X86FloatingPoint.cpp revision 6f05f21857615fb18c2ce7b14820bcd3b70db1f1
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/EdgeBundles.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP  , "Number of floating point instructions");
50
51namespace {
52  struct FPS : public MachineFunctionPass {
53    static char ID;
54    FPS() : MachineFunctionPass(ID) {
55      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
56      // This is really only to keep valgrind quiet.
57      // The logic in isLive() is too much for it.
58      memset(Stack, 0, sizeof(Stack));
59      memset(RegMap, 0, sizeof(RegMap));
60    }
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.setPreservesCFG();
64      AU.addRequired<EdgeBundles>();
65      AU.addPreservedID(MachineLoopInfoID);
66      AU.addPreservedID(MachineDominatorsID);
67      MachineFunctionPass::getAnalysisUsage(AU);
68    }
69
70    virtual bool runOnMachineFunction(MachineFunction &MF);
71
72    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
74  private:
75    const TargetInstrInfo *TII; // Machine instruction info.
76
77    // Two CFG edges are related if they leave the same block, or enter the same
78    // block. The transitive closure of an edge under this relation is a
79    // LiveBundle. It represents a set of CFG edges where the live FP stack
80    // registers must be allocated identically in the x87 stack.
81    //
82    // A LiveBundle is usually all the edges leaving a block, or all the edges
83    // entering a block, but it can contain more edges if critical edges are
84    // present.
85    //
86    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87    // but the exact mapping of FP registers to stack slots is fixed later.
88    struct LiveBundle {
89      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90      unsigned Mask;
91
92      // Number of pre-assigned live registers in FixStack. This is 0 when the
93      // stack order has not yet been fixed.
94      unsigned FixCount;
95
96      // Assigned stack order for live-in registers.
97      // FixStack[i] == getStackEntry(i) for all i < FixCount.
98      unsigned char FixStack[8];
99
100      LiveBundle() : Mask(0), FixCount(0) {}
101
102      // Have the live registers been assigned a stack order yet?
103      bool isFixed() const { return !Mask || FixCount; }
104    };
105
106    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107    // with no live FP registers.
108    SmallVector<LiveBundle, 8> LiveBundles;
109
110    // The edge bundle analysis provides indices into the LiveBundles vector.
111    EdgeBundles *Bundles;
112
113    // Return a bitmask of FP registers in block's live-in list.
114    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
115      unsigned Mask = 0;
116      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117           E = MBB->livein_end(); I != E; ++I) {
118        unsigned Reg = *I - X86::FP0;
119        if (Reg < 8)
120          Mask |= 1 << Reg;
121      }
122      return Mask;
123    }
124
125    // Partition all the CFG edges into LiveBundles.
126    void bundleCFG(MachineFunction &MF);
127
128    MachineBasicBlock *MBB;     // Current basic block
129
130    // The hardware keeps track of how many FP registers are live, so we have
131    // to model that exactly. Usually, each live register corresponds to an
132    // FP<n> register, but when dealing with calls, returns, and inline
133    // assembly, it is sometimes necessary to have live scratch registers.
134    unsigned Stack[8];          // FP<n> Registers in each stack slot...
135    unsigned StackTop;          // The current top of the FP stack.
136
137    enum {
138      NumFPRegs = 16            // Including scratch pseudo-registers.
139    };
140
141    // For each live FP<n> register, point to its Stack[] entry.
142    // The first entries correspond to FP0-FP6, the rest are scratch registers
143    // used when we need slightly different live registers than what the
144    // register allocator thinks.
145    unsigned RegMap[NumFPRegs];
146
147    // Pending fixed registers - Inline assembly needs FP registers to appear
148    // in fixed stack slot positions. This is handled by copying FP registers
149    // to ST registers before the instruction, and copying back after the
150    // instruction.
151    //
152    // This is modeled with pending ST registers. NumPendingSTs is the number
153    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
154    // register that holds the ST value. The ST registers are not moved into
155    // place until immediately before the instruction that needs them.
156    //
157    // It can happen that we need an ST register to be live when no FP register
158    // holds the value:
159    //
160    //   %ST0 = COPY %FP4<kill>
161    //
162    // When that happens, we allocate a scratch FP register to hold the ST
163    // value. That means every register in PendingST must be live.
164
165    unsigned NumPendingSTs;
166    unsigned char PendingST[8];
167
168    // Set up our stack model to match the incoming registers to MBB.
169    void setupBlockStack();
170
171    // Shuffle live registers to match the expectations of successor blocks.
172    void finishBlockStack();
173
174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
175    void dumpStack() const {
176      dbgs() << "Stack contents:";
177      for (unsigned i = 0; i != StackTop; ++i) {
178        dbgs() << " FP" << Stack[i];
179        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
180      }
181      for (unsigned i = 0; i != NumPendingSTs; ++i)
182        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
183      dbgs() << "\n";
184    }
185#endif
186
187    /// getSlot - Return the stack slot number a particular register number is
188    /// in.
189    unsigned getSlot(unsigned RegNo) const {
190      assert(RegNo < NumFPRegs && "Regno out of range!");
191      return RegMap[RegNo];
192    }
193
194    /// isLive - Is RegNo currently live in the stack?
195    bool isLive(unsigned RegNo) const {
196      unsigned Slot = getSlot(RegNo);
197      return Slot < StackTop && Stack[Slot] == RegNo;
198    }
199
200    /// getScratchReg - Return an FP register that is not currently in use.
201    unsigned getScratchReg() const {
202      for (int i = NumFPRegs - 1; i >= 8; --i)
203        if (!isLive(i))
204          return i;
205      llvm_unreachable("Ran out of scratch FP registers");
206    }
207
208    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
209    static bool isScratchReg(unsigned RegNo) {
210      return RegNo > 8 && RegNo < NumFPRegs;
211    }
212
213    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
214    unsigned getStackEntry(unsigned STi) const {
215      if (STi >= StackTop)
216        report_fatal_error("Access past stack top!");
217      return Stack[StackTop-1-STi];
218    }
219
220    /// getSTReg - Return the X86::ST(i) register which contains the specified
221    /// FP<RegNo> register.
222    unsigned getSTReg(unsigned RegNo) const {
223      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
224    }
225
226    // pushReg - Push the specified FP<n> register onto the stack.
227    void pushReg(unsigned Reg) {
228      assert(Reg < NumFPRegs && "Register number out of range!");
229      if (StackTop >= 8)
230        report_fatal_error("Stack overflow!");
231      Stack[StackTop] = Reg;
232      RegMap[Reg] = StackTop++;
233    }
234
235    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
236    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
237      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
238      if (isAtTop(RegNo)) return;
239
240      unsigned STReg = getSTReg(RegNo);
241      unsigned RegOnTop = getStackEntry(0);
242
243      // Swap the slots the regs are in.
244      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
245
246      // Swap stack slot contents.
247      if (RegMap[RegOnTop] >= StackTop)
248        report_fatal_error("Access past stack top!");
249      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
250
251      // Emit an fxch to update the runtime processors version of the state.
252      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
253      ++NumFXCH;
254    }
255
256    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
257      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
258      unsigned STReg = getSTReg(RegNo);
259      pushReg(AsReg);   // New register on top of stack
260
261      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
262    }
263
264    /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
265    /// RegNo. If any PendingST registers still need the RegNo value, duplicate
266    /// them to new scratch registers.
