X86FloatingPoint.cpp revision 2c79de8018bb8c77a245d4ccb740affbf1f52319
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Visibility.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/STLExtras.h"
45#include <algorithm>
46#include <iostream>
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    virtual bool runOnMachineFunction(MachineFunction &MF);
56
57    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<LiveVariables>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63  private:
64    LiveVariables     *LV;    // Live variable info for current function...
65    MachineBasicBlock *MBB;   // Current basic block
66    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67    unsigned RegMap[8];       // Track which stack slot contains each register
68    unsigned StackTop;        // The current top of the FP stack.
69
70    void dumpStack() const {
71      std::cerr << "Stack contents:";
72      for (unsigned i = 0; i != StackTop; ++i) {
73        std::cerr << " FP" << Stack[i];
74        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75      }
76      std::cerr << "\n";
77    }
78  private:
79    // getSlot - Return the stack slot number a particular register number is
80    // in...
81    unsigned getSlot(unsigned RegNo) const {
82      assert(RegNo < 8 && "Regno out of range!");
83      return RegMap[RegNo];
84    }
85
86    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87    unsigned getStackEntry(unsigned STi) const {
88      assert(STi < StackTop && "Access past stack top!");
89      return Stack[StackTop-1-STi];
90    }
91
92    // getSTReg - Return the X86::ST(i) register which contains the specified
93    // FP<RegNo> register
94    unsigned getSTReg(unsigned RegNo) const {
95      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96    }
97
98    // pushReg - Push the specified FP<n> register onto the stack
99    void pushReg(unsigned Reg) {
100      assert(Reg < 8 && "Register number out of range!");
101      assert(StackTop < 8 && "Stack overflow!");
102      Stack[StackTop] = Reg;
103      RegMap[Reg] = StackTop++;
104    }
105
106    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108      if (!isAtTop(RegNo)) {
109        unsigned Slot = getSlot(RegNo);
110        unsigned STReg = getSTReg(RegNo);
111        unsigned RegOnTop = getStackEntry(0);
112
113        // Swap the slots the regs are in
114        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116        // Swap stack slot contents
117        assert(RegMap[RegOnTop] < StackTop);
118        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120        // Emit an fxch to update the runtime processors version of the state
121        BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
122        NumFXCH++;
123      }
124    }
125
126    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
127      unsigned STReg = getSTReg(RegNo);
128      pushReg(AsReg);   // New register on top of stack
129
130      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
131    }
132
133    // popStackAfter - Pop the current value off of the top of the FP stack
134    // after the specified instruction.
135    void popStackAfter(MachineBasicBlock::iterator &I);
136
137    // freeStackSlotAfter - Free the specified register from the register stack,
138    // so that it is no longer in a register.  If the register is currently at
139    // the top of the stack, we just pop the current instruction, otherwise we
140    // store the current top-of-stack into the specified slot, then pop the top
141    // of stack.
142    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
143
144    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
145
146    void handleZeroArgFP(MachineBasicBlock::iterator &I);
147    void handleOneArgFP(MachineBasicBlock::iterator &I);
148    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
149    void handleTwoArgFP(MachineBasicBlock::iterator &I);
150    void handleCompareFP(MachineBasicBlock::iterator &I);
151    void handleCondMovFP(MachineBasicBlock::iterator &I);
152    void handleSpecialFP(MachineBasicBlock::iterator &I);
153  };
154}
155
156FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
157
158/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
159/// register references into FP stack references.
160///
161bool FPS::runOnMachineFunction(MachineFunction &MF) {
162  // We only need to run this pass if there are any FP registers used in this
163  // function.  If it is all integer, there is nothing for us to do!
164  const bool *PhysRegsUsed = MF.getUsedPhysregs();
165  bool FPIsUsed = false;
166
167  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
168  for (unsigned i = 0; i <= 6; ++i)
169    if (PhysRegsUsed[X86::FP0+i]) {
170      FPIsUsed = true;
171      break;
172    }
173
174  // Early exit.
175  if (!FPIsUsed) return false;
176
177  LV = &getAnalysis<LiveVariables>();
178  StackTop = 0;
179
180  // Process the function in depth first order so that we process at least one
181  // of the predecessors for every reachable block in the function.
182  std::set<MachineBasicBlock*> Processed;
183  MachineBasicBlock *Entry = MF.begin();
184
185  bool Changed = false;
186  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
187         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
188       I != E; ++I)
189    Changed |= processBasicBlock(MF, **I);
190
191  return Changed;
192}
193
194/// processBasicBlock - Loop over all of the instructions in the basic block,
195/// transforming FP instructions into their stack form.
