X86FloatingPoint.cpp revision 2268684f6fef2ef7e5b523d21dbd376f09ec1174
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "Support/Debug.h"
41#include "Support/DepthFirstIterator.h"
42#include "Support/Statistic.h"
43#include "Support/STLExtras.h"
44#include <algorithm>
45#include <set>
46using namespace llvm;
47
48namespace {
49  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
50  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
51
52  struct FPS : public MachineFunctionPass {
53    virtual bool runOnMachineFunction(MachineFunction &MF);
54
55    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
56
57    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58      AU.addRequired<LiveVariables>();
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61  private:
62    LiveVariables     *LV;    // Live variable info for current function...
63    MachineBasicBlock *MBB;   // Current basic block
64    unsigned Stack[8];        // FP<n> Registers in each stack slot...
65    unsigned RegMap[8];       // Track which stack slot contains each register
66    unsigned StackTop;        // The current top of the FP stack.
67
68    void dumpStack() const {
69      std::cerr << "Stack contents:";
70      for (unsigned i = 0; i != StackTop; ++i) {
71	std::cerr << " FP" << Stack[i];
72	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
73      }
74      std::cerr << "\n";
75    }
76  private:
77    // getSlot - Return the stack slot number a particular register number is
78    // in...
79    unsigned getSlot(unsigned RegNo) const {
80      assert(RegNo < 8 && "Regno out of range!");
81      return RegMap[RegNo];
82    }
83
84    // getStackEntry - Return the X86::FP<n> register in register ST(i)
85    unsigned getStackEntry(unsigned STi) const {
86      assert(STi < StackTop && "Access past stack top!");
87      return Stack[StackTop-1-STi];
88    }
89
90    // getSTReg - Return the X86::ST(i) register which contains the specified
91    // FP<RegNo> register
92    unsigned getSTReg(unsigned RegNo) const {
93      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
94    }
95
96    // pushReg - Push the specified FP<n> register onto the stack
97    void pushReg(unsigned Reg) {
98      assert(Reg < 8 && "Register number out of range!");
99      assert(StackTop < 8 && "Stack overflow!");
100      Stack[StackTop] = Reg;
101      RegMap[Reg] = StackTop++;
102    }
103
104    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
105    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
106      if (!isAtTop(RegNo)) {
107	unsigned Slot = getSlot(RegNo);
108	unsigned STReg = getSTReg(RegNo);
109	unsigned RegOnTop = getStackEntry(0);
110
111	// Swap the slots the regs are in
112	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
113
114	// Swap stack slot contents
115	assert(RegMap[RegOnTop] < StackTop);
116	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
117
118	// Emit an fxch to update the runtime processors version of the state
119	BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
120	NumFXCH++;
121      }
122    }
123
124    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
125      unsigned STReg = getSTReg(RegNo);
126      pushReg(AsReg);   // New register on top of stack
127
128      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
129    }
130
131    // popStackAfter - Pop the current value off of the top of the FP stack
132    // after the specified instruction.
133    void popStackAfter(MachineBasicBlock::iterator &I);
134
135    // freeStackSlotAfter - Free the specified register from the register stack,
136    // so that it is no longer in a register.  If the register is currently at
137    // the top of the stack, we just pop the current instruction, otherwise we
138    // store the current top-of-stack into the specified slot, then pop the top
139    // of stack.
140    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
141
142    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
143
144    void handleZeroArgFP(MachineBasicBlock::iterator &I);
145    void handleOneArgFP(MachineBasicBlock::iterator &I);
146    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
147    void handleTwoArgFP(MachineBasicBlock::iterator &I);
148    void handleCondMovFP(MachineBasicBlock::iterator &I);
149    void handleSpecialFP(MachineBasicBlock::iterator &I);
150  };
151}
152
153FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
154
155/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
156/// register references into FP stack references.