267    void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
268      for (unsigned i = 0; i != NumPendingSTs; ++i) {
269        if (PendingST[i] != RegNo)
270          continue;
271        unsigned SR = getScratchReg();
272        DEBUG(dbgs() << "Duplicating pending ST" << i
273                     << " in FP" << RegNo << " to FP" << SR << '\n');
274        duplicateToTop(RegNo, SR, I);
275        PendingST[i] = SR;
276      }
277    }
278
279    /// popStackAfter - Pop the current value off of the top of the FP stack
280    /// after the specified instruction.
281    void popStackAfter(MachineBasicBlock::iterator &I);
282
283    /// freeStackSlotAfter - Free the specified register from the register
284    /// stack, so that it is no longer in a register.  If the register is
285    /// currently at the top of the stack, we just pop the current instruction,
286    /// otherwise we store the current top-of-stack into the specified slot,
287    /// then pop the top of stack.
288    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
289
290    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
291    /// instruction.
292    MachineBasicBlock::iterator
293    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
294
295    /// Adjust the live registers to be the set in Mask.
296    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
297
298    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
299    /// st(0), FP reg FixStack[1] is st(1) etc.
300    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
301                         MachineBasicBlock::iterator I);
302
303    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
304
305    void handleZeroArgFP(MachineBasicBlock::iterator &I);
306    void handleOneArgFP(MachineBasicBlock::iterator &I);
307    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
308    void handleTwoArgFP(MachineBasicBlock::iterator &I);
309    void handleCompareFP(MachineBasicBlock::iterator &I);
310    void handleCondMovFP(MachineBasicBlock::iterator &I);
311    void handleSpecialFP(MachineBasicBlock::iterator &I);
312
313    // Check if a COPY instruction is using FP registers.
314    static bool isFPCopy(MachineInstr *MI) {
315      unsigned DstReg = MI->getOperand(0).getReg();
316      unsigned SrcReg = MI->getOperand(1).getReg();
317
318      return X86::RFP80RegClass.contains(DstReg) ||
319        X86::RFP80RegClass.contains(SrcReg);
320    }
321  };
322  char FPS::ID = 0;
323}
324
325FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
326
327/// getFPReg - Return the X86::FPx register number for the specified operand.
328/// For example, this returns 3 for X86::FP3.
329static unsigned getFPReg(const MachineOperand &MO) {
330  assert(MO.isReg() && "Expected an FP register!");
331  unsigned Reg = MO.getReg();
332  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
333  return Reg - X86::FP0;
334}
335
336/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
337/// register references into FP stack references.
338///
339bool FPS::runOnMachineFunction(MachineFunction &MF) {
340  // We only need to run this pass if there are any FP registers used in this
341  // function.  If it is all integer, there is nothing for us to do!
342  bool FPIsUsed = false;
343
344  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
345  for (unsigned i = 0; i <= 6; ++i)
346    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
347      FPIsUsed = true;
348      break;
349    }
350
351  // Early exit.
352  if (!FPIsUsed) return false;
353
354  Bundles = &getAnalysis<EdgeBundles>();
355  TII = MF.getTarget().getInstrInfo();
356
357  // Prepare cross-MBB liveness.
358  bundleCFG(MF);
359
360  StackTop = 0;
361
362  // Process the function in depth first order so that we process at least one
363  // of the predecessors for every reachable block in the function.
364  SmallPtrSet<MachineBasicBlock*, 8> Processed;
365  MachineBasicBlock *Entry = MF.begin();
366
367  bool Changed = false;
368  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
369         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
370       I != E; ++I)
371    Changed |= processBasicBlock(MF, **I);
372
373  // Process any unreachable blocks in arbitrary order now.
374  if (MF.size() != Processed.size())
375    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
376      if (Processed.insert(BB))
377        Changed |= processBasicBlock(MF, *BB);
378
379  LiveBundles.clear();
380
381  return Changed;
382}
383
384/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
385/// live-out sets for the FP registers. Consistent means that the set of
386/// registers live-out from a block is identical to the live-in set of all
387/// successors. This is not enforced by the normal live-in lists since
388/// registers may be implicitly defined, or not used by all successors.
389void FPS::bundleCFG(MachineFunction &MF) {
390  assert(LiveBundles.empty() && "Stale data in LiveBundles");
391  LiveBundles.resize(Bundles->getNumBundles());
392
393  // Gather the actual live-in masks for all MBBs.
394  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
395    MachineBasicBlock *MBB = I;
396    const unsigned Mask = calcLiveInMask(MBB);
397    if (!Mask)
398      continue;
399    // Update MBB ingoing bundle mask.
400    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
401  }
402}
403
404/// processBasicBlock - Loop over all of the instructions in the basic block,
405/// transforming FP instructions into their stack form.
406///
407bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
408  bool Changed = false;
409  MBB = &BB;
410  NumPendingSTs = 0;
411
412  setupBlockStack();
413
414  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
415    MachineInstr *MI = I;
416    uint64_t Flags = MI->getDesc().TSFlags;
417
418    unsigned FPInstClass = Flags & X86II::FPTypeMask;
419    if (MI->isInlineAsm())
420      FPInstClass = X86II::SpecialFP;
421
422    if (MI->isCopy() && isFPCopy(MI))
423      FPInstClass = X86II::SpecialFP;
424
425    if (MI->isImplicitDef() &&
426        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
427      FPInstClass = X86II::SpecialFP;
428
429    if (FPInstClass == X86II::NotFP)
430      continue;  // Efficiently ignore non-fp insts!
431
432    MachineInstr *PrevMI = 0;
433    if (I != BB.begin())
434      PrevMI = prior(I);
435
436    ++NumFP;  // Keep track of # of pseudo instrs
437    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
438
439    // Get dead variables list now because the MI pointer may be deleted as part
440    // of processing!
441    SmallVector<unsigned, 8> DeadRegs;
442    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
443      const MachineOperand &MO = MI->getOperand(i);
444      if (MO.isReg() && MO.isDead())
445        DeadRegs.push_back(MO.getReg());
446    }
447
448    switch (FPInstClass) {
449    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
450    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
451    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
452    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
453    case X86II::CompareFP:  handleCompareFP(I); break;
454    case X86II::CondMovFP:  handleCondMovFP(I); break;
455    case X86II::SpecialFP:  handleSpecialFP(I); break;
456    default: llvm_unreachable("Unknown FP Type!");
457    }
458
459    // Check to see if any of the values defined by this instruction are dead
460    // after definition.  If so, pop them.
461    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
462      unsigned Reg = DeadRegs[i];
463      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
464        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
465        freeStackSlotAfter(I, Reg-X86::FP0);
466      }
467    }
468
469    // Print out all of the instructions expanded to if -debug
470    DEBUG(
471      MachineBasicBlock::iterator PrevI(PrevMI);
472      if (I == PrevI) {
473        dbgs() << "Just deleted pseudo instruction\n";
474      } else {
475        MachineBasicBlock::iterator Start = I;
476        // Rewind to first instruction newly inserted.