196///
197bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
198  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
199  bool Changed = false;
200  MBB = &BB;
201
202  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
203    MachineInstr *MI = I;
204    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
205    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
206      continue;  // Efficiently ignore non-fp insts!
207
208    MachineInstr *PrevMI = 0;
209    if (I != BB.begin())
210        PrevMI = prior(I);
211
212    ++NumFP;  // Keep track of # of pseudo instrs
213    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));
214
215    // Get dead variables list now because the MI pointer may be deleted as part
216    // of processing!
217    LiveVariables::killed_iterator IB, IE;
218    tie(IB, IE) = LV->dead_range(MI);
219
220    DEBUG(
221      const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
222      LiveVariables::killed_iterator I = LV->killed_begin(MI);
223      LiveVariables::killed_iterator E = LV->killed_end(MI);
224      if (I != E) {
225        std::cerr << "Killed Operands:";
226        for (; I != E; ++I)
227          std::cerr << " %" << MRI->getName(*I);
228        std::cerr << "\n";
229      }
230    );
231
232    switch (Flags & X86II::FPTypeMask) {
233    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
234    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
235    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
236    case X86II::TwoArgFP:   handleTwoArgFP(I); break;
237    case X86II::CompareFP:  handleCompareFP(I); break;
238    case X86II::CondMovFP:  handleCondMovFP(I); break;
239    case X86II::SpecialFP:  handleSpecialFP(I); break;
240    default: assert(0 && "Unknown FP Type!");
241    }
242
243    // Check to see if any of the values defined by this instruction are dead
244    // after definition.  If so, pop them.
245    for (; IB != IE; ++IB) {
246      unsigned Reg = *IB;
247      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
248        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
249        freeStackSlotAfter(I, Reg-X86::FP0);
250      }
251    }
252
253    // Print out all of the instructions expanded to if -debug
254    DEBUG(
255      MachineBasicBlock::iterator PrevI(PrevMI);
256      if (I == PrevI) {
257        std::cerr << "Just deleted pseudo instruction\n";
258      } else {
259        MachineBasicBlock::iterator Start = I;
260        // Rewind to first instruction newly inserted.
261        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
262        std::cerr << "Inserted instructions:\n\t";
263        Start->print(std::cerr, &MF.getTarget());
264        while (++Start != next(I));
265      }
266      dumpStack();
267    );
268
269    Changed = true;
270  }
271
272  assert(StackTop == 0 && "Stack not empty at end of basic block?");
273  return Changed;
274}
275
276//===----------------------------------------------------------------------===//
277// Efficient Lookup Table Support
278//===----------------------------------------------------------------------===//
279
280namespace {
281  struct TableEntry {
282    unsigned from;
283    unsigned to;
284    bool operator<(const TableEntry &TE) const { return from < TE.from; }
285    friend bool operator<(const TableEntry &TE, unsigned V) {
286      return TE.from < V;
287    }
288    friend bool operator<(unsigned V, const TableEntry &TE) {
289      return V < TE.from;
290    }
291  };
292}
293
294static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
295  for (unsigned i = 0; i != NumEntries-1; ++i)
296    if (!(Table[i] < Table[i+1])) return false;
297  return true;
298}
299
300static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
301  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
302  if (I != Table+N && I->from == Opcode)
303    return I->to;
304  return -1;
305}
306
307#define ARRAY_SIZE(TABLE)  \
308   (sizeof(TABLE)/sizeof(TABLE[0]))
309
310#ifdef NDEBUG
311#define ASSERT_SORTED(TABLE)
312#else
313#define ASSERT_SORTED(TABLE)                                              \
314  { static bool TABLE##Checked = false;                                   \
315    if (!TABLE##Checked)                                                  \
316       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
317              "All lookup tables must be sorted for efficient access!");  \
318  }
319#endif
320
321//===----------------------------------------------------------------------===//
322// Register File -> Register Stack Mapping Methods
323//===----------------------------------------------------------------------===//
324
325// OpcodeTable - Sorted map of register instructions to their stack version.
326// The first element is an register file pseudo instruction, the second is the
327// concrete X86 instruction which uses the register stack.
