X86FloatingPoint.cpp revision 1f6a329f79b3568d379142f921f59c4143ddaa14
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/EdgeBundles.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/InlineAsm.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include <algorithm>
47using namespace llvm;
48
49STATISTIC(NumFXCH, "Number of fxch instructions inserted");
50STATISTIC(NumFP  , "Number of floating point instructions");
51
52namespace {
53  struct FPS : public MachineFunctionPass {
54    static char ID;
55    FPS() : MachineFunctionPass(ID) {
56      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
57      // This is really only to keep valgrind quiet.
58      // The logic in isLive() is too much for it.
59      memset(Stack, 0, sizeof(Stack));
60      memset(RegMap, 0, sizeof(RegMap));
61    }
62
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      AU.setPreservesCFG();
65      AU.addRequired<EdgeBundles>();
66      AU.addPreservedID(MachineLoopInfoID);
67      AU.addPreservedID(MachineDominatorsID);
68      MachineFunctionPass::getAnalysisUsage(AU);
69    }
70
71    virtual bool runOnMachineFunction(MachineFunction &MF);
72
73    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
74
75  private:
76    const TargetInstrInfo *TII; // Machine instruction info.
77
78    // Two CFG edges are related if they leave the same block, or enter the same
79    // block. The transitive closure of an edge under this relation is a
80    // LiveBundle. It represents a set of CFG edges where the live FP stack
81    // registers must be allocated identically in the x87 stack.
82    //
83    // A LiveBundle is usually all the edges leaving a block, or all the edges
84    // entering a block, but it can contain more edges if critical edges are
85    // present.
86    //
87    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
88    // but the exact mapping of FP registers to stack slots is fixed later.
89    struct LiveBundle {
90      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
91      unsigned Mask;
92
93      // Number of pre-assigned live registers in FixStack. This is 0 when the
94      // stack order has not yet been fixed.
95      unsigned FixCount;
96
97      // Assigned stack order for live-in registers.
98      // FixStack[i] == getStackEntry(i) for all i < FixCount.
99      unsigned char FixStack[8];
100
101      LiveBundle() : Mask(0), FixCount(0) {}
102
103      // Have the live registers been assigned a stack order yet?
104      bool isFixed() const { return !Mask || FixCount; }
105    };
106
107    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
108    // with no live FP registers.
109    SmallVector<LiveBundle, 8> LiveBundles;
110
111    // The edge bundle analysis provides indices into the LiveBundles vector.
112    EdgeBundles *Bundles;
113
114    // Return a bitmask of FP registers in block's live-in list.
115    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
116      unsigned Mask = 0;
117      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
118           E = MBB->livein_end(); I != E; ++I) {
119        unsigned Reg = *I - X86::FP0;
120        if (Reg < 8)
121          Mask |= 1 << Reg;
122      }
123      return Mask;
124    }
125
126    // Partition all the CFG edges into LiveBundles.
127    void bundleCFG(MachineFunction &MF);
128
129    MachineBasicBlock *MBB;     // Current basic block
130
131    // The hardware keeps track of how many FP registers are live, so we have
132    // to model that exactly. Usually, each live register corresponds to an
133    // FP<n> register, but when dealing with calls, returns, and inline
134    // assembly, it is sometimes neccesary to have live scratch registers.
135    unsigned Stack[8];          // FP<n> Registers in each stack slot...
136    unsigned StackTop;          // The current top of the FP stack.
137
138    enum {
139      NumFPRegs = 16            // Including scratch pseudo-registers.
140    };
141
142    // For each live FP<n> register, point to its Stack[] entry.
143    // The first entries correspond to FP0-FP6, the rest are scratch registers
144    // used when we need slightly different live registers than what the
145    // register allocator thinks.
146    unsigned RegMap[NumFPRegs];
147
148    // Pending fixed registers - Inline assembly needs FP registers to appear
149    // in fixed stack slot positions. This is handled by copying FP registers
150    // to ST registers before the instruction, and copying back after the
151    // instruction.
152    //
153    // This is modeled with pending ST registers. NumPendingSTs is the number
154    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155    // register that holds the ST value. The ST registers are not moved into
156    // place until immediately before the instruction that needs them.
157    //
158    // It can happen that we need an ST register to be live when no FP register
159    // holds the value:
160    //
161    //   %ST0 = COPY %FP4<kill>
162    //
163    // When that happens, we allocate a scratch FP register to hold the ST
164    // value. That means every register in PendingST must be live.
165
166    unsigned NumPendingSTs;
167    unsigned char PendingST[8];
168
169    // Set up our stack model to match the incoming registers to MBB.
170    void setupBlockStack();
171
172    // Shuffle live registers to match the expectations of successor blocks.
173    void finishBlockStack();
174
175    void dumpStack() const {
176      dbgs() << "Stack contents:";
177      for (unsigned i = 0; i != StackTop; ++i) {
178        dbgs() << " FP" << Stack[i];
179        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
180      }
181      for (unsigned i = 0; i != NumPendingSTs; ++i)
182        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
183      dbgs() << "\n";
184    }
185
186    /// getSlot - Return the stack slot number a particular register number is
187    /// in.
188    unsigned getSlot(unsigned RegNo) const {
189      assert(RegNo < NumFPRegs && "Regno out of range!");
190      return RegMap[RegNo];
191    }
192
193    /// isLive - Is RegNo currently live in the stack?
194    bool isLive(unsigned RegNo) const {
195      unsigned Slot = getSlot(RegNo);
196      return Slot < StackTop && Stack[Slot] == RegNo;
197    }
198
199    /// getScratchReg - Return an FP register that is not currently in use.
200    unsigned getScratchReg() {
201      for (int i = NumFPRegs - 1; i >= 8; --i)
202        if (!isLive(i))
203          return i;
204      llvm_unreachable("Ran out of scratch FP registers");
205    }
206
207    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
208    bool isScratchReg(unsigned RegNo) {
209      return RegNo > 8 && RegNo < NumFPRegs;
210    }
211
212    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
213    unsigned getStackEntry(unsigned STi) const {
214      if (STi >= StackTop)
215        report_fatal_error("Access past stack top!");
216      return Stack[StackTop-1-STi];
217    }
218
219    /// getSTReg - Return the X86::ST(i) register which contains the specified
220    /// FP<RegNo> register.
221    unsigned getSTReg(unsigned RegNo) const {
222      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
223    }
224
225    // pushReg - Push the specified FP<n> register onto the stack.
226    void pushReg(unsigned Reg) {
227      assert(Reg < NumFPRegs && "Register number out of range!");
228      if (StackTop >= 8)
229        report_fatal_error("Stack overflow!");
230      Stack[StackTop] = Reg;
231      RegMap[Reg] = StackTop++;
232    }
233
234    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
235    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
236      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
237      if (isAtTop(RegNo)) return;
238
239      unsigned STReg = getSTReg(RegNo);
240      unsigned RegOnTop = getStackEntry(0);
241
242      // Swap the slots the regs are in.
243      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
244
245      // Swap stack slot contents.