477        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
478        dbgs() << "Inserted instructions:\n\t";
479        Start->print(dbgs(), &MF.getTarget());
480        while (++Start != llvm::next(I)) {}
481      }
482      dumpStack();
483    );
484    (void)PrevMI;
485
486    Changed = true;
487  }
488
489  finishBlockStack();
490
491  return Changed;
492}
493
494/// setupBlockStack - Use the live bundles to set up our model of the stack
495/// to match predecessors' live out stack.
496void FPS::setupBlockStack() {
497  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
498               << " derived from " << MBB->getName() << ".\n");
499  StackTop = 0;
500  // Get the live-in bundle for MBB.
501  const LiveBundle &Bundle =
502    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
503
504  if (!Bundle.Mask) {
505    DEBUG(dbgs() << "Block has no FP live-ins.\n");
506    return;
507  }
508
509  // Depth-first iteration should ensure that we always have an assigned stack.
510  assert(Bundle.isFixed() && "Reached block before any predecessors");
511
512  // Push the fixed live-in registers.
513  for (unsigned i = Bundle.FixCount; i > 0; --i) {
514    MBB->addLiveIn(X86::ST0+i-1);
515    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
516                 << unsigned(Bundle.FixStack[i-1]) << '\n');
517    pushReg(Bundle.FixStack[i-1]);
518  }
519
520  // Kill off unwanted live-ins. This can happen with a critical edge.
521  // FIXME: We could keep these live registers around as zombies. They may need
522  // to be revived at the end of a short block. It might save a few instrs.
523  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
524  DEBUG(MBB->dump());
525}
526
527/// finishBlockStack - Revive live-outs that are implicitly defined out of
528/// MBB. Shuffle live registers to match the expected fixed stack of any
529/// predecessors, and ensure that all predecessors are expecting the same
530/// stack.
531void FPS::finishBlockStack() {
532  // The RET handling below takes care of return blocks for us.
533  if (MBB->succ_empty())
534    return;
535
536  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
537               << " derived from " << MBB->getName() << ".\n");
538
539  // Get MBB's live-out bundle.
540  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
541  LiveBundle &Bundle = LiveBundles[BundleIdx];
542
543  // We may need to kill and define some registers to match successors.
544  // FIXME: This can probably be combined with the shuffle below.
545  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
546  adjustLiveRegs(Bundle.Mask, Term);
547
548  if (!Bundle.Mask) {
549    DEBUG(dbgs() << "No live-outs.\n");
550    return;
551  }
552
553  // Has the stack order been fixed yet?
554  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
555  if (Bundle.isFixed()) {
556    DEBUG(dbgs() << "Shuffling stack to match.\n");
557    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
558  } else {
559    // Not fixed yet, we get to choose.
560    DEBUG(dbgs() << "Fixing stack order now.\n");
561    Bundle.FixCount = StackTop;
562    for (unsigned i = 0; i < StackTop; ++i)
563      Bundle.FixStack[i] = getStackEntry(i);
564  }
565}
566
567
568//===----------------------------------------------------------------------===//
569// Efficient Lookup Table Support
570//===----------------------------------------------------------------------===//
571
572namespace {
573  struct TableEntry {
574    uint16_t from;
575    uint16_t to;
576    bool operator<(const TableEntry &TE) const { return from < TE.from; }
577    friend bool operator<(const TableEntry &TE, unsigned V) {
578      return TE.from < V;
579    }
580    friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
581                                                const TableEntry &TE) {
582      return V < TE.from;
583    }
584  };
585}
586
587#ifndef NDEBUG
588static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
589  for (unsigned i = 0; i != NumEntries-1; ++i)
590    if (!(Table[i] < Table[i+1])) return false;
591  return true;
592}
593#endif
594
595static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
596  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
597  if (I != Table+N && I->from == Opcode)
598    return I->to;
599  return -1;
600}
601
602#ifdef NDEBUG
603#define ASSERT_SORTED(TABLE)
604#else
605#define ASSERT_SORTED(TABLE)                                              \
606  { static bool TABLE##Checked = false;                                   \
607    if (!TABLE##Checked) {                                                \
608       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
609              "All lookup tables must be sorted for efficient access!");  \
610       TABLE##Checked = true;                                             \
611    }                                                                     \
612  }
613#endif
614
615//===----------------------------------------------------------------------===//
616// Register File -> Register Stack Mapping Methods
617//===----------------------------------------------------------------------===//
618
619// OpcodeTable - Sorted map of register instructions to their stack version.
620// The first element is an register file pseudo instruction, the second is the
621// concrete X86 instruction which uses the register stack.
622//
623static const TableEntry OpcodeTable[] = {
624  { X86::ABS_Fp32     , X86::ABS_F     },
625  { X86::ABS_Fp64     , X86::ABS_F     },
626  { X86::ABS_Fp80     , X86::ABS_F     },
627  { X86::ADD_Fp32m    , X86::ADD_F32m  },
628  { X86::ADD_Fp64m    , X86::ADD_F64m  },
629  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
630  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
631  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
632  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
633  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
634  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
635  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
636  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
637  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
638  { X86::CHS_Fp32     , X86::CHS_F     },
639  { X86::CHS_Fp64     , X86::CHS_F     },
640  { X86::CHS_Fp80     , X86::CHS_F     },
641  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
642  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
643  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
644  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
645  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
646  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
647  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
648  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
649  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
650  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
651  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
652  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
653  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
654  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
655  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
656  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
657  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
658  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
659  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
660  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
661  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
662  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
663  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
664  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
665  { X86::COS_Fp32     , X86::COS_F     },
666  { X86::COS_Fp64     , X86::COS_F     },
667  { X86::COS_Fp80     , X86::COS_F     },
668  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
669  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
670  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
671  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
672  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
673  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
674  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
675  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
676  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
677  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
678  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
679  { X86::DIV_Fp32m    , X86::DIV_F32m  },
680  { X86::DIV_Fp64m    , X86::DIV_F64m  },
681  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
682  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
683  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
684  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
685  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
686  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
687  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
688  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
689  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
690  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
691  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
692  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
693  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
694  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
695  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
696  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
697  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
698  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
699  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
700  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
701  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
702  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
703  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