157///
158bool FPS::runOnMachineFunction(MachineFunction &MF) {
159  LV = &getAnalysis<LiveVariables>();
160  StackTop = 0;
161
162  // Process the function in depth first order so that we process at least one
163  // of the predecessors for every reachable block in the function.
164  std::set<MachineBasicBlock*> Processed;
165  MachineBasicBlock *Entry = MF.begin();
166
167  bool Changed = false;
168  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
169         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
170       I != E; ++I)
171    Changed |= processBasicBlock(MF, **I);
172
173  return Changed;
174}
175
176/// processBasicBlock - Loop over all of the instructions in the basic block,
177/// transforming FP instructions into their stack form.
178///
179bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
180  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
181  bool Changed = false;
182  MBB = &BB;
183
184  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
185    MachineInstr *MI = I;
186    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
187    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
188      continue;  // Efficiently ignore non-fp insts!
189
190    MachineInstr *PrevMI = 0;
191    if (I != BB.begin())
192        PrevMI = prior(I);
193
194    ++NumFP;  // Keep track of # of pseudo instrs
195    DEBUG(std::cerr << "\nFPInst:\t";
196	  MI->print(std::cerr, MF.getTarget()));
197
198    // Get dead variables list now because the MI pointer may be deleted as part
199    // of processing!
200    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
201    LiveVariables::killed_iterator IE = LV->dead_end(MI);
202
203    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
204	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
205	  LiveVariables::killed_iterator E = LV->killed_end(MI);
206	  if (I != E) {
207	    std::cerr << "Killed Operands:";
208	    for (; I != E; ++I)
209	      std::cerr << " %" << MRI->getName(I->second);
210	    std::cerr << "\n";
211	  });
212
213    switch (Flags & X86II::FPTypeMask) {
214    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
215    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
216    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
217    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
218    case X86II::CondMovFP:  handleCondMovFP(I); break;
219    case X86II::SpecialFP:  handleSpecialFP(I); break;
220    default: assert(0 && "Unknown FP Type!");
221    }
222
223    // Check to see if any of the values defined by this instruction are dead
224    // after definition.  If so, pop them.
225    for (; IB != IE; ++IB) {
226      unsigned Reg = IB->second;
227      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
228	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
229	++I;                         // Insert fxch AFTER the instruction
230	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
231	--I;                         // Move to fxch or old instruction
232	popStackAfter(I);            // Pop the top of the stack, killing value
233      }
234    }
235
236    // Print out all of the instructions expanded to if -debug
237    DEBUG(
238      MachineBasicBlock::iterator PrevI(PrevMI);
239      if (I == PrevI) {
240        std::cerr << "Just deleted pseudo instruction\n";
241      } else {
242        MachineBasicBlock::iterator Start = I;
243        // Rewind to first instruction newly inserted.
244        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
245        std::cerr << "Inserted instructions:\n\t";
246        Start->print(std::cerr, MF.getTarget());
247        while (++Start != next(I));
248      }
249      dumpStack();
250    );
251
252    Changed = true;
253  }
254
255  assert(StackTop == 0 && "Stack not empty at end of basic block?");
256  return Changed;
257}
258
259//===----------------------------------------------------------------------===//
260// Efficient Lookup Table Support
261//===----------------------------------------------------------------------===//
262
263namespace {
264  struct TableEntry {
265    unsigned from;
266    unsigned to;
267    bool operator<(const TableEntry &TE) const { return from < TE.from; }
268    bool operator<(unsigned V) const { return from < V; }
269  };
270}
271
272static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
273  for (unsigned i = 0; i != NumEntries-1; ++i)
274    if (!(Table[i] < Table[i+1])) return false;
275  return true;
276}
277
278static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
279  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
280  if (I != Table+N && I->from == Opcode)
281    return I->to;
282  return -1;
283}
284
285#define ARRAY_SIZE(TABLE)  \
286   (sizeof(TABLE)/sizeof(TABLE[0]))
287
288#ifdef NDEBUG
289#define ASSERT_SORTED(TABLE)
290#else
291#define ASSERT_SORTED(TABLE)                                              \
292  { static bool TABLE##Checked = false;                                   \
293    if (!TABLE##Checked)                                                  \
294       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
295              "All lookup tables must be sorted for efficient access!");  \
296  }
297#endif
298
299
300//===----------------------------------------------------------------------===//
301// Helper Methods
302//===----------------------------------------------------------------------===//
303
304// PopTable - Sorted map of instructions to their popping version.  The first
305// element is an instruction, the second is the version which pops.
