X86FloatingPoint.cpp revision 1c3329f7072356c8da84534ed0a7033b10f73062
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP  , "Number of floating point instructions");
52
53namespace {
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    static char ID;
56    FPS() : MachineFunctionPass(&ID) {}
57
58    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59      AU.addPreservedID(MachineLoopInfoID);
60      AU.addPreservedID(MachineDominatorsID);
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    virtual bool runOnMachineFunction(MachineFunction &MF);
65
66    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
67
68  private:
69    const TargetInstrInfo *TII; // Machine instruction info.
70    MachineBasicBlock *MBB;     // Current basic block
71    unsigned Stack[8];          // FP<n> Registers in each stack slot...
72    unsigned RegMap[8];         // Track which stack slot contains each register
73    unsigned StackTop;          // The current top of the FP stack.
74
75    void dumpStack() const {
76      cerr << "Stack contents:";
77      for (unsigned i = 0; i != StackTop; ++i) {
78        cerr << " FP" << Stack[i];
79        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
80      }
81      cerr << "\n";
82    }
83  private:
84    /// isStackEmpty - Return true if the FP stack is empty.
85    bool isStackEmpty() const {
86      return StackTop == 0;
87    }
88
89    // getSlot - Return the stack slot number a particular register number is
90    // in.
91    unsigned getSlot(unsigned RegNo) const {
92      assert(RegNo < 8 && "Regno out of range!");
93      return RegMap[RegNo];
94    }
95
96    // getStackEntry - Return the X86::FP<n> register in register ST(i).
97    unsigned getStackEntry(unsigned STi) const {
98      assert(STi < StackTop && "Access past stack top!");
99      return Stack[StackTop-1-STi];
100    }
101
102    // getSTReg - Return the X86::ST(i) register which contains the specified
103    // FP<RegNo> register.
104    unsigned getSTReg(unsigned RegNo) const {
105      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
106    }
107
108    // pushReg - Push the specified FP<n> register onto the stack.
109    void pushReg(unsigned Reg) {
110      assert(Reg < 8 && "Register number out of range!");
111      assert(StackTop < 8 && "Stack overflow!");
112      Stack[StackTop] = Reg;
113      RegMap[Reg] = StackTop++;
114    }
115
116    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
117    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
118      MachineInstr *MI = I;
119      DebugLoc dl = MI->getDebugLoc();
120      if (isAtTop(RegNo)) return;
121
122      unsigned STReg = getSTReg(RegNo);
123      unsigned RegOnTop = getStackEntry(0);
124
125      // Swap the slots the regs are in.
126      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
127
128      // Swap stack slot contents.
129      assert(RegMap[RegOnTop] < StackTop);
130      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
131
132      // Emit an fxch to update the runtime processors version of the state.
133      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
134      NumFXCH++;
135    }
136
137    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
138      DebugLoc dl = I->getDebugLoc();
139      unsigned STReg = getSTReg(RegNo);
140      pushReg(AsReg);   // New register on top of stack
141
142      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
143    }
144
145    // popStackAfter - Pop the current value off of the top of the FP stack
146    // after the specified instruction.
147    void popStackAfter(MachineBasicBlock::iterator &I);
148
149    // freeStackSlotAfter - Free the specified register from the register stack,
150    // so that it is no longer in a register.  If the register is currently at
151    // the top of the stack, we just pop the current instruction, otherwise we
152    // store the current top-of-stack into the specified slot, then pop the top
153    // of stack.
154    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
155
156    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
157
158    void handleZeroArgFP(MachineBasicBlock::iterator &I);
159    void handleOneArgFP(MachineBasicBlock::iterator &I);
160    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
161    void handleTwoArgFP(MachineBasicBlock::iterator &I);
162    void handleCompareFP(MachineBasicBlock::iterator &I);
163    void handleCondMovFP(MachineBasicBlock::iterator &I);
164    void handleSpecialFP(MachineBasicBlock::iterator &I);
165  };
166  char FPS::ID = 0;
167}
168
169FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
170
171/// getFPReg - Return the X86::FPx register number for the specified operand.
172/// For example, this returns 3 for X86::FP3.
173static unsigned getFPReg(const MachineOperand &MO) {
174  assert(MO.isReg() && "Expected an FP register!");
175  unsigned Reg = MO.getReg();
176  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
177  return Reg - X86::FP0;
178}
179
180
181/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
182/// register references into FP stack references.
183///
184bool FPS::runOnMachineFunction(MachineFunction &MF) {
185  // We only need to run this pass if there are any FP registers used in this
186  // function.  If it is all integer, there is nothing for us to do!
187  bool FPIsUsed = false;
188
189  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
190  for (unsigned i = 0; i <= 6; ++i)
191    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
192      FPIsUsed = true;
193      break;
194    }
195
196  // Early exit.
