X86FloatingPoint.cpp revision 3ed469ccd7b028a030b550d84b7336d146f5d8fa
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/STLExtras.h"
45#include <algorithm>
46#include <iostream>
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    virtual bool runOnMachineFunction(MachineFunction &MF);
56
57    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<LiveVariables>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63  private:
64    LiveVariables     *LV;    // Live variable info for current function...
65    MachineBasicBlock *MBB;   // Current basic block
66    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67    unsigned RegMap[8];       // Track which stack slot contains each register
68    unsigned StackTop;        // The current top of the FP stack.
69
70    void dumpStack() const {
71      std::cerr << "Stack contents:";
72      for (unsigned i = 0; i != StackTop; ++i) {
73        std::cerr << " FP" << Stack[i];
74        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75      }
76      std::cerr << "\n";
77    }
78  private:
79    // getSlot - Return the stack slot number a particular register number is
80    // in...
81    unsigned getSlot(unsigned RegNo) const {
82      assert(RegNo < 8 && "Regno out of range!");
83      return RegMap[RegNo];
84    }
85
86    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87    unsigned getStackEntry(unsigned STi) const {
88      assert(STi < StackTop && "Access past stack top!");
89      return Stack[StackTop-1-STi];
90    }
91
92    // getSTReg - Return the X86::ST(i) register which contains the specified
93    // FP<RegNo> register
94    unsigned getSTReg(unsigned RegNo) const {
95      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96    }
97
98    // pushReg - Push the specified FP<n> register onto the stack
99    void pushReg(unsigned Reg) {
100      assert(Reg < 8 && "Register number out of range!");
101      assert(StackTop < 8 && "Stack overflow!");
102      Stack[StackTop] = Reg;
103      RegMap[Reg] = StackTop++;
104    }
105
106    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108      if (!isAtTop(RegNo)) {
109        unsigned STReg = getSTReg(RegNo);
110        unsigned RegOnTop = getStackEntry(0);
111
112        // Swap the slots the regs are in
113        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
114
115        // Swap stack slot contents
116        assert(RegMap[RegOnTop] < StackTop);
117        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
118
119        // Emit an fxch to update the runtime processors version of the state
120        BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
121        NumFXCH++;
122      }
123    }
124
125    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
126      unsigned STReg = getSTReg(RegNo);
127      pushReg(AsReg);   // New register on top of stack
128
129      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
130    }
131
132    // popStackAfter - Pop the current value off of the top of the FP stack
133    // after the specified instruction.
134    void popStackAfter(MachineBasicBlock::iterator &I);
135
136    // freeStackSlotAfter - Free the specified register from the register stack,
137    // so that it is no longer in a register.  If the register is currently at
138    // the top of the stack, we just pop the current instruction, otherwise we
139    // store the current top-of-stack into the specified slot, then pop the top
140    // of stack.
141    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
142
143    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
144
145    void handleZeroArgFP(MachineBasicBlock::iterator &I);
146    void handleOneArgFP(MachineBasicBlock::iterator &I);
147    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
148    void handleTwoArgFP(MachineBasicBlock::iterator &I);
149    void handleCompareFP(MachineBasicBlock::iterator &I);
150    void handleCondMovFP(MachineBasicBlock::iterator &I);
151    void handleSpecialFP(MachineBasicBlock::iterator &I);
152  };
153}
154
155FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
156
157/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
158/// register references into FP stack references.
159///
160bool FPS::runOnMachineFunction(MachineFunction &MF) {
161  // We only need to run this pass if there are any FP registers used in this
162  // function.  If it is all integer, there is nothing for us to do!
163  const bool *PhysRegsUsed = MF.getUsedPhysregs();
164  bool FPIsUsed = false;
165
166  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
167  for (unsigned i = 0; i <= 6; ++i)
168    if (PhysRegsUsed[X86::FP0+i]) {
169      FPIsUsed = true;
170      break;
171    }
172
173  // Early exit.
174  if (!FPIsUsed) return false;
175
176  LV = &getAnalysis<LiveVariables>();
177  StackTop = 0;
178
179  // Process the function in depth first order so that we process at least one
180  // of the predecessors for every reachable block in the function.
181  std::set<MachineBasicBlock*> Processed;
182  MachineBasicBlock *Entry = MF.begin();
183
184  bool Changed = false;
185  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
186         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
187       I != E; ++I)
188    Changed |= processBasicBlock(MF, **I);
189
190  return Changed;
191}
192
193/// processBasicBlock - Loop over all of the instructions in the basic block,
194/// transforming FP instructions into their stack form.
