X86FloatingPoint.cpp revision 3f490f3469dd30b47d7b59a9b84750c31dc19633
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP  , "Number of floating point instructions");
49
50namespace {
51  struct FPS : public MachineFunctionPass {
52    static char ID;
53    FPS() : MachineFunctionPass(ID) {
54      // This is really only to keep valgrind quiet.
55      // The logic in isLive() is too much for it.
56      memset(Stack, 0, sizeof(Stack));
57      memset(RegMap, 0, sizeof(RegMap));
58    }
59
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.setPreservesCFG();
62      AU.addPreservedID(MachineLoopInfoID);
63      AU.addPreservedID(MachineDominatorsID);
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnMachineFunction(MachineFunction &MF);
68
69    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
71  private:
72    const TargetInstrInfo *TII; // Machine instruction info.
73
74    // Two CFG edges are related if they leave the same block, or enter the same
75    // block. The transitive closure of an edge under this relation is a
76    // LiveBundle. It represents a set of CFG edges where the live FP stack
77    // registers must be allocated identically in the x87 stack.
78    //
79    // A LiveBundle is usually all the edges leaving a block, or all the edges
80    // entering a block, but it can contain more edges if critical edges are
81    // present.
82    //
83    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84    // but the exact mapping of FP registers to stack slots is fixed later.
85    struct LiveBundle {
86      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87      unsigned Mask;
88
89      // Number of pre-assigned live registers in FixStack. This is 0 when the
90      // stack order has not yet been fixed.
91      unsigned FixCount;
92
93      // Assigned stack order for live-in registers.
94      // FixStack[i] == getStackEntry(i) for all i < FixCount.
95      unsigned char FixStack[8];
96
97      LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99      // Have the live registers been assigned a stack order yet?
100      bool isFixed() const { return !Mask || FixCount; }
101    };
102
103    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104    // with no live FP registers.
105    SmallVector<LiveBundle, 8> LiveBundles;
106
107    // Map each MBB in the current function to an (ingoing, outgoing) index into
108    // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109    // and are not actually stored in the map.
110    DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112    // Return a bitmask of FP registers in block's live-in list.
113    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114      unsigned Mask = 0;
115      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116           E = MBB->livein_end(); I != E; ++I) {
117        unsigned Reg = *I - X86::FP0;
118        if (Reg < 8)
119          Mask |= 1 << Reg;
120      }
121      return Mask;
122    }
123
124    // Partition all the CFG edges into LiveBundles.
125    void bundleCFG(MachineFunction &MF);
126
127    MachineBasicBlock *MBB;     // Current basic block
128    unsigned Stack[8];          // FP<n> Registers in each stack slot...
129    unsigned RegMap[8];         // Track which stack slot contains each register
130    unsigned StackTop;          // The current top of the FP stack.
131
132    // Set up our stack model to match the incoming registers to MBB.
133    void setupBlockStack();
134
135    // Shuffle live registers to match the expectations of successor blocks.
136    void finishBlockStack();
137
138    void dumpStack() const {
139      dbgs() << "Stack contents:";
140      for (unsigned i = 0; i != StackTop; ++i) {
141        dbgs() << " FP" << Stack[i];
142        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
143      }
144      dbgs() << "\n";
145    }
146
147    /// getSlot - Return the stack slot number a particular register number is
148    /// in.
149    unsigned getSlot(unsigned RegNo) const {
150      assert(RegNo < 8 && "Regno out of range!");
151      return RegMap[RegNo];
152    }
153
154    /// isLive - Is RegNo currently live in the stack?
155    bool isLive(unsigned RegNo) const {
156      unsigned Slot = getSlot(RegNo);
157      return Slot < StackTop && Stack[Slot] == RegNo;
158    }
159
160    /// getScratchReg - Return an FP register that is not currently in use.
161    unsigned getScratchReg() {
162      for (int i = 7; i >= 0; --i)
163        if (!isLive(i))
164          return i;
165      llvm_unreachable("Ran out of scratch FP registers");
166    }
167
168    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
169    unsigned getStackEntry(unsigned STi) const {
170      if (STi >= StackTop)
171        report_fatal_error("Access past stack top!");
172      return Stack[StackTop-1-STi];
173    }
174
175    /// getSTReg - Return the X86::ST(i) register which contains the specified
176    /// FP<RegNo> register.
177    unsigned getSTReg(unsigned RegNo) const {
178      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
179    }
180
181    // pushReg - Push the specified FP<n> register onto the stack.
182    void pushReg(unsigned Reg) {
183      assert(Reg < 8 && "Register number out of range!");
184      if (StackTop >= 8)
185        report_fatal_error("Stack overflow!");
186      Stack[StackTop] = Reg;
187      RegMap[Reg] = StackTop++;
188    }
189
190    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
191    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
192      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
193      if (isAtTop(RegNo)) return;
194
195      unsigned STReg = getSTReg(RegNo);
196      unsigned RegOnTop = getStackEntry(0);
197
198      // Swap the slots the regs are in.
199      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
200
201      // Swap stack slot contents.
202      if (RegMap[RegOnTop] >= StackTop)
203        report_fatal_error("Access past stack top!");
204      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
205
206      // Emit an fxch to update the runtime processors version of the state.
207      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
208      ++NumFXCH;
209    }
210
211    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
212      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
213      unsigned STReg = getSTReg(RegNo);
214      pushReg(AsReg);   // New register on top of stack
215
216      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
217    }
218
219    /// popStackAfter - Pop the current value off of the top of the FP stack
220    /// after the specified instruction.
221    void popStackAfter(MachineBasicBlock::iterator &I);
222
223    /// freeStackSlotAfter - Free the specified register from the register
224    /// stack, so that it is no longer in a register.  If the register is
225    /// currently at the top of the stack, we just pop the current instruction,
226    /// otherwise we store the current top-of-stack into the specified slot,
227    /// then pop the top of stack.
228    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
229
230    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
231    /// instruction.
232    MachineBasicBlock::iterator
233    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
234
235    /// Adjust the live registers to be the set in Mask.
236    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
237
238    /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
239    /// st(0), FP reg FixStack[1] is st(1) etc.