306//
307static const TableEntry PopTable[] = {
308  { X86::FADDrST0 , X86::FADDPrST0  },
309
310  { X86::FDIVRrST0, X86::FDIVRPrST0 },
311  { X86::FDIVrST0 , X86::FDIVPrST0  },
312
313  { X86::FIST16m  , X86::FISTP16m   },
314  { X86::FIST32m  , X86::FISTP32m   },
315
316  { X86::FMULrST0 , X86::FMULPrST0  },
317
318  { X86::FST32m   , X86::FSTP32m    },
319  { X86::FST64m   , X86::FSTP64m    },
320  { X86::FSTrr    , X86::FSTPrr     },
321
322  { X86::FSUBRrST0, X86::FSUBRPrST0 },
323  { X86::FSUBrST0 , X86::FSUBPrST0  },
324
325  { X86::FUCOMIr  , X86::FUCOMIPr   },
326
327  { X86::FUCOMPr  , X86::FUCOMPPr   },
328  { X86::FUCOMr   , X86::FUCOMPr    },
329};
330
331/// popStackAfter - Pop the current value off of the top of the FP stack after
332/// the specified instruction.  This attempts to be sneaky and combine the pop
333/// into the instruction itself if possible.  The iterator is left pointing to
334/// the last instruction, be it a new pop instruction inserted, or the old
335/// instruction if it was modified in place.
336///
337void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
338  ASSERT_SORTED(PopTable);
339  assert(StackTop > 0 && "Cannot pop empty stack!");
340  RegMap[Stack[--StackTop]] = ~0;     // Update state
341
342  // Check to see if there is a popping version of this instruction...
343  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
344  if (Opcode != -1) {
345    I->setOpcode(Opcode);
346    if (Opcode == X86::FUCOMPPr)
347      I->RemoveOperand(0);
348
349  } else {    // Insert an explicit pop
350    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
351  }
352}
353
354/// freeStackSlotAfter - Free the specified register from the register stack, so
355/// that it is no longer in a register.  If the register is currently at the top
356/// of the stack, we just pop the current instruction, otherwise we store the
357/// current top-of-stack into the specified slot, then pop the top of stack.
358void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
359  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
360    popStackAfter(I);
361    return;
362  }
363
364  // Otherwise, store the top of stack into the dead slot, killing the operand
365  // without having to add in an explicit xchg then pop.
366  //
367  unsigned STReg    = getSTReg(FPRegNo);
368  unsigned OldSlot  = getSlot(FPRegNo);
369  unsigned TopReg   = Stack[StackTop-1];
370  Stack[OldSlot]    = TopReg;
371  RegMap[TopReg]    = OldSlot;
372  RegMap[FPRegNo]   = ~0;
373  Stack[--StackTop] = ~0;
374  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
375}
376
377
378static unsigned getFPReg(const MachineOperand &MO) {
379  assert(MO.isRegister() && "Expected an FP register!");
380  unsigned Reg = MO.getReg();
381  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
382  return Reg - X86::FP0;
383}
384
385
386//===----------------------------------------------------------------------===//
387// Instruction transformation implementation
388//===----------------------------------------------------------------------===//
389
390/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
391///
392void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
393  MachineInstr *MI = I;
394  unsigned DestReg = getFPReg(MI->getOperand(0));
395  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
396
397  // Result gets pushed on the stack...