195///
196bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
197  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
198  bool Changed = false;
199  MBB = &BB;
200
201  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
202    MachineInstr *MI = I;
203    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
204    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
205      continue;  // Efficiently ignore non-fp insts!
206
207    MachineInstr *PrevMI = 0;
208    if (I != BB.begin())
209        PrevMI = prior(I);
210
211    ++NumFP;  // Keep track of # of pseudo instrs
212    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));
213
214    // Get dead variables list now because the MI pointer may be deleted as part
215    // of processing!
216    LiveVariables::killed_iterator IB, IE;
217    tie(IB, IE) = LV->dead_range(MI);
218
219    DEBUG(
220      const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
221      LiveVariables::killed_iterator I = LV->killed_begin(MI);
222      LiveVariables::killed_iterator E = LV->killed_end(MI);
223      if (I != E) {
224        std::cerr << "Killed Operands:";
225        for (; I != E; ++I)
226          std::cerr << " %" << MRI->getName(*I);
227        std::cerr << "\n";
228      }
229    );
230
231    switch (Flags & X86II::FPTypeMask) {
232    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
233    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
234    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
235    case X86II::TwoArgFP:   handleTwoArgFP(I); break;
236    case X86II::CompareFP:  handleCompareFP(I); break;
237    case X86II::CondMovFP:  handleCondMovFP(I); break;
238    case X86II::SpecialFP:  handleSpecialFP(I); break;
239    default: assert(0 && "Unknown FP Type!");
240    }
241
242    // Check to see if any of the values defined by this instruction are dead
243    // after definition.  If so, pop them.
244    for (; IB != IE; ++IB) {
245      unsigned Reg = *IB;
246      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
247        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
248        freeStackSlotAfter(I, Reg-X86::FP0);
249      }
250    }
251
252    // Print out all of the instructions expanded to if -debug
253    DEBUG(
254      MachineBasicBlock::iterator PrevI(PrevMI);
255      if (I == PrevI) {
256        std::cerr << "Just deleted pseudo instruction\n";
257      } else {
258        MachineBasicBlock::iterator Start = I;
259        // Rewind to first instruction newly inserted.
260        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
261        std::cerr << "Inserted instructions:\n\t";
262        Start->print(std::cerr, &MF.getTarget());
263        while (++Start != next(I));
264      }
265      dumpStack();
266    );
267
268    Changed = true;
269  }
270
271  assert(StackTop == 0 && "Stack not empty at end of basic block?");
272  return Changed;
273}
274
275//===----------------------------------------------------------------------===//
276// Efficient Lookup Table Support
277//===----------------------------------------------------------------------===//
278
279namespace {
280  struct TableEntry {
281    unsigned from;
282    unsigned to;
283    bool operator<(const TableEntry &TE) const { return from < TE.from; }
284    friend bool operator<(const TableEntry &TE, unsigned V) {
285      return TE.from < V;
286    }
287    friend bool operator<(unsigned V, const TableEntry &TE) {
288      return V < TE.from;
289    }
290  };
291}
292
293static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
294  for (unsigned i = 0; i != NumEntries-1; ++i)
295    if (!(Table[i] < Table[i+1])) return false;
296  return true;
297}
298
299static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
300  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
301  if (I != Table+N && I->from == Opcode)
302    return I->to;
303  return -1;
304}
305
306#define ARRAY_SIZE(TABLE)  \
307   (sizeof(TABLE)/sizeof(TABLE[0]))
308
309#ifdef NDEBUG
310#define ASSERT_SORTED(TABLE)
311#else
312#define ASSERT_SORTED(TABLE)                                              \
313  { static bool TABLE##Checked = false;                                   \
314    if (!TABLE##Checked) {                                                \
315       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
316              "All lookup tables must be sorted for efficient access!");  \
317       TABLE##Checked = true;                                             \
318    }                                                                     \
319  }
320#endif
321
322//===----------------------------------------------------------------------===//
323// Register File -> Register Stack Mapping Methods
324//===----------------------------------------------------------------------===//
325
326// OpcodeTable - Sorted map of register instructions to their stack version.
327// The first element is an register file pseudo instruction, the second is the
328// concrete X86 instruction which uses the register stack.
