X86FixupLEAs.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which will find  instructions  which
11// can be re-written as LEA instructions in order to reduce pipeline
12// delays for some models of the Intel Atom family.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "x86-fixup-LEAs"
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86Subtarget.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29using namespace llvm;
30
31STATISTIC(NumLEAs, "Number of LEA instructions created");
32
33namespace {
34  class FixupLEAPass : public MachineFunctionPass {
35    enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
36    static char ID;
37    /// \brief Loop over all of the instructions in the basic block
38    /// replacing applicable instructions with LEA instructions,
39    /// where appropriate.
40    bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
41
42    const char *getPassName() const override { return "X86 Atom LEA Fixup";}
43
44    /// \brief Given a machine register, look for the instruction
45    /// which writes it in the current basic block. If found,
46    /// try to replace it with an equivalent LEA instruction.
47    /// If replacement succeeds, then also process the the newly created
48    /// instruction.
49    void  seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
50                      MachineFunction::iterator MFI);
51
52    /// \brief Given a memory access or LEA instruction
53    /// whose address mode uses a base and/or index register, look for
54    /// an opportunity to replace the instruction which sets the base or index
55    /// register with an equivalent LEA instruction.
56    void processInstruction(MachineBasicBlock::iterator& I,
57                            MachineFunction::iterator MFI);
58
59    /// \brief Determine if an instruction references a machine register
60    /// and, if so, whether it reads or writes the register.
61    RegUsageState usesRegister(MachineOperand& p,
62                               MachineBasicBlock::iterator I);
63
64    /// \brief Step backwards through a basic block, looking
65    /// for an instruction which writes a register within
66    /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
67    MachineBasicBlock::iterator searchBackwards(MachineOperand& p,
68                                                MachineBasicBlock::iterator& I,
69                                                MachineFunction::iterator MFI);
70
71    /// \brief if an instruction can be converted to an
72    /// equivalent LEA, insert the new instruction into the basic block
73    /// and return a pointer to it. Otherwise, return zero.
74    MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
75                                     MachineBasicBlock::iterator &MBBI) const;
76
77  public:
78    FixupLEAPass() : MachineFunctionPass(ID) {}
79
80    /// \brief Loop over all of the basic blocks,
81    /// replacing instructions by equivalent LEA instructions
82    /// if needed and when possible.
83    bool runOnMachineFunction(MachineFunction &MF) override;
84
85  private:
86    MachineFunction *MF;
87    const TargetMachine *TM;
88    const TargetInstrInfo *TII; // Machine instruction info.
89
90  };
91  char FixupLEAPass::ID = 0;
92}
93
94MachineInstr *
95FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
96                                 MachineBasicBlock::iterator &MBBI) const {
97  MachineInstr* MI = MBBI;
98  MachineInstr* NewMI;
99  switch (MI->getOpcode()) {
100  case X86::MOV32rr:
101  case X86::MOV64rr: {
102    const MachineOperand& Src = MI->getOperand(1);
103    const MachineOperand& Dest = MI->getOperand(0);
104    NewMI = BuildMI(*MF, MI->getDebugLoc(),
105      TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
106      .addOperand(Dest)
107      .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
108    MFI->insert(MBBI, NewMI);   // Insert the new inst
109    return NewMI;
110  }
111  case X86::ADD64ri32:
112  case X86::ADD64ri8:
113  case X86::ADD64ri32_DB:
114  case X86::ADD64ri8_DB:
115  case X86::ADD32ri:
116  case X86::ADD32ri8:
117  case X86::ADD32ri_DB:
118  case X86::ADD32ri8_DB:
119  case X86::ADD16ri:
120  case X86::ADD16ri8:
121  case X86::ADD16ri_DB:
122  case X86::ADD16ri8_DB:
123    if (!MI->getOperand(2).isImm()) {
124      // convertToThreeAddress will call getImm()
125      // which requires isImm() to be true
126      return 0;
127    }
128    break;
129  case X86::ADD16rr:
130  case X86::ADD16rr_DB:
131    if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
132      // if src1 != src2, then convertToThreeAddress will
133      // need to create a Virtual register, which we cannot do
134      // after register allocation.