197  if (!FPIsUsed) return false;
198
199  TII = MF.getTarget().getInstrInfo();
200  StackTop = 0;
201
202  // Process the function in depth first order so that we process at least one
203  // of the predecessors for every reachable block in the function.
204  SmallPtrSet<MachineBasicBlock*, 8> Processed;
205  MachineBasicBlock *Entry = MF.begin();
206
207  bool Changed = false;
208  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
209         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
210       I != E; ++I)
211    Changed |= processBasicBlock(MF, **I);
212
213  return Changed;
214}
215
216/// processBasicBlock - Loop over all of the instructions in the basic block,
217/// transforming FP instructions into their stack form.
218///
219bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
220  bool Changed = false;
221  MBB = &BB;
222
223  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
224    MachineInstr *MI = I;
225    unsigned Flags = MI->getDesc().TSFlags;
226
227    unsigned FPInstClass = Flags & X86II::FPTypeMask;
228    if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
229      FPInstClass = X86II::SpecialFP;
230
231    if (FPInstClass == X86II::NotFP)
232      continue;  // Efficiently ignore non-fp insts!
233
234    MachineInstr *PrevMI = 0;
235    if (I != BB.begin())
236      PrevMI = prior(I);
237
238    ++NumFP;  // Keep track of # of pseudo instrs
239    DOUT << "\nFPInst:\t" << *MI;
240
241    // Get dead variables list now because the MI pointer may be deleted as part
242    // of processing!
243    SmallVector<unsigned, 8> DeadRegs;
244    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
245      const MachineOperand &MO = MI->getOperand(i);
246      if (MO.isReg() && MO.isDead())
247        DeadRegs.push_back(MO.getReg());
248    }
249
250    switch (FPInstClass) {
251    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
252    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
253    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
254    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
255    case X86II::CompareFP:  handleCompareFP(I); break;
256    case X86II::CondMovFP:  handleCondMovFP(I); break;
257    case X86II::SpecialFP:  handleSpecialFP(I); break;
258    default: assert(0 && "Unknown FP Type!");
259    }
260
261    // Check to see if any of the values defined by this instruction are dead
262    // after definition.  If so, pop them.
263    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
264      unsigned Reg = DeadRegs[i];
265      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
266        DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
267        freeStackSlotAfter(I, Reg-X86::FP0);
268      }
269    }
270
271    // Print out all of the instructions expanded to if -debug
272    DEBUG(
273      MachineBasicBlock::iterator PrevI(PrevMI);
274      if (I == PrevI) {
275        cerr << "Just deleted pseudo instruction\n";
276      } else {
277        MachineBasicBlock::iterator Start = I;
278        // Rewind to first instruction newly inserted.
279        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
280        cerr << "Inserted instructions:\n\t";
281        Start->print(*cerr.stream(), &MF.getTarget());
282        while (++Start != next(I)) {}
283      }
284      dumpStack();
285    );
286
287    Changed = true;
288  }
289
290  assert(isStackEmpty() && "Stack not empty at end of basic block?");
291  return Changed;
292}
293
294//===----------------------------------------------------------------------===//
295// Efficient Lookup Table Support
296//===----------------------------------------------------------------------===//
297
298namespace {
299  struct TableEntry {
300    unsigned from;
301    unsigned to;
302    bool operator<(const TableEntry &TE) const { return from < TE.from; }
303    friend bool operator<(const TableEntry &TE, unsigned V) {
304      return TE.from < V;
305    }
306    friend bool operator<(unsigned V, const TableEntry &TE) {
307      return V < TE.from;
308    }
309  };
310}
311
312#ifndef NDEBUG
313static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
314  for (unsigned i = 0; i != NumEntries-1; ++i)
315    if (!(Table[i] < Table[i+1])) return false;
316  return true;
317}
318#endif
319
320static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
321  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
322  if (I != Table+N && I->from == Opcode)
323    return I->to;
324  return -1;
325}
326
327#ifdef NDEBUG
328#define ASSERT_SORTED(TABLE)
329#else
330#define ASSERT_SORTED(TABLE)                                              \
331  { static bool TABLE##Checked = false;                                   \
332    if (!TABLE##Checked) {                                                \
333       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
334              "All lookup tables must be sorted for efficient access!");  \
335       TABLE##Checked = true;                                             \
336    }                                                                     \
337  }
338#endif
339
340//===----------------------------------------------------------------------===//
341// Register File -> Register Stack Mapping Methods
342//===----------------------------------------------------------------------===//
343
344// OpcodeTable - Sorted map of register instructions to their stack version.
345// The first element is an register file pseudo instruction, the second is the
346// concrete X86 instruction which uses the register stack.