329//
330static const TableEntry OpcodeTable[] = {
331  { X86::FpABS     , X86::FABS     },
332  { X86::FpADD32m  , X86::FADD32m  },
333  { X86::FpADD64m  , X86::FADD64m  },
334  { X86::FpCHS     , X86::FCHS     },
335  { X86::FpCMOVB   , X86::FCMOVB   },
336  { X86::FpCMOVBE  , X86::FCMOVBE  },
337  { X86::FpCMOVE   , X86::FCMOVE   },
338  { X86::FpCMOVNB  , X86::FCMOVNB  },
339  { X86::FpCMOVNBE , X86::FCMOVNBE },
340  { X86::FpCMOVNE  , X86::FCMOVNE  },
341  { X86::FpCMOVNP  , X86::FCMOVNP  },
342  { X86::FpCMOVP   , X86::FCMOVP   },
343  { X86::FpCOS     , X86::FCOS     },
344  { X86::FpDIV32m  , X86::FDIV32m  },
345  { X86::FpDIV64m  , X86::FDIV64m  },
346  { X86::FpDIVR32m , X86::FDIVR32m },
347  { X86::FpDIVR64m , X86::FDIVR64m },
348  { X86::FpIADD16m , X86::FIADD16m },
349  { X86::FpIADD32m , X86::FIADD32m },
350  { X86::FpIDIV16m , X86::FIDIV16m },
351  { X86::FpIDIV32m , X86::FIDIV32m },
352  { X86::FpIDIVR16m, X86::FIDIVR16m},
353  { X86::FpIDIVR32m, X86::FIDIVR32m},
354  { X86::FpILD16m  , X86::FILD16m  },
355  { X86::FpILD32m  , X86::FILD32m  },
356  { X86::FpILD64m  , X86::FILD64m  },
357  { X86::FpIMUL16m , X86::FIMUL16m },
358  { X86::FpIMUL32m , X86::FIMUL32m },
359  { X86::FpIST16m  , X86::FIST16m  },
360  { X86::FpIST32m  , X86::FIST32m  },
361  { X86::FpIST64m  , X86::FISTP64m },
362  { X86::FpISTT16m , X86::FISTTP16m},
363  { X86::FpISTT32m , X86::FISTTP32m},
364  { X86::FpISTT64m , X86::FISTTP64m},
365  { X86::FpISUB16m , X86::FISUB16m },
366  { X86::FpISUB32m , X86::FISUB32m },
367  { X86::FpISUBR16m, X86::FISUBR16m},
368  { X86::FpISUBR32m, X86::FISUBR32m},
369  { X86::FpLD0     , X86::FLD0     },
370  { X86::FpLD1     , X86::FLD1     },
371  { X86::FpLD32m   , X86::FLD32m   },
372  { X86::FpLD64m   , X86::FLD64m   },
373  { X86::FpMUL32m  , X86::FMUL32m  },
374  { X86::FpMUL64m  , X86::FMUL64m  },
375  { X86::FpSIN     , X86::FSIN     },
376  { X86::FpSQRT    , X86::FSQRT    },
377  { X86::FpST32m   , X86::FST32m   },
378  { X86::FpST64m   , X86::FST64m   },
379  { X86::FpSUB32m  , X86::FSUB32m  },
380  { X86::FpSUB64m  , X86::FSUB64m  },
381  { X86::FpSUBR32m , X86::FSUBR32m },
382  { X86::FpSUBR64m , X86::FSUBR64m },
383  { X86::FpTST     , X86::FTST     },
384  { X86::FpUCOMIr  , X86::FUCOMIr  },
385  { X86::FpUCOMr   , X86::FUCOMr   },
386};
387
388static unsigned getConcreteOpcode(unsigned Opcode) {
389  ASSERT_SORTED(OpcodeTable);
390  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
391  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
392  return Opc;
393}
394
395//===----------------------------------------------------------------------===//
396// Helper Methods
397//===----------------------------------------------------------------------===//
398
399// PopTable - Sorted map of instructions to their popping version.  The first
400// element is an instruction, the second is the version which pops.