398  pushReg(DestReg);
399}
400
401/// handleOneArgFP - fst <mem>, ST(0)
402///
403void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
404  MachineInstr *MI = I;
405  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
406         "Can only handle fst* & ftst instructions!");
407
408  // Is this the last use of the source register?
409  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
410  bool KillsSrc = false;
411  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
412	 E = LV->killed_end(MI); KI != E; ++KI)
413    KillsSrc |= KI->second == X86::FP0+Reg;
414
415  // FSTP80r and FISTP64r are strange because there are no non-popping versions.
416  // If we have one _and_ we don't want to pop the operand, duplicate the value
417  // on the stack instead of moving it.  This ensure that popping the value is
418  // always ok.
419  //
420  if ((MI->getOpcode() == X86::FSTP80m ||
421       MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
422    duplicateToTop(Reg, 7 /*temp register*/, I);
423  } else {
424    moveToTop(Reg, I);            // Move to the top of the stack...
425  }
426  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
427
428  if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
429    assert(StackTop > 0 && "Stack empty??");
430    --StackTop;
431  } else if (KillsSrc) { // Last use of operand?
432    popStackAfter(I);
433  }
434}
435
436
437/// handleOneArgFPRW: Handle instructions that read from the top of stack and
438/// replace the value with a newly computed value.  These instructions may have
439/// non-fp operands after their FP operands.
440///
441///  Examples:
442///     R1 = fchs R2
443///     R1 = fadd R2, [mem]
444///
445void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
446  MachineInstr *MI = I;
447  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
448
449  // Is this the last use of the source register?
450  unsigned Reg = getFPReg(MI->getOperand(1));
451  bool KillsSrc = false;
452  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
453	 E = LV->killed_end(MI); KI != E; ++KI)
454    KillsSrc |= KI->second == X86::FP0+Reg;
455
456  if (KillsSrc) {
457    // If this is the last use of the source register, just make sure it's on
458    // the top of the stack.
459    moveToTop(Reg, I);
460    assert(StackTop > 0 && "Stack cannot be empty!");
461    --StackTop;
462    pushReg(getFPReg(MI->getOperand(0)));
463  } else {
464    // If this is not the last use of the source register, _copy_ it to the top
465    // of the stack.
466    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
467  }
468
469  MI->RemoveOperand(1);   // Drop the source operand.
470  MI->RemoveOperand(0);   // Drop the destination operand.
471}
472
473
474//===----------------------------------------------------------------------===//
475// Define tables of various ways to map pseudo instructions
476//
477
478// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
479static const TableEntry ForwardST0Table[] = {
480  { X86::FpADD  , X86::FADDST0r },
481  { X86::FpDIV  , X86::FDIVST0r },
482  { X86::FpMUL  , X86::FMULST0r },
483  { X86::FpSUB  , X86::FSUBST0r },
484  { X86::FpUCOM , X86::FUCOMr   },
485  { X86::FpUCOMI, X86::FUCOMIr  },
486};
487
488// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
489static const TableEntry ReverseST0Table[] = {
490  { X86::FpADD  , X86::FADDST0r  },   // commutative
491  { X86::FpDIV  , X86::FDIVRST0r },
492  { X86::FpMUL  , X86::FMULST0r  },   // commutative
493  { X86::FpSUB  , X86::FSUBRST0r },
494  { X86::FpUCOM , ~0             },
495  { X86::FpUCOMI, ~0             },
496};
497
498// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
499static const TableEntry ForwardSTiTable[] = {
500  { X86::FpADD  , X86::FADDrST0  },   // commutative
501  { X86::FpDIV  , X86::FDIVRrST0 },
502  { X86::FpMUL  , X86::FMULrST0  },   // commutative
503  { X86::FpSUB  , X86::FSUBRrST0 },
504  { X86::FpUCOM , X86::FUCOMr    },
505  { X86::FpUCOMI, X86::FUCOMIr   },
506};
507
508// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
509static const TableEntry ReverseSTiTable[] = {
510  { X86::FpADD  , X86::FADDrST0 },
511  { X86::FpDIV  , X86::FDIVrST0 },
512  { X86::FpMUL  , X86::FMULrST0 },
513  { X86::FpSUB  , X86::FSUBrST0 },
514  { X86::FpUCOM , ~0            },
515  { X86::FpUCOMI, ~0            },
516};
517
518
519/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
520/// instructions which need to be simplified and possibly transformed.
