X86FloatingPoint.cpp revision 3cdd9f65ed2630e999d5034ad02d07cbb73abc88
1b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
3b26ce3a7367e4ed2ee7ddddcdc3f3d3377a455c2claireho//                     The LLVM Compiler Infrastructure
4b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
5b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// This file was developed by the LLVM research group and is distributed under
6b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// the University of Illinois Open Source License. See LICENSE.TXT for details.
7b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
8b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//===----------------------------------------------------------------------===//
9b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
10b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// This file defines the pass which converts floating point instructions from
11b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// virtual registers into register stack instructions.  This pass uses live
12b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// variable information to indicate where the FPn registers are used and their
13b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// lifetimes.
14b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
15b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// This pass is hampered by the lack of decent CFG manipulation routines for
16b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// machine code.  In particular, this wants to be able to split critical edges
17b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// as necessary, traverse the machine basic block CFG in depth-first order, and
18b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// allow there to be multiple machine basic blocks for each LLVM basicblock
19b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// (needed for critical edge splitting).
20b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
21b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// In particular, this pass currently barfs on critical edges.  Because of this,
22b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// it requires the instruction selector to insert FP_REG_KILL instructions on
23b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// the exits of any basic block that has critical edges going from it, or which
24b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// branch to a critical basic block.
25b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
26b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// FIXME: this is not implemented yet.  The stackifier pass only works on local
27b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru// basic blocks.
28b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//
29b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru//===----------------------------------------------------------------------===//
30b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
31b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#define DEBUG_TYPE "fp"
32b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "X86.h"
33b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "X86InstrInfo.h"
34b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/CodeGen/MachineFunctionPass.h"
35b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/CodeGen/MachineInstrBuilder.h"
36b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/CodeGen/LiveVariables.h"
37b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/CodeGen/Passes.h"
38b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/Target/TargetInstrInfo.h"
39b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/Target/TargetMachine.h"
40b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/Support/Debug.h"
41b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/Support/Compiler.h"
4250294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho#include "llvm/ADT/DepthFirstIterator.h"
43b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/ADT/Statistic.h"
44b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include "llvm/ADT/STLExtras.h"
45b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include <algorithm>
46b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include <iostream>
47b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru#include <set>
48b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queruusing namespace llvm;
49b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
5050294ead5e5d23f5bbfed76e00e6b510bd41eee1clairehonamespace {
51b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
54b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    virtual bool runOnMachineFunction(MachineFunction &MF);
56b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
57b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
5850294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho
59b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      AU.addRequired<LiveVariables>();
61b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      MachineFunctionPass::getAnalysisUsage(AU);
62b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
63b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  private:
64b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    LiveVariables     *LV;    // Live variable info for current function...
6550294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    MachineBasicBlock *MBB;   // Current basic block
66b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned RegMap[8];       // Track which stack slot contains each register
68b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned StackTop;        // The current top of the FP stack.
69b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
70b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void dumpStack() const {
71b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      std::cerr << "Stack contents:";
72b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      for (unsigned i = 0; i != StackTop; ++i) {
7350294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho        std::cerr << " FP" << Stack[i];
74b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      }
76b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      std::cerr << "\n";
77b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
78b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  private:
79b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // getSlot - Return the stack slot number a particular register number is
80b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // in...
8150294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    unsigned getSlot(unsigned RegNo) const {
82b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      assert(RegNo < 8 && "Regno out of range!");
83b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      return RegMap[RegNo];
84b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
85b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
86b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned getStackEntry(unsigned STi) const {
88b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      assert(STi < StackTop && "Access past stack top!");
8950294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho      return Stack[StackTop-1-STi];
90b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
91b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
92b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // getSTReg - Return the X86::ST(i) register which contains the specified
93b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // FP<RegNo> register
94b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned getSTReg(unsigned RegNo) const {
95b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
9750294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho
98b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // pushReg - Push the specified FP<n> register onto the stack
99b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void pushReg(unsigned Reg) {
100b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      assert(Reg < 8 && "Register number out of range!");
101b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      assert(StackTop < 8 && "Stack overflow!");
102b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      Stack[StackTop] = Reg;
103b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      RegMap[Reg] = StackTop++;
104b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
10550294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho
106b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      if (!isAtTop(RegNo)) {
109b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        unsigned STReg = getSTReg(RegNo);
110b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        unsigned RegOnTop = getStackEntry(0);
111b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
112b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        // Swap the slots the regs are in
113b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
11450294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho
115b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        // Swap stack slot contents
116b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        assert(RegMap[RegOnTop] < StackTop);
117b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
118b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
119b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        // Emit an fxch to update the runtime processors version of the state
120b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
121b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        NumFXCH++;
122b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      }
123b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
124b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
12550294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
126b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      unsigned STReg = getSTReg(RegNo);
127b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      pushReg(AsReg);   // New register on top of stack
128b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
129b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
130b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
131b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
132b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // popStackAfter - Pop the current value off of the top of the FP stack
133b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // after the specified instruction.