401//
402static const TableEntry PopTable[] = {
403  { X86::FADDrST0 , X86::FADDPrST0  },
404
405  { X86::FDIVRrST0, X86::FDIVRPrST0 },
406  { X86::FDIVrST0 , X86::FDIVPrST0  },
407
408  { X86::FIST16m  , X86::FISTP16m   },
409  { X86::FIST32m  , X86::FISTP32m   },
410
411  { X86::FMULrST0 , X86::FMULPrST0  },
412
413  { X86::FST32m   , X86::FSTP32m    },
414  { X86::FST64m   , X86::FSTP64m    },
415  { X86::FSTrr    , X86::FSTPrr     },
416
417  { X86::FSUBRrST0, X86::FSUBRPrST0 },
418  { X86::FSUBrST0 , X86::FSUBPrST0  },
419
420  { X86::FUCOMIr  , X86::FUCOMIPr   },
421
422  { X86::FUCOMPr  , X86::FUCOMPPr   },
423  { X86::FUCOMr   , X86::FUCOMPr    },
424};
425
426/// popStackAfter - Pop the current value off of the top of the FP stack after
427/// the specified instruction.  This attempts to be sneaky and combine the pop
428/// into the instruction itself if possible.  The iterator is left pointing to
429/// the last instruction, be it a new pop instruction inserted, or the old
430/// instruction if it was modified in place.
431///
432void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
433  ASSERT_SORTED(PopTable);
434  assert(StackTop > 0 && "Cannot pop empty stack!");
435  RegMap[Stack[--StackTop]] = ~0;     // Update state
436
437  // Check to see if there is a popping version of this instruction...
438  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
439  if (Opcode != -1) {
440    I->setOpcode(Opcode);
441    if (Opcode == X86::FUCOMPPr)
442      I->RemoveOperand(0);
443
444  } else {    // Insert an explicit pop
445    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
446  }
447}
448
449/// freeStackSlotAfter - Free the specified register from the register stack, so
450/// that it is no longer in a register.  If the register is currently at the top
451/// of the stack, we just pop the current instruction, otherwise we store the
452/// current top-of-stack into the specified slot, then pop the top of stack.
453void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
454  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
455    popStackAfter(I);
456    return;
457  }
458
459  // Otherwise, store the top of stack into the dead slot, killing the operand
460  // without having to add in an explicit xchg then pop.
461  //
462  unsigned STReg    = getSTReg(FPRegNo);
463  unsigned OldSlot  = getSlot(FPRegNo);
464  unsigned TopReg   = Stack[StackTop-1];
465  Stack[OldSlot]    = TopReg;
466  RegMap[TopReg]    = OldSlot;
467  RegMap[FPRegNo]   = ~0;
468  Stack[--StackTop] = ~0;
469  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
470}
471
472
473static unsigned getFPReg(const MachineOperand &MO) {
474  assert(MO.isRegister() && "Expected an FP register!");
475  unsigned Reg = MO.getReg();
476  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
477  return Reg - X86::FP0;
478}
479
480
481//===----------------------------------------------------------------------===//
482// Instruction transformation implementation
483//===----------------------------------------------------------------------===//
484
485/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
486///
487void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
488  MachineInstr *MI = I;
489  unsigned DestReg = getFPReg(MI->getOperand(0));
490
491  // Change from the pseudo instruction to the concrete instruction.
492  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
493  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
494
495  // Result gets pushed on the stack.
496  pushReg(DestReg);
497}
498
499/// handleOneArgFP - fst <mem>, ST(0)
500///
501void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
502  MachineInstr *MI = I;
503  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
504         "Can only handle fst* & ftst instructions!");
505
506  // Is this the last use of the source register?
507  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
508  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
509
510  // FISTP64m is strange because there isn't a non-popping versions.
511  // If we have one _and_ we don't want to pop the operand, duplicate the value
512  // on the stack instead of moving it.  This ensure that popping the value is
513  // always ok.
514  // Ditto FISTTP16m, FISTTP32m, FISTTP64m.
515  //
516  if (!KillsSrc &&
517      (MI->getOpcode() == X86::FpIST64m ||
518       MI->getOpcode() == X86::FpISTT16m ||
519       MI->getOpcode() == X86::FpISTT32m ||
520       MI->getOpcode() == X86::FpISTT64m)) {
521    duplicateToTop(Reg, 7 /*temp register*/, I);
522  } else {
523    moveToTop(Reg, I);            // Move to the top of the stack...
524  }
525
526  // Convert from the pseudo instruction to the concrete instruction.
527  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
528  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
529
530  if (MI->getOpcode() == X86::FISTP64m ||
531      MI->getOpcode() == X86::FISTTP16m ||
532      MI->getOpcode() == X86::FISTTP32m ||
533      MI->getOpcode() == X86::FISTTP64m) {
534    assert(StackTop > 0 && "Stack empty??");
535    --StackTop;
536  } else if (KillsSrc) { // Last use of operand?
537    popStackAfter(I);
538  }
539}
540
541
542/// handleOneArgFPRW: Handle instructions that read from the top of stack and
543/// replace the value with a newly computed value.  These instructions may have
544/// non-fp operands after their FP operands.