328//
329static const TableEntry OpcodeTable[] = {
330  { X86::FpABS     , X86::FABS     },
331  { X86::FpADD32m  , X86::FADD32m  },
332  { X86::FpADD64m  , X86::FADD64m  },
333  { X86::FpCHS     , X86::FCHS     },
334  { X86::FpCMOVB   , X86::FCMOVB   },
335  { X86::FpCMOVBE  , X86::FCMOVBE  },
336  { X86::FpCMOVE   , X86::FCMOVE   },
337  { X86::FpCMOVNB  , X86::FCMOVNB  },
338  { X86::FpCMOVNBE , X86::FCMOVNBE },
339  { X86::FpCMOVNE  , X86::FCMOVNE  },
340  { X86::FpCMOVNP  , X86::FCMOVNP  },
341  { X86::FpCMOVP   , X86::FCMOVP   },
342  { X86::FpCOS     , X86::FCOS     },
343  { X86::FpDIV32m  , X86::FDIV32m  },
344  { X86::FpDIV64m  , X86::FDIV64m  },
345  { X86::FpDIVR32m , X86::FDIVR32m },
346  { X86::FpDIVR64m , X86::FDIVR64m },
347  { X86::FpIADD16m , X86::FIADD16m },
348  { X86::FpIADD32m , X86::FIADD32m },
349  { X86::FpIDIV16m , X86::FIDIV16m },
350  { X86::FpIDIV32m , X86::FIDIV32m },
351  { X86::FpIDIVR16m, X86::FIDIVR16m},
352  { X86::FpIDIVR32m, X86::FIDIVR32m},
353  { X86::FpILD16m  , X86::FILD16m  },
354  { X86::FpILD32m  , X86::FILD32m  },
355  { X86::FpILD64m  , X86::FILD64m  },
356  { X86::FpIMUL16m , X86::FIMUL16m },
357  { X86::FpIMUL32m , X86::FIMUL32m },
358  { X86::FpIST16m  , X86::FIST16m  },
359  { X86::FpIST32m  , X86::FIST32m  },
360  { X86::FpIST64m  , X86::FISTP64m },
361  { X86::FpISTT16m , X86::FISTTP16m},
362  { X86::FpISTT32m , X86::FISTTP32m},
363  { X86::FpISTT64m , X86::FISTTP64m},
364  { X86::FpISUB16m , X86::FISUB16m },
365  { X86::FpISUB32m , X86::FISUB32m },
366  { X86::FpISUBR16m, X86::FISUBR16m},
367  { X86::FpISUBR32m, X86::FISUBR32m},
368  { X86::FpLD0     , X86::FLD0     },
369  { X86::FpLD1     , X86::FLD1     },
370  { X86::FpLD32m   , X86::FLD32m   },
371  { X86::FpLD64m   , X86::FLD64m   },
372  { X86::FpMUL32m  , X86::FMUL32m  },
373  { X86::FpMUL64m  , X86::FMUL64m  },
374  { X86::FpSIN     , X86::FSIN     },
375  { X86::FpSQRT    , X86::FSQRT    },
376  { X86::FpST32m   , X86::FST32m   },
377  { X86::FpST64m   , X86::FST64m   },
378  { X86::FpSUB32m  , X86::FSUB32m  },
379  { X86::FpSUB64m  , X86::FSUB64m  },
380  { X86::FpSUBR32m , X86::FSUBR32m },
381  { X86::FpSUBR64m , X86::FSUBR64m },
382  { X86::FpTST     , X86::FTST     },
383  { X86::FpUCOMIr  , X86::FUCOMIr  },
384  { X86::FpUCOMr   , X86::FUCOMr   },
385};
386
387static unsigned getConcreteOpcode(unsigned Opcode) {
388  ASSERT_SORTED(OpcodeTable);
389  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
390  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
391  return Opc;
392}
393
394//===----------------------------------------------------------------------===//
395// Helper Methods
396//===----------------------------------------------------------------------===//
397
398// PopTable - Sorted map of instructions to their popping version.  The first
399// element is an instruction, the second is the version which pops.