13450294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    void popStackAfter(MachineBasicBlock::iterator &I);
135b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
136b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // freeStackSlotAfter - Free the specified register from the register stack,
137b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // so that it is no longer in a register.  If the register is currently at
138b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // the top of the stack, we just pop the current instruction, otherwise we
139b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // store the current top-of-stack into the specified slot, then pop the top
140b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // of stack.
141b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
142b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
143b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
144b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
145b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleZeroArgFP(MachineBasicBlock::iterator &I);
146b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleOneArgFP(MachineBasicBlock::iterator &I);
14750294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
148b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleTwoArgFP(MachineBasicBlock::iterator &I);
149b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleCompareFP(MachineBasicBlock::iterator &I);
150b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleCondMovFP(MachineBasicBlock::iterator &I);
151b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    void handleSpecialFP(MachineBasicBlock::iterator &I);
152b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  };
153b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru}
154b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
155b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste QueruFunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
156b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
157b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
158b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru/// register references into FP stack references.
159b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru///
160b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Querubool FPS::runOnMachineFunction(MachineFunction &MF) {
161b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  // We only need to run this pass if there are any FP registers used in this
162b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  // function.  If it is all integer, there is nothing for us to do!
16350294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho  const bool *PhysRegsUsed = MF.getUsedPhysregs();
164b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  bool FPIsUsed = false;
165b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
166b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
167b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  for (unsigned i = 0; i <= 6; ++i)
168b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    if (PhysRegsUsed[X86::FP0+i]) {
169b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      FPIsUsed = true;
170b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      break;
171b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
172b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
173b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  // Early exit.
17450294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho  if (!FPIsUsed) return false;
175b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
176b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  LV = &getAnalysis<LiveVariables>();
177b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  StackTop = 0;
178b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
179b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  // Process the function in depth first order so that we process at least one
180b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  // of the predecessors for every reachable block in the function.
18150294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho  std::set<MachineBasicBlock*> Processed;
182b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  MachineBasicBlock *Entry = MF.begin();
183b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
184b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  bool Changed = false;
185b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
186b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
187b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru       I != E; ++I)
18850294ead5e5d23f5bbfed76e00e6b510bd41eee1claireho    Changed |= processBasicBlock(MF, **I);
189b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
190b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  return Changed;
191b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru}
192b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
193b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru/// processBasicBlock - Loop over all of the instructions in the basic block,
194b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru/// transforming FP instructions into their stack form.
195b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru///
196b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Querubool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
197b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
198b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  bool Changed = false;
199b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  MBB = &BB;
200b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
201b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
202b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    MachineInstr *MI = I;
203b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
204b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
205b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      continue;  // Efficiently ignore non-fp insts!
206b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
207b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    MachineInstr *PrevMI = 0;
208b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    if (I != BB.begin())
209b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        PrevMI = prior(I);
210b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
211b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    ++NumFP;  // Keep track of # of pseudo instrs
212b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));
213b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
214b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // Get dead variables list now because the MI pointer may be deleted as part
215b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // of processing!
216b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    LiveVariables::killed_iterator IB, IE;
217b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    tie(IB, IE) = LV->dead_range(MI);
218b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
219b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    DEBUG(
220b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
221b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      LiveVariables::killed_iterator I = LV->killed_begin(MI);
222b26ce3a7367e4ed2ee7ddddcdc3f3d3377a455c2claireho      LiveVariables::killed_iterator E = LV->killed_end(MI);
223b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      if (I != E) {
224b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        std::cerr << "Killed Operands:";
225b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        for (; I != E; ++I)
226b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru          std::cerr << " %" << MRI->getName(*I);
227b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        std::cerr << "\n";
228b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      }
229b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    );
230b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
231b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    switch (Flags & X86II::FPTypeMask) {
232b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
233b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
234b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
235b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
236b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::CompareFP:  handleCompareFP(I); break;
237b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::CondMovFP:  handleCondMovFP(I); break;
238b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    case X86II::SpecialFP:  handleSpecialFP(I); break;
239b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    default: assert(0 && "Unknown FP Type!");
240b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
241b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
242b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // Check to see if any of the values defined by this instruction are dead
243b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // after definition.  If so, pop them.