246      if (RegMap[RegOnTop] >= StackTop)
247        report_fatal_error("Access past stack top!");
248      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
249
250      // Emit an fxch to update the runtime processors version of the state.
251      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
252      ++NumFXCH;
253    }
254
255    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
256      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
257      unsigned STReg = getSTReg(RegNo);
258      pushReg(AsReg);   // New register on top of stack
259
260      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
261    }
262
263    /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
264    /// RegNo. If any PendingST registers still need the RegNo value, duplicate
265    /// them to new scratch registers.
266    void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
267      for (unsigned i = 0; i != NumPendingSTs; ++i) {
268        if (PendingST[i] != RegNo)
269          continue;
270        unsigned SR = getScratchReg();
271        DEBUG(dbgs() << "Duplicating pending ST" << i
272                     << " in FP" << RegNo << " to FP" << SR << '\n');
273        duplicateToTop(RegNo, SR, I);
274        PendingST[i] = SR;
275      }
276    }
277
278    /// popStackAfter - Pop the current value off of the top of the FP stack
279    /// after the specified instruction.
280    void popStackAfter(MachineBasicBlock::iterator &I);
281
282    /// freeStackSlotAfter - Free the specified register from the register
283    /// stack, so that it is no longer in a register.  If the register is
284    /// currently at the top of the stack, we just pop the current instruction,
285    /// otherwise we store the current top-of-stack into the specified slot,
286    /// then pop the top of stack.
287    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
288
289    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
290    /// instruction.
291    MachineBasicBlock::iterator
292    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
293
294    /// Adjust the live registers to be the set in Mask.
295    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
296
297    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
298    /// st(0), FP reg FixStack[1] is st(1) etc.
299    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
300                         MachineBasicBlock::iterator I);
301
302    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
303
304    void handleZeroArgFP(MachineBasicBlock::iterator &I);
305    void handleOneArgFP(MachineBasicBlock::iterator &I);
306    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
307    void handleTwoArgFP(MachineBasicBlock::iterator &I);
308    void handleCompareFP(MachineBasicBlock::iterator &I);
309    void handleCondMovFP(MachineBasicBlock::iterator &I);
310    void handleSpecialFP(MachineBasicBlock::iterator &I);
311
312    // Check if a COPY instruction is using FP registers.
313    bool isFPCopy(MachineInstr *MI) {
314      unsigned DstReg = MI->getOperand(0).getReg();
315      unsigned SrcReg = MI->getOperand(1).getReg();
316
317      return X86::RFP80RegClass.contains(DstReg) ||
318        X86::RFP80RegClass.contains(SrcReg);
319    }
320  };
321  char FPS::ID = 0;
322}
323
324FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
325
326/// getFPReg - Return the X86::FPx register number for the specified operand.
327/// For example, this returns 3 for X86::FP3.
328static unsigned getFPReg(const MachineOperand &MO) {
329  assert(MO.isReg() && "Expected an FP register!");
330  unsigned Reg = MO.getReg();
331  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
332  return Reg - X86::FP0;
333}
334
335/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
336/// register references into FP stack references.
337///
338bool FPS::runOnMachineFunction(MachineFunction &MF) {
339  // We only need to run this pass if there are any FP registers used in this
340  // function.  If it is all integer, there is nothing for us to do!
341  bool FPIsUsed = false;
342
343  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
344  for (unsigned i = 0; i <= 6; ++i)
345    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
346      FPIsUsed = true;
347      break;
348    }
349
350  // Early exit.
351  if (!FPIsUsed) return false;
352
353  Bundles = &getAnalysis<EdgeBundles>();
354  TII = MF.getTarget().getInstrInfo();
355
356  // Prepare cross-MBB liveness.
357  bundleCFG(MF);
358
359  StackTop = 0;
360
361  // Process the function in depth first order so that we process at least one
362  // of the predecessors for every reachable block in the function.
363  SmallPtrSet<MachineBasicBlock*, 8> Processed;
364  MachineBasicBlock *Entry = MF.begin();
365
366  bool Changed = false;
367  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
368         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
369       I != E; ++I)
370    Changed |= processBasicBlock(MF, **I);
371
372  // Process any unreachable blocks in arbitrary order now.
373  if (MF.size() != Processed.size())
374    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
375      if (Processed.insert(BB))
376        Changed |= processBasicBlock(MF, *BB);
377
378  LiveBundles.clear();
379
380  return Changed;
381}
382
383/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
384/// live-out sets for the FP registers. Consistent means that the set of
385/// registers live-out from a block is identical to the live-in set of all
386/// successors. This is not enforced by the normal live-in lists since
387/// registers may be implicitly defined, or not used by all successors.
388void FPS::bundleCFG(MachineFunction &MF) {
389  assert(LiveBundles.empty() && "Stale data in LiveBundles");
390  LiveBundles.resize(Bundles->getNumBundles());
391
392  // Gather the actual live-in masks for all MBBs.
393  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
394    MachineBasicBlock *MBB = I;
395    const unsigned Mask = calcLiveInMask(MBB);
396    if (!Mask)
397      continue;
398    // Update MBB ingoing bundle mask.
399    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
400  }
401}
402
403/// processBasicBlock - Loop over all of the instructions in the basic block,
404/// transforming FP instructions into their stack form.
405///
406bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
407  bool Changed = false;
408  MBB = &BB;
409  NumPendingSTs = 0;
410
411  setupBlockStack();
412
413  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
414    MachineInstr *MI = I;
415    uint64_t Flags = MI->getDesc().TSFlags;
416
417    unsigned FPInstClass = Flags & X86II::FPTypeMask;
418    if (MI->isInlineAsm())
419      FPInstClass = X86II::SpecialFP;
420
421    if (MI->isCopy() && isFPCopy(MI))
422      FPInstClass = X86II::SpecialFP;
423
424    if (MI->isImplicitDef() &&
425        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
426      FPInstClass = X86II::SpecialFP;
427
428    if (FPInstClass == X86II::NotFP)
429      continue;  // Efficiently ignore non-fp insts!
430
431    MachineInstr *PrevMI = 0;
432    if (I != BB.begin())
433      PrevMI = prior(I);
434
435    ++NumFP;  // Keep track of # of pseudo instrs
436    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
437
438    // Get dead variables list now because the MI pointer may be deleted as part
439    // of processing!
440    SmallVector<unsigned, 8> DeadRegs;
441    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442      const MachineOperand &MO = MI->getOperand(i);
443      if (MO.isReg() && MO.isDead())
444        DeadRegs.push_back(MO.getReg());
445    }
446
447    switch (FPInstClass) {
448    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
449    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
450    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
451    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
452    case X86II::CompareFP:  handleCompareFP(I); break;
453    case X86II::CondMovFP:  handleCondMovFP(I); break;
454    case X86II::SpecialFP:  handleSpecialFP(I); break;
455    default: llvm_unreachable("Unknown FP Type!");
456    }
457
458    // Check to see if any of the values defined by this instruction are dead
459    // after definition.  If so, pop them.