347//
348static const TableEntry OpcodeTable[] = {
349  { X86::ABS_Fp32     , X86::ABS_F     },
350  { X86::ABS_Fp64     , X86::ABS_F     },
351  { X86::ABS_Fp80     , X86::ABS_F     },
352  { X86::ADD_Fp32m    , X86::ADD_F32m  },
353  { X86::ADD_Fp64m    , X86::ADD_F64m  },
354  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
355  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
356  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
357  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
358  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
359  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
360  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
361  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
362  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
363  { X86::CHS_Fp32     , X86::CHS_F     },
364  { X86::CHS_Fp64     , X86::CHS_F     },
365  { X86::CHS_Fp80     , X86::CHS_F     },
366  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
367  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
368  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
369  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
370  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
371  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
372  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
373  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
374  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
375  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
376  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
377  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
378  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
379  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
380  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
381  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
382  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
383  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
384  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
385  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
386  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
387  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
388  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
389  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
390  { X86::COS_Fp32     , X86::COS_F     },
391  { X86::COS_Fp64     , X86::COS_F     },
392  { X86::COS_Fp80     , X86::COS_F     },
393  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
394  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
395  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
396  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
397  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
398  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
399  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
400  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
401  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
402  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
403  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
404  { X86::DIV_Fp32m    , X86::DIV_F32m  },
405  { X86::DIV_Fp64m    , X86::DIV_F64m  },
406  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
407  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
408  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
409  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
410  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
411  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
412  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
413  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
414  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
415  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
416  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
417  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
418  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
419  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
420  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
421  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
422  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
423  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
424  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
425  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
426  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
427  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
428  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
429  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
430  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
431  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
432  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
433  { X86::IST_Fp16m32  , X86::IST_F16m  },
434  { X86::IST_Fp16m64  , X86::IST_F16m  },
435  { X86::IST_Fp16m80  , X86::IST_F16m  },
436  { X86::IST_Fp32m32  , X86::IST_F32m  },
437  { X86::IST_Fp32m64  , X86::IST_F32m  },
438  { X86::IST_Fp32m80  , X86::IST_F32m  },
439  { X86::IST_Fp64m32  , X86::IST_FP64m },
440  { X86::IST_Fp64m64  , X86::IST_FP64m },
441  { X86::IST_Fp64m80  , X86::IST_FP64m },
442  { X86::LD_Fp032     , X86::LD_F0     },
443  { X86::LD_Fp064     , X86::LD_F0     },
444  { X86::LD_Fp080     , X86::LD_F0     },
445  { X86::LD_Fp132     , X86::LD_F1     },
446  { X86::LD_Fp164     , X86::LD_F1     },
447  { X86::LD_Fp180     , X86::LD_F1     },
448  { X86::LD_Fp32m     , X86::LD_F32m   },
449  { X86::LD_Fp32m64   , X86::LD_F32m   },
450  { X86::LD_Fp32m80   , X86::LD_F32m   },
451  { X86::LD_Fp64m     , X86::LD_F64m   },
452  { X86::LD_Fp64m80   , X86::LD_F64m   },
453  { X86::LD_Fp80m     , X86::LD_F80m   },
454  { X86::MUL_Fp32m    , X86::MUL_F32m  },
455  { X86::MUL_Fp64m    , X86::MUL_F64m  },
456  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
457  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
458  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
459  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
460  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
461  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
462  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
463  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
464  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
465  { X86::SIN_Fp32     , X86::SIN_F     },
466  { X86::SIN_Fp64     , X86::SIN_F     },
467  { X86::SIN_Fp80     , X86::SIN_F     },
468  { X86::SQRT_Fp32    , X86::SQRT_F    },
469  { X86::SQRT_Fp64    , X86::SQRT_F    },
470  { X86::SQRT_Fp80    , X86::SQRT_F    },
471  { X86::ST_Fp32m     , X86::ST_F32m   },
472  { X86::ST_Fp64m     , X86::ST_F64m   },
473  { X86::ST_Fp64m32   , X86::ST_F32m   },
474  { X86::ST_Fp80m32   , X86::ST_F32m   },
475  { X86::ST_Fp80m64   , X86::ST_F64m   },
476  { X86::ST_FpP80m    , X86::ST_FP80m  },
477  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
478  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
479  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
480  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
481  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
482  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
483  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
484  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
485  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
486  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
487  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
488  { X86::SUB_Fp32m    , X86::SUB_F32m  },
489  { X86::SUB_Fp64m    , X86::SUB_F64m  },
490  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
491  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
492  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
493  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
494  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
495  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
496  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
497  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
498  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
499  { X86::TST_Fp32     , X86::TST_F     },
500  { X86::TST_Fp64     , X86::TST_F     },
501  { X86::TST_Fp80     , X86::TST_F     },
502  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
503  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
504  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
505  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
506  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
507  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
508};
509
510static unsigned getConcreteOpcode(unsigned Opcode) {
511  ASSERT_SORTED(OpcodeTable);
512  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
513  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
514  return Opc;
515}
516
517//===----------------------------------------------------------------------===//
518// Helper Methods
519//===----------------------------------------------------------------------===//
520
521// PopTable - Sorted map of instructions to their popping version.  The first
522// element is an instruction, the second is the version which pops.