244b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    for (; IB != IE; ++IB) {
245b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      unsigned Reg = *IB;
246b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
247b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
248b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        freeStackSlotAfter(I, Reg-X86::FP0);
249b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      }
250b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    }
251b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru
252b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    // Print out all of the instructions expanded to if -debug
253b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru    DEBUG(
254b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      MachineBasicBlock::iterator PrevI(PrevMI);
255b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      if (I == PrevI) {
256b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        std::cerr << "Just deleted pseudo instruction\n";
257b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru      } else {
258b0ac937921a2c196d8b9da665135bf6ba01a1ccfJean-Baptiste Queru        MachineBasicBlock::iterator Start = I;
259        // Rewind to first instruction newly inserted.
260        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
261        std::cerr << "Inserted instructions:\n\t";
262        Start->print(std::cerr, &MF.getTarget());
263        while (++Start != next(I));
264      }
265      dumpStack();
266    );
267
268    Changed = true;
269  }
270
271  assert(StackTop == 0 && "Stack not empty at end of basic block?");
272  return Changed;
273}
274
275//===----------------------------------------------------------------------===//
276// Efficient Lookup Table Support
277//===----------------------------------------------------------------------===//
278
279namespace {
280  struct TableEntry {
281    unsigned from;
282    unsigned to;
283    bool operator<(const TableEntry &TE) const { return from < TE.from; }
284    friend bool operator<(const TableEntry &TE, unsigned V) {
285      return TE.from < V;
286    }
287    friend bool operator<(unsigned V, const TableEntry &TE) {
288      return V < TE.from;
289    }
290  };
291}
292
293static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
294  for (unsigned i = 0; i != NumEntries-1; ++i)
295    if (!(Table[i] < Table[i+1])) return false;
296  return true;
297}
298
299static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
300  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
301  if (I != Table+N && I->from == Opcode)
302    return I->to;
303  return -1;
304}
305
306#define ARRAY_SIZE(TABLE)  \
307   (sizeof(TABLE)/sizeof(TABLE[0]))
308
309#ifdef NDEBUG
310#define ASSERT_SORTED(TABLE)
311#else
312#define ASSERT_SORTED(TABLE)                                              \
313  { static bool TABLE##Checked = false;                                   \
314    if (!TABLE##Checked) {                                                \
315       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
316              "All lookup tables must be sorted for efficient access!");  \
317       TABLE##Checked = true;                                             \
318    }                                                                     \
319  }
320#endif
321
322//===----------------------------------------------------------------------===//
323// Register File -> Register Stack Mapping Methods
324//===----------------------------------------------------------------------===//
325
326// OpcodeTable - Sorted map of register instructions to their stack version.
327// The first element is an register file pseudo instruction, the second is the
328// concrete X86 instruction which uses the register stack.