460    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461      unsigned Reg = DeadRegs[i];
462      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
463        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
464        freeStackSlotAfter(I, Reg-X86::FP0);
465      }
466    }
467
468    // Print out all of the instructions expanded to if -debug
469    DEBUG(
470      MachineBasicBlock::iterator PrevI(PrevMI);
471      if (I == PrevI) {
472        dbgs() << "Just deleted pseudo instruction\n";
473      } else {
474        MachineBasicBlock::iterator Start = I;
475        // Rewind to first instruction newly inserted.
476        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
477        dbgs() << "Inserted instructions:\n\t";
478        Start->print(dbgs(), &MF.getTarget());
479        while (++Start != llvm::next(I)) {}
480      }
481      dumpStack();
482    );
483    (void)PrevMI;
484
485    Changed = true;
486  }
487
488  finishBlockStack();
489
490  return Changed;
491}
492
493/// setupBlockStack - Use the live bundles to set up our model of the stack
494/// to match predecessors' live out stack.
495void FPS::setupBlockStack() {
496  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
497               << " derived from " << MBB->getName() << ".\n");
498  StackTop = 0;
499  // Get the live-in bundle for MBB.
500  const LiveBundle &Bundle =
501    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
502
503  if (!Bundle.Mask) {
504    DEBUG(dbgs() << "Block has no FP live-ins.\n");
505    return;
506  }
507
508  // Depth-first iteration should ensure that we always have an assigned stack.
509  assert(Bundle.isFixed() && "Reached block before any predecessors");
510
511  // Push the fixed live-in registers.
512  for (unsigned i = Bundle.FixCount; i > 0; --i) {
513    MBB->addLiveIn(X86::ST0+i-1);
514    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
515                 << unsigned(Bundle.FixStack[i-1]) << '\n');
516    pushReg(Bundle.FixStack[i-1]);
517  }
518
519  // Kill off unwanted live-ins. This can happen with a critical edge.
520  // FIXME: We could keep these live registers around as zombies. They may need
521  // to be revived at the end of a short block. It might save a few instrs.
522  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
523  DEBUG(MBB->dump());
524}
525
526/// finishBlockStack - Revive live-outs that are implicitly defined out of
527/// MBB. Shuffle live registers to match the expected fixed stack of any
528/// predecessors, and ensure that all predecessors are expecting the same
529/// stack.
530void FPS::finishBlockStack() {
531  // The RET handling below takes care of return blocks for us.
532  if (MBB->succ_empty())
533    return;
534
535  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
536               << " derived from " << MBB->getName() << ".\n");
537
538  // Get MBB's live-out bundle.
539  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
540  LiveBundle &Bundle = LiveBundles[BundleIdx];
541
542  // We may need to kill and define some registers to match successors.
543  // FIXME: This can probably be combined with the shuffle below.
544  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
545  adjustLiveRegs(Bundle.Mask, Term);
546
547  if (!Bundle.Mask) {
548    DEBUG(dbgs() << "No live-outs.\n");
549    return;
550  }
551
552  // Has the stack order been fixed yet?
553  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
554  if (Bundle.isFixed()) {
555    DEBUG(dbgs() << "Shuffling stack to match.\n");
556    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
557  } else {
558    // Not fixed yet, we get to choose.
559    DEBUG(dbgs() << "Fixing stack order now.\n");
560    Bundle.FixCount = StackTop;
561    for (unsigned i = 0; i < StackTop; ++i)
562      Bundle.FixStack[i] = getStackEntry(i);
563  }
564}
565
566
567//===----------------------------------------------------------------------===//
568// Efficient Lookup Table Support
569//===----------------------------------------------------------------------===//
570
571namespace {
572  struct TableEntry {
573    unsigned from;
574    unsigned to;
575    bool operator<(const TableEntry &TE) const { return from < TE.from; }
576    friend bool operator<(const TableEntry &TE, unsigned V) {
577      return TE.from < V;
578    }
579    friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
580                                              const TableEntry &TE) {
581      return V < TE.from;
582    }
583  };
584}
585
586#ifndef NDEBUG
587static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
588  for (unsigned i = 0; i != NumEntries-1; ++i)
589    if (!(Table[i] < Table[i+1])) return false;
590  return true;
591}
592#endif
593
594static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
595  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
596  if (I != Table+N && I->from == Opcode)
597    return I->to;
598  return -1;
599}
600
601#ifdef NDEBUG
602#define ASSERT_SORTED(TABLE)
603#else
604#define ASSERT_SORTED(TABLE)                                              \
605  { static bool TABLE##Checked = false;                                   \
606    if (!TABLE##Checked) {                                                \
607       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
608              "All lookup tables must be sorted for efficient access!");  \
609       TABLE##Checked = true;                                             \
610    }                                                                     \
611  }
612#endif
613
614//===----------------------------------------------------------------------===//
615// Register File -> Register Stack Mapping Methods
616//===----------------------------------------------------------------------===//
617
618// OpcodeTable - Sorted map of register instructions to their stack version.
619// The first element is an register file pseudo instruction, the second is the
620// concrete X86 instruction which uses the register stack.
621//
622static const TableEntry OpcodeTable[] = {
623  { X86::ABS_Fp32     , X86::ABS_F     },
624  { X86::ABS_Fp64     , X86::ABS_F     },
625  { X86::ABS_Fp80     , X86::ABS_F     },
626  { X86::ADD_Fp32m    , X86::ADD_F32m  },
627  { X86::ADD_Fp64m    , X86::ADD_F64m  },
628  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
629  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
630  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
631  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637  { X86::CHS_Fp32     , X86::CHS_F     },
638  { X86::CHS_Fp64     , X86::CHS_F     },
639  { X86::CHS_Fp80     , X86::CHS_F     },
640  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
641  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
642  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
643  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
644  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
645  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
646  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
647  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
648  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
649  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
653  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
654  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
655  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
656  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
657  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
658  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
659  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
660  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
661  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
662  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
663  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
664  { X86::COS_Fp32     , X86::COS_F     },
665  { X86::COS_Fp64     , X86::COS_F     },
666  { X86::COS_Fp80     , X86::COS_F     },
667  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
668  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
669  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678  { X86::DIV_Fp32m    , X86::DIV_F32m  },
679  { X86::DIV_Fp64m    , X86::DIV_F64m  },
680  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
681  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
682  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
683  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
690  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
691  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
692  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