545///
546///  Examples:
547///     R1 = fchs R2
548///     R1 = fadd R2, [mem]
549///
550void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
551  MachineInstr *MI = I;
552  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
553
554  // Is this the last use of the source register?
555  unsigned Reg = getFPReg(MI->getOperand(1));
556  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
557
558  if (KillsSrc) {
559    // If this is the last use of the source register, just make sure it's on
560    // the top of the stack.
561    moveToTop(Reg, I);
562    assert(StackTop > 0 && "Stack cannot be empty!");
563    --StackTop;
564    pushReg(getFPReg(MI->getOperand(0)));
565  } else {
566    // If this is not the last use of the source register, _copy_ it to the top
567    // of the stack.
568    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
569  }
570
571  // Change from the pseudo instruction to the concrete instruction.
572  MI->RemoveOperand(1);   // Drop the source operand.
573  MI->RemoveOperand(0);   // Drop the destination operand.
574  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
575}
576
577
578//===----------------------------------------------------------------------===//
579// Define tables of various ways to map pseudo instructions
580//
581
582// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
583static const TableEntry ForwardST0Table[] = {
584  { X86::FpADD  , X86::FADDST0r },
585  { X86::FpDIV  , X86::FDIVST0r },
586  { X86::FpMUL  , X86::FMULST0r },
587  { X86::FpSUB  , X86::FSUBST0r },
588};
589
590// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
591static const TableEntry ReverseST0Table[] = {
592  { X86::FpADD  , X86::FADDST0r  },   // commutative
593  { X86::FpDIV  , X86::FDIVRST0r },
594  { X86::FpMUL  , X86::FMULST0r  },   // commutative
595  { X86::FpSUB  , X86::FSUBRST0r },
596};
597
598// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
599static const TableEntry ForwardSTiTable[] = {
600  { X86::FpADD  , X86::FADDrST0  },   // commutative
601  { X86::FpDIV  , X86::FDIVRrST0 },
602  { X86::FpMUL  , X86::FMULrST0  },   // commutative
603  { X86::FpSUB  , X86::FSUBRrST0 },
604};
605
606// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
607static const TableEntry ReverseSTiTable[] = {
608  { X86::FpADD  , X86::FADDrST0 },
609  { X86::FpDIV  , X86::FDIVrST0 },
610  { X86::FpMUL  , X86::FMULrST0 },
611  { X86::FpSUB  , X86::FSUBrST0 },
612};
613
614
615/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
616/// instructions which need to be simplified and possibly transformed.
617///
618/// Result: ST(0) = fsub  ST(0), ST(i)
619///         ST(i) = fsub  ST(0), ST(i)
620///         ST(0) = fsubr ST(0), ST(i)
621///         ST(i) = fsubr ST(0), ST(i)
622///
623void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
624  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
625  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
626  MachineInstr *MI = I;
627
628  unsigned NumOperands = MI->getNumOperands();
629  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
630  unsigned Dest = getFPReg(MI->getOperand(0));
631  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
632  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
633  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
634  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
635
636  unsigned TOS = getStackEntry(0);
637
638  // One of our operands must be on the top of the stack.  If neither is yet, we
639  // need to move one.
640  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
641    // We can choose to move either operand to the top of the stack.  If one of
642    // the operands is killed by this instruction, we want that one so that we
643    // can update right on top of the old version.
644    if (KillsOp0) {
645      moveToTop(Op0, I);         // Move dead operand to TOS.
646      TOS = Op0;
647    } else if (KillsOp1) {
648      moveToTop(Op1, I);
649      TOS = Op1;
650    } else {
651      // All of the operands are live after this instruction executes, so we
652      // cannot update on top of any operand.  Because of this, we must
653      // duplicate one of the stack elements to the top.  It doesn't matter
654      // which one we pick.
655      //
656      duplicateToTop(Op0, Dest, I);
657      Op0 = TOS = Dest;
658      KillsOp0 = true;
659    }
660  } else if (!KillsOp0 && !KillsOp1) {
661    // If we DO have one of our operands at the top of the stack, but we don't
662    // have a dead operand, we must duplicate one of the operands to a new slot
663    // on the stack.
664    duplicateToTop(Op0, Dest, I);
665    Op0 = TOS = Dest;
666    KillsOp0 = true;
667  }
668
669  // Now we know that one of our operands is on the top of the stack, and at
670  // least one of our operands is killed by this instruction.