135      return 0;
136    }
137  }
138  return TII->convertToThreeAddress(MFI, MBBI, 0);
139}
140
141FunctionPass *llvm::createX86FixupLEAs() {
142  return new FixupLEAPass();
143}
144
145bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
146  MF = &Func;
147  TM = &MF->getTarget();
148  TII = TM->getInstrInfo();
149
150  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
151  // Process all basic blocks.
152  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
153    processBasicBlock(Func, I);
154  DEBUG(dbgs() << "End X86FixupLEAs\n";);
155
156  return true;
157}
158
159FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
160                                MachineBasicBlock::iterator I) {
161  RegUsageState RegUsage = RU_NotUsed;
162  MachineInstr* MI = I;
163
164  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
165    MachineOperand& opnd = MI->getOperand(i);
166    if (opnd.isReg() && opnd.getReg() == p.getReg()){
167      if (opnd.isDef())
168        return RU_Write;
169      RegUsage = RU_Read;
170    }
171  }
172  return RegUsage;
173}
174
175/// getPreviousInstr - Given a reference to an instruction in a basic
176/// block, return a reference to the previous instruction in the block,
177/// wrapping around to the last instruction of the block if the block
178/// branches to itself.
179static inline bool getPreviousInstr(MachineBasicBlock::iterator& I,
180                                    MachineFunction::iterator MFI) {
181  if (I == MFI->begin()) {
182    if (MFI->isPredecessor(MFI)) {
183      I = --MFI->end();
184      return true;
185    }
186    else
187      return false;
188  }
189  --I;
190  return true;
191}
192
193MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
194                                   MachineBasicBlock::iterator& I,
195                                   MachineFunction::iterator MFI) {
196  int InstrDistance = 1;
197  MachineBasicBlock::iterator CurInst;
198  static const int INSTR_DISTANCE_THRESHOLD = 5;
199
200  CurInst = I;
201  bool Found;
202  Found = getPreviousInstr(CurInst, MFI);
203  while( Found && I != CurInst) {
204    if (CurInst->isCall() || CurInst->isInlineAsm())
205      break;
206    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
207      break; // too far back to make a difference
208    if (usesRegister(p, CurInst) == RU_Write){
209      return CurInst;
210    }
211    InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
212    Found = getPreviousInstr(CurInst, MFI);
213  }
214  return 0;
215}
216
217void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
218                                      MachineFunction::iterator MFI) {
219  // Process a load, store, or LEA instruction.
220  MachineInstr *MI = I;
221  int opcode = MI->getOpcode();
222  const MCInstrDesc& Desc = MI->getDesc();
223  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
224  if (AddrOffset >= 0) {
225    AddrOffset += X86II::getOperandBias(Desc);
226    MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
227    if (p.isReg() && p.getReg() != X86::ESP) {
228      seekLEAFixup(p, I, MFI);
229    }
230    MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
231    if (q.isReg() && q.getReg() != X86::ESP) {
232      seekLEAFixup(q, I, MFI);
233    }
234  }
235}
236
237void FixupLEAPass::seekLEAFixup(MachineOperand& p,
238                                MachineBasicBlock::iterator& I,
239                                MachineFunction::iterator MFI) {
240  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
241  if (MBI) {
242    MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI);
243    if (NewMI) {
244      ++NumLEAs;
245      DEBUG(dbgs() << "Candidate to replace:"; MBI->dump(););
246      // now to replace with an equivalent LEA...
247      DEBUG(dbgs() << "Replaced by: "; NewMI->dump(););
248      MFI->erase(MBI);
249      MachineBasicBlock::iterator J =
250                             static_cast<MachineBasicBlock::iterator> (NewMI);
251      processInstruction(J, MFI);
252    }
253  }
254}
255
256bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
257                                     MachineFunction::iterator MFI) {
258
259  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I)
260    processInstruction(I, MFI);
261  return false;
262}
263