704  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
705  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
706  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
707  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
708  { X86::IST_Fp16m32  , X86::IST_F16m  },
709  { X86::IST_Fp16m64  , X86::IST_F16m  },
710  { X86::IST_Fp16m80  , X86::IST_F16m  },
711  { X86::IST_Fp32m32  , X86::IST_F32m  },
712  { X86::IST_Fp32m64  , X86::IST_F32m  },
713  { X86::IST_Fp32m80  , X86::IST_F32m  },
714  { X86::IST_Fp64m32  , X86::IST_FP64m },
715  { X86::IST_Fp64m64  , X86::IST_FP64m },
716  { X86::IST_Fp64m80  , X86::IST_FP64m },
717  { X86::LD_Fp032     , X86::LD_F0     },
718  { X86::LD_Fp064     , X86::LD_F0     },
719  { X86::LD_Fp080     , X86::LD_F0     },
720  { X86::LD_Fp132     , X86::LD_F1     },
721  { X86::LD_Fp164     , X86::LD_F1     },
722  { X86::LD_Fp180     , X86::LD_F1     },
723  { X86::LD_Fp32m     , X86::LD_F32m   },
724  { X86::LD_Fp32m64   , X86::LD_F32m   },
725  { X86::LD_Fp32m80   , X86::LD_F32m   },
726  { X86::LD_Fp64m     , X86::LD_F64m   },
727  { X86::LD_Fp64m80   , X86::LD_F64m   },
728  { X86::LD_Fp80m     , X86::LD_F80m   },
729  { X86::MUL_Fp32m    , X86::MUL_F32m  },
730  { X86::MUL_Fp64m    , X86::MUL_F64m  },
731  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
732  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
733  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
734  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
735  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
736  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
737  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
738  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
739  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
740  { X86::SIN_Fp32     , X86::SIN_F     },
741  { X86::SIN_Fp64     , X86::SIN_F     },
742  { X86::SIN_Fp80     , X86::SIN_F     },
743  { X86::SQRT_Fp32    , X86::SQRT_F    },
744  { X86::SQRT_Fp64    , X86::SQRT_F    },
745  { X86::SQRT_Fp80    , X86::SQRT_F    },
746  { X86::ST_Fp32m     , X86::ST_F32m   },
747  { X86::ST_Fp64m     , X86::ST_F64m   },
748  { X86::ST_Fp64m32   , X86::ST_F32m   },
749  { X86::ST_Fp80m32   , X86::ST_F32m   },
750  { X86::ST_Fp80m64   , X86::ST_F64m   },
751  { X86::ST_FpP80m    , X86::ST_FP80m  },
752  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
753  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
754  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
755  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
756  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
757  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
758  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
759  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
760  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
761  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
762  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
763  { X86::SUB_Fp32m    , X86::SUB_F32m  },
764  { X86::SUB_Fp64m    , X86::SUB_F64m  },
765  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
766  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
767  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
768  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
769  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
770  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
771  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
772  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
773  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
774  { X86::TST_Fp32     , X86::TST_F     },
775  { X86::TST_Fp64     , X86::TST_F     },
776  { X86::TST_Fp80     , X86::TST_F     },
777  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
778  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
779  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
780  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
781  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
782  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
783};
784
785static unsigned getConcreteOpcode(unsigned Opcode) {
786  ASSERT_SORTED(OpcodeTable);
787  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
788  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
789  return Opc;
790}
791
792//===----------------------------------------------------------------------===//
793// Helper Methods
794//===----------------------------------------------------------------------===//
795
796// PopTable - Sorted map of instructions to their popping version.  The first
797// element is an instruction, the second is the version which pops.
798//
799static const TableEntry PopTable[] = {
800  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
801
802  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
803  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
804
805  { X86::IST_F16m  , X86::IST_FP16m   },
806  { X86::IST_F32m  , X86::IST_FP32m   },
807
808  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
809
810  { X86::ST_F32m   , X86::ST_FP32m    },
811  { X86::ST_F64m   , X86::ST_FP64m    },
812  { X86::ST_Frr    , X86::ST_FPrr     },
813
814  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
815  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
816
817  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
818
819  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
820  { X86::UCOM_Fr   , X86::UCOM_FPr    },
821};
822
823/// popStackAfter - Pop the current value off of the top of the FP stack after
824/// the specified instruction.  This attempts to be sneaky and combine the pop
825/// into the instruction itself if possible.  The iterator is left pointing to
826/// the last instruction, be it a new pop instruction inserted, or the old
827/// instruction if it was modified in place.
828///
829void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
830  MachineInstr* MI = I;
831  DebugLoc dl = MI->getDebugLoc();
832  ASSERT_SORTED(PopTable);
833  if (StackTop == 0)
834    report_fatal_error("Cannot pop empty stack!");
835  RegMap[Stack[--StackTop]] = ~0;     // Update state
836
837  // Check to see if there is a popping version of this instruction...
838  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
839  if (Opcode != -1) {
840    I->setDesc(TII->get(Opcode));
841    if (Opcode == X86::UCOM_FPPr)
842      I->RemoveOperand(0);
843  } else {    // Insert an explicit pop
844    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
845  }
846}
847
848/// freeStackSlotAfter - Free the specified register from the register stack, so
849/// that it is no longer in a register.  If the register is currently at the top
850/// of the stack, we just pop the current instruction, otherwise we store the
851/// current top-of-stack into the specified slot, then pop the top of stack.
852void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
853  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
854    popStackAfter(I);
855    return;
856  }
857
858  // Otherwise, store the top of stack into the dead slot, killing the operand
859  // without having to add in an explicit xchg then pop.
860  //
861  I = freeStackSlotBefore(++I, FPRegNo);
862}
863
864/// freeStackSlotBefore - Free the specified register without trying any
865/// folding.
866MachineBasicBlock::iterator
867FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
868  unsigned STReg    = getSTReg(FPRegNo);
869  unsigned OldSlot  = getSlot(FPRegNo);
870  unsigned TopReg   = Stack[StackTop-1];
871  Stack[OldSlot]    = TopReg;
872  RegMap[TopReg]    = OldSlot;
873  RegMap[FPRegNo]   = ~0;
874  Stack[--StackTop] = ~0;
875  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
876}
877
878/// adjustLiveRegs - Kill and revive registers such that exactly the FP
879/// registers with a bit in Mask are live.
880void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
881  unsigned Defs = Mask;
882  unsigned Kills = 0;
883  for (unsigned i = 0; i < StackTop; ++i) {
884    unsigned RegNo = Stack[i];
885    if (!(Defs & (1 << RegNo)))
886      // This register is live, but we don't want it.
887      Kills |= (1 << RegNo);
888    else
889      // We don't need to imp-def this live register.
890      Defs &= ~(1 << RegNo);
891  }
892  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
893
894  // Produce implicit-defs for free by using killed registers.
895  while (Kills && Defs) {
896    unsigned KReg = CountTrailingZeros_32(Kills);
897    unsigned DReg = CountTrailingZeros_32(Defs);
898    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
899    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
900    std::swap(RegMap[KReg], RegMap[DReg]);
901    Kills &= ~(1 << KReg);
902    Defs &= ~(1 << DReg);
903  }
904
905  // Kill registers by popping.
906  if (Kills && I != MBB->begin()) {
907    MachineBasicBlock::iterator I2 = llvm::prior(I);
908    while (StackTop) {
909      unsigned KReg = getStackEntry(0);
910      if (!(Kills & (1 << KReg)))
911        break;
912      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
913      popStackAfter(I2);
914      Kills &= ~(1 << KReg);
915    }
916  }
917
918  // Manually kill the rest.
919  while (Kills) {
920    unsigned KReg = CountTrailingZeros_32(Kills);
921    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
922    freeStackSlotBefore(I, KReg);
923    Kills &= ~(1 << KReg);
924  }
925
926  // Load zeros for all the imp-defs.
927  while(Defs) {
928    unsigned DReg = CountTrailingZeros_32(Defs);
929    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
930    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
931    pushReg(DReg);
932    Defs &= ~(1 << DReg);
933  }
934
935  // Now we should have the correct registers live.
936  DEBUG(dumpStack());
937  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
938}
939
940/// shuffleStackTop - emit fxch instructions before I to shuffle the top
941/// FixCount entries into the order given by FixStack.