240    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
241                         MachineBasicBlock::iterator I);
242
243    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
244
245    void handleZeroArgFP(MachineBasicBlock::iterator &I);
246    void handleOneArgFP(MachineBasicBlock::iterator &I);
247    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
248    void handleTwoArgFP(MachineBasicBlock::iterator &I);
249    void handleCompareFP(MachineBasicBlock::iterator &I);
250    void handleCondMovFP(MachineBasicBlock::iterator &I);
251    void handleSpecialFP(MachineBasicBlock::iterator &I);
252
253    bool translateCopy(MachineInstr*);
254  };
255  char FPS::ID = 0;
256}
257
258FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
259
260/// getFPReg - Return the X86::FPx register number for the specified operand.
261/// For example, this returns 3 for X86::FP3.
262static unsigned getFPReg(const MachineOperand &MO) {
263  assert(MO.isReg() && "Expected an FP register!");
264  unsigned Reg = MO.getReg();
265  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
266  return Reg - X86::FP0;
267}
268
269/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
270/// register references into FP stack references.
271///
272bool FPS::runOnMachineFunction(MachineFunction &MF) {
273  // We only need to run this pass if there are any FP registers used in this
274  // function.  If it is all integer, there is nothing for us to do!
275  bool FPIsUsed = false;
276
277  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
278  for (unsigned i = 0; i <= 6; ++i)
279    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
280      FPIsUsed = true;
281      break;
282    }
283
284  // Early exit.
285  if (!FPIsUsed) return false;
286
287  TII = MF.getTarget().getInstrInfo();
288
289  // Prepare cross-MBB liveness.
290  bundleCFG(MF);
291
292  StackTop = 0;
293
294  // Process the function in depth first order so that we process at least one
295  // of the predecessors for every reachable block in the function.
296  SmallPtrSet<MachineBasicBlock*, 8> Processed;
297  MachineBasicBlock *Entry = MF.begin();
298
299  bool Changed = false;
300  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
301         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
302       I != E; ++I)
303    Changed |= processBasicBlock(MF, **I);
304
305  // Process any unreachable blocks in arbitrary order now.
306  if (MF.size() != Processed.size())
307    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
308      if (Processed.insert(BB))
309        Changed |= processBasicBlock(MF, *BB);
310
311  BlockBundle.clear();
312  LiveBundles.clear();
313
314  return Changed;
315}
316
317/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
318/// live-out sets for the FP registers. Consistent means that the set of
319/// registers live-out from a block is identical to the live-in set of all
320/// successors. This is not enforced by the normal live-in lists since
321/// registers may be implicitly defined, or not used by all successors.
322void FPS::bundleCFG(MachineFunction &MF) {
323  assert(LiveBundles.empty() && "Stale data in LiveBundles");
324  assert(BlockBundle.empty() && "Stale data in BlockBundle");
325  SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
326
327  // LiveBundle[0] is the empty live-in set.
328  LiveBundles.resize(1);
329
330  // First gather the actual live-in masks for all MBBs.
331  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
332    MachineBasicBlock *MBB = I;
333    const unsigned Mask = calcLiveInMask(MBB);
334    if (!Mask)
335      continue;
336    // Ingoing bundle index.
337    unsigned &Idx = BlockBundle[MBB].first;
338    // Already assigned an ingoing bundle?
339    if (Idx)
340      continue;
341    // Allocate a new LiveBundle struct for this block's live-ins.
342    const unsigned BundleIdx = Idx = LiveBundles.size();
343    DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
344                 << MBB->getNumber());
345    LiveBundles.push_back(Mask);
346    LiveBundle &Bundle = LiveBundles.back();
347
348    // Make sure all predecessors have the same live-out set.
349    PropUp.insert(MBB);
350
351    // Keep pushing liveness up and down the CFG until convergence.
352    // Only critical edges cause iteration here, but when they do, multiple
353    // blocks can be assigned to the same LiveBundle index.
354    do {
355      // Assign BundleIdx as liveout from predecessors in PropUp.
356      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
357           E = PropUp.end(); I != E; ++I) {
358        MachineBasicBlock *MBB = *I;
359        for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
360             LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
361          MachineBasicBlock *PredMBB = *LinkI;
362          // PredMBB's liveout bundle should be set to LIIdx.
363          unsigned &Idx = BlockBundle[PredMBB].second;
364          if (Idx) {
365            assert(Idx == BundleIdx && "Inconsistent CFG");
366            continue;
367          }
368          Idx = BundleIdx;
369          DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
370          // Propagate to siblings.
371          if (PredMBB->succ_size() > 1)
372            PropDown.insert(PredMBB);
373        }
374      }
375      PropUp.clear();
376
377      // Assign BundleIdx as livein to successors in PropDown.
378      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
379           E = PropDown.end(); I != E; ++I) {
380        MachineBasicBlock *MBB = *I;
381        for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
382             LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
383          MachineBasicBlock *SuccMBB = *LinkI;
384          // LinkMBB's livein bundle should be set to BundleIdx.
385          unsigned &Idx = BlockBundle[SuccMBB].first;
386          if (Idx) {
387            assert(Idx == BundleIdx && "Inconsistent CFG");
388            continue;
389          }
390          Idx = BundleIdx;
391          DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
392          // Propagate to siblings.
393          if (SuccMBB->pred_size() > 1)
394            PropUp.insert(SuccMBB);
395          // Also accumulate the bundle liveness mask from the liveins here.
396          Bundle.Mask |= calcLiveInMask(SuccMBB);
397        }
398      }
399      PropDown.clear();
400    } while (!PropUp.empty());
401    DEBUG({
402      dbgs() << " live:";
403      for (unsigned i = 0; i < 8; ++i)
404        if (Bundle.Mask & (1<<i))
405          dbgs() << " %FP" << i;
406      dbgs() << '\n';
407    });
408  }
409}
410
411/// processBasicBlock - Loop over all of the instructions in the basic block,
412/// transforming FP instructions into their stack form.
413///
414bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
415  bool Changed = false;
416  MBB = &BB;
417
418  setupBlockStack();
419
420  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
421    MachineInstr *MI = I;
422    uint64_t Flags = MI->getDesc().TSFlags;
423
424    unsigned FPInstClass = Flags & X86II::FPTypeMask;
425    if (MI->isInlineAsm())
426      FPInstClass = X86II::SpecialFP;
427
428    if (MI->isCopy() && translateCopy(MI))
429      FPInstClass = X86II::SpecialFP;
430
431    if (FPInstClass == X86II::NotFP)
432      continue;  // Efficiently ignore non-fp insts!