693  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
694  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
695  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
696  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
697  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
698  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707  { X86::IST_Fp16m32  , X86::IST_F16m  },
708  { X86::IST_Fp16m64  , X86::IST_F16m  },
709  { X86::IST_Fp16m80  , X86::IST_F16m  },
710  { X86::IST_Fp32m32  , X86::IST_F32m  },
711  { X86::IST_Fp32m64  , X86::IST_F32m  },
712  { X86::IST_Fp32m80  , X86::IST_F32m  },
713  { X86::IST_Fp64m32  , X86::IST_FP64m },
714  { X86::IST_Fp64m64  , X86::IST_FP64m },
715  { X86::IST_Fp64m80  , X86::IST_FP64m },
716  { X86::LD_Fp032     , X86::LD_F0     },
717  { X86::LD_Fp064     , X86::LD_F0     },
718  { X86::LD_Fp080     , X86::LD_F0     },
719  { X86::LD_Fp132     , X86::LD_F1     },
720  { X86::LD_Fp164     , X86::LD_F1     },
721  { X86::LD_Fp180     , X86::LD_F1     },
722  { X86::LD_Fp32m     , X86::LD_F32m   },
723  { X86::LD_Fp32m64   , X86::LD_F32m   },
724  { X86::LD_Fp32m80   , X86::LD_F32m   },
725  { X86::LD_Fp64m     , X86::LD_F64m   },
726  { X86::LD_Fp64m80   , X86::LD_F64m   },
727  { X86::LD_Fp80m     , X86::LD_F80m   },
728  { X86::MUL_Fp32m    , X86::MUL_F32m  },
729  { X86::MUL_Fp64m    , X86::MUL_F64m  },
730  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
731  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
732  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
733  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739  { X86::SIN_Fp32     , X86::SIN_F     },
740  { X86::SIN_Fp64     , X86::SIN_F     },
741  { X86::SIN_Fp80     , X86::SIN_F     },
742  { X86::SQRT_Fp32    , X86::SQRT_F    },
743  { X86::SQRT_Fp64    , X86::SQRT_F    },
744  { X86::SQRT_Fp80    , X86::SQRT_F    },
745  { X86::ST_Fp32m     , X86::ST_F32m   },
746  { X86::ST_Fp64m     , X86::ST_F64m   },
747  { X86::ST_Fp64m32   , X86::ST_F32m   },
748  { X86::ST_Fp80m32   , X86::ST_F32m   },
749  { X86::ST_Fp80m64   , X86::ST_F64m   },
750  { X86::ST_FpP80m    , X86::ST_FP80m  },
751  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
752  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
753  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762  { X86::SUB_Fp32m    , X86::SUB_F32m  },
763  { X86::SUB_Fp64m    , X86::SUB_F64m  },
764  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
765  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
766  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
767  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773  { X86::TST_Fp32     , X86::TST_F     },
774  { X86::TST_Fp64     , X86::TST_F     },
775  { X86::TST_Fp80     , X86::TST_F     },
776  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
777  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
778  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
779  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
780  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
781  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
782};
783
784static unsigned getConcreteOpcode(unsigned Opcode) {
785  ASSERT_SORTED(OpcodeTable);
786  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
787  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788  return Opc;
789}
790
791//===----------------------------------------------------------------------===//
792// Helper Methods
793//===----------------------------------------------------------------------===//
794
795// PopTable - Sorted map of instructions to their popping version.  The first
796// element is an instruction, the second is the version which pops.
797//
798static const TableEntry PopTable[] = {
799  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
800
801  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
803
804  { X86::IST_F16m  , X86::IST_FP16m   },
805  { X86::IST_F32m  , X86::IST_FP32m   },
806
807  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
808
809  { X86::ST_F32m   , X86::ST_FP32m    },
810  { X86::ST_F64m   , X86::ST_FP64m    },
811  { X86::ST_Frr    , X86::ST_FPrr     },
812
813  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
815
816  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
817
818  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
819  { X86::UCOM_Fr   , X86::UCOM_FPr    },
820};
821
822/// popStackAfter - Pop the current value off of the top of the FP stack after
823/// the specified instruction.  This attempts to be sneaky and combine the pop
824/// into the instruction itself if possible.  The iterator is left pointing to
825/// the last instruction, be it a new pop instruction inserted, or the old
826/// instruction if it was modified in place.
827///
828void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829  MachineInstr* MI = I;
830  DebugLoc dl = MI->getDebugLoc();
831  ASSERT_SORTED(PopTable);
832  if (StackTop == 0)
833    report_fatal_error("Cannot pop empty stack!");
834  RegMap[Stack[--StackTop]] = ~0;     // Update state
835
836  // Check to see if there is a popping version of this instruction...
837  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
838  if (Opcode != -1) {
839    I->setDesc(TII->get(Opcode));
840    if (Opcode == X86::UCOM_FPPr)
841      I->RemoveOperand(0);
842  } else {    // Insert an explicit pop
843    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
844  }
845}
846
847/// freeStackSlotAfter - Free the specified register from the register stack, so
848/// that it is no longer in a register.  If the register is currently at the top
849/// of the stack, we just pop the current instruction, otherwise we store the
850/// current top-of-stack into the specified slot, then pop the top of stack.
851void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
852  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
853    popStackAfter(I);
854    return;
855  }
856
857  // Otherwise, store the top of stack into the dead slot, killing the operand
858  // without having to add in an explicit xchg then pop.
859  //
860  I = freeStackSlotBefore(++I, FPRegNo);
861}
862
863/// freeStackSlotBefore - Free the specified register without trying any
864/// folding.
865MachineBasicBlock::iterator
866FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
867  unsigned STReg    = getSTReg(FPRegNo);
868  unsigned OldSlot  = getSlot(FPRegNo);
869  unsigned TopReg   = Stack[StackTop-1];
870  Stack[OldSlot]    = TopReg;
871  RegMap[TopReg]    = OldSlot;
872  RegMap[FPRegNo]   = ~0;
873  Stack[--StackTop] = ~0;
874  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
875}
876
877/// adjustLiveRegs - Kill and revive registers such that exactly the FP
878/// registers with a bit in Mask are live.
879void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
880  unsigned Defs = Mask;
881  unsigned Kills = 0;
882  for (unsigned i = 0; i < StackTop; ++i) {
883    unsigned RegNo = Stack[i];
884    if (!(Defs & (1 << RegNo)))
885      // This register is live, but we don't want it.
886      Kills |= (1 << RegNo);
887    else
888      // We don't need to imp-def this live register.
889      Defs &= ~(1 << RegNo);
890  }
891  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
892
893  // Produce implicit-defs for free by using killed registers.
894  while (Kills && Defs) {
895    unsigned KReg = CountTrailingZeros_32(Kills);
896    unsigned DReg = CountTrailingZeros_32(Defs);
897    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
898    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
899    std::swap(RegMap[KReg], RegMap[DReg]);
900    Kills &= ~(1 << KReg);
901    Defs &= ~(1 << DReg);
902  }
903
904  // Kill registers by popping.
905  if (Kills && I != MBB->begin()) {
906    MachineBasicBlock::iterator I2 = llvm::prior(I);
907    while (StackTop) {
908      unsigned KReg = getStackEntry(0);
909      if (!(Kills & (1 << KReg)))
910        break;
911      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
912      popStackAfter(I2);
913      Kills &= ~(1 << KReg);
914    }
915  }
916
917  // Manually kill the rest.
918  while (Kills) {
919    unsigned KReg = CountTrailingZeros_32(Kills);
920    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
921    freeStackSlotBefore(I, KReg);
922    Kills &= ~(1 << KReg);
923  }
924
925  // Load zeros for all the imp-defs.
926  while(Defs) {
927    unsigned DReg = CountTrailingZeros_32(Defs);
928    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
929    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
930    pushReg(DReg);
931    Defs &= ~(1 << DReg);
932  }
933
934  // Now we should have the correct registers live.