523//
524static const TableEntry PopTable[] = {
525  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
526
527  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
528  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
529
530  { X86::IST_F16m  , X86::IST_FP16m   },
531  { X86::IST_F32m  , X86::IST_FP32m   },
532
533  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
534
535  { X86::ST_F32m   , X86::ST_FP32m    },
536  { X86::ST_F64m   , X86::ST_FP64m    },
537  { X86::ST_Frr    , X86::ST_FPrr     },
538
539  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
540  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
541
542  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
543
544  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
545  { X86::UCOM_Fr   , X86::UCOM_FPr    },
546};
547
548/// popStackAfter - Pop the current value off of the top of the FP stack after
549/// the specified instruction.  This attempts to be sneaky and combine the pop
550/// into the instruction itself if possible.  The iterator is left pointing to
551/// the last instruction, be it a new pop instruction inserted, or the old
552/// instruction if it was modified in place.
553///
554void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
555  MachineInstr* MI = I;
556  DebugLoc dl = MI->getDebugLoc();
557  ASSERT_SORTED(PopTable);
558  assert(StackTop > 0 && "Cannot pop empty stack!");
559  RegMap[Stack[--StackTop]] = ~0;     // Update state
560
561  // Check to see if there is a popping version of this instruction...
562  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
563  if (Opcode != -1) {
564    I->setDesc(TII->get(Opcode));
565    if (Opcode == X86::UCOM_FPPr)
566      I->RemoveOperand(0);
567  } else {    // Insert an explicit pop
568    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
569  }
570}
571
572/// freeStackSlotAfter - Free the specified register from the register stack, so
573/// that it is no longer in a register.  If the register is currently at the top
574/// of the stack, we just pop the current instruction, otherwise we store the
575/// current top-of-stack into the specified slot, then pop the top of stack.
576void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
577  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
578    popStackAfter(I);
579    return;
580  }
581
582  // Otherwise, store the top of stack into the dead slot, killing the operand
583  // without having to add in an explicit xchg then pop.
584  //
585  unsigned STReg    = getSTReg(FPRegNo);
586  unsigned OldSlot  = getSlot(FPRegNo);
587  unsigned TopReg   = Stack[StackTop-1];
588  Stack[OldSlot]    = TopReg;
589  RegMap[TopReg]    = OldSlot;
590  RegMap[FPRegNo]   = ~0;
591  Stack[--StackTop] = ~0;
592  MachineInstr *MI  = I;
593  DebugLoc dl = MI->getDebugLoc();
594  I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
595}
596
597
598//===----------------------------------------------------------------------===//
599// Instruction transformation implementation
600//===----------------------------------------------------------------------===//
601
602/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
603///
604void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
605  MachineInstr *MI = I;
606  unsigned DestReg = getFPReg(MI->getOperand(0));
607
608  // Change from the pseudo instruction to the concrete instruction.
609  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
610  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
611
612  // Result gets pushed on the stack.
613  pushReg(DestReg);
614}
615
616/// handleOneArgFP - fst <mem>, ST(0)
617///
618void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
619  MachineInstr *MI = I;
620  unsigned NumOps = MI->getDesc().getNumOperands();
621  assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
622         "Can only handle fst* & ftst instructions!");
623
624  // Is this the last use of the source register?
625  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
626  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
627
628  // FISTP64m is strange because there isn't a non-popping versions.
629  // If we have one _and_ we don't want to pop the operand, duplicate the value
630  // on the stack instead of moving it.  This ensure that popping the value is
631  // always ok.
632  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
633  //
634  if (!KillsSrc &&
635      (MI->getOpcode() == X86::IST_Fp64m32 ||
636       MI->getOpcode() == X86::ISTT_Fp16m32 ||
637       MI->getOpcode() == X86::ISTT_Fp32m32 ||
638       MI->getOpcode() == X86::ISTT_Fp64m32 ||
639       MI->getOpcode() == X86::IST_Fp64m64 ||
640       MI->getOpcode() == X86::ISTT_Fp16m64 ||
641       MI->getOpcode() == X86::ISTT_Fp32m64 ||
642       MI->getOpcode() == X86::ISTT_Fp64m64 ||
643       MI->getOpcode() == X86::IST_Fp64m80 ||
644       MI->getOpcode() == X86::ISTT_Fp16m80 ||
645       MI->getOpcode() == X86::ISTT_Fp32m80 ||
646       MI->getOpcode() == X86::ISTT_Fp64m80 ||
647       MI->getOpcode() == X86::ST_FpP80m)) {
648    duplicateToTop(Reg, 7 /*temp register*/, I);
649  } else {
650    moveToTop(Reg, I);            // Move to the top of the stack...