433
434    MachineInstr *PrevMI = 0;
435    if (I != BB.begin())
436      PrevMI = prior(I);
437
438    ++NumFP;  // Keep track of # of pseudo instrs
439    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
440
441    // Get dead variables list now because the MI pointer may be deleted as part
442    // of processing!
443    SmallVector<unsigned, 8> DeadRegs;
444    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
445      const MachineOperand &MO = MI->getOperand(i);
446      if (MO.isReg() && MO.isDead())
447        DeadRegs.push_back(MO.getReg());
448    }
449
450    switch (FPInstClass) {
451    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
452    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
453    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
454    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
455    case X86II::CompareFP:  handleCompareFP(I); break;
456    case X86II::CondMovFP:  handleCondMovFP(I); break;
457    case X86II::SpecialFP:  handleSpecialFP(I); break;
458    default: llvm_unreachable("Unknown FP Type!");
459    }
460
461    // Check to see if any of the values defined by this instruction are dead
462    // after definition.  If so, pop them.
463    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
464      unsigned Reg = DeadRegs[i];
465      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
466        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
467        freeStackSlotAfter(I, Reg-X86::FP0);
468      }
469    }
470
471    // Print out all of the instructions expanded to if -debug
472    DEBUG(
473      MachineBasicBlock::iterator PrevI(PrevMI);
474      if (I == PrevI) {
475        dbgs() << "Just deleted pseudo instruction\n";
476      } else {
477        MachineBasicBlock::iterator Start = I;
478        // Rewind to first instruction newly inserted.
479        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
480        dbgs() << "Inserted instructions:\n\t";
481        Start->print(dbgs(), &MF.getTarget());
482        while (++Start != llvm::next(I)) {}
483      }
484      dumpStack();
485    );
486
487    Changed = true;
488  }
489
490  finishBlockStack();
491
492  return Changed;
493}
494
495/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
496/// to match predecessors' live out stack.
497void FPS::setupBlockStack() {
498  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
499               << " derived from " << MBB->getName() << ".\n");
500  StackTop = 0;
501  const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
502
503  if (!Bundle.Mask) {
504    DEBUG(dbgs() << "Block has no FP live-ins.\n");
505    return;
506  }
507
508  // Depth-first iteration should ensure that we always have an assigned stack.
509  assert(Bundle.isFixed() && "Reached block before any predecessors");
510
511  // Push the fixed live-in registers.
512  for (unsigned i = Bundle.FixCount; i > 0; --i) {
513    MBB->addLiveIn(X86::ST0+i-1);
514    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
515                 << unsigned(Bundle.FixStack[i-1]) << '\n');
516    pushReg(Bundle.FixStack[i-1]);
517  }
518
519  // Kill off unwanted live-ins. This can happen with a critical edge.
520  // FIXME: We could keep these live registers around as zombies. They may need
521  // to be revived at the end of a short block. It might save a few instrs.
522  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
523  DEBUG(MBB->dump());
524}
525
526/// finishBlockStack - Revive live-outs that are implicitly defined out of
527/// MBB. Shuffle live registers to match the expected fixed stack of any
528/// predecessors, and ensure that all predecessors are expecting the same
529/// stack.
530void FPS::finishBlockStack() {
531  // The RET handling below takes care of return blocks for us.
532  if (MBB->succ_empty())
533    return;
534
535  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
536               << " derived from " << MBB->getName() << ".\n");
537
538  unsigned BundleIdx = BlockBundle.lookup(MBB).second;
539  LiveBundle &Bundle = LiveBundles[BundleIdx];
540
541  // We may need to kill and define some registers to match successors.
542  // FIXME: This can probably be combined with the shuffle below.
543  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
544  adjustLiveRegs(Bundle.Mask, Term);
545
546  if (!Bundle.Mask) {
547    DEBUG(dbgs() << "No live-outs.\n");
548    return;
549  }
550
551  // Has the stack order been fixed yet?
552  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
553  if (Bundle.isFixed()) {
554    DEBUG(dbgs() << "Shuffling stack to match.\n");
555    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
556  } else {
557    // Not fixed yet, we get to choose.
558    DEBUG(dbgs() << "Fixing stack order now.\n");
559    Bundle.FixCount = StackTop;
560    for (unsigned i = 0; i < StackTop; ++i)
561      Bundle.FixStack[i] = getStackEntry(i);
562  }
563}
564
565
566//===----------------------------------------------------------------------===//
567// Efficient Lookup Table Support
568//===----------------------------------------------------------------------===//
569
570namespace {
571  struct TableEntry {
572    unsigned from;
573    unsigned to;
574    bool operator<(const TableEntry &TE) const { return from < TE.from; }
575    friend bool operator<(const TableEntry &TE, unsigned V) {
576      return TE.from < V;
577    }
578    friend bool ATTRIBUTE_USED operator<(unsigned V, const TableEntry &TE) {
579      return V < TE.from;
580    }
581  };
582}
583
584#ifndef NDEBUG
585static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
586  for (unsigned i = 0; i != NumEntries-1; ++i)
587    if (!(Table[i] < Table[i+1])) return false;
588  return true;
589}
590#endif
591
592static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
593  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
594  if (I != Table+N && I->from == Opcode)
595    return I->to;
596  return -1;
597}
598
599#ifdef NDEBUG
600#define ASSERT_SORTED(TABLE)
601#else
602#define ASSERT_SORTED(TABLE)                                              \
603  { static bool TABLE##Checked = false;                                   \
604    if (!TABLE##Checked) {                                                \
605       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
606              "All lookup tables must be sorted for efficient access!");  \
607       TABLE##Checked = true;                                             \
608    }                                                                     \
609  }
610#endif
611
612//===----------------------------------------------------------------------===//
613// Register File -> Register Stack Mapping Methods
614//===----------------------------------------------------------------------===//
615
616// OpcodeTable - Sorted map of register instructions to their stack version.
617// The first element is an register file pseudo instruction, the second is the
618// concrete X86 instruction which uses the register stack.
