X86FloatingPoint.cpp revision 86b98b58745f09ac7fc8cee5eac9caa5739045c0
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP  , "Number of floating point instructions");
49
50namespace {
51  struct FPS : public MachineFunctionPass {
52    static char ID;
53    FPS() : MachineFunctionPass(ID) {
54      // This is really only to keep valgrind quiet.
55      // The logic in isLive() is too much for it.
56      memset(Stack, 0, sizeof(Stack));
57      memset(RegMap, 0, sizeof(RegMap));
58    }
59
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.setPreservesCFG();
62      AU.addPreservedID(MachineLoopInfoID);
63      AU.addPreservedID(MachineDominatorsID);
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnMachineFunction(MachineFunction &MF);
68
69    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
71  private:
72    const TargetInstrInfo *TII; // Machine instruction info.
73
74    // Two CFG edges are related if they leave the same block, or enter the same
75    // block. The transitive closure of an edge under this relation is a
76    // LiveBundle. It represents a set of CFG edges where the live FP stack
77    // registers must be allocated identically in the x87 stack.
78    //
79    // A LiveBundle is usually all the edges leaving a block, or all the edges
80    // entering a block, but it can contain more edges if critical edges are
81    // present.
82    //
83    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84    // but the exact mapping of FP registers to stack slots is fixed later.
85    struct LiveBundle {
86      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87      unsigned Mask;
88
89      // Number of pre-assigned live registers in FixStack. This is 0 when the
90      // stack order has not yet been fixed.
91      unsigned FixCount;
92
93      // Assigned stack order for live-in registers.
94      // FixStack[i] == getStackEntry(i) for all i < FixCount.
95      unsigned char FixStack[8];
96
97      LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99      // Have the live registers been assigned a stack order yet?
100      bool isFixed() const { return !Mask || FixCount; }
101    };
102
103    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104    // with no live FP registers.
105    SmallVector<LiveBundle, 8> LiveBundles;
106
107    // Map each MBB in the current function to an (ingoing, outgoing) index into
108    // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109    // and are not actually stored in the map.
110    DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112    // Return a bitmask of FP registers in block's live-in list.
113    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114      unsigned Mask = 0;
115      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116           E = MBB->livein_end(); I != E; ++I) {
117        unsigned Reg = *I - X86::FP0;
118        if (Reg < 8)
119          Mask |= 1 << Reg;
120      }
121      return Mask;
122    }
123
124    // Partition all the CFG edges into LiveBundles.
125    void bundleCFG(MachineFunction &MF);
126
127    MachineBasicBlock *MBB;     // Current basic block
128    unsigned Stack[8];          // FP<n> Registers in each stack slot...
129    unsigned RegMap[8];         // Track which stack slot contains each register
130    unsigned StackTop;          // The current top of the FP stack.
131
132    // Set up our stack model to match the incoming registers to MBB.
133    void setupBlockStack();
134
135    // Shuffle live registers to match the expectations of successor blocks.
136    void finishBlockStack();
137
138    void dumpStack() const {
139      dbgs() << "Stack contents:";
140      for (unsigned i = 0; i != StackTop; ++i) {
141        dbgs() << " FP" << Stack[i];
142        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
143      }
144      dbgs() << "\n";
145    }
146
147    /// getSlot - Return the stack slot number a particular register number is
148    /// in.
149    unsigned getSlot(unsigned RegNo) const {
150      assert(RegNo < 8 && "Regno out of range!");
151      return RegMap[RegNo];
152    }
153
154    /// isLive - Is RegNo currently live in the stack?
155    bool isLive(unsigned RegNo) const {
156      unsigned Slot = getSlot(RegNo);
157      return Slot < StackTop && Stack[Slot] == RegNo;
158    }
159
160    /// getScratchReg - Return an FP register that is not currently in use.
161    unsigned getScratchReg() {
162      for (int i = 7; i >= 0; --i)
163        if (!isLive(i))
164          return i;
165      llvm_unreachable("Ran out of scratch FP registers");
166    }
167
168    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
169    unsigned getStackEntry(unsigned STi) const {
170      assert(STi < StackTop && "Access past stack top!");
171      return Stack[StackTop-1-STi];
172    }
173
174    /// getSTReg - Return the X86::ST(i) register which contains the specified
175    /// FP<RegNo> register.
176    unsigned getSTReg(unsigned RegNo) const {
177      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
178    }
179
180    // pushReg - Push the specified FP<n> register onto the stack.