671  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
672         "Stack conditions not set up right!");
673
674  // We decide which form to use based on what is on the top of the stack, and
675  // which operand is killed by this instruction.
676  const TableEntry *InstTable;
677  bool isForward = TOS == Op0;
678  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
679  if (updateST0) {
680    if (isForward)
681      InstTable = ForwardST0Table;
682    else
683      InstTable = ReverseST0Table;
684  } else {
685    if (isForward)
686      InstTable = ForwardSTiTable;
687    else
688      InstTable = ReverseSTiTable;
689  }
690
691  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
692  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
693
694  // NotTOS - The register which is not on the top of stack...
695  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
696
697  // Replace the old instruction with a new instruction
698  MBB->remove(I++);
699  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
700
701  // If both operands are killed, pop one off of the stack in addition to
702  // overwriting the other one.
703  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
704    assert(!updateST0 && "Should have updated other operand!");
705    popStackAfter(I);   // Pop the top of stack
706  }
707
708  // Update stack information so that we know the destination register is now on
709  // the stack.
710  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
711  assert(UpdatedSlot < StackTop && Dest < 7);
712  Stack[UpdatedSlot]   = Dest;
713  RegMap[Dest]         = UpdatedSlot;
714  delete MI;   // Remove the old instruction
715}
716
717/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
718/// register arguments and no explicit destinations.
719///
720void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
721  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
722  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
723  MachineInstr *MI = I;
724
725  unsigned NumOperands = MI->getNumOperands();
726  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
727  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
728  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
729  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
730  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
731
732  // Make sure the first operand is on the top of stack, the other one can be
733  // anywhere.
734  moveToTop(Op0, I);
735
736  // Change from the pseudo instruction to the concrete instruction.
737  MI->getOperand(0).setReg(getSTReg(Op1));
738  MI->RemoveOperand(1);
739  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
740
741  // If any of the operands are killed by this instruction, free them.
742  if (KillsOp0) freeStackSlotAfter(I, Op0);
743  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
744}
745
746/// handleCondMovFP - Handle two address conditional move instructions.  These
747/// instructions move a st(i) register to st(0) iff a condition is true.  These
748/// instructions require that the first operand is at the top of the stack, but
749/// otherwise don't modify the stack at all.
750void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
751  MachineInstr *MI = I;
752
753  unsigned Op0 = getFPReg(MI->getOperand(0));
754  unsigned Op1 = getFPReg(MI->getOperand(2));
755
756  // The first operand *must* be on the top of the stack.
757  moveToTop(Op0, I);
758
759  // Change the second operand to the stack register that the operand is in.
760  // Change from the pseudo instruction to the concrete instruction.
761  MI->RemoveOperand(0);
762  MI->RemoveOperand(1);
763  MI->getOperand(0).setReg(getSTReg(Op1));
764  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
765
766
767  // If we kill the second operand, make sure to pop it from the stack.
768  if (Op0 != Op1 && LV->KillsRegister(MI, X86::FP0+Op1)) {
769    // Get this value off of the register stack.
770    freeStackSlotAfter(I, Op1);
771  }
772}
773
774
775/// handleSpecialFP - Handle special instructions which behave unlike other
776/// floating point instructions.  This is primarily intended for use by pseudo
777/// instructions.
778///
779void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
780  MachineInstr *MI = I;
781  switch (MI->getOpcode()) {
782  default: assert(0 && "Unknown SpecialFP instruction!");
783  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
784    assert(StackTop == 0 && "Stack should be empty after a call!");
785    pushReg(getFPReg(MI->getOperand(0)));
786    break;
787  case X86::FpSETRESULT:
788    assert(StackTop == 1 && "Stack should have one element on it to return!");
789    --StackTop;   // "Forget" we have something on the top of stack!
790    break;
791  case X86::FpMOV: {
792    unsigned SrcReg = getFPReg(MI->getOperand(1));
793    unsigned DestReg = getFPReg(MI->getOperand(0));
794
795    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
796      // If the input operand is killed, we can just change the owner of the
797      // incoming stack slot into the result.
798      unsigned Slot = getSlot(SrcReg);
799      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
800      Stack[Slot] = DestReg;
801      RegMap[DestReg] = Slot;
802
803    } else {
804      // For FMOV we just duplicate the specified value to a new stack slot.
805      // This could be made better, but would require substantial changes.
806      duplicateToTop(SrcReg, DestReg, I);
807    }
808    break;
809  }
810  }
811
812  I = MBB->erase(I);  // Remove the pseudo instruction
813  --I;
814}
815