651  }
652
653  // Convert from the pseudo instruction to the concrete instruction.
654  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
655  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
656
657  if (MI->getOpcode() == X86::IST_FP64m ||
658      MI->getOpcode() == X86::ISTT_FP16m ||
659      MI->getOpcode() == X86::ISTT_FP32m ||
660      MI->getOpcode() == X86::ISTT_FP64m ||
661      MI->getOpcode() == X86::ST_FP80m) {
662    assert(StackTop > 0 && "Stack empty??");
663    --StackTop;
664  } else if (KillsSrc) { // Last use of operand?
665    popStackAfter(I);
666  }
667}
668
669
670/// handleOneArgFPRW: Handle instructions that read from the top of stack and
671/// replace the value with a newly computed value.  These instructions may have
672/// non-fp operands after their FP operands.
673///
674///  Examples:
675///     R1 = fchs R2
676///     R1 = fadd R2, [mem]
677///
678void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
679  MachineInstr *MI = I;
680#ifndef NDEBUG
681  unsigned NumOps = MI->getDesc().getNumOperands();
682  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
683#endif
684
685  // Is this the last use of the source register?
686  unsigned Reg = getFPReg(MI->getOperand(1));
687  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
688
689  if (KillsSrc) {
690    // If this is the last use of the source register, just make sure it's on
691    // the top of the stack.
692    moveToTop(Reg, I);
693    assert(StackTop > 0 && "Stack cannot be empty!");
694    --StackTop;
695    pushReg(getFPReg(MI->getOperand(0)));
696  } else {
697    // If this is not the last use of the source register, _copy_ it to the top
698    // of the stack.
699    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
700  }
701
702  // Change from the pseudo instruction to the concrete instruction.
703  MI->RemoveOperand(1);   // Drop the source operand.
704  MI->RemoveOperand(0);   // Drop the destination operand.
705  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
706}
707
708
709//===----------------------------------------------------------------------===//
710// Define tables of various ways to map pseudo instructions
711//
712
713// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
714static const TableEntry ForwardST0Table[] = {
715  { X86::ADD_Fp32  , X86::ADD_FST0r },
716  { X86::ADD_Fp64  , X86::ADD_FST0r },
717  { X86::ADD_Fp80  , X86::ADD_FST0r },
718  { X86::DIV_Fp32  , X86::DIV_FST0r },
719  { X86::DIV_Fp64  , X86::DIV_FST0r },
720  { X86::DIV_Fp80  , X86::DIV_FST0r },
721  { X86::MUL_Fp32  , X86::MUL_FST0r },
722  { X86::MUL_Fp64  , X86::MUL_FST0r },
723  { X86::MUL_Fp80  , X86::MUL_FST0r },
724  { X86::SUB_Fp32  , X86::SUB_FST0r },
725  { X86::SUB_Fp64  , X86::SUB_FST0r },
726  { X86::SUB_Fp80  , X86::SUB_FST0r },
727};
728
729// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
730static const TableEntry ReverseST0Table[] = {
731  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
732  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
733  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
734  { X86::DIV_Fp32  , X86::DIVR_FST0r },
735  { X86::DIV_Fp64  , X86::DIVR_FST0r },
736  { X86::DIV_Fp80  , X86::DIVR_FST0r },
737  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
738  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
739  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
740  { X86::SUB_Fp32  , X86::SUBR_FST0r },
741  { X86::SUB_Fp64  , X86::SUBR_FST0r },
742  { X86::SUB_Fp80  , X86::SUBR_FST0r },
743};
744
745// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
746static const TableEntry ForwardSTiTable[] = {
747  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
748  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
749  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
750  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
751  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
752  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
753  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
754  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
755  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
756  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
757  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
758  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
759};
760
761// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
762static const TableEntry ReverseSTiTable[] = {
763  { X86::ADD_Fp32  , X86::ADD_FrST0 },
764  { X86::ADD_Fp64  , X86::ADD_FrST0 },
765  { X86::ADD_Fp80  , X86::ADD_FrST0 },
766  { X86::DIV_Fp32  , X86::DIV_FrST0 },
767  { X86::DIV_Fp64  , X86::DIV_FrST0 },
768  { X86::DIV_Fp80  , X86::DIV_FrST0 },
769  { X86::MUL_Fp32  , X86::MUL_FrST0 },
770  { X86::MUL_Fp64  , X86::MUL_FrST0 },
771  { X86::MUL_Fp80  , X86::MUL_FrST0 },
772  { X86::SUB_Fp32  , X86::SUB_FrST0 },
773  { X86::SUB_Fp64  , X86::SUB_FrST0 },
774  { X86::SUB_Fp80  , X86::SUB_FrST0 },
775};
776
777
778/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
779/// instructions which need to be simplified and possibly transformed.
