X86FloatingPoint.cpp revision 4cf15e7a3bed2ff3a7fa87f18cdf65b7eecccee2
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Function.h"     // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h"  // FIXME: remove when using MBB CFG!
42#include "Support/Debug.h"
43#include "Support/DepthFirstIterator.h"
44#include "Support/Statistic.h"
45#include "Support/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53
54  struct FPS : public MachineFunctionPass {
55    virtual bool runOnMachineFunction(MachineFunction &MF);
56
57    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<LiveVariables>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63  private:
64    LiveVariables     *LV;    // Live variable info for current function...
65    MachineBasicBlock *MBB;   // Current basic block
66    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67    unsigned RegMap[8];       // Track which stack slot contains each register
68    unsigned StackTop;        // The current top of the FP stack.
69
70    void dumpStack() const {
71      std::cerr << "Stack contents:";
72      for (unsigned i = 0; i != StackTop; ++i) {
73	std::cerr << " FP" << Stack[i];
74	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75      }
76      std::cerr << "\n";
77    }
78  private:
79    // getSlot - Return the stack slot number a particular register number is
80    // in...
81    unsigned getSlot(unsigned RegNo) const {
82      assert(RegNo < 8 && "Regno out of range!");
83      return RegMap[RegNo];
84    }
85
86    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87    unsigned getStackEntry(unsigned STi) const {
88      assert(STi < StackTop && "Access past stack top!");
89      return Stack[StackTop-1-STi];
90    }
91
92    // getSTReg - Return the X86::ST(i) register which contains the specified
93    // FP<RegNo> register
94    unsigned getSTReg(unsigned RegNo) const {
95      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96    }
97
98    // pushReg - Push the specified FP<n> register onto the stack
99    void pushReg(unsigned Reg) {
100      assert(Reg < 8 && "Register number out of range!");
101      assert(StackTop < 8 && "Stack overflow!");
102      Stack[StackTop] = Reg;
103      RegMap[Reg] = StackTop++;
104    }
105
106    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108      if (!isAtTop(RegNo)) {
109	unsigned Slot = getSlot(RegNo);
110	unsigned STReg = getSTReg(RegNo);
111	unsigned RegOnTop = getStackEntry(0);
112
113	// Swap the slots the regs are in
114	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116	// Swap stack slot contents
117	assert(RegMap[RegOnTop] < StackTop);
118	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120	// Emit an fxch to update the runtime processors version of the state
121	BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
122	NumFXCH++;
123      }
124    }
125
126    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
127      unsigned STReg = getSTReg(RegNo);
128      pushReg(AsReg);   // New register on top of stack
129
130      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
131    }
132
133    // popStackAfter - Pop the current value off of the top of the FP stack
134    // after the specified instruction.
135    void popStackAfter(MachineBasicBlock::iterator &I);
136
137    // freeStackSlotAfter - Free the specified register from the register stack,
138    // so that it is no longer in a register.  If the register is currently at
139    // the top of the stack, we just pop the current instruction, otherwise we
140    // store the current top-of-stack into the specified slot, then pop the top
141    // of stack.
142    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
143
144    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
145
146    void handleZeroArgFP(MachineBasicBlock::iterator &I);
147    void handleOneArgFP(MachineBasicBlock::iterator &I);
148    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
149    void handleTwoArgFP(MachineBasicBlock::iterator &I);
150    void handleCondMovFP(MachineBasicBlock::iterator &I);
151    void handleSpecialFP(MachineBasicBlock::iterator &I);
152  };
153}
154
155FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
156
157/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
158/// register references into FP stack references.
159///
160bool FPS::runOnMachineFunction(MachineFunction &MF) {
161  LV = &getAnalysis<LiveVariables>();
162  StackTop = 0;
163
164  // Figure out the mapping of MBB's to BB's.
165  //
166  // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
167  // we will need to extend this when one llvm basic block can codegen to
168  // multiple MBBs.
169  //
170  // FIXME again: Just use the mapping established by LiveVariables!
171  //
172  std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
173  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
174    MBBMap[I->getBasicBlock()] = I;
175
176  // Process the function in depth first order so that we process at least one
177  // of the predecessors for every reachable block in the function.
178  std::set<const BasicBlock*> Processed;
179  const BasicBlock *Entry = MF.getFunction()->begin();
180
181  bool Changed = false;
182  for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
183         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
184       I != E; ++I)
185    Changed |= processBasicBlock(MF, *MBBMap[*I]);
186
187  assert(MBBMap.size() == Processed.size() &&
188         "Doesn't handle unreachable code yet!");
189
190  return Changed;
191}
192
193/// processBasicBlock - Loop over all of the instructions in the basic block,
194/// transforming FP instructions into their stack form.
