X86FixupLEAs.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which will find  instructions  which
11// can be re-written as LEA instructions in order to reduce pipeline
12// delays for some models of the Intel Atom family.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrInfo.h"
18#include "X86Subtarget.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30#define DEBUG_TYPE "x86-fixup-LEAs"
31
32STATISTIC(NumLEAs, "Number of LEA instructions created");
33
34namespace {
35  class FixupLEAPass : public MachineFunctionPass {
36    enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
37    static char ID;
38    /// \brief Loop over all of the instructions in the basic block
39    /// replacing applicable instructions with LEA instructions,
40    /// where appropriate.
41    bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
42
43    const char *getPassName() const override { return "X86 Atom LEA Fixup";}
44
45    /// \brief Given a machine register, look for the instruction
46    /// which writes it in the current basic block. If found,
47    /// try to replace it with an equivalent LEA instruction.
48    /// If replacement succeeds, then also process the the newly created
49    /// instruction.
50    void  seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
51                      MachineFunction::iterator MFI);
52
53    /// \brief Given a memory access or LEA instruction
54    /// whose address mode uses a base and/or index register, look for
55    /// an opportunity to replace the instruction which sets the base or index
56    /// register with an equivalent LEA instruction.
57    void processInstruction(MachineBasicBlock::iterator& I,
58                            MachineFunction::iterator MFI);
59
60    /// \brief Given a LEA instruction which is unprofitable
61    /// on Silvermont try to replace it with an equivalent ADD instruction
62    void processInstructionForSLM(MachineBasicBlock::iterator& I,
63                                  MachineFunction::iterator MFI);
64
65    /// \brief Determine if an instruction references a machine register
66    /// and, if so, whether it reads or writes the register.
67    RegUsageState usesRegister(MachineOperand& p,
68                               MachineBasicBlock::iterator I);
69
70    /// \brief Step backwards through a basic block, looking
71    /// for an instruction which writes a register within
72    /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
73    MachineBasicBlock::iterator searchBackwards(MachineOperand& p,
74                                                MachineBasicBlock::iterator& I,
75                                                MachineFunction::iterator MFI);
76
77    /// \brief if an instruction can be converted to an
78    /// equivalent LEA, insert the new instruction into the basic block
79    /// and return a pointer to it. Otherwise, return zero.
80    MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
81                                     MachineBasicBlock::iterator &MBBI) const;
82
83  public:
84    FixupLEAPass() : MachineFunctionPass(ID) {}
85
86    /// \brief Loop over all of the basic blocks,
87    /// replacing instructions by equivalent LEA instructions
88    /// if needed and when possible.
89    bool runOnMachineFunction(MachineFunction &MF) override;
90
91  private:
92    MachineFunction *MF;
93    const TargetMachine *TM;
94    const X86InstrInfo *TII; // Machine instruction info.
95
96  };
97  char FixupLEAPass::ID = 0;
98}
99
100MachineInstr *
101FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
102                                 MachineBasicBlock::iterator &MBBI) const {
103  MachineInstr* MI = MBBI;
104  MachineInstr* NewMI;
105  switch (MI->getOpcode()) {
106  case X86::MOV32rr:
107  case X86::MOV64rr: {
108    const MachineOperand& Src = MI->getOperand(1);
109    const MachineOperand& Dest = MI->getOperand(0);
110    NewMI = BuildMI(*MF, MI->getDebugLoc(),
111      TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
112      .addOperand(Dest)
113      .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
114    MFI->insert(MBBI, NewMI);   // Insert the new inst
115    return NewMI;
116  }
117  case X86::ADD64ri32:
118  case X86::ADD64ri8:
119  case X86::ADD64ri32_DB:
120  case X86::ADD64ri8_DB:
121  case X86::ADD32ri:
122  case X86::ADD32ri8:
123  case X86::ADD32ri_DB:
124  case X86::ADD32ri8_DB:
125  case X86::ADD16ri:
126  case X86::ADD16ri8:
127  case X86::ADD16ri_DB:
128  case X86::ADD16ri8_DB:
129    if (!MI->getOperand(2).isImm()) {
130      // convertToThreeAddress will call getImm()
131      // which requires isImm() to be true
132      return nullptr;
133    }
134    break;
135  case X86::ADD16rr:
136  case X86::ADD16rr_DB:
137    if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
138      // if src1 != src2, then convertToThreeAddress will
139      // need to create a Virtual register, which we cannot do
140      // after register allocation.
141      return nullptr;
142    }
143  }
144  return TII->convertToThreeAddress(MFI, MBBI, nullptr);
145}
146
147FunctionPass *llvm::createX86FixupLEAs() {
148  return new FixupLEAPass();
149}
150
151bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
152  TM = &Func.getTarget();
153  const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
154  if (!ST.LEAusesAG() && !ST.slowLEA())
155    return false;
156
157  TII = static_cast<const X86InstrInfo*>(TM->getInstrInfo());
158
159  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
160  // Process all basic blocks.