400//
401static const TableEntry PopTable[] = {
402  { X86::FADDrST0 , X86::FADDPrST0  },
403
404  { X86::FDIVRrST0, X86::FDIVRPrST0 },
405  { X86::FDIVrST0 , X86::FDIVPrST0  },
406
407  { X86::FIST16m  , X86::FISTP16m   },
408  { X86::FIST32m  , X86::FISTP32m   },
409
410  { X86::FMULrST0 , X86::FMULPrST0  },
411
412  { X86::FST32m   , X86::FSTP32m    },
413  { X86::FST64m   , X86::FSTP64m    },
414  { X86::FSTrr    , X86::FSTPrr     },
415
416  { X86::FSUBRrST0, X86::FSUBRPrST0 },
417  { X86::FSUBrST0 , X86::FSUBPrST0  },
418
419  { X86::FUCOMIr  , X86::FUCOMIPr   },
420
421  { X86::FUCOMPr  , X86::FUCOMPPr   },
422  { X86::FUCOMr   , X86::FUCOMPr    },
423};
424
425/// popStackAfter - Pop the current value off of the top of the FP stack after
426/// the specified instruction.  This attempts to be sneaky and combine the pop
427/// into the instruction itself if possible.  The iterator is left pointing to
428/// the last instruction, be it a new pop instruction inserted, or the old
429/// instruction if it was modified in place.
430///
431void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
432  ASSERT_SORTED(PopTable);
433  assert(StackTop > 0 && "Cannot pop empty stack!");
434  RegMap[Stack[--StackTop]] = ~0;     // Update state
435
436  // Check to see if there is a popping version of this instruction...
437  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
438  if (Opcode != -1) {
439    I->setOpcode(Opcode);
440    if (Opcode == X86::FUCOMPPr)
441      I->RemoveOperand(0);
442
443  } else {    // Insert an explicit pop
444    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
445  }
446}
447
448/// freeStackSlotAfter - Free the specified register from the register stack, so
449/// that it is no longer in a register.  If the register is currently at the top
450/// of the stack, we just pop the current instruction, otherwise we store the
451/// current top-of-stack into the specified slot, then pop the top of stack.
452void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
453  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
454    popStackAfter(I);
455    return;
456  }
457
458  // Otherwise, store the top of stack into the dead slot, killing the operand
459  // without having to add in an explicit xchg then pop.
460  //
461  unsigned STReg    = getSTReg(FPRegNo);
462  unsigned OldSlot  = getSlot(FPRegNo);
463  unsigned TopReg   = Stack[StackTop-1];
464  Stack[OldSlot]    = TopReg;
465  RegMap[TopReg]    = OldSlot;
466  RegMap[FPRegNo]   = ~0;
467  Stack[--StackTop] = ~0;
468  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
469}
470
471
472static unsigned getFPReg(const MachineOperand &MO) {
473  assert(MO.isRegister() && "Expected an FP register!");
474  unsigned Reg = MO.getReg();
475  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
476  return Reg - X86::FP0;
477}
478
479
480//===----------------------------------------------------------------------===//
481// Instruction transformation implementation
482//===----------------------------------------------------------------------===//
483
484/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
485///
486void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
487  MachineInstr *MI = I;
488  unsigned DestReg = getFPReg(MI->getOperand(0));
489
490  // Change from the pseudo instruction to the concrete instruction.
491  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
492  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
493
494  // Result gets pushed on the stack.
495  pushReg(DestReg);
496}
497
498/// handleOneArgFP - fst <mem>, ST(0)
499///
500void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
501  MachineInstr *MI = I;
502  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
503         "Can only handle fst* & ftst instructions!");
504
505  // Is this the last use of the source register?
506  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
507  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
508
509  // FISTP64m is strange because there isn't a non-popping versions.
510  // If we have one _and_ we don't want to pop the operand, duplicate the value
511  // on the stack instead of moving it.  This ensure that popping the value is
512  // always ok.
513  // Ditto FISTTP16m, FISTTP32m, FISTTP64m.
514  //
515  if (!KillsSrc &&
516      (MI->getOpcode() == X86::FpIST64m ||
517       MI->getOpcode() == X86::FpISTT16m ||
518       MI->getOpcode() == X86::FpISTT32m ||
519       MI->getOpcode() == X86::FpISTT64m)) {
520    duplicateToTop(Reg, 7 /*temp register*/, I);
521  } else {
522    moveToTop(Reg, I);            // Move to the top of the stack...
523  }
524
525  // Convert from the pseudo instruction to the concrete instruction.
526  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
527  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
528
529  if (MI->getOpcode() == X86::FISTP64m ||
530      MI->getOpcode() == X86::FISTTP16m ||
531      MI->getOpcode() == X86::FISTTP32m ||
532      MI->getOpcode() == X86::FISTTP64m) {
533    assert(StackTop > 0 && "Stack empty??");
534    --StackTop;
535  } else if (KillsSrc) { // Last use of operand?
536    popStackAfter(I);
537  }
538}
539
540
541/// handleOneArgFPRW: Handle instructions that read from the top of stack and
542/// replace the value with a newly computed value.  These instructions may have
543/// non-fp operands after their FP operands.