521///
522/// Result: ST(0) = fsub  ST(0), ST(i)
523///         ST(i) = fsub  ST(0), ST(i)
524///         ST(0) = fsubr ST(0), ST(i)
525///         ST(i) = fsubr ST(0), ST(i)
526///
527/// In addition to three address instructions, this also handles the FpUCOM
528/// instruction which only has two operands, but no destination.  This
529/// instruction is also annoying because there is no "reverse" form of it
530/// available.
531///
532void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
533  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
534  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
535  MachineInstr *MI = I;
536
537  unsigned NumOperands = MI->getNumOperands();
538  bool isCompare = MI->getOpcode() == X86::FpUCOM ||
539                   MI->getOpcode() == X86::FpUCOMI;
540  assert((NumOperands == 3 || (NumOperands == 2 && isCompare)) &&
541	 "Illegal TwoArgFP instruction!");
542  unsigned Dest = getFPReg(MI->getOperand(0));
543  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
544  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
545  bool KillsOp0 = false, KillsOp1 = false;
546
547  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
548	 E = LV->killed_end(MI); KI != E; ++KI) {
549    KillsOp0 |= (KI->second == X86::FP0+Op0);
550    KillsOp1 |= (KI->second == X86::FP0+Op1);
551  }
552
553  // If this is an FpUCOM instruction, we must make sure the first operand is on
554  // the top of stack, the other one can be anywhere...
555  if (isCompare)
556    moveToTop(Op0, I);
557
558  unsigned TOS = getStackEntry(0);
559
560  // One of our operands must be on the top of the stack.  If neither is yet, we
561  // need to move one.
562  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
563    // We can choose to move either operand to the top of the stack.  If one of
564    // the operands is killed by this instruction, we want that one so that we
565    // can update right on top of the old version.
566    if (KillsOp0) {
567      moveToTop(Op0, I);         // Move dead operand to TOS.
568      TOS = Op0;
569    } else if (KillsOp1) {
570      moveToTop(Op1, I);
571      TOS = Op1;
572    } else {
573      // All of the operands are live after this instruction executes, so we
574      // cannot update on top of any operand.  Because of this, we must
575      // duplicate one of the stack elements to the top.  It doesn't matter
576      // which one we pick.
577      //
578      duplicateToTop(Op0, Dest, I);
579      Op0 = TOS = Dest;
580      KillsOp0 = true;
581    }
582  } else if (!KillsOp0 && !KillsOp1 && !isCompare) {
583    // If we DO have one of our operands at the top of the stack, but we don't
584    // have a dead operand, we must duplicate one of the operands to a new slot
585    // on the stack.
586    duplicateToTop(Op0, Dest, I);
587    Op0 = TOS = Dest;
588    KillsOp0 = true;
589  }
590
591  // Now we know that one of our operands is on the top of the stack, and at
592  // least one of our operands is killed by this instruction.
593  assert((TOS == Op0 || TOS == Op1) &&
594	 (KillsOp0 || KillsOp1 || isCompare) &&
595	 "Stack conditions not set up right!");
596
597  // We decide which form to use based on what is on the top of the stack, and
598  // which operand is killed by this instruction.
599  const TableEntry *InstTable;
600  bool isForward = TOS == Op0;
601  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
602  if (updateST0) {
603    if (isForward)
604      InstTable = ForwardST0Table;
605    else
606      InstTable = ReverseST0Table;
607  } else {
608    if (isForward)
609      InstTable = ForwardSTiTable;
610    else
611      InstTable = ReverseSTiTable;
612  }
613
614  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
615  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
616
617  // NotTOS - The register which is not on the top of stack...