329//
330static const TableEntry OpcodeTable[] = {
331  { X86::FpABS     , X86::FABS     },
332  { X86::FpADD32m  , X86::FADD32m  },
333  { X86::FpADD64m  , X86::FADD64m  },
334  { X86::FpCHS     , X86::FCHS     },
335  { X86::FpCMOVB   , X86::FCMOVB   },
336  { X86::FpCMOVBE  , X86::FCMOVBE  },
337  { X86::FpCMOVE   , X86::FCMOVE   },
338  { X86::FpCMOVNB  , X86::FCMOVNB  },
339  { X86::FpCMOVNBE , X86::FCMOVNBE },
340  { X86::FpCMOVNE  , X86::FCMOVNE  },
341  { X86::FpCMOVNP  , X86::FCMOVNP  },
342  { X86::FpCMOVP   , X86::FCMOVP   },
343  { X86::FpCOS     , X86::FCOS     },
344  { X86::FpDIV32m  , X86::FDIV32m  },
345  { X86::FpDIV64m  , X86::FDIV64m  },
346  { X86::FpDIVR32m , X86::FDIVR32m },
347  { X86::FpDIVR64m , X86::FDIVR64m },
348  { X86::FpIADD16m , X86::FIADD16m },
349  { X86::FpIADD32m , X86::FIADD32m },
350  { X86::FpIDIV16m , X86::FIDIV16m },
351  { X86::FpIDIV32m , X86::FIDIV32m },
352  { X86::FpIDIVR16m, X86::FIDIVR16m},
353  { X86::FpIDIVR32m, X86::FIDIVR32m},
354  { X86::FpILD16m  , X86::FILD16m  },
355  { X86::FpILD32m  , X86::FILD32m  },
356  { X86::FpILD64m  , X86::FILD64m  },
357  { X86::FpIMUL16m , X86::FIMUL16m },
358  { X86::FpIMUL32m , X86::FIMUL32m },
359  { X86::FpIST16m  , X86::FIST16m  },
360  { X86::FpIST32m  , X86::FIST32m  },
361  { X86::FpIST64m  , X86::FISTP64m },
362  { X86::FpISTT16m , X86::FISTTP16m},
363  { X86::FpISTT32m , X86::FISTTP32m},
364  { X86::FpISTT64m , X86::FISTTP64m},
365  { X86::FpISUB16m , X86::FISUB16m },
366  { X86::FpISUB32m , X86::FISUB32m },
367  { X86::FpISUBR16m, X86::FISUBR16m},
368  { X86::FpISUBR32m, X86::FISUBR32m},
369  { X86::FpLD0     , X86::FLD0     },
370  { X86::FpLD1     , X86::FLD1     },
371  { X86::FpLD32m   , X86::FLD32m   },
372  { X86::FpLD64m   , X86::FLD64m   },
373  { X86::FpMUL32m  , X86::FMUL32m  },
374  { X86::FpMUL64m  , X86::FMUL64m  },
375  { X86::FpSIN     , X86::FSIN     },
376  { X86::FpSQRT    , X86::FSQRT    },
377  { X86::FpST32m   , X86::FST32m   },
378  { X86::FpST64m   , X86::FST64m   },
379  { X86::FpSUB32m  , X86::FSUB32m  },
380  { X86::FpSUB64m  , X86::FSUB64m  },
381  { X86::FpSUBR32m , X86::FSUBR32m },
382  { X86::FpSUBR64m , X86::FSUBR64m },
383  { X86::FpTST     , X86::FTST     },
384  { X86::FpUCOMIr  , X86::FUCOMIr  },
385  { X86::FpUCOMr   , X86::FUCOMr   },
386};
387
388static unsigned getConcreteOpcode(unsigned Opcode) {
389  ASSERT_SORTED(OpcodeTable);
390  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
391  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
392  return Opc;
393}
394
395//===----------------------------------------------------------------------===//
396// Helper Methods
397//===----------------------------------------------------------------------===//
398
399// PopTable - Sorted map of instructions to their popping version.  The first
400// element is an instruction, the second is the version which pops.
401//
402static const TableEntry PopTable[] = {
403  { X86::FADDrST0 , X86::FADDPrST0  },
404
405  { X86::FDIVRrST0, X86::FDIVRPrST0 },
406  { X86::FDIVrST0 , X86::FDIVPrST0  },
407
408  { X86::FIST16m  , X86::FISTP16m   },
409  { X86::FIST32m  , X86::FISTP32m   },
410
411  { X86::FMULrST0 , X86::FMULPrST0  },
412
413  { X86::FST32m   , X86::FSTP32m    },
414  { X86::FST64m   , X86::FSTP64m    },
415  { X86::FSTrr    , X86::FSTPrr     },
416
417  { X86::FSUBRrST0, X86::FSUBRPrST0 },
418  { X86::FSUBrST0 , X86::FSUBPrST0  },
419
420  { X86::FUCOMIr  , X86::FUCOMIPr   },
421
422  { X86::FUCOMPr  , X86::FUCOMPPr   },
423  { X86::FUCOMr   , X86::FUCOMPr    },
424};
425
426/// popStackAfter - Pop the current value off of the top of the FP stack after
427/// the specified instruction.  This attempts to be sneaky and combine the pop
428/// into the instruction itself if possible.  The iterator is left pointing to
429/// the last instruction, be it a new pop instruction inserted, or the old
430/// instruction if it was modified in place.