619//
620static const TableEntry OpcodeTable[] = {
621  { X86::ABS_Fp32     , X86::ABS_F     },
622  { X86::ABS_Fp64     , X86::ABS_F     },
623  { X86::ABS_Fp80     , X86::ABS_F     },
624  { X86::ADD_Fp32m    , X86::ADD_F32m  },
625  { X86::ADD_Fp64m    , X86::ADD_F64m  },
626  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
627  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
628  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
629  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
630  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
631  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
632  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
633  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
634  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
635  { X86::CHS_Fp32     , X86::CHS_F     },
636  { X86::CHS_Fp64     , X86::CHS_F     },
637  { X86::CHS_Fp80     , X86::CHS_F     },
638  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
639  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
640  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
641  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
642  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
643  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
644  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
645  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
646  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
647  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
648  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
649  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
650  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
651  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
652  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
653  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
654  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
655  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
656  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
657  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
658  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
659  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
660  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
661  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
662  { X86::COS_Fp32     , X86::COS_F     },
663  { X86::COS_Fp64     , X86::COS_F     },
664  { X86::COS_Fp80     , X86::COS_F     },
665  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
666  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
667  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
668  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
669  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
670  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
671  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
672  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
673  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
674  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
675  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
676  { X86::DIV_Fp32m    , X86::DIV_F32m  },
677  { X86::DIV_Fp64m    , X86::DIV_F64m  },
678  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
679  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
680  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
681  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
682  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
683  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
684  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
685  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
686  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
687  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
688  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
689  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
690  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
691  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
692  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
693  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
694  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
695  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
696  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
697  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
698  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
699  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
700  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
701  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
702  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
703  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
704  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
705  { X86::IST_Fp16m32  , X86::IST_F16m  },
706  { X86::IST_Fp16m64  , X86::IST_F16m  },
707  { X86::IST_Fp16m80  , X86::IST_F16m  },
708  { X86::IST_Fp32m32  , X86::IST_F32m  },
709  { X86::IST_Fp32m64  , X86::IST_F32m  },
710  { X86::IST_Fp32m80  , X86::IST_F32m  },
711  { X86::IST_Fp64m32  , X86::IST_FP64m },
712  { X86::IST_Fp64m64  , X86::IST_FP64m },
713  { X86::IST_Fp64m80  , X86::IST_FP64m },
714  { X86::LD_Fp032     , X86::LD_F0     },
715  { X86::LD_Fp064     , X86::LD_F0     },
716  { X86::LD_Fp080     , X86::LD_F0     },
717  { X86::LD_Fp132     , X86::LD_F1     },
718  { X86::LD_Fp164     , X86::LD_F1     },
719  { X86::LD_Fp180     , X86::LD_F1     },
720  { X86::LD_Fp32m     , X86::LD_F32m   },
721  { X86::LD_Fp32m64   , X86::LD_F32m   },
722  { X86::LD_Fp32m80   , X86::LD_F32m   },
723  { X86::LD_Fp64m     , X86::LD_F64m   },
724  { X86::LD_Fp64m80   , X86::LD_F64m   },
725  { X86::LD_Fp80m     , X86::LD_F80m   },
726  { X86::MUL_Fp32m    , X86::MUL_F32m  },
727  { X86::MUL_Fp64m    , X86::MUL_F64m  },
728  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
729  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
730  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
731  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
732  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
733  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
734  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
735  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
736  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
737  { X86::SIN_Fp32     , X86::SIN_F     },
738  { X86::SIN_Fp64     , X86::SIN_F     },
739  { X86::SIN_Fp80     , X86::SIN_F     },
740  { X86::SQRT_Fp32    , X86::SQRT_F    },
741  { X86::SQRT_Fp64    , X86::SQRT_F    },
742  { X86::SQRT_Fp80    , X86::SQRT_F    },
743  { X86::ST_Fp32m     , X86::ST_F32m   },
744  { X86::ST_Fp64m     , X86::ST_F64m   },
745  { X86::ST_Fp64m32   , X86::ST_F32m   },
746  { X86::ST_Fp80m32   , X86::ST_F32m   },
747  { X86::ST_Fp80m64   , X86::ST_F64m   },
748  { X86::ST_FpP80m    , X86::ST_FP80m  },
749  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
750  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
751  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
752  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
753  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
754  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
755  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
756  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
757  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
758  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
759  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
760  { X86::SUB_Fp32m    , X86::SUB_F32m  },
761  { X86::SUB_Fp64m    , X86::SUB_F64m  },
762  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
763  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
764  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
765  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
766  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
767  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
768  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
769  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
770  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
771  { X86::TST_Fp32     , X86::TST_F     },
772  { X86::TST_Fp64     , X86::TST_F     },
773  { X86::TST_Fp80     , X86::TST_F     },
774  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
775  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
776  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
777  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
778  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
779  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
780};
781
782static unsigned getConcreteOpcode(unsigned Opcode) {
783  ASSERT_SORTED(OpcodeTable);
784  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
785  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
786  return Opc;
787}
788
789//===----------------------------------------------------------------------===//
790// Helper Methods
791//===----------------------------------------------------------------------===//
792
793// PopTable - Sorted map of instructions to their popping version.  The first
794// element is an instruction, the second is the version which pops.
795//
796static const TableEntry PopTable[] = {
797  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
798
799  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
800  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
801
802  { X86::IST_F16m  , X86::IST_FP16m   },
803  { X86::IST_F32m  , X86::IST_FP32m   },
804
805  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
806
807  { X86::ST_F32m   , X86::ST_FP32m    },
808  { X86::ST_F64m   , X86::ST_FP64m    },
809  { X86::ST_Frr    , X86::ST_FPrr     },
810
811  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
812  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
813
814  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
815
816  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
817  { X86::UCOM_Fr   , X86::UCOM_FPr    },
818};
819
820/// popStackAfter - Pop the current value off of the top of the FP stack after
821/// the specified instruction.  This attempts to be sneaky and combine the pop
822/// into the instruction itself if possible.  The iterator is left pointing to
823/// the last instruction, be it a new pop instruction inserted, or the old
824/// instruction if it was modified in place.
825///
826void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
827  MachineInstr* MI = I;
828  DebugLoc dl = MI->getDebugLoc();
829  ASSERT_SORTED(PopTable);
830  if (StackTop == 0)
831    report_fatal_error("Cannot pop empty stack!");
832  RegMap[Stack[--StackTop]] = ~0;     // Update state
833
834  // Check to see if there is a popping version of this instruction...
835  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
836  if (Opcode != -1) {
837    I->setDesc(TII->get(Opcode));
838    if (Opcode == X86::UCOM_FPPr)
839      I->RemoveOperand(0);
840  } else {    // Insert an explicit pop
841    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
842  }
843}
844
845/// freeStackSlotAfter - Free the specified register from the register stack, so
846/// that it is no longer in a register.  If the register is currently at the top
847/// of the stack, we just pop the current instruction, otherwise we store the
848/// current top-of-stack into the specified slot, then pop the top of stack.