544///
545///  Examples:
546///     R1 = fchs R2
547///     R1 = fadd R2, [mem]
548///
549void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
550  MachineInstr *MI = I;
551  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
552
553  // Is this the last use of the source register?
554  unsigned Reg = getFPReg(MI->getOperand(1));
555  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
556
557  if (KillsSrc) {
558    // If this is the last use of the source register, just make sure it's on
559    // the top of the stack.
560    moveToTop(Reg, I);
561    assert(StackTop > 0 && "Stack cannot be empty!");
562    --StackTop;
563    pushReg(getFPReg(MI->getOperand(0)));
564  } else {
565    // If this is not the last use of the source register, _copy_ it to the top
566    // of the stack.
567    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
568  }
569
570  // Change from the pseudo instruction to the concrete instruction.
571  MI->RemoveOperand(1);   // Drop the source operand.
572  MI->RemoveOperand(0);   // Drop the destination operand.
573  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
574}
575
576
577//===----------------------------------------------------------------------===//
578// Define tables of various ways to map pseudo instructions
579//
580
581// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
582static const TableEntry ForwardST0Table[] = {
583  { X86::FpADD  , X86::FADDST0r },
584  { X86::FpDIV  , X86::FDIVST0r },
585  { X86::FpMUL  , X86::FMULST0r },
586  { X86::FpSUB  , X86::FSUBST0r },
587};
588
589// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
590static const TableEntry ReverseST0Table[] = {
591  { X86::FpADD  , X86::FADDST0r  },   // commutative
592  { X86::FpDIV  , X86::FDIVRST0r },
593  { X86::FpMUL  , X86::FMULST0r  },   // commutative
594  { X86::FpSUB  , X86::FSUBRST0r },
595};
596
597// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
598static const TableEntry ForwardSTiTable[] = {
599  { X86::FpADD  , X86::FADDrST0  },   // commutative
600  { X86::FpDIV  , X86::FDIVRrST0 },
601  { X86::FpMUL  , X86::FMULrST0  },   // commutative
602  { X86::FpSUB  , X86::FSUBRrST0 },
603};
604
605// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
606static const TableEntry ReverseSTiTable[] = {
607  { X86::FpADD  , X86::FADDrST0 },
608  { X86::FpDIV  , X86::FDIVrST0 },
609  { X86::FpMUL  , X86::FMULrST0 },
610  { X86::FpSUB  , X86::FSUBrST0 },
611};
612
613
614/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
615/// instructions which need to be simplified and possibly transformed.
616///
617/// Result: ST(0) = fsub  ST(0), ST(i)
618///         ST(i) = fsub  ST(0), ST(i)
619///         ST(0) = fsubr ST(0), ST(i)
620///         ST(i) = fsubr ST(0), ST(i)
621///
622void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
623  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
624  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
625  MachineInstr *MI = I;
626
627  unsigned NumOperands = MI->getNumOperands();
628  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
629  unsigned Dest = getFPReg(MI->getOperand(0));
630  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
631  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
632  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
633  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
634
635  unsigned TOS = getStackEntry(0);
636
637  // One of our operands must be on the top of the stack.  If neither is yet, we
638  // need to move one.
639  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
640    // We can choose to move either operand to the top of the stack.  If one of
641    // the operands is killed by this instruction, we want that one so that we
642    // can update right on top of the old version.
643    if (KillsOp0) {
644      moveToTop(Op0, I);         // Move dead operand to TOS.
645      TOS = Op0;
646    } else if (KillsOp1) {
647      moveToTop(Op1, I);
648      TOS = Op1;
649    } else {
650      // All of the operands are live after this instruction executes, so we
651      // cannot update on top of any operand.  Because of this, we must
652      // duplicate one of the stack elements to the top.  It doesn't matter
653      // which one we pick.
654      //
655      duplicateToTop(Op0, Dest, I);
656      Op0 = TOS = Dest;
657      KillsOp0 = true;
658    }
659  } else if (!KillsOp0 && !KillsOp1) {
660    // If we DO have one of our operands at the top of the stack, but we don't
661    // have a dead operand, we must duplicate one of the operands to a new slot
662    // on the stack.
663    duplicateToTop(Op0, Dest, I);
664    Op0 = TOS = Dest;
665    KillsOp0 = true;
666  }
667
668  // Now we know that one of our operands is on the top of the stack, and at
669  // least one of our operands is killed by this instruction.