431///
432void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
433  ASSERT_SORTED(PopTable);
434  assert(StackTop > 0 && "Cannot pop empty stack!");
435  RegMap[Stack[--StackTop]] = ~0;     // Update state
436
437  // Check to see if there is a popping version of this instruction...
438  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
439  if (Opcode != -1) {
440    I->setOpcode(Opcode);
441    if (Opcode == X86::FUCOMPPr)
442      I->RemoveOperand(0);
443
444  } else {    // Insert an explicit pop
445    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
446  }
447}
448
449/// freeStackSlotAfter - Free the specified register from the register stack, so
450/// that it is no longer in a register.  If the register is currently at the top
451/// of the stack, we just pop the current instruction, otherwise we store the
452/// current top-of-stack into the specified slot, then pop the top of stack.
453void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
454  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
455    popStackAfter(I);
456    return;
457  }
458
459  // Otherwise, store the top of stack into the dead slot, killing the operand
460  // without having to add in an explicit xchg then pop.
461  //
462  unsigned STReg    = getSTReg(FPRegNo);
463  unsigned OldSlot  = getSlot(FPRegNo);
464  unsigned TopReg   = Stack[StackTop-1];
465  Stack[OldSlot]    = TopReg;
466  RegMap[TopReg]    = OldSlot;
467  RegMap[FPRegNo]   = ~0;
468  Stack[--StackTop] = ~0;
469  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
470}
471
472
473static unsigned getFPReg(const MachineOperand &MO) {
474  assert(MO.isRegister() && "Expected an FP register!");
475  unsigned Reg = MO.getReg();
476  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
477  return Reg - X86::FP0;
478}
479
480
481//===----------------------------------------------------------------------===//
482// Instruction transformation implementation
483//===----------------------------------------------------------------------===//
484
485/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
486///
487void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
488  MachineInstr *MI = I;
489  unsigned DestReg = getFPReg(MI->getOperand(0));
490
491  // Change from the pseudo instruction to the concrete instruction.
492  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
493  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
494
495  // Result gets pushed on the stack.
496  pushReg(DestReg);
497}
498
499/// handleOneArgFP - fst <mem>, ST(0)
500///
501void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
502  MachineInstr *MI = I;
503  MachineFunction *MF = MI->getParent()->getParent();
504  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
505  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
506  assert((NumOps == 5 || NumOps == 1) &&
507         "Can only handle fst* & ftst instructions!");
508
509  // Is this the last use of the source register?
510  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
511  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
512
513  // FISTP64m is strange because there isn't a non-popping versions.
514  // If we have one _and_ we don't want to pop the operand, duplicate the value
515  // on the stack instead of moving it.  This ensure that popping the value is
516  // always ok.
517  // Ditto FISTTP16m, FISTTP32m, FISTTP64m.
518  //
519  if (!KillsSrc &&
520      (MI->getOpcode() == X86::FpIST64m ||
521       MI->getOpcode() == X86::FpISTT16m ||
522       MI->getOpcode() == X86::FpISTT32m ||
523       MI->getOpcode() == X86::FpISTT64m)) {
524    duplicateToTop(Reg, 7 /*temp register*/, I);
525  } else {
526    moveToTop(Reg, I);            // Move to the top of the stack...
527  }
528
529  // Convert from the pseudo instruction to the concrete instruction.
530  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
531  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
532
533  if (MI->getOpcode() == X86::FISTP64m ||
534      MI->getOpcode() == X86::FISTTP16m ||
535      MI->getOpcode() == X86::FISTTP32m ||
536      MI->getOpcode() == X86::FISTTP64m) {
537    assert(StackTop > 0 && "Stack empty??");
538    --StackTop;
539  } else if (KillsSrc) { // Last use of operand?
540    popStackAfter(I);
541  }
542}
543
544
545/// handleOneArgFPRW: Handle instructions that read from the top of stack and
546/// replace the value with a newly computed value.  These instructions may have
547/// non-fp operands after their FP operands.
548///
549///  Examples:
550///     R1 = fchs R2
551///     R1 = fadd R2, [mem]
552///
553void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
554  MachineInstr *MI = I;
555  MachineFunction *MF = MI->getParent()->getParent();
556  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
557  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
558  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
559
560  // Is this the last use of the source register?
561  unsigned Reg = getFPReg(MI->getOperand(1));
562  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
563
564  if (KillsSrc) {
565    // If this is the last use of the source register, just make sure it's on
566    // the top of the stack.