195///
196bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
197  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
198  bool Changed = false;
199  MBB = &BB;
200
201  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
202    MachineInstr *MI = I;
203    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
204    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
205      continue;  // Efficiently ignore non-fp insts!
206
207    MachineInstr *PrevMI = 0;
208    if (I != BB.begin())
209        PrevMI = prior(I);
210
211    ++NumFP;  // Keep track of # of pseudo instrs
212    DEBUG(std::cerr << "\nFPInst:\t";
213	  MI->print(std::cerr, MF.getTarget()));
214
215    // Get dead variables list now because the MI pointer may be deleted as part
216    // of processing!
217    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
218    LiveVariables::killed_iterator IE = LV->dead_end(MI);
219
220    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
221	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
222	  LiveVariables::killed_iterator E = LV->killed_end(MI);
223	  if (I != E) {
224	    std::cerr << "Killed Operands:";
225	    for (; I != E; ++I)
226	      std::cerr << " %" << MRI->getName(I->second);
227	    std::cerr << "\n";
228	  });
229
230    switch (Flags & X86II::FPTypeMask) {
231    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
232    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
233    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
234    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
235    case X86II::CondMovFP:  handleCondMovFP(I); break;
236    case X86II::SpecialFP:  handleSpecialFP(I); break;
237    default: assert(0 && "Unknown FP Type!");
238    }
239
240    // Check to see if any of the values defined by this instruction are dead
241    // after definition.  If so, pop them.
242    for (; IB != IE; ++IB) {
243      unsigned Reg = IB->second;
244      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
245	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
246	++I;                         // Insert fxch AFTER the instruction
247	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
248	--I;                         // Move to fxch or old instruction
249	popStackAfter(I);            // Pop the top of the stack, killing value
250      }
251    }
252
253    // Print out all of the instructions expanded to if -debug
254    DEBUG(
255      MachineBasicBlock::iterator PrevI(PrevMI);
256      if (I == PrevI) {
257        std::cerr << "Just deleted pseudo instruction\n";
258      } else {
259        MachineBasicBlock::iterator Start = I;
260        // Rewind to first instruction newly inserted.
261        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
262        std::cerr << "Inserted instructions:\n\t";
263        Start->print(std::cerr, MF.getTarget());
264        while (++Start != next(I));
265      }
266      dumpStack();
267    );
268
269    Changed = true;
270  }
271
272  assert(StackTop == 0 && "Stack not empty at end of basic block?");
273  return Changed;
274}
275
276//===----------------------------------------------------------------------===//
277// Efficient Lookup Table Support
278//===----------------------------------------------------------------------===//
279
280namespace {
281  struct TableEntry {
282    unsigned from;
283    unsigned to;
284    bool operator<(const TableEntry &TE) const { return from < TE.from; }
285    bool operator<(unsigned V) const { return from < V; }
286  };
287}
288
289static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
290  for (unsigned i = 0; i != NumEntries-1; ++i)
291    if (!(Table[i] < Table[i+1])) return false;
292  return true;
293}
294
295static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
296  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
297  if (I != Table+N && I->from == Opcode)
298    return I->to;
299  return -1;
300}
301
302#define ARRAY_SIZE(TABLE)  \
303   (sizeof(TABLE)/sizeof(TABLE[0]))
304
305#ifdef NDEBUG
306#define ASSERT_SORTED(TABLE)
307#else
308#define ASSERT_SORTED(TABLE)                                              \
309  { static bool TABLE##Checked = false;                                   \
310    if (!TABLE##Checked)                                                  \
311       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
312              "All lookup tables must be sorted for efficient access!");  \
313  }
314#endif
315
316
317//===----------------------------------------------------------------------===//
318// Helper Methods
319//===----------------------------------------------------------------------===//
320
321// PopTable - Sorted map of instructions to their popping version.  The first
322// element is an instruction, the second is the version which pops.
323//
324static const TableEntry PopTable[] = {
325  { X86::FADDrST0 , X86::FADDPrST0  },
326
327  { X86::FDIVRrST0, X86::FDIVRPrST0 },
328  { X86::FDIVrST0 , X86::FDIVPrST0  },
329
330  { X86::FIST16m  , X86::FISTP16m   },
331  { X86::FIST32m  , X86::FISTP32m   },
332
333  { X86::FMULrST0 , X86::FMULPrST0  },
334
335  { X86::FST32m   , X86::FSTP32m    },
336  { X86::FST64m   , X86::FSTP64m    },
337  { X86::FSTrr    , X86::FSTPrr     },
338
339  { X86::FSUBRrST0, X86::FSUBRPrST0 },
340  { X86::FSUBrST0 , X86::FSUBPrST0  },
341
342  { X86::FUCOMPr  , X86::FUCOMPPr   },
343  { X86::FUCOMr   , X86::FUCOMPr    },
344};
345
346/// popStackAfter - Pop the current value off of the top of the FP stack after
347/// the specified instruction.  This attempts to be sneaky and combine the pop
348/// into the instruction itself if possible.  The iterator is left pointing to
349/// the last instruction, be it a new pop instruction inserted, or the old
350/// instruction if it was modified in place.