935  DEBUG(dumpStack());
936  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
937}
938
939/// shuffleStackTop - emit fxch instructions before I to shuffle the top
940/// FixCount entries into the order given by FixStack.
941/// FIXME: Is there a better algorithm than insertion sort?
942void FPS::shuffleStackTop(const unsigned char *FixStack,
943                          unsigned FixCount,
944                          MachineBasicBlock::iterator I) {
945  // Move items into place, starting from the desired stack bottom.
946  while (FixCount--) {
947    // Old register at position FixCount.
948    unsigned OldReg = getStackEntry(FixCount);
949    // Desired register at position FixCount.
950    unsigned Reg = FixStack[FixCount];
951    if (Reg == OldReg)
952      continue;
953    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
954    moveToTop(Reg, I);
955    if (FixCount > 0)
956      moveToTop(OldReg, I);
957  }
958  DEBUG(dumpStack());
959}
960
961
962//===----------------------------------------------------------------------===//
963// Instruction transformation implementation
964//===----------------------------------------------------------------------===//
965
966/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
967///
968void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
969  MachineInstr *MI = I;
970  unsigned DestReg = getFPReg(MI->getOperand(0));
971
972  // Change from the pseudo instruction to the concrete instruction.
973  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
974  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
975
976  // Result gets pushed on the stack.
977  pushReg(DestReg);
978}
979
980/// handleOneArgFP - fst <mem>, ST(0)
981///
982void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
983  MachineInstr *MI = I;
984  unsigned NumOps = MI->getDesc().getNumOperands();
985  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
986         "Can only handle fst* & ftst instructions!");
987
988  // Is this the last use of the source register?
989  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
990  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
991
992  if (KillsSrc)
993    duplicatePendingSTBeforeKill(Reg, I);
994
995  // FISTP64m is strange because there isn't a non-popping versions.
996  // If we have one _and_ we don't want to pop the operand, duplicate the value
997  // on the stack instead of moving it.  This ensure that popping the value is
998  // always ok.
999  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1000  //
1001  if (!KillsSrc &&
1002      (MI->getOpcode() == X86::IST_Fp64m32 ||
1003       MI->getOpcode() == X86::ISTT_Fp16m32 ||
1004       MI->getOpcode() == X86::ISTT_Fp32m32 ||
1005       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1006       MI->getOpcode() == X86::IST_Fp64m64 ||
1007       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1008       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1009       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1010       MI->getOpcode() == X86::IST_Fp64m80 ||
1011       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1012       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1013       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1014       MI->getOpcode() == X86::ST_FpP80m)) {
1015    duplicateToTop(Reg, getScratchReg(), I);
1016  } else {
1017    moveToTop(Reg, I);            // Move to the top of the stack...
1018  }
1019
1020  // Convert from the pseudo instruction to the concrete instruction.
1021  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1022  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1023
1024  if (MI->getOpcode() == X86::IST_FP64m ||
1025      MI->getOpcode() == X86::ISTT_FP16m ||
1026      MI->getOpcode() == X86::ISTT_FP32m ||
1027      MI->getOpcode() == X86::ISTT_FP64m ||
1028      MI->getOpcode() == X86::ST_FP80m) {
1029    if (StackTop == 0)
1030      report_fatal_error("Stack empty??");
1031    --StackTop;
1032  } else if (KillsSrc) { // Last use of operand?
1033    popStackAfter(I);
1034  }
1035}
1036
1037
1038/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1039/// replace the value with a newly computed value.  These instructions may have
1040/// non-fp operands after their FP operands.
1041///
1042///  Examples:
1043///     R1 = fchs R2
1044///     R1 = fadd R2, [mem]
1045///
1046void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1047  MachineInstr *MI = I;
1048#ifndef NDEBUG
1049  unsigned NumOps = MI->getDesc().getNumOperands();
1050  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1051#endif
1052
1053  // Is this the last use of the source register?
1054  unsigned Reg = getFPReg(MI->getOperand(1));
1055  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1056
1057  if (KillsSrc) {
1058    duplicatePendingSTBeforeKill(Reg, I);
1059    // If this is the last use of the source register, just make sure it's on
1060    // the top of the stack.
1061    moveToTop(Reg, I);
1062    if (StackTop == 0)
1063      report_fatal_error("Stack cannot be empty!");
1064    --StackTop;
1065    pushReg(getFPReg(MI->getOperand(0)));
1066  } else {
1067    // If this is not the last use of the source register, _copy_ it to the top
1068    // of the stack.
1069    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1070  }
1071
1072  // Change from the pseudo instruction to the concrete instruction.
1073  MI->RemoveOperand(1);   // Drop the source operand.
1074  MI->RemoveOperand(0);   // Drop the destination operand.
1075  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1076}
1077
1078
1079//===----------------------------------------------------------------------===//
1080// Define tables of various ways to map pseudo instructions
1081//
1082
1083// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1084static const TableEntry ForwardST0Table[] = {
1085  { X86::ADD_Fp32  , X86::ADD_FST0r },
1086  { X86::ADD_Fp64  , X86::ADD_FST0r },
1087  { X86::ADD_Fp80  , X86::ADD_FST0r },
1088  { X86::DIV_Fp32  , X86::DIV_FST0r },
1089  { X86::DIV_Fp64  , X86::DIV_FST0r },
1090  { X86::DIV_Fp80  , X86::DIV_FST0r },
1091  { X86::MUL_Fp32  , X86::MUL_FST0r },
1092  { X86::MUL_Fp64  , X86::MUL_FST0r },
1093  { X86::MUL_Fp80  , X86::MUL_FST0r },
1094  { X86::SUB_Fp32  , X86::SUB_FST0r },
1095  { X86::SUB_Fp64  , X86::SUB_FST0r },
1096  { X86::SUB_Fp80  , X86::SUB_FST0r },
1097};
1098
1099// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1100static const TableEntry ReverseST0Table[] = {
1101  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1102  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1103  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1104  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1105  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1106  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1107  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1108  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1109  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1110  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1111  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1112  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1113};
1114
1115// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1116static const TableEntry ForwardSTiTable[] = {
1117  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1118  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1119  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1120  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1121  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1122  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1123  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1124  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1125  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1126  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1127  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1128  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1129};
1130
1131// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1132static const TableEntry ReverseSTiTable[] = {
1133  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1134  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1135  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1136  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1137  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1138  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1139  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1140  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1141  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1142  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1143  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1144  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1145};
1146
1147
1148/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1149/// instructions which need to be simplified and possibly transformed.
1150///
1151/// Result: ST(0) = fsub  ST(0), ST(i)
1152///         ST(i) = fsub  ST(0), ST(i)
1153///         ST(0) = fsubr ST(0), ST(i)
1154///         ST(i) = fsubr ST(0), ST(i)
1155///
1156void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1157  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1158  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1159  MachineInstr *MI = I;
1160
1161  unsigned NumOperands = MI->getDesc().getNumOperands();
1162  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1163  unsigned Dest = getFPReg(MI->getOperand(0));
1164  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1165  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1166  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1167  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1168  DebugLoc dl = MI->getDebugLoc();
1169
1170  unsigned TOS = getStackEntry(0);
1171
1172  // One of our operands must be on the top of the stack.  If neither is yet, we
1173  // need to move one.