780///
781/// Result: ST(0) = fsub  ST(0), ST(i)
782///         ST(i) = fsub  ST(0), ST(i)
783///         ST(0) = fsubr ST(0), ST(i)
784///         ST(i) = fsubr ST(0), ST(i)
785///
786void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
787  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
788  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
789  MachineInstr *MI = I;
790
791  unsigned NumOperands = MI->getDesc().getNumOperands();
792  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
793  unsigned Dest = getFPReg(MI->getOperand(0));
794  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
795  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
796  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
797  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
798  DebugLoc dl = MI->getDebugLoc();
799
800  unsigned TOS = getStackEntry(0);
801
802  // One of our operands must be on the top of the stack.  If neither is yet, we
803  // need to move one.
804  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
805    // We can choose to move either operand to the top of the stack.  If one of
806    // the operands is killed by this instruction, we want that one so that we
807    // can update right on top of the old version.
808    if (KillsOp0) {
809      moveToTop(Op0, I);         // Move dead operand to TOS.
810      TOS = Op0;
811    } else if (KillsOp1) {
812      moveToTop(Op1, I);
813      TOS = Op1;
814    } else {
815      // All of the operands are live after this instruction executes, so we
816      // cannot update on top of any operand.  Because of this, we must
817      // duplicate one of the stack elements to the top.  It doesn't matter
818      // which one we pick.
819      //
820      duplicateToTop(Op0, Dest, I);
821      Op0 = TOS = Dest;
822      KillsOp0 = true;
823    }
824  } else if (!KillsOp0 && !KillsOp1) {
825    // If we DO have one of our operands at the top of the stack, but we don't
826    // have a dead operand, we must duplicate one of the operands to a new slot
827    // on the stack.
828    duplicateToTop(Op0, Dest, I);
829    Op0 = TOS = Dest;
830    KillsOp0 = true;
831  }
832
833  // Now we know that one of our operands is on the top of the stack, and at
834  // least one of our operands is killed by this instruction.
835  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
836         "Stack conditions not set up right!");
837
838  // We decide which form to use based on what is on the top of the stack, and
839  // which operand is killed by this instruction.
840  const TableEntry *InstTable;
841  bool isForward = TOS == Op0;
842  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
843  if (updateST0) {
844    if (isForward)
845      InstTable = ForwardST0Table;
846    else
847      InstTable = ReverseST0Table;
848  } else {
849    if (isForward)
850      InstTable = ForwardSTiTable;
851    else
852      InstTable = ReverseSTiTable;
853  }
854
855  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
856                      MI->getOpcode());
857  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
858
859  // NotTOS - The register which is not on the top of stack...
860  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
861
862  // Replace the old instruction with a new instruction
863  MBB->remove(I++);
864  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
865
866  // If both operands are killed, pop one off of the stack in addition to
867  // overwriting the other one.
868  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
869    assert(!updateST0 && "Should have updated other operand!");
870    popStackAfter(I);   // Pop the top of stack
871  }
872
873  // Update stack information so that we know the destination register is now on
874  // the stack.
875  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
876  assert(UpdatedSlot < StackTop && Dest < 7);
877  Stack[UpdatedSlot]   = Dest;
878  RegMap[Dest]         = UpdatedSlot;
879  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
880}
881
882/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
883/// register arguments and no explicit destinations.
884///
885void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
886  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
887  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
888  MachineInstr *MI = I;
889
890  unsigned NumOperands = MI->getDesc().getNumOperands();
891  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
892  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
893  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
894  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
895  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
896
897  // Make sure the first operand is on the top of stack, the other one can be
898  // anywhere.
899  moveToTop(Op0, I);
900
901  // Change from the pseudo instruction to the concrete instruction.
902  MI->getOperand(0).setReg(getSTReg(Op1));
903  MI->RemoveOperand(1);
904  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
905
906  // If any of the operands are killed by this instruction, free them.
907  if (KillsOp0) freeStackSlotAfter(I, Op0);
908  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
909}
910
911/// handleCondMovFP - Handle two address conditional move instructions.  These
912/// instructions move a st(i) register to st(0) iff a condition is true.  These
913/// instructions require that the first operand is at the top of the stack, but
914/// otherwise don't modify the stack at all.
915void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
916  MachineInstr *MI = I;
917
918  unsigned Op0 = getFPReg(MI->getOperand(0));
919  unsigned Op1 = getFPReg(MI->getOperand(2));
920  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
921
922  // The first operand *must* be on the top of the stack.