942/// FIXME: Is there a better algorithm than insertion sort?
943void FPS::shuffleStackTop(const unsigned char *FixStack,
944                          unsigned FixCount,
945                          MachineBasicBlock::iterator I) {
946  // Move items into place, starting from the desired stack bottom.
947  while (FixCount--) {
948    // Old register at position FixCount.
949    unsigned OldReg = getStackEntry(FixCount);
950    // Desired register at position FixCount.
951    unsigned Reg = FixStack[FixCount];
952    if (Reg == OldReg)
953      continue;
954    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
955    moveToTop(Reg, I);
956    if (FixCount > 0)
957      moveToTop(OldReg, I);
958  }
959  DEBUG(dumpStack());
960}
961
962
963//===----------------------------------------------------------------------===//
964// Instruction transformation implementation
965//===----------------------------------------------------------------------===//
966
967/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
968///
969void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
970  MachineInstr *MI = I;
971  unsigned DestReg = getFPReg(MI->getOperand(0));
972
973  // Change from the pseudo instruction to the concrete instruction.
974  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
975  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
976
977  // Result gets pushed on the stack.
978  pushReg(DestReg);
979}
980
981/// handleOneArgFP - fst <mem>, ST(0)
982///
983void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
984  MachineInstr *MI = I;
985  unsigned NumOps = MI->getDesc().getNumOperands();
986  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
987         "Can only handle fst* & ftst instructions!");
988
989  // Is this the last use of the source register?
990  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
991  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
992
993  if (KillsSrc)
994    duplicatePendingSTBeforeKill(Reg, I);
995
996  // FISTP64m is strange because there isn't a non-popping versions.
997  // If we have one _and_ we don't want to pop the operand, duplicate the value
998  // on the stack instead of moving it.  This ensure that popping the value is
999  // always ok.
1000  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1001  //
1002  if (!KillsSrc &&
1003      (MI->getOpcode() == X86::IST_Fp64m32 ||
1004       MI->getOpcode() == X86::ISTT_Fp16m32 ||
1005       MI->getOpcode() == X86::ISTT_Fp32m32 ||
1006       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1007       MI->getOpcode() == X86::IST_Fp64m64 ||
1008       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1009       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1010       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1011       MI->getOpcode() == X86::IST_Fp64m80 ||
1012       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1013       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1014       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1015       MI->getOpcode() == X86::ST_FpP80m)) {
1016    duplicateToTop(Reg, getScratchReg(), I);
1017  } else {
1018    moveToTop(Reg, I);            // Move to the top of the stack...
1019  }
1020
1021  // Convert from the pseudo instruction to the concrete instruction.
1022  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1023  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1024
1025  if (MI->getOpcode() == X86::IST_FP64m ||
1026      MI->getOpcode() == X86::ISTT_FP16m ||
1027      MI->getOpcode() == X86::ISTT_FP32m ||
1028      MI->getOpcode() == X86::ISTT_FP64m ||
1029      MI->getOpcode() == X86::ST_FP80m) {
1030    if (StackTop == 0)
1031      report_fatal_error("Stack empty??");
1032    --StackTop;
1033  } else if (KillsSrc) { // Last use of operand?
1034    popStackAfter(I);
1035  }
1036}
1037
1038
1039/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1040/// replace the value with a newly computed value.  These instructions may have
1041/// non-fp operands after their FP operands.
1042///
1043///  Examples:
1044///     R1 = fchs R2
1045///     R1 = fadd R2, [mem]
1046///
1047void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1048  MachineInstr *MI = I;
1049#ifndef NDEBUG
1050  unsigned NumOps = MI->getDesc().getNumOperands();
1051  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1052#endif
1053
1054  // Is this the last use of the source register?
1055  unsigned Reg = getFPReg(MI->getOperand(1));
1056  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1057
1058  if (KillsSrc) {
1059    duplicatePendingSTBeforeKill(Reg, I);
1060    // If this is the last use of the source register, just make sure it's on
1061    // the top of the stack.
1062    moveToTop(Reg, I);
1063    if (StackTop == 0)
1064      report_fatal_error("Stack cannot be empty!");
1065    --StackTop;
1066    pushReg(getFPReg(MI->getOperand(0)));
1067  } else {
1068    // If this is not the last use of the source register, _copy_ it to the top
1069    // of the stack.
1070    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1071  }
1072
1073  // Change from the pseudo instruction to the concrete instruction.
1074  MI->RemoveOperand(1);   // Drop the source operand.
1075  MI->RemoveOperand(0);   // Drop the destination operand.
1076  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1077}
1078
1079
1080//===----------------------------------------------------------------------===//
1081// Define tables of various ways to map pseudo instructions
1082//
1083
1084// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1085static const TableEntry ForwardST0Table[] = {
1086  { X86::ADD_Fp32  , X86::ADD_FST0r },
1087  { X86::ADD_Fp64  , X86::ADD_FST0r },
1088  { X86::ADD_Fp80  , X86::ADD_FST0r },
1089  { X86::DIV_Fp32  , X86::DIV_FST0r },
1090  { X86::DIV_Fp64  , X86::DIV_FST0r },
1091  { X86::DIV_Fp80  , X86::DIV_FST0r },
1092  { X86::MUL_Fp32  , X86::MUL_FST0r },
1093  { X86::MUL_Fp64  , X86::MUL_FST0r },
1094  { X86::MUL_Fp80  , X86::MUL_FST0r },
1095  { X86::SUB_Fp32  , X86::SUB_FST0r },
1096  { X86::SUB_Fp64  , X86::SUB_FST0r },
1097  { X86::SUB_Fp80  , X86::SUB_FST0r },
1098};
1099
1100// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1101static const TableEntry ReverseST0Table[] = {
1102  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1103  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1104  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1105  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1106  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1107  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1108  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1109  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1110  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1111  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1112  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1113  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1114};
1115
1116// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1117static const TableEntry ForwardSTiTable[] = {
1118  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1119  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1120  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1121  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1122  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1123  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1124  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1125  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1126  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1127  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1128  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1129  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1130};
1131
1132// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1133static const TableEntry ReverseSTiTable[] = {
1134  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1135  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1136  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1137  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1138  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1139  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1140  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1141  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1142  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1143  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1144  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1145  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1146};
1147
1148
1149/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1150/// instructions which need to be simplified and possibly transformed.
1151///
1152/// Result: ST(0) = fsub  ST(0), ST(i)
1153///         ST(i) = fsub  ST(0), ST(i)
1154///         ST(0) = fsubr ST(0), ST(i)
1155///         ST(i) = fsubr ST(0), ST(i)
1156///
1157void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1158  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1159  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1160  MachineInstr *MI = I;
1161
1162  unsigned NumOperands = MI->getDesc().getNumOperands();
1163  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1164  unsigned Dest = getFPReg(MI->getOperand(0));
1165  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1166  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1167  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1168  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1169  DebugLoc dl = MI->getDebugLoc();
1170
1171  unsigned TOS = getStackEntry(0);
1172
1173  // One of our operands must be on the top of the stack.  If neither is yet, we
1174  // need to move one.
1175  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1176    // We can choose to move either operand to the top of the stack.  If one of
1177    // the operands is killed by this instruction, we want that one so that we
1178    // can update right on top of the old version.