618  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
619
620  // Replace the old instruction with a new instruction
621  MBB->remove(I++);
622  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
623
624  // If both operands are killed, pop one off of the stack in addition to
625  // overwriting the other one.
626  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
627    assert(!updateST0 && "Should have updated other operand!");
628    popStackAfter(I);   // Pop the top of stack
629  }
630
631  // Insert an explicit pop of the "updated" operand for FUCOM
632  if (isCompare) {
633    if (KillsOp0 && !KillsOp1)
634      popStackAfter(I);   // If we kill the first operand, pop it!
635    else if (KillsOp1 && Op0 != Op1)
636      freeStackSlotAfter(I, Op1);
637  }
638
639  // Update stack information so that we know the destination register is now on
640  // the stack.
641  if (!isCompare) {
642    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
643    assert(UpdatedSlot < StackTop && Dest < 7);
644    Stack[UpdatedSlot]   = Dest;
645    RegMap[Dest]         = UpdatedSlot;
646  }
647  delete MI;   // Remove the old instruction
648}
649
650/// handleCondMovFP - Handle two address conditional move instructions.  These
651/// instructions move a st(i) register to st(0) iff a condition is true.  These
652/// instructions require that the first operand is at the top of the stack, but
653/// otherwise don't modify the stack at all.
654void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
655  MachineInstr *MI = I;
656
657  unsigned Op0 = getFPReg(MI->getOperand(0));
658  unsigned Op1 = getFPReg(MI->getOperand(1));
659
660  // The first operand *must* be on the top of the stack.
661  moveToTop(Op0, I);
662
663  // Change the second operand to the stack register that the operand is in.
664  MI->RemoveOperand(0);
665  MI->getOperand(0).setReg(getSTReg(Op1));
666
667  // If we kill the second operand, make sure to pop it from the stack.
668  if (Op0 != Op1)
669    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
670           E = LV->killed_end(MI); KI != E; ++KI)
671      if (KI->second == X86::FP0+Op1) {
672        // Get this value off of the register stack.
673        freeStackSlotAfter(I, Op1);
674        break;
675      }
676}
677
678
679/// handleSpecialFP - Handle special instructions which behave unlike other
680/// floating point instructions.  This is primarily intended for use by pseudo
681/// instructions.
682///
683void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
684  MachineInstr *MI = I;
685  switch (MI->getOpcode()) {
686  default: assert(0 && "Unknown SpecialFP instruction!");
687  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
688    assert(StackTop == 0 && "Stack should be empty after a call!");
689    pushReg(getFPReg(MI->getOperand(0)));
690    break;
691  case X86::FpSETRESULT:
692    assert(StackTop == 1 && "Stack should have one element on it to return!");
693    --StackTop;   // "Forget" we have something on the top of stack!
694    break;
695  case X86::FpMOV: {
696    unsigned SrcReg = getFPReg(MI->getOperand(1));
697    unsigned DestReg = getFPReg(MI->getOperand(0));
698    bool KillsSrc = false;
699    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
700	   E = LV->killed_end(MI); KI != E; ++KI)
701      KillsSrc |= KI->second == X86::FP0+SrcReg;
702
703    if (KillsSrc) {
704      // If the input operand is killed, we can just change the owner of the
705      // incoming stack slot into the result.
706      unsigned Slot = getSlot(SrcReg);
707      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
708      Stack[Slot] = DestReg;
709      RegMap[DestReg] = Slot;
710
711    } else {
712      // For FMOV we just duplicate the specified value to a new stack slot.
713      // This could be made better, but would require substantial changes.
714      duplicateToTop(SrcReg, DestReg, I);
715    }
716    break;
717  }
718  }
719
720  I = MBB->erase(I);  // Remove the pseudo instruction
721  --I;
722}
723