923  moveToTop(Op0, I);
924
925  // Change the second operand to the stack register that the operand is in.
926  // Change from the pseudo instruction to the concrete instruction.
927  MI->RemoveOperand(0);
928  MI->RemoveOperand(1);
929  MI->getOperand(0).setReg(getSTReg(Op1));
930  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
931
932  // If we kill the second operand, make sure to pop it from the stack.
933  if (Op0 != Op1 && KillsOp1) {
934    // Get this value off of the register stack.
935    freeStackSlotAfter(I, Op1);
936  }
937}
938
939
940/// handleSpecialFP - Handle special instructions which behave unlike other
941/// floating point instructions.  This is primarily intended for use by pseudo
942/// instructions.
943///
944void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
945  MachineInstr *MI = I;
946  DebugLoc dl = MI->getDebugLoc();
947  switch (MI->getOpcode()) {
948  default: assert(0 && "Unknown SpecialFP instruction!");
949  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
950  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
951  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
952    assert(StackTop == 0 && "Stack should be empty after a call!");
953    pushReg(getFPReg(MI->getOperand(0)));
954    break;
955  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
956  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
957  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
958    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
959    // The pattern we expect is:
960    //  CALL
961    //  FP1 = FpGET_ST0
962    //  FP4 = FpGET_ST1
963    //
964    // At this point, we've pushed FP1 on the top of stack, so it should be
965    // present if it isn't dead.  If it was dead, we already emitted a pop to
966    // remove it from the stack and StackTop = 0.
967
968    // Push FP4 as top of stack next.
969    pushReg(getFPReg(MI->getOperand(0)));
970
971    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
972    // dead.  In this case, the ST(1) value is the only thing that is live, so
973    // it should be on the TOS (after the pop that was emitted) and is.  Just
974    // continue in this case.
975    if (StackTop == 1)
976      break;
977
978    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
979    // elements so that our accounting is correct.
980    unsigned RegOnTop = getStackEntry(0);
981    unsigned RegNo = getStackEntry(1);
982
983    // Swap the slots the regs are in.
984    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
985
986    // Swap stack slot contents.
987    assert(RegMap[RegOnTop] < StackTop);
988    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
989    break;
990  }
991  case X86::FpSET_ST0_32:
992  case X86::FpSET_ST0_64:
993  case X86::FpSET_ST0_80:
994    // FpSET_ST0_80 is generated by copyRegToReg for both function return
995    // and inline assembly with the "st" constrain. In the latter case,
996    // it is possible for FP0 to be alive after this instruction.
997    if (!MI->killsRegister(X86::FP0)) {
998      // Duplicate ST0
999      duplicateToTop(0, 0, I);
1000    }
1001    --StackTop;   // "Forget" we have something on the top of stack!
1002    break;
1003  case X86::FpSET_ST1_32:
1004  case X86::FpSET_ST1_64:
1005  case X86::FpSET_ST1_80:
1006    // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1007    if (StackTop == 1) {
1008      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1009      NumFXCH++;
1010      StackTop = 0;
1011      break;
1012    }
1013    assert(StackTop == 2 && "Stack should have two element on it to return!");
1014    --StackTop;   // "Forget" we have something on the top of stack!
1015    break;
1016  case X86::MOV_Fp3232:
1017  case X86::MOV_Fp3264:
1018  case X86::MOV_Fp6432:
1019  case X86::MOV_Fp6464:
1020  case X86::MOV_Fp3280:
1021  case X86::MOV_Fp6480:
1022  case X86::MOV_Fp8032:
1023  case X86::MOV_Fp8064:
1024  case X86::MOV_Fp8080: {
1025    const MachineOperand &MO1 = MI->getOperand(1);
1026    unsigned SrcReg = getFPReg(MO1);
1027
1028    const MachineOperand &MO0 = MI->getOperand(0);
1029    // These can be created due to inline asm. Two address pass can introduce
1030    // copies from RFP registers to virtual registers.
1031    if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1032      assert(MO1.isKill());
1033      // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1034      // like  FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1035      assert((StackTop == 1 || StackTop == 2)
1036             && "Stack should have one or two element on it to return!");
1037      --StackTop;   // "Forget" we have something on the top of stack!
1038      break;
1039    } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1040      assert(MO1.isKill());
1041      // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1042      // like  FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1043      // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1044      if (StackTop == 1) {
1045        BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1046        NumFXCH++;
1047        StackTop = 0;
1048        break;
1049      }
1050      assert(StackTop == 2 && "Stack should have two element on it to return!");
1051      --StackTop;   // "Forget" we have something on the top of stack!
1052      break;
1053    }
1054
1055    unsigned DestReg = getFPReg(MO0);
1056    if (MI->killsRegister(X86::FP0+SrcReg)) {
1057      // If the input operand is killed, we can just change the owner of the
1058      // incoming stack slot into the result.
