case Instruction::FCmp:
1991    return X86SelectCmp(I);
1992  case Instruction::ZExt:
1993    return X86SelectZExt(I);
1994  case Instruction::Br:
1995    return X86SelectBranch(I);
1996  case Instruction::Call:
1997    return X86SelectCall(I);
1998  case Instruction::LShr:
1999  case Instruction::AShr:
2000  case Instruction::Shl:
2001    return X86SelectShift(I);
2002  case Instruction::Select:
2003    return X86SelectSelect(I);
2004  case Instruction::Trunc:
2005    return X86SelectTrunc(I);
2006  case Instruction::FPExt:
2007    return X86SelectFPExt(I);
2008  case Instruction::FPTrunc:
2009    return X86SelectFPTrunc(I);
2010  case Instruction::IntToPtr: // Deliberate fall-through.
2011  case Instruction::PtrToInt: {
2012    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
2013    EVT DstVT = TLI.getValueType(I->getType());
2014    if (DstVT.bitsGT(SrcVT))
2015      return X86SelectZExt(I);
2016    if (DstVT.bitsLT(SrcVT))
2017      return X86SelectTrunc(I);
2018    unsigned Reg = getRegForValue(I->getOperand(0));
2019    if (Reg == 0) return false;
2020    UpdateValueMap(I, Reg);
2021    return true;
2022  }
2023  }
2024
2025  return false;
2026}
2027
2028unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
2029  MVT VT;
2030  if (!isTypeLegal(C->getType(), VT))
2031    return 0;
2032
2033  // Can't handle alternate code models yet.
2034  if (TM.getCodeModel() != CodeModel::Small)
2035    return 0;
2036
2037  // Get opcode and regclass of the output for the given load instruction.
2038  unsigned Opc = 0;
2039  const TargetRegisterClass *RC = NULL;
2040  switch (VT.SimpleTy) {
2041  default: return 0;
2042  case MVT::i8:
2043    Opc = X86::MOV8rm;
2044    RC  = &X86::GR8RegClass;
2045    break;
2046  case MVT::i16:
2047    Opc = X86::MOV16rm;
2048    RC  = &X86::GR16RegClass;
2049    break;
2050  case MVT::i32:
2051    Opc = X86::MOV32rm;
2052    RC  = &X86::GR32RegClass;
2053    break;
2054  case MVT::i64:
2055    // Must be in x86-64 mode.
2056    Opc = X86::MOV64rm;
2057    RC  = &X86::GR64RegClass;
2058    break;
2059  case MVT::f32:
2060    if (X86ScalarSSEf32) {
2061      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
2062      RC  = &X86::FR32RegClass;
2063    } else {
2064      Opc = X86::LD_Fp32m;
2065      RC  = &X86::RFP32RegClass;
2066    }
2067    break;
2068  case MVT::f64:
2069    if (X86ScalarSSEf64) {
2070      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
2071      RC  = &X86::FR64RegClass;
2072    } else {
2073      Opc = X86::LD_Fp64m;
2074      RC  = &X86::RFP64RegClass;
2075    }
2076    break;
2077  case MVT::f80:
2078    // No f80 support yet.
2079    return 0;
2080  }
2081
2082  // Materialize addresses with LEA instructions.
2083  if (isa<GlobalValue>(C)) {
2084    X86AddressMode AM;
2085    if (X86SelectAddress(C, AM)) {
2086      // If the expression is just a basereg, then we're done, otherwise we need
2087      // to emit an LEA.
2088      if (AM.BaseType == X86AddressMode::RegBase &&
2089          AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
2090        return AM.Base.Reg;
2091
2092      Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
2093      unsigned ResultReg = createResultReg(RC);
2094      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2095                             TII.get(Opc), ResultReg), AM);
2096      return ResultReg;
2097    }
2098    return 0;
2099  }
2100
2101  // MachineConstantPool wants an explicit alignment.
2102  unsigned Align = TD.getPrefTypeAlignment(C->getType());
2103  if (Align == 0) {
2104    // Alignment of vector types.  FIXME!