351///
352void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
353  ASSERT_SORTED(PopTable);
354  assert(StackTop > 0 && "Cannot pop empty stack!");
355  RegMap[Stack[--StackTop]] = ~0;     // Update state
356
357  // Check to see if there is a popping version of this instruction...
358  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
359  if (Opcode != -1) {
360    I->setOpcode(Opcode);
361    if (Opcode == X86::FUCOMPPr)
362      I->RemoveOperand(0);
363
364  } else {    // Insert an explicit pop
365    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
366  }
367}
368
369/// freeStackSlotAfter - Free the specified register from the register stack, so
370/// that it is no longer in a register.  If the register is currently at the top
371/// of the stack, we just pop the current instruction, otherwise we store the
372/// current top-of-stack into the specified slot, then pop the top of stack.
373void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
374  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
375    popStackAfter(I);
376    return;
377  }
378
379  // Otherwise, store the top of stack into the dead slot, killing the operand
380  // without having to add in an explicit xchg then pop.
381  //
382  unsigned STReg    = getSTReg(FPRegNo);
383  unsigned OldSlot  = getSlot(FPRegNo);
384  unsigned TopReg   = Stack[StackTop-1];
385  Stack[OldSlot]    = TopReg;
386  RegMap[TopReg]    = OldSlot;
387  RegMap[FPRegNo]   = ~0;
388  Stack[--StackTop] = ~0;
389  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
390}
391
392
393static unsigned getFPReg(const MachineOperand &MO) {
394  assert(MO.isRegister() && "Expected an FP register!");
395  unsigned Reg = MO.getReg();
396  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
397  return Reg - X86::FP0;
398}
399
400
401//===----------------------------------------------------------------------===//
402// Instruction transformation implementation
403//===----------------------------------------------------------------------===//
404
405/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
406///
407void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
408  MachineInstr *MI = I;
409  unsigned DestReg = getFPReg(MI->getOperand(0));
410  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
411
412  // Result gets pushed on the stack...
413  pushReg(DestReg);
414}
415
416/// handleOneArgFP - fst <mem>, ST(0)
417///
418void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
419  MachineInstr *MI = I;
420  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
421         "Can only handle fst* & ftst instructions!");
422
423  // Is this the last use of the source register?
424  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
425  bool KillsSrc = false;
426  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
427	 E = LV->killed_end(MI); KI != E; ++KI)
428    KillsSrc |= KI->second == X86::FP0+Reg;
429
430  // FSTP80r and FISTP64r are strange because there are no non-popping versions.
431  // If we have one _and_ we don't want to pop the operand, duplicate the value
432  // on the stack instead of moving it.  This ensure that popping the value is
433  // always ok.
434  //
435  if ((MI->getOpcode() == X86::FSTP80m ||
436       MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
437    duplicateToTop(Reg, 7 /*temp register*/, I);
438  } else {
439    moveToTop(Reg, I);            // Move to the top of the stack...
440  }
441  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
442
443  if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
444    assert(StackTop > 0 && "Stack empty??");
445    --StackTop;
446  } else if (KillsSrc) { // Last use of operand?
447    popStackAfter(I);
448  }
449}
450
451
452/// handleOneArgFPRW: Handle instructions that read from the top of stack and
453/// replace the value with a newly computed value.  These instructions may have
454/// non-fp operands after their FP operands.
455///
456///  Examples:
457///     R1 = fchs R2
458///     R1 = fadd R2, [mem]
459///
460void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
461  MachineInstr *MI = I;
462  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
463
464  // Is this the last use of the source register?
465  unsigned Reg = getFPReg(MI->getOperand(1));
466  bool KillsSrc = false;
467  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
468	 E = LV->killed_end(MI); KI != E; ++KI)
469    KillsSrc |= KI->second == X86::FP0+Reg;
470
471  if (KillsSrc) {
472    // If this is the last use of the source register, just make sure it's on
473    // the top of the stack.