1179    if (KillsOp0) {
1180      moveToTop(Op0, I);         // Move dead operand to TOS.
1181      TOS = Op0;
1182    } else if (KillsOp1) {
1183      moveToTop(Op1, I);
1184      TOS = Op1;
1185    } else {
1186      // All of the operands are live after this instruction executes, so we
1187      // cannot update on top of any operand.  Because of this, we must
1188      // duplicate one of the stack elements to the top.  It doesn't matter
1189      // which one we pick.
1190      //
1191      duplicateToTop(Op0, Dest, I);
1192      Op0 = TOS = Dest;
1193      KillsOp0 = true;
1194    }
1195  } else if (!KillsOp0 && !KillsOp1) {
1196    // If we DO have one of our operands at the top of the stack, but we don't
1197    // have a dead operand, we must duplicate one of the operands to a new slot
1198    // on the stack.
1199    duplicateToTop(Op0, Dest, I);
1200    Op0 = TOS = Dest;
1201    KillsOp0 = true;
1202  }
1203
1204  // Now we know that one of our operands is on the top of the stack, and at
1205  // least one of our operands is killed by this instruction.
1206  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1207         "Stack conditions not set up right!");
1208
1209  // We decide which form to use based on what is on the top of the stack, and
1210  // which operand is killed by this instruction.
1211  const TableEntry *InstTable;
1212  bool isForward = TOS == Op0;
1213  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1214  if (updateST0) {
1215    if (isForward)
1216      InstTable = ForwardST0Table;
1217    else
1218      InstTable = ReverseST0Table;
1219  } else {
1220    if (isForward)
1221      InstTable = ForwardSTiTable;
1222    else
1223      InstTable = ReverseSTiTable;
1224  }
1225
1226  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1227                      MI->getOpcode());
1228  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1229
1230  // NotTOS - The register which is not on the top of stack...
1231  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1232
1233  // Replace the old instruction with a new instruction
1234  MBB->remove(I++);
1235  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1236
1237  // If both operands are killed, pop one off of the stack in addition to
1238  // overwriting the other one.
1239  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1240    assert(!updateST0 && "Should have updated other operand!");
1241    popStackAfter(I);   // Pop the top of stack
1242  }
1243
1244  // Update stack information so that we know the destination register is now on
1245  // the stack.
1246  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1247  assert(UpdatedSlot < StackTop && Dest < 7);
1248  Stack[UpdatedSlot]   = Dest;
1249  RegMap[Dest]         = UpdatedSlot;
1250  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1251}
1252
1253/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1254/// register arguments and no explicit destinations.
1255///
1256void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1257  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1258  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1259  MachineInstr *MI = I;
1260
1261  unsigned NumOperands = MI->getDesc().getNumOperands();
1262  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1263  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1264  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1265  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1266  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1267
1268  // Make sure the first operand is on the top of stack, the other one can be
1269  // anywhere.
1270  moveToTop(Op0, I);
1271
1272  // Change from the pseudo instruction to the concrete instruction.
1273  MI->getOperand(0).setReg(getSTReg(Op1));
1274  MI->RemoveOperand(1);
1275  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1276
1277  // If any of the operands are killed by this instruction, free them.
1278  if (KillsOp0) freeStackSlotAfter(I, Op0);
1279  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1280}
1281
1282/// handleCondMovFP - Handle two address conditional move instructions.  These
1283/// instructions move a st(i) register to st(0) iff a condition is true.  These
1284/// instructions require that the first operand is at the top of the stack, but
1285/// otherwise don't modify the stack at all.
1286void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1287  MachineInstr *MI = I;
1288
1289  unsigned Op0 = getFPReg(MI->getOperand(0));
1290  unsigned Op1 = getFPReg(MI->getOperand(2));
1291  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1292
1293  // The first operand *must* be on the top of the stack.
1294  moveToTop(Op0, I);
1295
1296  // Change the second operand to the stack register that the operand is in.
1297  // Change from the pseudo instruction to the concrete instruction.
1298  MI->RemoveOperand(0);
1299  MI->RemoveOperand(1);
1300  MI->getOperand(0).setReg(getSTReg(Op1));
1301  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1302
1303  // If we kill the second operand, make sure to pop it from the stack.
1304  if (Op0 != Op1 && KillsOp1) {
1305    // Get this value off of the register stack.
1306    freeStackSlotAfter(I, Op1);
1307  }
1308}
1309
1310
1311/// handleSpecialFP - Handle special instructions which behave unlike other
1312/// floating point instructions.  This is primarily intended for use by pseudo
1313/// instructions.
1314///
1315void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1316  MachineInstr *MI = I;
1317  switch (MI->getOpcode()) {
1318  default: llvm_unreachable("Unknown SpecialFP instruction!");
1319  case TargetOpcode::COPY: {
1320    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1321    const MachineOperand &MO1 = MI->getOperand(1);
1322    const MachineOperand &MO0 = MI->getOperand(0);
1323    unsigned DstST = MO0.getReg() - X86::ST0;
1324    unsigned SrcST = MO1.getReg() - X86::ST0;
1325    bool KillsSrc = MI->killsRegister(MO1.getReg());
1326
1327    // ST = COPY FP. Set up a pending ST register.
1328    if (DstST < 8) {
1329      unsigned SrcFP = getFPReg(MO1);
1330      assert(isLive(SrcFP) && "Cannot copy dead register");
1331      assert(!MO0.isDead() && "Cannot copy to dead ST register");
1332
1333      // Unallocated STs are marked as the nonexistent FP255.
1334      while (NumPendingSTs <= DstST)
1335        PendingST[NumPendingSTs++] = NumFPRegs;
1336
1337      // STi could still be live from a previous inline asm.
1338      if (isScratchReg(PendingST[DstST])) {
1339        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1340                     << '\n');
1341        freeStackSlotBefore(MI, PendingST[DstST]);
1342      }
1343
1344      // When the source is killed, allocate a scratch FP register.
1345      if (KillsSrc) {
1346        duplicatePendingSTBeforeKill(SrcFP, I);
1347        unsigned Slot = getSlot(SrcFP);
1348        unsigned SR = getScratchReg();
1349        PendingST[DstST] = SR;
1350        Stack[Slot] = SR;
1351        RegMap[SR] = Slot;
1352      } else
1353        PendingST[DstST] = SrcFP;
1354      break;
1355    }
1356
1357    // FP = COPY ST. Extract fixed stack value.
1358    // Any instruction defining ST registers must have assigned them to a
1359    // scratch register.
1360    if (SrcST < 8) {
1361      unsigned DstFP = getFPReg(MO0);
1362      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1363      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1364      unsigned SrcFP = PendingST[SrcST];
1365      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1366      assert(isLive(SrcFP) && "Scratch holding ST is dead");
1367
1368      // DstFP steals the stack slot from SrcFP.
1369      unsigned Slot = getSlot(SrcFP);
1370      Stack[Slot] = DstFP;
1371      RegMap[DstFP] = Slot;
1372
1373      // Always treat the ST as killed.
1374      PendingST[SrcST] = NumFPRegs;
1375      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1376        --NumPendingSTs;
1377      break;
1378    }
1379
1380    // FP <- FP copy.