849void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
850  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
851    popStackAfter(I);
852    return;
853  }
854
855  // Otherwise, store the top of stack into the dead slot, killing the operand
856  // without having to add in an explicit xchg then pop.
857  //
858  I = freeStackSlotBefore(++I, FPRegNo);
859}
860
861/// freeStackSlotBefore - Free the specified register without trying any
862/// folding.
863MachineBasicBlock::iterator
864FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
865  unsigned STReg    = getSTReg(FPRegNo);
866  unsigned OldSlot  = getSlot(FPRegNo);
867  unsigned TopReg   = Stack[StackTop-1];
868  Stack[OldSlot]    = TopReg;
869  RegMap[TopReg]    = OldSlot;
870  RegMap[FPRegNo]   = ~0;
871  Stack[--StackTop] = ~0;
872  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
873}
874
875/// adjustLiveRegs - Kill and revive registers such that exactly the FP
876/// registers with a bit in Mask are live.
877void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
878  unsigned Defs = Mask;
879  unsigned Kills = 0;
880  for (unsigned i = 0; i < StackTop; ++i) {
881    unsigned RegNo = Stack[i];
882    if (!(Defs & (1 << RegNo)))
883      // This register is live, but we don't want it.
884      Kills |= (1 << RegNo);
885    else
886      // We don't need to imp-def this live register.
887      Defs &= ~(1 << RegNo);
888  }
889  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
890
891  // Produce implicit-defs for free by using killed registers.
892  while (Kills && Defs) {
893    unsigned KReg = CountTrailingZeros_32(Kills);
894    unsigned DReg = CountTrailingZeros_32(Defs);
895    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
896    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
897    std::swap(RegMap[KReg], RegMap[DReg]);
898    Kills &= ~(1 << KReg);
899    Defs &= ~(1 << DReg);
900  }
901
902  // Kill registers by popping.
903  if (Kills && I != MBB->begin()) {
904    MachineBasicBlock::iterator I2 = llvm::prior(I);
905    for (;;) {
906      unsigned KReg = getStackEntry(0);
907      if (!(Kills & (1 << KReg)))
908        break;
909      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
910      popStackAfter(I2);
911      Kills &= ~(1 << KReg);
912    }
913  }
914
915  // Manually kill the rest.
916  while (Kills) {
917    unsigned KReg = CountTrailingZeros_32(Kills);
918    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
919    freeStackSlotBefore(I, KReg);
920    Kills &= ~(1 << KReg);
921  }
922
923  // Load zeros for all the imp-defs.
924  while(Defs) {
925    unsigned DReg = CountTrailingZeros_32(Defs);
926    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
927    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
928    pushReg(DReg);
929    Defs &= ~(1 << DReg);
930  }
931
932  // Now we should have the correct registers live.
933  DEBUG(dumpStack());
934  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
935}
936
937/// shuffleStackTop - emit fxch instructions before I to shuffle the top
938/// FixCount entries into the order given by FixStack.
939/// FIXME: Is there a better algorithm than insertion sort?
940void FPS::shuffleStackTop(const unsigned char *FixStack,
941                          unsigned FixCount,
942                          MachineBasicBlock::iterator I) {
943  // Move items into place, starting from the desired stack bottom.
944  while (FixCount--) {
945    // Old register at position FixCount.
946    unsigned OldReg = getStackEntry(FixCount);
947    // Desired register at position FixCount.
948    unsigned Reg = FixStack[FixCount];
949    if (Reg == OldReg)
950      continue;
951    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
952    moveToTop(Reg, I);
953    moveToTop(OldReg, I);
954  }
955  DEBUG(dumpStack());
956}
957
958
959//===----------------------------------------------------------------------===//
960// Instruction transformation implementation
961//===----------------------------------------------------------------------===//
962
963/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
964///
965void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
966  MachineInstr *MI = I;
967  unsigned DestReg = getFPReg(MI->getOperand(0));
968
969  // Change from the pseudo instruction to the concrete instruction.
970  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
971  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
972
973  // Result gets pushed on the stack.
974  pushReg(DestReg);
975}
976
977/// handleOneArgFP - fst <mem>, ST(0)
978///
979void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
980  MachineInstr *MI = I;
981  unsigned NumOps = MI->getDesc().getNumOperands();
982  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
983         "Can only handle fst* & ftst instructions!");
984
985  // Is this the last use of the source register?
986  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
987  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
988
989  // FISTP64m is strange because there isn't a non-popping versions.
990  // If we have one _and_ we don't want to pop the operand, duplicate the value
991  // on the stack instead of moving it.  This ensure that popping the value is
992  // always ok.
993  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
994  //
995  if (!KillsSrc &&
996      (MI->getOpcode() == X86::IST_Fp64m32 ||
997       MI->getOpcode() == X86::ISTT_Fp16m32 ||
998       MI->getOpcode() == X86::ISTT_Fp32m32 ||
999       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1000       MI->getOpcode() == X86::IST_Fp64m64 ||
1001       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1002       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1003       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1004       MI->getOpcode() == X86::IST_Fp64m80 ||
1005       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1006       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1007       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1008       MI->getOpcode() == X86::ST_FpP80m)) {
1009    duplicateToTop(Reg, getScratchReg(), I);
1010  } else {
1011    moveToTop(Reg, I);            // Move to the top of the stack...
1012  }
1013
1014  // Convert from the pseudo instruction to the concrete instruction.
1015  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1016  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1017
1018  if (MI->getOpcode() == X86::IST_FP64m ||
1019      MI->getOpcode() == X86::ISTT_FP16m ||
1020      MI->getOpcode() == X86::ISTT_FP32m ||
1021      MI->getOpcode() == X86::ISTT_FP64m ||
1022      MI->getOpcode() == X86::ST_FP80m) {
1023    if (StackTop == 0)
1024      report_fatal_error("Stack empty??");
1025    --StackTop;
1026  } else if (KillsSrc) { // Last use of operand?
1027    popStackAfter(I);
1028  }
1029}
1030
1031
1032/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1033/// replace the value with a newly computed value.  These instructions may have
1034/// non-fp operands after their FP operands.