474    moveToTop(Reg, I);
475    assert(StackTop > 0 && "Stack cannot be empty!");
476    --StackTop;
477    pushReg(getFPReg(MI->getOperand(0)));
478  } else {
479    // If this is not the last use of the source register, _copy_ it to the top
480    // of the stack.
481    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
482  }
483
484  MI->RemoveOperand(1);   // Drop the source operand.
485  MI->RemoveOperand(0);   // Drop the destination operand.
486}
487
488
489//===----------------------------------------------------------------------===//
490// Define tables of various ways to map pseudo instructions
491//
492
493// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
494static const TableEntry ForwardST0Table[] = {
495  { X86::FpADD,  X86::FADDST0r  },
496  { X86::FpDIV,  X86::FDIVST0r  },
497  { X86::FpMUL,  X86::FMULST0r  },
498  { X86::FpSUB,  X86::FSUBST0r  },
499  { X86::FpUCOM, X86::FUCOMr    },
500};
501
502// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
503static const TableEntry ReverseST0Table[] = {
504  { X86::FpADD,  X86::FADDST0r  },   // commutative
505  { X86::FpDIV,  X86::FDIVRST0r },
506  { X86::FpMUL,  X86::FMULST0r  },   // commutative
507  { X86::FpSUB,  X86::FSUBRST0r },
508  { X86::FpUCOM, ~0             },
509};
510
511// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
512static const TableEntry ForwardSTiTable[] = {
513  { X86::FpADD,  X86::FADDrST0  },   // commutative
514  { X86::FpDIV,  X86::FDIVRrST0 },
515  { X86::FpMUL,  X86::FMULrST0  },   // commutative
516  { X86::FpSUB,  X86::FSUBRrST0 },
517  { X86::FpUCOM, X86::FUCOMr    },
518};
519
520// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
521static const TableEntry ReverseSTiTable[] = {
522  { X86::FpADD,  X86::FADDrST0 },
523  { X86::FpDIV,  X86::FDIVrST0 },
524  { X86::FpMUL,  X86::FMULrST0 },
525  { X86::FpSUB,  X86::FSUBrST0 },
526  { X86::FpUCOM, ~0            },
527};
528
529
530/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
531/// instructions which need to be simplified and possibly transformed.
532///
533/// Result: ST(0) = fsub  ST(0), ST(i)
534///         ST(i) = fsub  ST(0), ST(i)
535///         ST(0) = fsubr ST(0), ST(i)
536///         ST(i) = fsubr ST(0), ST(i)
537///
538/// In addition to three address instructions, this also handles the FpUCOM
539/// instruction which only has two operands, but no destination.  This
540/// instruction is also annoying because there is no "reverse" form of it
541/// available.
542///
543void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
544  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
545  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
546  MachineInstr *MI = I;
547
548  unsigned NumOperands = MI->getNumOperands();
549  assert(NumOperands == 3 ||
550	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
551	 "Illegal TwoArgFP instruction!");
552  unsigned Dest = getFPReg(MI->getOperand(0));
553  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
554  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
555  bool KillsOp0 = false, KillsOp1 = false;
556
557  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
558	 E = LV->killed_end(MI); KI != E; ++KI) {
559    KillsOp0 |= (KI->second == X86::FP0+Op0);
560    KillsOp1 |= (KI->second == X86::FP0+Op1);
561  }
562
563  // If this is an FpUCOM instruction, we must make sure the first operand is on
564  // the top of stack, the other one can be anywhere...
565  if (MI->getOpcode() == X86::FpUCOM)
566    moveToTop(Op0, I);
567
568  unsigned TOS = getStackEntry(0);
569
570  // One of our operands must be on the top of the stack.  If neither is yet, we
571  // need to move one.
572  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
573    // We can choose to move either operand to the top of the stack.  If one of
574    // the operands is killed by this instruction, we want that one so that we
575    // can update right on top of the old version.
576    if (KillsOp0) {
577      moveToTop(Op0, I);         // Move dead operand to TOS.
578      TOS = Op0;
579    } else if (KillsOp1) {
580      moveToTop(Op1, I);
581      TOS = Op1;
582    } else {
583      // All of the operands are live after this instruction executes, so we
584      // cannot update on top of any operand.  Because of this, we must
585      // duplicate one of the stack elements to the top.  It doesn't matter
586      // which one we pick.
587      //
588      duplicateToTop(Op0, Dest, I);
589      Op0 = TOS = Dest;
590      KillsOp0 = true;
591    }
592  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
593    // If we DO have one of our operands at the top of the stack, but we don't
594    // have a dead operand, we must duplicate one of the operands to a new slot
595    // on the stack.