670  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
671         "Stack conditions not set up right!");
672
673  // We decide which form to use based on what is on the top of the stack, and
674  // which operand is killed by this instruction.
675  const TableEntry *InstTable;
676  bool isForward = TOS == Op0;
677  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
678  if (updateST0) {
679    if (isForward)
680      InstTable = ForwardST0Table;
681    else
682      InstTable = ReverseST0Table;
683  } else {
684    if (isForward)
685      InstTable = ForwardSTiTable;
686    else
687      InstTable = ReverseSTiTable;
688  }
689
690  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
691  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
692
693  // NotTOS - The register which is not on the top of stack...
694  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
695
696  // Replace the old instruction with a new instruction
697  MBB->remove(I++);
698  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
699
700  // If both operands are killed, pop one off of the stack in addition to
701  // overwriting the other one.
702  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
703    assert(!updateST0 && "Should have updated other operand!");
704    popStackAfter(I);   // Pop the top of stack
705  }
706
707  // Update stack information so that we know the destination register is now on
708  // the stack.
709  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
710  assert(UpdatedSlot < StackTop && Dest < 7);
711  Stack[UpdatedSlot]   = Dest;
712  RegMap[Dest]         = UpdatedSlot;
713  delete MI;   // Remove the old instruction
714}
715
716/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
717/// register arguments and no explicit destinations.
718///
719void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
720  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
721  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
722  MachineInstr *MI = I;
723
724  unsigned NumOperands = MI->getNumOperands();
725  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
726  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
727  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
728  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
729  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
730
731  // Make sure the first operand is on the top of stack, the other one can be
732  // anywhere.
733  moveToTop(Op0, I);
734
735  // Change from the pseudo instruction to the concrete instruction.
736  MI->getOperand(0).setReg(getSTReg(Op1));
737  MI->RemoveOperand(1);
738  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
739
740  // If any of the operands are killed by this instruction, free them.
741  if (KillsOp0) freeStackSlotAfter(I, Op0);
742  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
743}
744
745/// handleCondMovFP - Handle two address conditional move instructions.  These
746/// instructions move a st(i) register to st(0) iff a condition is true.  These
747/// instructions require that the first operand is at the top of the stack, but
748/// otherwise don't modify the stack at all.
749void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
750  MachineInstr *MI = I;
751
752  unsigned Op0 = getFPReg(MI->getOperand(0));
753  unsigned Op1 = getFPReg(MI->getOperand(1));
754
755  // The first operand *must* be on the top of the stack.
756  moveToTop(Op0, I);
757
758  // Change the second operand to the stack register that the operand is in.
759  // Change from the pseudo instruction to the concrete instruction.
760  MI->RemoveOperand(0);
761  MI->getOperand(0).setReg(getSTReg(Op1));
762  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
763
764
765  // If we kill the second operand, make sure to pop it from the stack.
766  if (Op0 != Op1 && LV->KillsRegister(MI, X86::FP0+Op1)) {
767    // Get this value off of the register stack.
768    freeStackSlotAfter(I, Op1);
769  }
770}
771
772
773/// handleSpecialFP - Handle special instructions which behave unlike other
774/// floating point instructions.  This is primarily intended for use by pseudo
775/// instructions.
776///
777void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
778  MachineInstr *MI = I;
779  switch (MI->getOpcode()) {
780  default: assert(0 && "Unknown SpecialFP instruction!");
781  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
782    assert(StackTop == 0 && "Stack should be empty after a call!");
783    pushReg(getFPReg(MI->getOperand(0)));
784    break;
785  case X86::FpSETRESULT:
786    assert(StackTop == 1 && "Stack should have one element on it to return!");
787    --StackTop;   // "Forget" we have something on the top of stack!
788    break;
789  case X86::FpMOV: {
790    unsigned SrcReg = getFPReg(MI->getOperand(1));
791    unsigned DestReg = getFPReg(MI->getOperand(0));
792
793    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
794      // If the input operand is killed, we can just change the owner of the
795      // incoming stack slot into the result.
796      unsigned Slot = getSlot(SrcReg);
797      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
798      Stack[Slot] = DestReg;
799      RegMap[DestReg] = Slot;
800
801    } else {
802      // For FMOV we just duplicate the specified value to a new stack slot.
803      // This could be made better, but would require substantial changes.
804      duplicateToTop(SrcReg, DestReg, I);
805    }
806    break;
807  }
808  }
809
810  I = MBB->erase(I);  // Remove the pseudo instruction
811  --I;
812}
813