181    void pushReg(unsigned Reg) {
182      assert(Reg < 8 && "Register number out of range!");
183      assert(StackTop < 8 && "Stack overflow!");
184      Stack[StackTop] = Reg;
185      RegMap[Reg] = StackTop++;
186    }
187
188    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
189    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
190      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
191      if (isAtTop(RegNo)) return;
192
193      unsigned STReg = getSTReg(RegNo);
194      unsigned RegOnTop = getStackEntry(0);
195
196      // Swap the slots the regs are in.
197      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
198
199      // Swap stack slot contents.
200      assert(RegMap[RegOnTop] < StackTop);
201      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
202
203      // Emit an fxch to update the runtime processors version of the state.
204      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
205      ++NumFXCH;
206    }
207
208    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
209      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
210      unsigned STReg = getSTReg(RegNo);
211      pushReg(AsReg);   // New register on top of stack
212
213      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
214    }
215
216    /// popStackAfter - Pop the current value off of the top of the FP stack
217    /// after the specified instruction.
218    void popStackAfter(MachineBasicBlock::iterator &I);
219
220    /// freeStackSlotAfter - Free the specified register from the register
221    /// stack, so that it is no longer in a register.  If the register is
222    /// currently at the top of the stack, we just pop the current instruction,
223    /// otherwise we store the current top-of-stack into the specified slot,
224    /// then pop the top of stack.
225    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
226
227    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
228    /// instruction.
229    MachineBasicBlock::iterator
230    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
231
232    /// Adjust the live registers to be the set in Mask.
233    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
234
235    /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
236    /// st(0), FP reg FixStack[1] is st(1) etc.
237    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
238                         MachineBasicBlock::iterator I);
239
240    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
241
242    void handleZeroArgFP(MachineBasicBlock::iterator &I);
243    void handleOneArgFP(MachineBasicBlock::iterator &I);
244    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
245    void handleTwoArgFP(MachineBasicBlock::iterator &I);
246    void handleCompareFP(MachineBasicBlock::iterator &I);
247    void handleCondMovFP(MachineBasicBlock::iterator &I);
248    void handleSpecialFP(MachineBasicBlock::iterator &I);
249
250    bool translateCopy(MachineInstr*);
251  };
252  char FPS::ID = 0;
253}
254
255FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
256
257/// getFPReg - Return the X86::FPx register number for the specified operand.
258/// For example, this returns 3 for X86::FP3.
259static unsigned getFPReg(const MachineOperand &MO) {
260  assert(MO.isReg() && "Expected an FP register!");
261  unsigned Reg = MO.getReg();
262  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
263  return Reg - X86::FP0;
264}
265
266/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
267/// register references into FP stack references.
268///
269bool FPS::runOnMachineFunction(MachineFunction &MF) {
270  // We only need to run this pass if there are any FP registers used in this
271  // function.  If it is all integer, there is nothing for us to do!
272  bool FPIsUsed = false;
273
274  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
275  for (unsigned i = 0; i <= 6; ++i)
276    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
277      FPIsUsed = true;
278      break;
279    }
280
281  // Early exit.
282  if (!FPIsUsed) return false;
283
284  TII = MF.getTarget().getInstrInfo();
285
286  // Prepare cross-MBB liveness.
287  bundleCFG(MF);
288
289  StackTop = 0;
290
291  // Process the function in depth first order so that we process at least one
292  // of the predecessors for every reachable block in the function.
293  SmallPtrSet<MachineBasicBlock*, 8> Processed;
294  MachineBasicBlock *Entry = MF.begin();
295
296  bool Changed = false;
297  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
298         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
299       I != E; ++I)
300    Changed |= processBasicBlock(MF, **I);
301
302  // Process any unreachable blocks in arbitrary order now.
303  if (MF.size() != Processed.size())
304    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
305      if (Processed.insert(BB))
306        Changed |= processBasicBlock(MF, *BB);
307
308  BlockBundle.clear();
309  LiveBundles.clear();
310
311  return Changed;
312}
313
314/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
315/// live-out sets for the FP registers. Consistent means that the set of
316/// registers live-out from a block is identical to the live-in set of all
317/// successors. This is not enforced by the normal live-in lists since
318/// registers may be implicitly defined, or not used by all successors.
319void FPS::bundleCFG(MachineFunction &MF) {
320  assert(LiveBundles.empty() && "Stale data in LiveBundles");
321  assert(BlockBundle.empty() && "Stale data in BlockBundle");
322  SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
323
324  // LiveBundle[0] is the empty live-in set.
325  LiveBundles.resize(1);
326
327  // First gather the actual live-in masks for all MBBs.