1035///
1036///  Examples:
1037///     R1 = fchs R2
1038///     R1 = fadd R2, [mem]
1039///
1040void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1041  MachineInstr *MI = I;
1042#ifndef NDEBUG
1043  unsigned NumOps = MI->getDesc().getNumOperands();
1044  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1045#endif
1046
1047  // Is this the last use of the source register?
1048  unsigned Reg = getFPReg(MI->getOperand(1));
1049  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1050
1051  if (KillsSrc) {
1052    // If this is the last use of the source register, just make sure it's on
1053    // the top of the stack.
1054    moveToTop(Reg, I);
1055    if (StackTop == 0)
1056      report_fatal_error("Stack cannot be empty!");
1057    --StackTop;
1058    pushReg(getFPReg(MI->getOperand(0)));
1059  } else {
1060    // If this is not the last use of the source register, _copy_ it to the top
1061    // of the stack.
1062    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1063  }
1064
1065  // Change from the pseudo instruction to the concrete instruction.
1066  MI->RemoveOperand(1);   // Drop the source operand.
1067  MI->RemoveOperand(0);   // Drop the destination operand.
1068  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1069}
1070
1071
1072//===----------------------------------------------------------------------===//
1073// Define tables of various ways to map pseudo instructions
1074//
1075
1076// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1077static const TableEntry ForwardST0Table[] = {
1078  { X86::ADD_Fp32  , X86::ADD_FST0r },
1079  { X86::ADD_Fp64  , X86::ADD_FST0r },
1080  { X86::ADD_Fp80  , X86::ADD_FST0r },
1081  { X86::DIV_Fp32  , X86::DIV_FST0r },
1082  { X86::DIV_Fp64  , X86::DIV_FST0r },
1083  { X86::DIV_Fp80  , X86::DIV_FST0r },
1084  { X86::MUL_Fp32  , X86::MUL_FST0r },
1085  { X86::MUL_Fp64  , X86::MUL_FST0r },
1086  { X86::MUL_Fp80  , X86::MUL_FST0r },
1087  { X86::SUB_Fp32  , X86::SUB_FST0r },
1088  { X86::SUB_Fp64  , X86::SUB_FST0r },
1089  { X86::SUB_Fp80  , X86::SUB_FST0r },
1090};
1091
1092// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1093static const TableEntry ReverseST0Table[] = {
1094  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1095  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1096  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1097  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1098  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1099  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1100  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1101  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1102  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1103  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1104  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1105  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1106};
1107
1108// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1109static const TableEntry ForwardSTiTable[] = {
1110  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1111  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1112  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1113  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1114  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1115  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1116  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1117  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1118  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1119  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1120  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1121  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1122};
1123
1124// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1125static const TableEntry ReverseSTiTable[] = {
1126  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1127  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1128  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1129  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1130  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1131  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1132  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1133  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1134  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1135  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1136  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1137  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1138};
1139
1140
1141/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1142/// instructions which need to be simplified and possibly transformed.
1143///
1144/// Result: ST(0) = fsub  ST(0), ST(i)
1145///         ST(i) = fsub  ST(0), ST(i)
1146///         ST(0) = fsubr ST(0), ST(i)
1147///         ST(i) = fsubr ST(0), ST(i)
1148///
1149void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1150  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1151  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1152  MachineInstr *MI = I;
1153
1154  unsigned NumOperands = MI->getDesc().getNumOperands();
1155  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1156  unsigned Dest = getFPReg(MI->getOperand(0));
1157  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1158  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1159  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1160  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1161  DebugLoc dl = MI->getDebugLoc();
1162
1163  unsigned TOS = getStackEntry(0);
1164
1165  // One of our operands must be on the top of the stack.  If neither is yet, we
1166  // need to move one.
1167  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1168    // We can choose to move either operand to the top of the stack.  If one of
1169    // the operands is killed by this instruction, we want that one so that we
1170    // can update right on top of the old version.
1171    if (KillsOp0) {
1172      moveToTop(Op0, I);         // Move dead operand to TOS.
1173      TOS = Op0;
1174    } else if (KillsOp1) {
1175      moveToTop(Op1, I);
1176      TOS = Op1;
1177    } else {
1178      // All of the operands are live after this instruction executes, so we
1179      // cannot update on top of any operand.  Because of this, we must
1180      // duplicate one of the stack elements to the top.  It doesn't matter
1181      // which one we pick.
1182      //
1183      duplicateToTop(Op0, Dest, I);
1184      Op0 = TOS = Dest;
1185      KillsOp0 = true;
1186    }
1187  } else if (!KillsOp0 && !KillsOp1) {
1188    // If we DO have one of our operands at the top of the stack, but we don't
1189    // have a dead operand, we must duplicate one of the operands to a new slot
1190    // on the stack.
1191    duplicateToTop(Op0, Dest, I);
1192    Op0 = TOS = Dest;
1193    KillsOp0 = true;
1194  }
1195
1196  // Now we know that one of our operands is on the top of the stack, and at
1197  // least one of our operands is killed by this instruction.
1198  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1199         "Stack conditions not set up right!");
1200
1201  // We decide which form to use based on what is on the top of the stack, and
1202  // which operand is killed by this instruction.
1203  const TableEntry *InstTable;
1204  bool isForward = TOS == Op0;
1205  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1206  if (updateST0) {
1207    if (isForward)
1208      InstTable = ForwardST0Table;
1209    else
1210      InstTable = ReverseST0Table;
1211  } else {
1212    if (isForward)
1213      InstTable = ForwardSTiTable;
1214    else
1215      InstTable = ReverseSTiTable;
1216  }
1217
1218  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1219                      MI->getOpcode());
1220  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1221
1222  // NotTOS - The register which is not on the top of stack...
1223  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1224
1225  // Replace the old instruction with a new instruction
1226  MBB->remove(I++);
1227  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1228
1229  // If both operands are killed, pop one off of the stack in addition to
1230  // overwriting the other one.
1231  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1232    assert(!updateST0 && "Should have updated other operand!");
1233    popStackAfter(I);   // Pop the top of stack
1234  }
1235
1236  // Update stack information so that we know the destination register is now on
1237  // the stack.
1238  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1239  assert(UpdatedSlot < StackTop && Dest < 7);
1240  Stack[UpdatedSlot]   = Dest;
1241  RegMap[Dest]         = UpdatedSlot;
1242  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1243}
1244
1245/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1246/// register arguments and no explicit destinations.