161  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
162    processBasicBlock(Func, I);
163  DEBUG(dbgs() << "End X86FixupLEAs\n";);
164
165  return true;
166}
167
168FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
169                                MachineBasicBlock::iterator I) {
170  RegUsageState RegUsage = RU_NotUsed;
171  MachineInstr* MI = I;
172
173  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
174    MachineOperand& opnd = MI->getOperand(i);
175    if (opnd.isReg() && opnd.getReg() == p.getReg()){
176      if (opnd.isDef())
177        return RU_Write;
178      RegUsage = RU_Read;
179    }
180  }
181  return RegUsage;
182}
183
184/// getPreviousInstr - Given a reference to an instruction in a basic
185/// block, return a reference to the previous instruction in the block,
186/// wrapping around to the last instruction of the block if the block
187/// branches to itself.
188static inline bool getPreviousInstr(MachineBasicBlock::iterator& I,
189                                    MachineFunction::iterator MFI) {
190  if (I == MFI->begin()) {
191    if (MFI->isPredecessor(MFI)) {
192      I = --MFI->end();
193      return true;
194    }
195    else
196      return false;
197  }
198  --I;
199  return true;
200}
201
202MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
203                                   MachineBasicBlock::iterator& I,
204                                   MachineFunction::iterator MFI) {
205  int InstrDistance = 1;
206  MachineBasicBlock::iterator CurInst;
207  static const int INSTR_DISTANCE_THRESHOLD = 5;
208
209  CurInst = I;
210  bool Found;
211  Found = getPreviousInstr(CurInst, MFI);
212  while( Found && I != CurInst) {
213    if (CurInst->isCall() || CurInst->isInlineAsm())
214      break;
215    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
216      break; // too far back to make a difference
217    if (usesRegister(p, CurInst) == RU_Write){
218      return CurInst;
219    }
220    InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
221    Found = getPreviousInstr(CurInst, MFI);
222  }
223  return nullptr;
224}
225
226void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
227                                      MachineFunction::iterator MFI) {
228  // Process a load, store, or LEA instruction.
229  MachineInstr *MI = I;
230  int opcode = MI->getOpcode();
231  const MCInstrDesc& Desc = MI->getDesc();
232  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
233  if (AddrOffset >= 0) {
234    AddrOffset += X86II::getOperandBias(Desc);
235    MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
236    if (p.isReg() && p.getReg() != X86::ESP) {
237      seekLEAFixup(p, I, MFI);
238    }
239    MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
240    if (q.isReg() && q.getReg() != X86::ESP) {
241      seekLEAFixup(q, I, MFI);
242    }
243  }
244}
245
246void FixupLEAPass::seekLEAFixup(MachineOperand& p,
247                                MachineBasicBlock::iterator& I,
248                                MachineFunction::iterator MFI) {
249  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
250  if (MBI) {
251    MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI);
252    if (NewMI) {
253      ++NumLEAs;
254      DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
255      // now to replace with an equivalent LEA...
256      DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
257      MFI->erase(MBI);
258      MachineBasicBlock::iterator J =
259                             static_cast<MachineBasicBlock::iterator> (NewMI);
260      processInstruction(J, MFI);
261    }
262  }
263}
264
265void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
266                                            MachineFunction::iterator MFI) {
267  MachineInstr *MI = I;
268  const int opcode = MI->getOpcode();
269  if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
270      opcode != X86::LEA64_32r)
271    return;
272  if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
273      !TII->isSafeToClobberEFLAGS(*MFI, I))
274    return;
275  const unsigned DstR = MI->getOperand(0).getReg();
276  const unsigned SrcR1 = MI->getOperand(1).getReg();
277  const unsigned SrcR2 = MI->getOperand(3).getReg();
278  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
279    return;
280  if (MI->getOperand(2).getImm() > 1)
281    return;
282  int addrr_opcode, addri_opcode;
283  switch (opcode) {
284  case X86::LEA16r:
285    addrr_opcode = X86::ADD16rr;
286    addri_opcode = X86::ADD16ri;
287    break;
288  case X86::LEA32r:
289    addrr_opcode = X86::ADD32rr;
290    addri_opcode = X86::ADD32ri;
291    break;
292  case X86::LEA64_32r:
293  case X86::LEA64r:
294    addrr_opcode = X86::ADD64rr;
295    addri_opcode = X86::ADD64ri32;
296    break;
297  default:
298    assert(false && "Unexpected LEA instruction");
299  }
300  DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
301  DEBUG(dbgs() << "FixLEA: Replaced by: ";);
302  MachineInstr *NewMI = 0;
303  const MachineOperand &Dst = MI->getOperand(0);
304  // Make ADD instruction for two registers writing to LEA's destination
305  if (SrcR1 != 0 && SrcR2 != 0) {
306    const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
307    const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
308    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
309                .addOperand(Dst)
310                .addOperand(Src1)
311                .addOperand(Src2);
312    MFI->insert(I, NewMI);
313    DEBUG(NewMI->dump(););
314  }
315  // Make ADD instruction for immediate
316  if (MI->getOperand(4).getImm() != 0) {
317    const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
318    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
319                .addOperand(Dst)
320                .addOperand(SrcR)
321                .addImm(MI->getOperand(4).getImm());
322    MFI->insert(I, NewMI);
323    DEBUG(NewMI->dump(););
324  }
325  if (NewMI) {
326    MFI->erase(I);
327    I = static_cast<MachineBasicBlock::iterator>(NewMI);
328  }
329}
330
331bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
332                                     MachineFunction::iterator MFI) {
333
334  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
335    if (TM->getSubtarget<X86Subtarget>().isSLM())
336      processInstructionForSLM(I, MFI);
337    else
338      processInstruction(I, MFI);
339  }
340  return false;
341}
342