596    duplicateToTop(Op0, Dest, I);
597    Op0 = TOS = Dest;
598    KillsOp0 = true;
599  }
600
601  // Now we know that one of our operands is on the top of the stack, and at
602  // least one of our operands is killed by this instruction.
603  assert((TOS == Op0 || TOS == Op1) &&
604	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
605	 "Stack conditions not set up right!");
606
607  // We decide which form to use based on what is on the top of the stack, and
608  // which operand is killed by this instruction.
609  const TableEntry *InstTable;
610  bool isForward = TOS == Op0;
611  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
612  if (updateST0) {
613    if (isForward)
614      InstTable = ForwardST0Table;
615    else
616      InstTable = ReverseST0Table;
617  } else {
618    if (isForward)
619      InstTable = ForwardSTiTable;
620    else
621      InstTable = ReverseSTiTable;
622  }
623
624  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
625  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
626
627  // NotTOS - The register which is not on the top of stack...
628  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
629
630  // Replace the old instruction with a new instruction
631  MBB->remove(I++);
632  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
633
634  // If both operands are killed, pop one off of the stack in addition to
635  // overwriting the other one.
636  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
637    assert(!updateST0 && "Should have updated other operand!");
638    popStackAfter(I);   // Pop the top of stack
639  }
640
641  // Insert an explicit pop of the "updated" operand for FUCOM
642  if (MI->getOpcode() == X86::FpUCOM) {
643    if (KillsOp0 && !KillsOp1)
644      popStackAfter(I);   // If we kill the first operand, pop it!
645    else if (KillsOp1 && Op0 != Op1)
646      freeStackSlotAfter(I, Op1);
647  }
648
649  // Update stack information so that we know the destination register is now on
650  // the stack.
651  if (MI->getOpcode() != X86::FpUCOM) {
652    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
653    assert(UpdatedSlot < StackTop && Dest < 7);
654    Stack[UpdatedSlot]   = Dest;
655    RegMap[Dest]         = UpdatedSlot;
656  }
657  delete MI;   // Remove the old instruction
658}
659
660/// handleCondMovFP - Handle two address conditional move instructions.  These
661/// instructions move a st(i) register to st(0) iff a condition is true.  These
662/// instructions require that the first operand is at the top of the stack, but
663/// otherwise don't modify the stack at all.
664void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
665  MachineInstr *MI = I;
666
667  unsigned Op0 = getFPReg(MI->getOperand(0));
668  unsigned Op1 = getFPReg(MI->getOperand(1));
669
670  // The first operand *must* be on the top of the stack.
671  moveToTop(Op0, I);
672
673  // Change the second operand to the stack register that the operand is in.
674  MI->RemoveOperand(0);
675  MI->getOperand(0).setReg(getSTReg(Op1));
676
677  // If we kill the second operand, make sure to pop it from the stack.
678  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
679	 E = LV->killed_end(MI); KI != E; ++KI)
680    if (KI->second == X86::FP0+Op1) {
681      // Get this value off of the register stack.
682      freeStackSlotAfter(I, Op1);
683      break;
684    }
685}
686
687
688/// handleSpecialFP - Handle special instructions which behave unlike other
689/// floating point instructions.  This is primarily intended for use by pseudo
690/// instructions.
691///
692void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
693  MachineInstr *MI = I;
694  switch (MI->getOpcode()) {
695  default: assert(0 && "Unknown SpecialFP instruction!");
696  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
697    assert(StackTop == 0 && "Stack should be empty after a call!");
698    pushReg(getFPReg(MI->getOperand(0)));
699    break;
700  case X86::FpSETRESULT:
701    assert(StackTop == 1 && "Stack should have one element on it to return!");
702    --StackTop;   // "Forget" we have something on the top of stack!
703    break;
704  case X86::FpMOV: {
705    unsigned SrcReg = getFPReg(MI->getOperand(1));
706    unsigned DestReg = getFPReg(MI->getOperand(0));
707    bool KillsSrc = false;
708    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
709	   E = LV->killed_end(MI); KI != E; ++KI)
710      KillsSrc |= KI->second == X86::FP0+SrcReg;
711
712    if (KillsSrc) {
713      // If the input operand is killed, we can just change the owner of the
714      // incoming stack slot into the result.
715      unsigned Slot = getSlot(SrcReg);
716      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
717      Stack[Slot] = DestReg;
718      RegMap[DestReg] = Slot;
719
720    } else {
721      // For FMOV we just duplicate the specified value to a new stack slot.
722      // This could be made better, but would require substantial changes.
723      duplicateToTop(SrcReg, DestReg, I);
724    }
725    break;
726  }
727  }
728
729  I = MBB->erase(I);  // Remove the pseudo instruction
730  --I;
731}
732