1174  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1175    // We can choose to move either operand to the top of the stack.  If one of
1176    // the operands is killed by this instruction, we want that one so that we
1177    // can update right on top of the old version.
1178    if (KillsOp0) {
1179      moveToTop(Op0, I);         // Move dead operand to TOS.
1180      TOS = Op0;
1181    } else if (KillsOp1) {
1182      moveToTop(Op1, I);
1183      TOS = Op1;
1184    } else {
1185      // All of the operands are live after this instruction executes, so we
1186      // cannot update on top of any operand.  Because of this, we must
1187      // duplicate one of the stack elements to the top.  It doesn't matter
1188      // which one we pick.
1189      //
1190      duplicateToTop(Op0, Dest, I);
1191      Op0 = TOS = Dest;
1192      KillsOp0 = true;
1193    }
1194  } else if (!KillsOp0 && !KillsOp1) {
1195    // If we DO have one of our operands at the top of the stack, but we don't
1196    // have a dead operand, we must duplicate one of the operands to a new slot
1197    // on the stack.
1198    duplicateToTop(Op0, Dest, I);
1199    Op0 = TOS = Dest;
1200    KillsOp0 = true;
1201  }
1202
1203  // Now we know that one of our operands is on the top of the stack, and at
1204  // least one of our operands is killed by this instruction.
1205  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1206         "Stack conditions not set up right!");
1207
1208  // We decide which form to use based on what is on the top of the stack, and
1209  // which operand is killed by this instruction.
1210  const TableEntry *InstTable;
1211  bool isForward = TOS == Op0;
1212  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1213  if (updateST0) {
1214    if (isForward)
1215      InstTable = ForwardST0Table;
1216    else
1217      InstTable = ReverseST0Table;
1218  } else {
1219    if (isForward)
1220      InstTable = ForwardSTiTable;
1221    else
1222      InstTable = ReverseSTiTable;
1223  }
1224
1225  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1226                      MI->getOpcode());
1227  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1228
1229  // NotTOS - The register which is not on the top of stack...
1230  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1231
1232  // Replace the old instruction with a new instruction
1233  MBB->remove(I++);
1234  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1235
1236  // If both operands are killed, pop one off of the stack in addition to
1237  // overwriting the other one.
1238  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1239    assert(!updateST0 && "Should have updated other operand!");
1240    popStackAfter(I);   // Pop the top of stack
1241  }
1242
1243  // Update stack information so that we know the destination register is now on
1244  // the stack.
1245  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1246  assert(UpdatedSlot < StackTop && Dest < 7);
1247  Stack[UpdatedSlot]   = Dest;
1248  RegMap[Dest]         = UpdatedSlot;
1249  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1250}
1251
1252/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1253/// register arguments and no explicit destinations.
1254///
1255void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1256  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1257  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1258  MachineInstr *MI = I;
1259
1260  unsigned NumOperands = MI->getDesc().getNumOperands();
1261  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1262  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1263  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1264  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1265  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1266
1267  // Make sure the first operand is on the top of stack, the other one can be
1268  // anywhere.
1269  moveToTop(Op0, I);
1270
1271  // Change from the pseudo instruction to the concrete instruction.
1272  MI->getOperand(0).setReg(getSTReg(Op1));
1273  MI->RemoveOperand(1);
1274  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1275
1276  // If any of the operands are killed by this instruction, free them.
1277  if (KillsOp0) freeStackSlotAfter(I, Op0);
1278  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1279}
1280
1281/// handleCondMovFP - Handle two address conditional move instructions.  These
1282/// instructions move a st(i) register to st(0) iff a condition is true.  These
1283/// instructions require that the first operand is at the top of the stack, but
1284/// otherwise don't modify the stack at all.
1285void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1286  MachineInstr *MI = I;
1287
1288  unsigned Op0 = getFPReg(MI->getOperand(0));
1289  unsigned Op1 = getFPReg(MI->getOperand(2));
1290  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1291
1292  // The first operand *must* be on the top of the stack.
1293  moveToTop(Op0, I);
1294
1295  // Change the second operand to the stack register that the operand is in.
1296  // Change from the pseudo instruction to the concrete instruction.
1297  MI->RemoveOperand(0);
1298  MI->RemoveOperand(1);
1299  MI->getOperand(0).setReg(getSTReg(Op1));
1300  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1301
1302  // If we kill the second operand, make sure to pop it from the stack.
1303  if (Op0 != Op1 && KillsOp1) {
1304    // Get this value off of the register stack.
1305    freeStackSlotAfter(I, Op1);
1306  }
1307}
1308
1309
1310/// handleSpecialFP - Handle special instructions which behave unlike other
1311/// floating point instructions.  This is primarily intended for use by pseudo
1312/// instructions.
1313///
1314void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1315  MachineInstr *MI = I;
1316  switch (MI->getOpcode()) {
1317  default: llvm_unreachable("Unknown SpecialFP instruction!");
1318  case TargetOpcode::COPY: {
1319    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1320    const MachineOperand &MO1 = MI->getOperand(1);
1321    const MachineOperand &MO0 = MI->getOperand(0);
1322    unsigned DstST = MO0.getReg() - X86::ST0;
1323    unsigned SrcST = MO1.getReg() - X86::ST0;
1324    bool KillsSrc = MI->killsRegister(MO1.getReg());
1325
1326    // ST = COPY FP. Set up a pending ST register.
1327    if (DstST < 8) {
1328      unsigned SrcFP = getFPReg(MO1);
1329      assert(isLive(SrcFP) && "Cannot copy dead register");
1330      assert(!MO0.isDead() && "Cannot copy to dead ST register");
1331
1332      // Unallocated STs are marked as the nonexistent FP255.
1333      while (NumPendingSTs <= DstST)
1334        PendingST[NumPendingSTs++] = NumFPRegs;
1335
1336      // STi could still be live from a previous inline asm.
1337      if (isScratchReg(PendingST[DstST])) {
1338        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1339                     << '\n');
1340        freeStackSlotBefore(MI, PendingST[DstST]);
1341      }
1342
1343      // When the source is killed, allocate a scratch FP register.
1344      if (KillsSrc) {
1345        duplicatePendingSTBeforeKill(SrcFP, I);
1346        unsigned Slot = getSlot(SrcFP);
1347        unsigned SR = getScratchReg();
1348        PendingST[DstST] = SR;
1349        Stack[Slot] = SR;
1350        RegMap[SR] = Slot;
1351      } else
1352        PendingST[DstST] = SrcFP;
1353      break;
1354    }
1355
1356    // FP = COPY ST. Extract fixed stack value.
1357    // Any instruction defining ST registers must have assigned them to a
1358    // scratch register.
1359    if (SrcST < 8) {
1360      unsigned DstFP = getFPReg(MO0);
1361      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1362      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1363      unsigned SrcFP = PendingST[SrcST];
1364      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1365      assert(isLive(SrcFP) && "Scratch holding ST is dead");
1366
1367      // DstFP steals the stack slot from SrcFP.