1247///
1248void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1249  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1250  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1251  MachineInstr *MI = I;
1252
1253  unsigned NumOperands = MI->getDesc().getNumOperands();
1254  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1255  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1256  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1257  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1258  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1259
1260  // Make sure the first operand is on the top of stack, the other one can be
1261  // anywhere.
1262  moveToTop(Op0, I);
1263
1264  // Change from the pseudo instruction to the concrete instruction.
1265  MI->getOperand(0).setReg(getSTReg(Op1));
1266  MI->RemoveOperand(1);
1267  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1268
1269  // If any of the operands are killed by this instruction, free them.
1270  if (KillsOp0) freeStackSlotAfter(I, Op0);
1271  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1272}
1273
1274/// handleCondMovFP - Handle two address conditional move instructions.  These
1275/// instructions move a st(i) register to st(0) iff a condition is true.  These
1276/// instructions require that the first operand is at the top of the stack, but
1277/// otherwise don't modify the stack at all.
1278void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1279  MachineInstr *MI = I;
1280
1281  unsigned Op0 = getFPReg(MI->getOperand(0));
1282  unsigned Op1 = getFPReg(MI->getOperand(2));
1283  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1284
1285  // The first operand *must* be on the top of the stack.
1286  moveToTop(Op0, I);
1287
1288  // Change the second operand to the stack register that the operand is in.
1289  // Change from the pseudo instruction to the concrete instruction.
1290  MI->RemoveOperand(0);
1291  MI->RemoveOperand(1);
1292  MI->getOperand(0).setReg(getSTReg(Op1));
1293  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1294
1295  // If we kill the second operand, make sure to pop it from the stack.
1296  if (Op0 != Op1 && KillsOp1) {
1297    // Get this value off of the register stack.
1298    freeStackSlotAfter(I, Op1);
1299  }
1300}
1301
1302
1303/// handleSpecialFP - Handle special instructions which behave unlike other
1304/// floating point instructions.  This is primarily intended for use by pseudo
1305/// instructions.
1306///
1307void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1308  MachineInstr *MI = I;
1309  DebugLoc dl = MI->getDebugLoc();
1310  switch (MI->getOpcode()) {
1311  default: llvm_unreachable("Unknown SpecialFP instruction!");
1312  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1313  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1314  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
1315    assert(StackTop == 0 && "Stack should be empty after a call!");
1316    pushReg(getFPReg(MI->getOperand(0)));
1317    break;
1318  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1319  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1320  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1321    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1322    // The pattern we expect is:
1323    //  CALL
1324    //  FP1 = FpGET_ST0
1325    //  FP4 = FpGET_ST1
1326    //
1327    // At this point, we've pushed FP1 on the top of stack, so it should be
1328    // present if it isn't dead.  If it was dead, we already emitted a pop to
1329    // remove it from the stack and StackTop = 0.
1330
1331    // Push FP4 as top of stack next.
1332    pushReg(getFPReg(MI->getOperand(0)));
1333
1334    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1335    // dead.  In this case, the ST(1) value is the only thing that is live, so
1336    // it should be on the TOS (after the pop that was emitted) and is.  Just
1337    // continue in this case.
1338    if (StackTop == 1)
1339      break;
1340
1341    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1342    // elements so that our accounting is correct.
1343    unsigned RegOnTop = getStackEntry(0);
1344    unsigned RegNo = getStackEntry(1);
1345
1346    // Swap the slots the regs are in.
1347    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1348
1349    // Swap stack slot contents.
1350    if (RegMap[RegOnTop] >= StackTop)
1351      report_fatal_error("Access past stack top!");
1352    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1353    break;
1354  }
1355  case X86::FpSET_ST0_32:
1356  case X86::FpSET_ST0_64:
1357  case X86::FpSET_ST0_80: {
1358    // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1359    // arguments that use an st constraint. We expect a sequence of
1360    // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1361    unsigned Op0 = getFPReg(MI->getOperand(0));
1362
1363    if (!MI->killsRegister(X86::FP0 + Op0)) {
1364      // Duplicate Op0 into a temporary on the stack top.
1365      duplicateToTop(Op0, getScratchReg(), I);
1366    } else {
1367      // Op0 is killed, so just swap it into position.
1368      moveToTop(Op0, I);
1369    }
1370    --StackTop;   // "Forget" we have something on the top of stack!
1371    break;
1372  }
1373  case X86::FpSET_ST1_32:
1374  case X86::FpSET_ST1_64:
1375  case X86::FpSET_ST1_80: {
1376    // Set up st(1) for inline asm. We are assuming that st(0) has already been
1377    // set up by FpSET_ST0, and our StackTop is off by one because of it.
1378    unsigned Op0 = getFPReg(MI->getOperand(0));
1379    // Restore the actual StackTop from before Fp_SET_ST0.
1380    // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1381    // are not enforcing the constraint.
1382    ++StackTop;
1383    unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1384    if (!MI->killsRegister(X86::FP0 + Op0)) {
1385      duplicateToTop(Op0, getScratchReg(), I);
1386      moveToTop(RegOnTop, I);
1387    } else if (getSTReg(Op0) != X86::ST1) {
1388      // We have the wrong value at st(1). Shuffle! Untested!
1389      moveToTop(getStackEntry(1), I);
1390      moveToTop(Op0, I);
1391      moveToTop(RegOnTop, I);
1392    }
1393    assert(StackTop >= 2 && "Too few live registers");
1394    StackTop -= 2; // "Forget" both st(0) and st(1).
1395    break;
1396  }
1397  case X86::MOV_Fp3232:
1398  case X86::MOV_Fp3264:
1399  case X86::MOV_Fp6432:
1400  case X86::MOV_Fp6464:
1401  case X86::MOV_Fp3280:
1402  case X86::MOV_Fp6480:
1403  case X86::MOV_Fp8032:
1404  case X86::MOV_Fp8064:
1405  case X86::MOV_Fp8080: {
1406    const MachineOperand &MO1 = MI->getOperand(1);
1407    unsigned SrcReg = getFPReg(MO1);
1408
1409    const MachineOperand &MO0 = MI->getOperand(0);
1410    unsigned DestReg = getFPReg(MO0);
1411    if (MI->killsRegister(X86::FP0+SrcReg)) {
1412      // If the input operand is killed, we can just change the owner of the
1413      // incoming stack slot into the result.