567    moveToTop(Reg, I);
568    assert(StackTop > 0 && "Stack cannot be empty!");
569    --StackTop;
570    pushReg(getFPReg(MI->getOperand(0)));
571  } else {
572    // If this is not the last use of the source register, _copy_ it to the top
573    // of the stack.
574    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
575  }
576
577  // Change from the pseudo instruction to the concrete instruction.
578  MI->RemoveOperand(1);   // Drop the source operand.
579  MI->RemoveOperand(0);   // Drop the destination operand.
580  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
581}
582
583
584//===----------------------------------------------------------------------===//
585// Define tables of various ways to map pseudo instructions
586//
587
588// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
589static const TableEntry ForwardST0Table[] = {
590  { X86::FpADD  , X86::FADDST0r },
591  { X86::FpDIV  , X86::FDIVST0r },
592  { X86::FpMUL  , X86::FMULST0r },
593  { X86::FpSUB  , X86::FSUBST0r },
594};
595
596// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
597static const TableEntry ReverseST0Table[] = {
598  { X86::FpADD  , X86::FADDST0r  },   // commutative
599  { X86::FpDIV  , X86::FDIVRST0r },
600  { X86::FpMUL  , X86::FMULST0r  },   // commutative
601  { X86::FpSUB  , X86::FSUBRST0r },
602};
603
604// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
605static const TableEntry ForwardSTiTable[] = {
606  { X86::FpADD  , X86::FADDrST0  },   // commutative
607  { X86::FpDIV  , X86::FDIVRrST0 },
608  { X86::FpMUL  , X86::FMULrST0  },   // commutative
609  { X86::FpSUB  , X86::FSUBRrST0 },
610};
611
612// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
613static const TableEntry ReverseSTiTable[] = {
614  { X86::FpADD  , X86::FADDrST0 },
615  { X86::FpDIV  , X86::FDIVrST0 },
616  { X86::FpMUL  , X86::FMULrST0 },
617  { X86::FpSUB  , X86::FSUBrST0 },
618};
619
620
621/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
622/// instructions which need to be simplified and possibly transformed.
623///
624/// Result: ST(0) = fsub  ST(0), ST(i)
625///         ST(i) = fsub  ST(0), ST(i)
626///         ST(0) = fsubr ST(0), ST(i)
627///         ST(i) = fsubr ST(0), ST(i)
628///
629void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
630  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
631  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
632  MachineInstr *MI = I;
633
634  MachineFunction *MF = MI->getParent()->getParent();
635  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
636  unsigned NumOperands = TII.getNumOperands(MI->getOpcode());
637  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
638  unsigned Dest = getFPReg(MI->getOperand(0));
639  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
640  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
641  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
642  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
643
644  unsigned TOS = getStackEntry(0);
645
646  // One of our operands must be on the top of the stack.  If neither is yet, we
647  // need to move one.
648  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
649    // We can choose to move either operand to the top of the stack.  If one of
650    // the operands is killed by this instruction, we want that one so that we
651    // can update right on top of the old version.
652    if (KillsOp0) {
653      moveToTop(Op0, I);         // Move dead operand to TOS.
654      TOS = Op0;
655    } else if (KillsOp1) {
656      moveToTop(Op1, I);
657      TOS = Op1;
658    } else {
659      // All of the operands are live after this instruction executes, so we
660      // cannot update on top of any operand.  Because of this, we must
661      // duplicate one of the stack elements to the top.  It doesn't matter
662      // which one we pick.
663      //
664      duplicateToTop(Op0, Dest, I);
665      Op0 = TOS = Dest;
666      KillsOp0 = true;
667    }
668  } else if (!KillsOp0 && !KillsOp1) {
669    // If we DO have one of our operands at the top of the stack, but we don't
670    // have a dead operand, we must duplicate one of the operands to a new slot
671    // on the stack.
672    duplicateToTop(Op0, Dest, I);
673    Op0 = TOS = Dest;
674    KillsOp0 = true;
675  }
676
677  // Now we know that one of our operands is on the top of the stack, and at
678  // least one of our operands is killed by this instruction.
679  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
680         "Stack conditions not set up right!");
681
682  // We decide which form to use based on what is on the top of the stack, and
683  // which operand is killed by this instruction.