1381    unsigned DstFP = getFPReg(MO0);
1382    unsigned SrcFP = getFPReg(MO1);
1383    assert(isLive(SrcFP) && "Cannot copy dead register");
1384    if (KillsSrc) {
1385      // If the input operand is killed, we can just change the owner of the
1386      // incoming stack slot into the result.
1387      unsigned Slot = getSlot(SrcFP);
1388      Stack[Slot] = DstFP;
1389      RegMap[DstFP] = Slot;
1390    } else {
1391      // For COPY we just duplicate the specified value to a new stack slot.
1392      // This could be made better, but would require substantial changes.
1393      duplicateToTop(SrcFP, DstFP, I);
1394    }
1395    break;
1396  }
1397
1398  case TargetOpcode::IMPLICIT_DEF: {
1399    // All FP registers must be explicitly defined, so load a 0 instead.
1400    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1401    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1402    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1403    pushReg(Reg);
1404    break;
1405  }
1406
1407  case X86::FpPOP_RETVAL: {
1408    // The FpPOP_RETVAL instruction is used after calls that return a value on
1409    // the floating point stack. We cannot model this with ST defs since CALL
1410    // instructions have fixed clobber lists. This instruction is interpreted
1411    // to mean that there is one more live register on the stack than we
1412    // thought.
1413    //
1414    // This means that StackTop does not match the hardware stack between a
1415    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
1416    // between CALL and FpPOP_RETVAL as long as they don't overflow the
1417    // hardware stack.
1418    unsigned DstFP = getFPReg(MI->getOperand(0));
1419
1420    // Move existing stack elements up to reflect reality.
1421    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1422    if (StackTop) {
1423      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1424      for (unsigned i = 0; i != NumFPRegs; ++i)
1425        ++RegMap[i];
1426    }
1427    ++StackTop;
1428
1429    // DstFP is the new bottom of the stack.
1430    Stack[0] = DstFP;
1431    RegMap[DstFP] = 0;
1432
1433    // DstFP will be killed by processBasicBlock if this was a dead def.
1434    break;
1435  }
1436
1437  case TargetOpcode::INLINEASM: {
1438    // The inline asm MachineInstr currently only *uses* FP registers for the
1439    // 'f' constraint.  These should be turned into the current ST(x) register
1440    // in the machine instr.
1441    //
1442    // There are special rules for x87 inline assembly. The compiler must know
1443    // exactly how many registers are popped and pushed implicitly by the asm.
1444    // Otherwise it is not possible to restore the stack state after the inline
1445    // asm.
1446    //
1447    // There are 3 kinds of input operands:
1448    //
1449    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1450    //    popped input operand must be in a fixed stack slot, and it is either
1451    //    tied to an output operand, or in the clobber list. The MI has ST use
1452    //    and def operands for these inputs.
1453    //
1454    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1455    //    preserved by the inline asm. The fixed stack slots must be STn-STm
1456    //    following the popped inputs. A fixed input operand cannot be tied to
1457    //    an output or appear in the clobber list. The MI has ST use operands
1458    //    and no defs for these inputs.
1459    //
1460    // 3. Preserved inputs. These inputs use the "f" constraint which is
1461    //    represented as an FP register. The inline asm won't change these
1462    //    stack slots.
1463    //
1464    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1465    // registers do not count as output operands. The inline asm changes the
1466    // stack as if it popped all the popped inputs and then pushed all the
1467    // output operands.
1468
1469    // Scan the assembly for ST registers used, defined and clobbered. We can
1470    // only tell clobbers from defs by looking at the asm descriptor.
1471    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1472    unsigned NumOps = 0;
1473    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1474         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1475      unsigned Flags = MI->getOperand(i).getImm();
1476      NumOps = InlineAsm::getNumOperandRegisters(Flags);
1477      if (NumOps != 1)
1478        continue;
1479      const MachineOperand &MO = MI->getOperand(i + 1);
1480      if (!MO.isReg())
1481        continue;
1482      unsigned STReg = MO.getReg() - X86::ST0;
1483      if (STReg >= 8)
1484        continue;
1485
1486      switch (InlineAsm::getKind(Flags)) {
1487      case InlineAsm::Kind_RegUse:
1488        STUses |= (1u << STReg);
1489        break;
1490      case InlineAsm::Kind_RegDef:
1491      case InlineAsm::Kind_RegDefEarlyClobber:
1492        STDefs |= (1u << STReg);
1493        if (MO.isDead())
1494          STDeadDefs |= (1u << STReg);
1495        break;
1496      case InlineAsm::Kind_Clobber:
1497        STClobbers |= (1u << STReg);
1498        break;
1499      default:
1500        break;
1501      }
1502    }
1503
1504    if (STUses && !isMask_32(STUses))
1505      MI->emitError("fixed input regs must be last on the x87 stack");
1506    unsigned NumSTUses = CountTrailingOnes_32(STUses);
1507
1508    // Defs must be contiguous from the stack top. ST0-STn.
1509    if (STDefs && !isMask_32(STDefs)) {
1510      MI->emitError("output regs must be last on the x87 stack");
1511      STDefs = NextPowerOf2(STDefs) - 1;
1512    }
1513    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1514
1515    // So must the clobbered stack slots. ST0-STm, m >= n.
1516    if (STClobbers && !isMask_32(STDefs | STClobbers))
1517      MI->emitError("clobbers must be last on the x87 stack");
1518
1519    // Popped inputs are the ones that are also clobbered or defined.
1520    unsigned STPopped = STUses & (STDefs | STClobbers);
1521    if (STPopped && !isMask_32(STPopped))
1522      MI->emitError("implicitly popped regs must be last on the x87 stack");
1523    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1524
1525    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1526                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1527
1528    // Scan the instruction for FP uses corresponding to "f" constraints.
1529    // Collect FP registers to kill afer the instruction.
1530    // Always kill all the scratch regs.
1531    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1532    unsigned FPUsed = 0;
1533    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1534      MachineOperand &Op = MI->getOperand(i);
1535      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1536        continue;
1537      if (!Op.isUse())
1538        MI->emitError("illegal \"f\" output constraint");
1539      unsigned FPReg = getFPReg(Op);
1540      FPUsed |= 1U << FPReg;
1541
1542      // If we kill this operand, make sure to pop it from the stack after the
1543      // asm.  We just remember it for now, and pop them all off at the end in
1544      // a batch.
1545      if (Op.isKill())
1546        FPKills |= 1U << FPReg;
1547    }
1548
1549    // The popped inputs will be killed by the instruction, so duplicate them
1550    // if the FP register needs to be live after the instruction, or if it is
1551    // used in the instruction itself. We effectively treat the popped inputs
1552    // as early clobbers.
1553    for (unsigned i = 0; i < NumSTPopped; ++i) {
1554      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1555        continue;
1556      unsigned SR = getScratchReg();
1557      duplicateToTop(PendingST[i], SR, I);
1558      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1559                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1560      PendingST[i] = SR;
1561    }
1562
1563    // Make sure we have a unique live register for every fixed use. Some of
1564    // them could be undef uses, and we need to emit LD_F0 instructions.
1565    for (unsigned i = 0; i < NumSTUses; ++i) {
1566      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1567        // Check for shared assignments.