1414      unsigned Slot = getSlot(SrcReg);
1415      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1416      Stack[Slot] = DestReg;
1417      RegMap[DestReg] = Slot;
1418
1419    } else {
1420      // For FMOV we just duplicate the specified value to a new stack slot.
1421      // This could be made better, but would require substantial changes.
1422      duplicateToTop(SrcReg, DestReg, I);
1423    }
1424    }
1425    break;
1426  case TargetOpcode::INLINEASM: {
1427    // The inline asm MachineInstr currently only *uses* FP registers for the
1428    // 'f' constraint.  These should be turned into the current ST(x) register
1429    // in the machine instr.  Also, any kills should be explicitly popped after
1430    // the inline asm.
1431    unsigned Kills = 0;
1432    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1433      MachineOperand &Op = MI->getOperand(i);
1434      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1435        continue;
1436      assert(Op.isUse() && "Only handle inline asm uses right now");
1437
1438      unsigned FPReg = getFPReg(Op);
1439      Op.setReg(getSTReg(FPReg));
1440
1441      // If we kill this operand, make sure to pop it from the stack after the
1442      // asm.  We just remember it for now, and pop them all off at the end in
1443      // a batch.
1444      if (Op.isKill())
1445        Kills |= 1U << FPReg;
1446    }
1447
1448    // If this asm kills any FP registers (is the last use of them) we must
1449    // explicitly emit pop instructions for them.  Do this now after the asm has
1450    // executed so that the ST(x) numbers are not off (which would happen if we
1451    // did this inline with operand rewriting).
1452    //
1453    // Note: this might be a non-optimal pop sequence.  We might be able to do
1454    // better by trying to pop in stack order or something.
1455    MachineBasicBlock::iterator InsertPt = MI;
1456    while (Kills) {
1457      unsigned FPReg = CountTrailingZeros_32(Kills);
1458      freeStackSlotAfter(InsertPt, FPReg);
1459      Kills &= ~(1U << FPReg);
1460    }
1461    // Don't delete the inline asm!
1462    return;
1463  }
1464
1465  case X86::RET:
1466  case X86::RETI:
1467    // If RET has an FP register use operand, pass the first one in ST(0) and
1468    // the second one in ST(1).
1469
1470    // Find the register operands.
1471    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1472    unsigned LiveMask = 0;
1473
1474    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1475      MachineOperand &Op = MI->getOperand(i);
1476      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1477        continue;
1478      // FP Register uses must be kills unless there are two uses of the same
1479      // register, in which case only one will be a kill.
1480      assert(Op.isUse() &&
1481             (Op.isKill() ||                        // Marked kill.
1482              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1483              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1484             "Ret only defs operands, and values aren't live beyond it");
1485
1486      if (FirstFPRegOp == ~0U)
1487        FirstFPRegOp = getFPReg(Op);
1488      else {
1489        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1490        SecondFPRegOp = getFPReg(Op);
1491      }
1492      LiveMask |= (1 << getFPReg(Op));
1493
1494      // Remove the operand so that later passes don't see it.
1495      MI->RemoveOperand(i);
1496      --i, --e;
1497    }
1498
1499    // We may have been carrying spurious live-ins, so make sure only the returned
1500    // registers are left live.
1501    adjustLiveRegs(LiveMask, MI);
1502    if (!LiveMask) return;  // Quick check to see if any are possible.
1503
1504    // There are only four possibilities here:
1505    // 1) we are returning a single FP value.  In this case, it has to be in
1506    //    ST(0) already, so just declare success by removing the value from the
1507    //    FP Stack.
1508    if (SecondFPRegOp == ~0U) {
1509      // Assert that the top of stack contains the right FP register.
1510      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1511             "Top of stack not the right register for RET!");
1512
1513      // Ok, everything is good, mark the value as not being on the stack
1514      // anymore so that our assertion about the stack being empty at end of
1515      // block doesn't fire.
1516      StackTop = 0;
1517      return;
1518    }
1519
1520    // Otherwise, we are returning two values:
1521    // 2) If returning the same value for both, we only have one thing in the FP
1522    //    stack.  Consider:  RET FP1, FP1
1523    if (StackTop == 1) {
1524      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1525             "Stack misconfiguration for RET!");
1526
1527      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1528      // register to hold it.
1529      unsigned NewReg = getScratchReg();
1530      duplicateToTop(FirstFPRegOp, NewReg, MI);
1531      FirstFPRegOp = NewReg;
1532    }
1533
1534    /// Okay we know we have two different FPx operands now:
1535    assert(StackTop == 2 && "Must have two values live!");
1536
1537    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1538    ///    in ST(1).  In this case, emit an fxch.
1539    if (getStackEntry(0) == SecondFPRegOp) {
1540      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1541      moveToTop(FirstFPRegOp, MI);
1542    }
1543
1544    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1545    /// ST(1).  Just remove both from our understanding of the stack and return.
1546    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1547    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1548    StackTop = 0;
1549    return;
1550  }
1551
1552  I = MBB->erase(I);  // Remove the pseudo instruction
1553
1554  // We want to leave I pointing to the previous instruction, but what if we
1555  // just erased the first instruction?
1556  if (I == MBB->begin()) {
1557    DEBUG(dbgs() << "Inserting dummy KILL\n");
1558    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1559  } else
1560    --I;
1561}
1562
1563// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1564bool FPS::translateCopy(MachineInstr *MI) {
1565  unsigned DstReg = MI->getOperand(0).getReg();
1566  unsigned SrcReg = MI->getOperand(1).getReg();
1567
1568  if (DstReg == X86::ST0) {
1569    MI->setDesc(TII->get(X86::FpSET_ST0_80));
1570    MI->RemoveOperand(0);
1571    return true;
1572  }
1573  if (DstReg == X86::ST1) {
1574    MI->setDesc(TII->get(X86::FpSET_ST1_80));
1575    MI->RemoveOperand(0);
1576    return true;
1577  }
1578  if (SrcReg == X86::ST0) {
1579    MI->setDesc(TII->get(X86::FpGET_ST0_80));
1580    return true;
1581  }
1582  if (SrcReg == X86::ST1) {
1583    MI->setDesc(TII->get(X86::FpGET_ST1_80));
1584    return true;
1585  }
1586  if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1587    MI->setDesc(TII->get(X86::MOV_Fp8080));
1588    return true;
1589  }
1590  return false;
1591}
1592