684  const TableEntry *InstTable;
685  bool isForward = TOS == Op0;
686  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
687  if (updateST0) {
688    if (isForward)
689      InstTable = ForwardST0Table;
690    else
691      InstTable = ReverseST0Table;
692  } else {
693    if (isForward)
694      InstTable = ForwardSTiTable;
695    else
696      InstTable = ReverseSTiTable;
697  }
698
699  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
700  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
701
702  // NotTOS - The register which is not on the top of stack...
703  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
704
705  // Replace the old instruction with a new instruction
706  MBB->remove(I++);
707  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
708
709  // If both operands are killed, pop one off of the stack in addition to
710  // overwriting the other one.
711  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
712    assert(!updateST0 && "Should have updated other operand!");
713    popStackAfter(I);   // Pop the top of stack
714  }
715
716  // Update stack information so that we know the destination register is now on
717  // the stack.
718  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
719  assert(UpdatedSlot < StackTop && Dest < 7);
720  Stack[UpdatedSlot]   = Dest;
721  RegMap[Dest]         = UpdatedSlot;
722  delete MI;   // Remove the old instruction
723}
724
725/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
726/// register arguments and no explicit destinations.
727///
728void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
729  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
730  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
731  MachineInstr *MI = I;
732
733  MachineFunction *MF = MI->getParent()->getParent();
734  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
735  unsigned NumOperands = TII.getNumOperands(MI->getOpcode());
736  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
737  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
738  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
739  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
740  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
741
742  // Make sure the first operand is on the top of stack, the other one can be
743  // anywhere.
744  moveToTop(Op0, I);
745
746  // Change from the pseudo instruction to the concrete instruction.
747  MI->getOperand(0).setReg(getSTReg(Op1));
748  MI->RemoveOperand(1);
749  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
750
751  // If any of the operands are killed by this instruction, free them.
752  if (KillsOp0) freeStackSlotAfter(I, Op0);
753  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
754}
755
756/// handleCondMovFP - Handle two address conditional move instructions.  These
757/// instructions move a st(i) register to st(0) iff a condition is true.  These
758/// instructions require that the first operand is at the top of the stack, but
759/// otherwise don't modify the stack at all.
760void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
761  MachineInstr *MI = I;
762
763  unsigned Op0 = getFPReg(MI->getOperand(0));
764  unsigned Op1 = getFPReg(MI->getOperand(2));
765
766  // The first operand *must* be on the top of the stack.
767  moveToTop(Op0, I);
768
769  // Change the second operand to the stack register that the operand is in.
770  // Change from the pseudo instruction to the concrete instruction.
771  MI->RemoveOperand(0);
772  MI->RemoveOperand(1);
773  MI->getOperand(0).setReg(getSTReg(Op1));
774  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
775
776
777  // If we kill the second operand, make sure to pop it from the stack.
778  if (Op0 != Op1 && LV->KillsRegister(MI, X86::FP0+Op1)) {
779    // Get this value off of the register stack.
780    freeStackSlotAfter(I, Op1);
781  }
782}
783
784
785/// handleSpecialFP - Handle special instructions which behave unlike other
786/// floating point instructions.  This is primarily intended for use by pseudo
787/// instructions.
788///
789void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
790  MachineInstr *MI = I;
791  switch (MI->getOpcode()) {
792  default: assert(0 && "Unknown SpecialFP instruction!");
793  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
794    assert(StackTop == 0 && "Stack should be empty after a call!");
795    pushReg(getFPReg(MI->getOperand(0)));
796    break;
797  case X86::FpSETRESULT:
798    assert(StackTop == 1 && "Stack should have one element on it to return!");
799    --StackTop;   // "Forget" we have something on the top of stack!
800    break;
801  case X86::FpMOV: {
802    unsigned SrcReg = getFPReg(MI->getOperand(1));
803    unsigned DestReg = getFPReg(MI->getOperand(0));
804
805    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
806      // If the input operand is killed, we can just change the owner of the
807      // incoming stack slot into the result.
808      unsigned Slot = getSlot(SrcReg);
809      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
810      Stack[Slot] = DestReg;
811      RegMap[DestReg] = Slot;
812
813    } else {
814      // For FMOV we just duplicate the specified value to a new stack slot.
815      // This could be made better, but would require substantial changes.
816      duplicateToTop(SrcReg, DestReg, I);
817    }
818    break;
819  }
820  }
821
822  I = MBB->erase(I);  // Remove the pseudo instruction
823  --I;
824}
825