1568        for (unsigned j = 0; j < i; ++j) {
1569          if (PendingST[j] != PendingST[i])
1570            continue;
1571          // STi and STj are inn the same register, create a copy.
1572          unsigned SR = getScratchReg();
1573          duplicateToTop(PendingST[i], SR, I);
1574          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1575                       << unsigned(PendingST[i])
1576                       << " to avoid collision with ST" << j << '\n');
1577          PendingST[i] = SR;
1578        }
1579        continue;
1580      }
1581      unsigned SR = getScratchReg();
1582      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1583      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1584      pushReg(SR);
1585      PendingST[i] = SR;
1586      if (NumPendingSTs == i)
1587        ++NumPendingSTs;
1588    }
1589    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1590
1591    // Now we can rearrange the live registers to match what was requested.
1592    shuffleStackTop(PendingST, NumPendingSTs, I);
1593    DEBUG({dbgs() << "Before asm: "; dumpStack();});
1594
1595    // With the stack layout fixed, rewrite the FP registers.
1596    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1597      MachineOperand &Op = MI->getOperand(i);
1598      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1599        continue;
1600      unsigned FPReg = getFPReg(Op);
1601      Op.setReg(getSTReg(FPReg));
1602    }
1603
1604    // Simulate the inline asm popping its inputs and pushing its outputs.
1605    StackTop -= NumSTPopped;
1606
1607    // Hold the fixed output registers in scratch FP registers. They will be
1608    // transferred to real FP registers by copies.
1609    NumPendingSTs = 0;
1610    for (unsigned i = 0; i < NumSTDefs; ++i) {
1611      unsigned SR = getScratchReg();
1612      pushReg(SR);
1613      FPKills &= ~(1u << SR);
1614    }
1615    for (unsigned i = 0; i < NumSTDefs; ++i)
1616      PendingST[NumPendingSTs++] = getStackEntry(i);
1617    DEBUG({dbgs() << "After asm: "; dumpStack();});
1618
1619    // If any of the ST defs were dead, pop them immediately. Our caller only
1620    // handles dead FP defs.
1621    MachineBasicBlock::iterator InsertPt = MI;
1622    for (unsigned i = 0; STDefs & (1u << i); ++i) {
1623      if (!(STDeadDefs & (1u << i)))
1624        continue;
1625      freeStackSlotAfter(InsertPt, PendingST[i]);
1626      PendingST[i] = NumFPRegs;
1627    }
1628    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1629      --NumPendingSTs;
1630
1631    // If this asm kills any FP registers (is the last use of them) we must
1632    // explicitly emit pop instructions for them.  Do this now after the asm has
1633    // executed so that the ST(x) numbers are not off (which would happen if we
1634    // did this inline with operand rewriting).
1635    //
1636    // Note: this might be a non-optimal pop sequence.  We might be able to do
1637    // better by trying to pop in stack order or something.
1638    while (FPKills) {
1639      unsigned FPReg = CountTrailingZeros_32(FPKills);
1640      if (isLive(FPReg))
1641        freeStackSlotAfter(InsertPt, FPReg);
1642      FPKills &= ~(1U << FPReg);
1643    }
1644    // Don't delete the inline asm!
1645    return;
1646  }
1647
1648  case X86::WIN_FTOL_32:
1649  case X86::WIN_FTOL_64: {
1650    // Push the operand into ST0.
1651    MachineOperand &Op = MI->getOperand(0);
1652    assert(Op.isUse() && Op.isReg() &&
1653      Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1654    unsigned FPReg = getFPReg(Op);
1655    if (Op.isKill())
1656      moveToTop(FPReg, I);
1657    else
1658      duplicateToTop(FPReg, FPReg, I);
1659
1660    // Emit the call. This will pop the operand.
1661    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1662      .addExternalSymbol("_ftol2")
1663      .addReg(X86::ST0, RegState::ImplicitKill)
1664      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1665      .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1666      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1667    --StackTop;
1668
1669    break;
1670  }
1671
1672  case X86::RET:
1673  case X86::RETI:
1674    // If RET has an FP register use operand, pass the first one in ST(0) and
1675    // the second one in ST(1).
1676
1677    // Find the register operands.
1678    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1679    unsigned LiveMask = 0;
1680
1681    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1682      MachineOperand &Op = MI->getOperand(i);
1683      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1684        continue;
1685      // FP Register uses must be kills unless there are two uses of the same
1686      // register, in which case only one will be a kill.
1687      assert(Op.isUse() &&
1688             (Op.isKill() ||                        // Marked kill.
1689              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1690              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1691             "Ret only defs operands, and values aren't live beyond it");
1692
1693      if (FirstFPRegOp == ~0U)
1694        FirstFPRegOp = getFPReg(Op);
1695      else {
1696        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1697        SecondFPRegOp = getFPReg(Op);
1698      }
1699      LiveMask |= (1 << getFPReg(Op));
1700
1701      // Remove the operand so that later passes don't see it.
1702      MI->RemoveOperand(i);
1703      --i, --e;
1704    }
1705
1706    // We may have been carrying spurious live-ins, so make sure only the returned
1707    // registers are left live.
1708    adjustLiveRegs(LiveMask, MI);
1709    if (!LiveMask) return;  // Quick check to see if any are possible.
1710
1711    // There are only four possibilities here:
1712    // 1) we are returning a single FP value.  In this case, it has to be in
1713    //    ST(0) already, so just declare success by removing the value from the
1714    //    FP Stack.
1715    if (SecondFPRegOp == ~0U) {
1716      // Assert that the top of stack contains the right FP register.
1717      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1718             "Top of stack not the right register for RET!");
1719
1720      // Ok, everything is good, mark the value as not being on the stack
1721      // anymore so that our assertion about the stack being empty at end of
1722      // block doesn't fire.
1723      StackTop = 0;
1724      return;
1725    }
1726
1727    // Otherwise, we are returning two values:
1728    // 2) If returning the same value for both, we only have one thing in the FP
1729    //    stack.  Consider:  RET FP1, FP1
1730    if (StackTop == 1) {
1731      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1732             "Stack misconfiguration for RET!");
1733
1734      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1735      // register to hold it.
1736      unsigned NewReg = getScratchReg();
1737      duplicateToTop(FirstFPRegOp, NewReg, MI);
1738      FirstFPRegOp = NewReg;
1739    }
1740
1741    /// Okay we know we have two different FPx operands now:
1742    assert(StackTop == 2 && "Must have two values live!");
1743
1744    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1745    ///    in ST(1).  In this case, emit an fxch.
1746    if (getStackEntry(0) == SecondFPRegOp) {
1747      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1748      moveToTop(FirstFPRegOp, MI);
1749    }
1750
1751    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1752    /// ST(1).  Just remove both from our understanding of the stack and return.
1753    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1754    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1755    StackTop = 0;
1756    return;
1757  }
1758
1759  I = MBB->erase(I);  // Remove the pseudo instruction
1760
1761  // We want to leave I pointing to the previous instruction, but what if we
1762  // just erased the first instruction?
1763  if (I == MBB->begin()) {
1764    DEBUG(dbgs() << "Inserting dummy KILL\n");
1765    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1766  } else
1767    --I;
1768}
1769