1368      unsigned Slot = getSlot(SrcFP);
1369      Stack[Slot] = DstFP;
1370      RegMap[DstFP] = Slot;
1371
1372      // Always treat the ST as killed.
1373      PendingST[SrcST] = NumFPRegs;
1374      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1375        --NumPendingSTs;
1376      break;
1377    }
1378
1379    // FP <- FP copy.
1380    unsigned DstFP = getFPReg(MO0);
1381    unsigned SrcFP = getFPReg(MO1);
1382    assert(isLive(SrcFP) && "Cannot copy dead register");
1383    if (KillsSrc) {
1384      // If the input operand is killed, we can just change the owner of the
1385      // incoming stack slot into the result.
1386      unsigned Slot = getSlot(SrcFP);
1387      Stack[Slot] = DstFP;
1388      RegMap[DstFP] = Slot;
1389    } else {
1390      // For COPY we just duplicate the specified value to a new stack slot.
1391      // This could be made better, but would require substantial changes.
1392      duplicateToTop(SrcFP, DstFP, I);
1393    }
1394    break;
1395  }
1396
1397  case TargetOpcode::IMPLICIT_DEF: {
1398    // All FP registers must be explicitly defined, so load a 0 instead.
1399    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1400    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1401    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1402    pushReg(Reg);
1403    break;
1404  }
1405
1406  case X86::FpPOP_RETVAL: {
1407    // The FpPOP_RETVAL instruction is used after calls that return a value on
1408    // the floating point stack. We cannot model this with ST defs since CALL
1409    // instructions have fixed clobber lists. This instruction is interpreted
1410    // to mean that there is one more live register on the stack than we
1411    // thought.
1412    //
1413    // This means that StackTop does not match the hardware stack between a
1414    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
1415    // between CALL and FpPOP_RETVAL as long as they don't overflow the
1416    // hardware stack.
1417    unsigned DstFP = getFPReg(MI->getOperand(0));
1418
1419    // Move existing stack elements up to reflect reality.
1420    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1421    if (StackTop) {
1422      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1423      for (unsigned i = 0; i != NumFPRegs; ++i)
1424        ++RegMap[i];
1425    }
1426    ++StackTop;
1427
1428    // DstFP is the new bottom of the stack.
1429    Stack[0] = DstFP;
1430    RegMap[DstFP] = 0;
1431
1432    // DstFP will be killed by processBasicBlock if this was a dead def.
1433    break;
1434  }
1435
1436  case TargetOpcode::INLINEASM: {
1437    // The inline asm MachineInstr currently only *uses* FP registers for the
1438    // 'f' constraint.  These should be turned into the current ST(x) register
1439    // in the machine instr.
1440    //
1441    // There are special rules for x87 inline assembly. The compiler must know
1442    // exactly how many registers are popped and pushed implicitly by the asm.
1443    // Otherwise it is not possible to restore the stack state after the inline
1444    // asm.
1445    //
1446    // There are 3 kinds of input operands:
1447    //
1448    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1449    //    popped input operand must be in a fixed stack slot, and it is either
1450    //    tied to an output operand, or in the clobber list. The MI has ST use
1451    //    and def operands for these inputs.
1452    //
1453    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1454    //    preserved by the inline asm. The fixed stack slots must be STn-STm
1455    //    following the popped inputs. A fixed input operand cannot be tied to
1456    //    an output or appear in the clobber list. The MI has ST use operands
1457    //    and no defs for these inputs.
1458    //
1459    // 3. Preserved inputs. These inputs use the "f" constraint which is
1460    //    represented as an FP register. The inline asm won't change these
1461    //    stack slots.
1462    //
1463    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1464    // registers do not count as output operands. The inline asm changes the
1465    // stack as if it popped all the popped inputs and then pushed all the
1466    // output operands.
1467
1468    // Scan the assembly for ST registers used, defined and clobbered. We can
1469    // only tell clobbers from defs by looking at the asm descriptor.
1470    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1471    unsigned NumOps = 0;
1472    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1473         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1474      unsigned Flags = MI->getOperand(i).getImm();
1475      NumOps = InlineAsm::getNumOperandRegisters(Flags);
1476      if (NumOps != 1)
1477        continue;
1478      const MachineOperand &MO = MI->getOperand(i + 1);
1479      if (!MO.isReg())
1480        continue;
1481      unsigned STReg = MO.getReg() - X86::ST0;
1482      if (STReg >= 8)
1483        continue;
1484
1485      switch (InlineAsm::getKind(Flags)) {
1486      case InlineAsm::Kind_RegUse:
1487        STUses |= (1u << STReg);
1488        break;
1489      case InlineAsm::Kind_RegDef:
1490      case InlineAsm::Kind_RegDefEarlyClobber:
1491        STDefs |= (1u << STReg);
1492        if (MO.isDead())
1493          STDeadDefs |= (1u << STReg);
1494        break;
1495      case InlineAsm::Kind_Clobber:
1496        STClobbers |= (1u << STReg);
1497        break;
1498      default:
1499        break;
1500      }
1501    }
1502
1503    if (STUses && !isMask_32(STUses))
1504      MI->emitError("fixed input regs must be last on the x87 stack");
1505    unsigned NumSTUses = CountTrailingOnes_32(STUses);
1506
1507    // Defs must be contiguous from the stack top. ST0-STn.
1508    if (STDefs && !isMask_32(STDefs)) {
1509      MI->emitError("output regs must be last on the x87 stack");
1510      STDefs = NextPowerOf2(STDefs) - 1;
1511    }
1512    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1513
1514    // So must the clobbered stack slots. ST0-STm, m >= n.
1515    if (STClobbers && !isMask_32(STDefs | STClobbers))
1516      MI->emitError("clobbers must be last on the x87 stack");
1517
1518    // Popped inputs are the ones that are also clobbered or defined.
1519    unsigned STPopped = STUses & (STDefs | STClobbers);
1520    if (STPopped && !isMask_32(STPopped))
1521      MI->emitError("implicitly popped regs must be last on the x87 stack");
1522    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1523
1524    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1525                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1526
1527    // Scan the instruction for FP uses corresponding to "f" constraints.
1528    // Collect FP registers to kill afer the instruction.
1529    // Always kill all the scratch regs.
1530    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1531    unsigned FPUsed = 0;
1532    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1533      MachineOperand &Op = MI->getOperand(i);
1534      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1535        continue;
1536      if (!Op.isUse())
1537        MI->emitError("illegal \"f\" output constraint");
1538      unsigned FPReg = getFPReg(Op);
1539      FPUsed |= 1U << FPReg;
1540
1541      // If we kill this operand, make sure to pop it from the stack after the
1542      // asm.  We just remember it for now, and pop them all off at the end in
1543      // a batch.
1544      if (Op.isKill())
1545        FPKills |= 1U << FPReg;
1546    }
1547
1548    // The popped inputs will be killed by the instruction, so duplicate them
1549    // if the FP register needs to be live after the instruction, or if it is
1550    // used in the instruction itself. We effectively treat the popped inputs
1551    // as early clobbers.