2105    Align = TD.getTypeAllocSize(C->getType());
2106  }
2107
2108  // x86-32 PIC requires a PIC base register for constant pools.
2109  unsigned PICBase = 0;
2110  unsigned char OpFlag = 0;
2111  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
2112    OpFlag = X86II::MO_PIC_BASE_OFFSET;
2113    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2114  } else if (Subtarget->isPICStyleGOT()) {
2115    OpFlag = X86II::MO_GOTOFF;
2116    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2117  } else if (Subtarget->isPICStyleRIPRel() &&
2118             TM.getCodeModel() == CodeModel::Small) {
2119    PICBase = X86::RIP;
2120  }
2121
2122  // Create the load from the constant pool.
2123  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
2124  unsigned ResultReg = createResultReg(RC);
2125  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2126                                   TII.get(Opc), ResultReg),
2127                           MCPOffset, PICBase, OpFlag);
2128
2129  return ResultReg;
2130}
2131
2132unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
2133  // Fail on dynamic allocas. At this point, getRegForValue has already
2134  // checked its CSE maps, so if we're here trying to handle a dynamic
2135  // alloca, we're not going to succeed. X86SelectAddress has a
2136  // check for dynamic allocas, because it's called directly from
2137  // various places, but TargetMaterializeAlloca also needs a check
2138  // in order to avoid recursion between getRegForValue,
2139  // X86SelectAddrss, and TargetMaterializeAlloca.
2140  if (!FuncInfo.StaticAllocaMap.count(C))
2141    return 0;
2142
2143  X86AddressMode AM;
2144  if (!X86SelectAddress(C, AM))
2145    return 0;
2146  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
2147  const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
2148  unsigned ResultReg = createResultReg(RC);
2149  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2150                         TII.get(Opc), ResultReg), AM);
2151  return ResultReg;
2152}
2153
2154unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
2155  MVT VT;
2156  if (!isTypeLegal(CF->getType(), VT))
2157    return false;
2158
2159  // Get opcode and regclass for the given zero.
2160  unsigned Opc = 0;
2161  const TargetRegisterClass *RC = NULL;
2162  switch (VT.SimpleTy) {
2163  default: return false;
2164  case MVT::f32:
2165    if (X86ScalarSSEf32) {
2166      Opc = X86::FsFLD0SS;
2167      RC  = &X86::FR32RegClass;
2168    } else {
2169      Opc = X86::LD_Fp032;
2170      RC  = &X86::RFP32RegClass;
2171    }
2172    break;
2173  case MVT::f64:
2174    if (X86ScalarSSEf64) {
2175      Opc = X86::FsFLD0SD;
2176      RC  = &X86::FR64RegClass;
2177    } else {
2178      Opc = X86::LD_Fp064;
2179      RC  = &X86::RFP64RegClass;
2180    }
2181    break;
2182  case MVT::f80:
2183    // No f80 support yet.
2184    return false;
2185  }
2186
2187  unsigned ResultReg = createResultReg(RC);
2188  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
2189  return ResultReg;
2190}
2191
2192
2193/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2194/// vreg is being provided by the specified load instruction.  If possible,
2195/// try to fold the load as an operand to the instruction, returning true if
2196/// possible.
2197bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2198                                const LoadInst *LI) {
2199  X86AddressMode AM;
2200  if (!X86SelectAddress(LI->getOperand(0), AM))
2201    return false;
2202
2203  const X86InstrInfo &XII = (const X86InstrInfo&)TII;
2204
2205  unsigned Size = TD.getTypeAllocSize(LI->getType());
2206  unsigned Alignment = LI->getAlignment();
2207
2208  SmallVector<MachineOperand, 8> AddrOps;
2209  AM.getFullAddress(AddrOps);
2210
2211  MachineInstr *Result =
2212    XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
2213  if (Result == 0) return false;
2214
2215  FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
2216  MI->eraseFromParent();
2217  return true;
2218}
2219
2220
2221namespace llvm {
2222  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
2223                                const TargetLibraryInfo *libInfo) {
2224    return new X86FastISel(funcInfo, libInfo);
2225  }
2226}
2227