1059      unsigned Slot = getSlot(SrcReg);
1060      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1061      Stack[Slot] = DestReg;
1062      RegMap[DestReg] = Slot;
1063
1064    } else {
1065      // For FMOV we just duplicate the specified value to a new stack slot.
1066      // This could be made better, but would require substantial changes.
1067      duplicateToTop(SrcReg, DestReg, I);
1068    }
1069    }
1070    break;
1071  case TargetInstrInfo::INLINEASM: {
1072    // The inline asm MachineInstr currently only *uses* FP registers for the
1073    // 'f' constraint.  These should be turned into the current ST(x) register
1074    // in the machine instr.  Also, any kills should be explicitly popped after
1075    // the inline asm.
1076    unsigned Kills[7];
1077    unsigned NumKills = 0;
1078    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1079      MachineOperand &Op = MI->getOperand(i);
1080      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1081        continue;
1082      assert(Op.isUse() && "Only handle inline asm uses right now");
1083
1084      unsigned FPReg = getFPReg(Op);
1085      Op.setReg(getSTReg(FPReg));
1086
1087      // If we kill this operand, make sure to pop it from the stack after the
1088      // asm.  We just remember it for now, and pop them all off at the end in
1089      // a batch.
1090      if (Op.isKill())
1091        Kills[NumKills++] = FPReg;
1092    }
1093
1094    // If this asm kills any FP registers (is the last use of them) we must
1095    // explicitly emit pop instructions for them.  Do this now after the asm has
1096    // executed so that the ST(x) numbers are not off (which would happen if we
1097    // did this inline with operand rewriting).
1098    //
1099    // Note: this might be a non-optimal pop sequence.  We might be able to do
1100    // better by trying to pop in stack order or something.
1101    MachineBasicBlock::iterator InsertPt = MI;
1102    while (NumKills)
1103      freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1104
1105    // Don't delete the inline asm!
1106    return;
1107  }
1108
1109  case X86::RET:
1110  case X86::RETI:
1111    // If RET has an FP register use operand, pass the first one in ST(0) and
1112    // the second one in ST(1).
1113    if (isStackEmpty()) return;  // Quick check to see if any are possible.
1114
1115    // Find the register operands.
1116    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1117
1118    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1119      MachineOperand &Op = MI->getOperand(i);
1120      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1121        continue;
1122      // FP Register uses must be kills unless there are two uses of the same
1123      // register, in which case only one will be a kill.
1124      assert(Op.isUse() &&
1125             (Op.isKill() ||                        // Marked kill.
1126              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1127              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1128             "Ret only defs operands, and values aren't live beyond it");
1129
1130      if (FirstFPRegOp == ~0U)
1131        FirstFPRegOp = getFPReg(Op);
1132      else {
1133        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1134        SecondFPRegOp = getFPReg(Op);
1135      }
1136
1137      // Remove the operand so that later passes don't see it.
1138      MI->RemoveOperand(i);
1139      --i, --e;
1140    }
1141
1142    // There are only four possibilities here:
1143    // 1) we are returning a single FP value.  In this case, it has to be in
1144    //    ST(0) already, so just declare success by removing the value from the
1145    //    FP Stack.
1146    if (SecondFPRegOp == ~0U) {
1147      // Assert that the top of stack contains the right FP register.
1148      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1149             "Top of stack not the right register for RET!");
1150
1151      // Ok, everything is good, mark the value as not being on the stack
1152      // anymore so that our assertion about the stack being empty at end of
1153      // block doesn't fire.
1154      StackTop = 0;
1155      return;
1156    }
1157
1158    // Otherwise, we are returning two values:
1159    // 2) If returning the same value for both, we only have one thing in the FP
1160    //    stack.  Consider:  RET FP1, FP1
1161    if (StackTop == 1) {
1162      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1163             "Stack misconfiguration for RET!");
1164
1165      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1166      // register to hold it.
1167      unsigned NewReg = (FirstFPRegOp+1)%7;
1168      duplicateToTop(FirstFPRegOp, NewReg, MI);
1169      FirstFPRegOp = NewReg;
1170    }
1171
1172    /// Okay we know we have two different FPx operands now:
1173    assert(StackTop == 2 && "Must have two values live!");
1174
1175    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1176    ///    in ST(1).  In this case, emit an fxch.
1177    if (getStackEntry(0) == SecondFPRegOp) {
1178      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1179      moveToTop(FirstFPRegOp, MI);
1180    }
1181
1182    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1183    /// ST(1).  Just remove both from our understanding of the stack and return.
1184    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1185    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1186    StackTop = 0;
1187    return;
1188  }
1189
1190  I = MBB->erase(I);  // Remove the pseudo instruction
1191  --I;
1192}
1193