1552    for (unsigned i = 0; i < NumSTPopped; ++i) {
1553      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1554        continue;
1555      unsigned SR = getScratchReg();
1556      duplicateToTop(PendingST[i], SR, I);
1557      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1558                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1559      PendingST[i] = SR;
1560    }
1561
1562    // Make sure we have a unique live register for every fixed use. Some of
1563    // them could be undef uses, and we need to emit LD_F0 instructions.
1564    for (unsigned i = 0; i < NumSTUses; ++i) {
1565      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1566        // Check for shared assignments.
1567        for (unsigned j = 0; j < i; ++j) {
1568          if (PendingST[j] != PendingST[i])
1569            continue;
1570          // STi and STj are inn the same register, create a copy.
1571          unsigned SR = getScratchReg();
1572          duplicateToTop(PendingST[i], SR, I);
1573          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1574                       << unsigned(PendingST[i])
1575                       << " to avoid collision with ST" << j << '\n');
1576          PendingST[i] = SR;
1577        }
1578        continue;
1579      }
1580      unsigned SR = getScratchReg();
1581      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1582      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1583      pushReg(SR);
1584      PendingST[i] = SR;
1585      if (NumPendingSTs == i)
1586        ++NumPendingSTs;
1587    }
1588    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1589
1590    // Now we can rearrange the live registers to match what was requested.
1591    shuffleStackTop(PendingST, NumPendingSTs, I);
1592    DEBUG({dbgs() << "Before asm: "; dumpStack();});
1593
1594    // With the stack layout fixed, rewrite the FP registers.
1595    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1596      MachineOperand &Op = MI->getOperand(i);
1597      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1598        continue;
1599      unsigned FPReg = getFPReg(Op);
1600      Op.setReg(getSTReg(FPReg));
1601    }
1602
1603    // Simulate the inline asm popping its inputs and pushing its outputs.
1604    StackTop -= NumSTPopped;
1605
1606    // Hold the fixed output registers in scratch FP registers. They will be
1607    // transferred to real FP registers by copies.
1608    NumPendingSTs = 0;
1609    for (unsigned i = 0; i < NumSTDefs; ++i) {
1610      unsigned SR = getScratchReg();
1611      pushReg(SR);
1612      FPKills &= ~(1u << SR);
1613    }
1614    for (unsigned i = 0; i < NumSTDefs; ++i)
1615      PendingST[NumPendingSTs++] = getStackEntry(i);
1616    DEBUG({dbgs() << "After asm: "; dumpStack();});
1617
1618    // If any of the ST defs were dead, pop them immediately. Our caller only
1619    // handles dead FP defs.
1620    MachineBasicBlock::iterator InsertPt = MI;
1621    for (unsigned i = 0; STDefs & (1u << i); ++i) {
1622      if (!(STDeadDefs & (1u << i)))
1623        continue;
1624      freeStackSlotAfter(InsertPt, PendingST[i]);
1625      PendingST[i] = NumFPRegs;
1626    }
1627    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1628      --NumPendingSTs;
1629
1630    // If this asm kills any FP registers (is the last use of them) we must
1631    // explicitly emit pop instructions for them.  Do this now after the asm has
1632    // executed so that the ST(x) numbers are not off (which would happen if we
1633    // did this inline with operand rewriting).
1634    //
1635    // Note: this might be a non-optimal pop sequence.  We might be able to do
1636    // better by trying to pop in stack order or something.
1637    while (FPKills) {
1638      unsigned FPReg = CountTrailingZeros_32(FPKills);
1639      if (isLive(FPReg))
1640        freeStackSlotAfter(InsertPt, FPReg);
1641      FPKills &= ~(1U << FPReg);
1642    }
1643    // Don't delete the inline asm!
1644    return;
1645  }
1646
1647  case X86::RET:
1648  case X86::RETI:
1649    // If RET has an FP register use operand, pass the first one in ST(0) and
1650    // the second one in ST(1).
1651
1652    // Find the register operands.
1653    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1654    unsigned LiveMask = 0;
1655
1656    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1657      MachineOperand &Op = MI->getOperand(i);
1658      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1659        continue;
1660      // FP Register uses must be kills unless there are two uses of the same
1661      // register, in which case only one will be a kill.
1662      assert(Op.isUse() &&
1663             (Op.isKill() ||                        // Marked kill.
1664              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1665              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1666             "Ret only defs operands, and values aren't live beyond it");
1667
1668      if (FirstFPRegOp == ~0U)
1669        FirstFPRegOp = getFPReg(Op);
1670      else {
1671        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1672        SecondFPRegOp = getFPReg(Op);
1673      }
1674      LiveMask |= (1 << getFPReg(Op));
1675
1676      // Remove the operand so that later passes don't see it.
1677      MI->RemoveOperand(i);
1678      --i, --e;
1679    }
1680
1681    // We may have been carrying spurious live-ins, so make sure only the returned
1682    // registers are left live.
1683    adjustLiveRegs(LiveMask, MI);
1684    if (!LiveMask) return;  // Quick check to see if any are possible.
1685
1686    // There are only four possibilities here:
1687    // 1) we are returning a single FP value.  In this case, it has to be in
1688    //    ST(0) already, so just declare success by removing the value from the
1689    //    FP Stack.
1690    if (SecondFPRegOp == ~0U) {
1691      // Assert that the top of stack contains the right FP register.
1692      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1693             "Top of stack not the right register for RET!");
1694
1695      // Ok, everything is good, mark the value as not being on the stack
1696      // anymore so that our assertion about the stack being empty at end of
1697      // block doesn't fire.
1698      StackTop = 0;
1699      return;
1700    }
1701
1702    // Otherwise, we are returning two values:
1703    // 2) If returning the same value for both, we only have one thing in the FP
1704    //    stack.  Consider:  RET FP1, FP1
1705    if (StackTop == 1) {
1706      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1707             "Stack misconfiguration for RET!");
1708
1709      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1710      // register to hold it.
1711      unsigned NewReg = getScratchReg();
1712      duplicateToTop(FirstFPRegOp, NewReg, MI);
1713      FirstFPRegOp = NewReg;
1714    }
1715
1716    /// Okay we know we have two different FPx operands now:
1717    assert(StackTop == 2 && "Must have two values live!");
1718
1719    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1720    ///    in ST(1).  In this case, emit an fxch.
1721    if (getStackEntry(0) == SecondFPRegOp) {
1722      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1723      moveToTop(FirstFPRegOp, MI);
1724    }
1725
1726    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1727    /// ST(1).  Just remove both from our understanding of the stack and return.
1728    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1729    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1730    StackTop = 0;
1731    return;
1732  }
1733
1734  I = MBB->erase(I);  // Remove the pseudo instruction
1735
1736  // We want to leave I pointing to the previous instruction, but what if we
1737  // just erased the first instruction?
1738  if (I == MBB->begin()) {
1739    DEBUG(dbgs() << "Inserting dummy KILL\n");
1740    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1741  } else
1742    --I;
1743}
1744