328  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
329    MachineBasicBlock *MBB = I;
330    const unsigned Mask = calcLiveInMask(MBB);
331    if (!Mask)
332      continue;
333    // Ingoing bundle index.
334    unsigned &Idx = BlockBundle[MBB].first;
335    // Already assigned an ingoing bundle?
336    if (Idx)
337      continue;
338    // Allocate a new LiveBundle struct for this block's live-ins.
339    const unsigned BundleIdx = Idx = LiveBundles.size();
340    DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
341                 << MBB->getNumber());
342    LiveBundles.push_back(Mask);
343    LiveBundle &Bundle = LiveBundles.back();
344
345    // Make sure all predecessors have the same live-out set.
346    PropUp.insert(MBB);
347
348    // Keep pushing liveness up and down the CFG until convergence.
349    // Only critical edges cause iteration here, but when they do, multiple
350    // blocks can be assigned to the same LiveBundle index.
351    do {
352      // Assign BundleIdx as liveout from predecessors in PropUp.
353      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
354           E = PropUp.end(); I != E; ++I) {
355        MachineBasicBlock *MBB = *I;
356        for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
357             LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
358          MachineBasicBlock *PredMBB = *LinkI;
359          // PredMBB's liveout bundle should be set to LIIdx.
360          unsigned &Idx = BlockBundle[PredMBB].second;
361          if (Idx) {
362            assert(Idx == BundleIdx && "Inconsistent CFG");
363            continue;
364          }
365          Idx = BundleIdx;
366          DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
367          // Propagate to siblings.
368          if (PredMBB->succ_size() > 1)
369            PropDown.insert(PredMBB);
370        }
371      }
372      PropUp.clear();
373
374      // Assign BundleIdx as livein to successors in PropDown.
375      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
376           E = PropDown.end(); I != E; ++I) {
377        MachineBasicBlock *MBB = *I;
378        for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
379             LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
380          MachineBasicBlock *SuccMBB = *LinkI;
381          // LinkMBB's livein bundle should be set to BundleIdx.
382          unsigned &Idx = BlockBundle[SuccMBB].first;
383          if (Idx) {
384            assert(Idx == BundleIdx && "Inconsistent CFG");
385            continue;
386          }
387          Idx = BundleIdx;
388          DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
389          // Propagate to siblings.
390          if (SuccMBB->pred_size() > 1)
391            PropUp.insert(SuccMBB);
392          // Also accumulate the bundle liveness mask from the liveins here.
393          Bundle.Mask |= calcLiveInMask(SuccMBB);
394        }
395      }
396      PropDown.clear();
397    } while (!PropUp.empty());
398    DEBUG({
399      dbgs() << " live:";
400      for (unsigned i = 0; i < 8; ++i)
401        if (Bundle.Mask & (1<<i))
402          dbgs() << " %FP" << i;
403      dbgs() << '\n';
404    });
405  }
406}
407
408/// processBasicBlock - Loop over all of the instructions in the basic block,
409/// transforming FP instructions into their stack form.
410///
411bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
412  bool Changed = false;
413  MBB = &BB;
414
415  setupBlockStack();
416
417  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
418    MachineInstr *MI = I;
419    uint64_t Flags = MI->getDesc().TSFlags;
420
421    unsigned FPInstClass = Flags & X86II::FPTypeMask;
422    if (MI->isInlineAsm())
423      FPInstClass = X86II::SpecialFP;
424
425    if (MI->isCopy() && translateCopy(MI))
426      FPInstClass = X86II::SpecialFP;
427
428    if (FPInstClass == X86II::NotFP)
429      continue;  // Efficiently ignore non-fp insts!
430
431    MachineInstr *PrevMI = 0;
432    if (I != BB.begin())
433      PrevMI = prior(I);
434
435    ++NumFP;  // Keep track of # of pseudo instrs
436    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
437
438    // Get dead variables list now because the MI pointer may be deleted as part
439    // of processing!
440    SmallVector<unsigned, 8> DeadRegs;
441    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442      const MachineOperand &MO = MI->getOperand(i);
443      if (MO.isReg() && MO.isDead())
444        DeadRegs.push_back(MO.getReg());
445    }
446
447    switch (FPInstClass) {
448    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
449    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
450    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
451    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
452    case X86II::CompareFP:  handleCompareFP(I); break;
453    case X86II::CondMovFP:  handleCondMovFP(I); break;
454    case X86II::SpecialFP:  handleSpecialFP(I); break;
455    default: llvm_unreachable("Unknown FP Type!");
456    }
457
458    // Check to see if any of the values defined by this instruction are dead
459    // after definition.  If so, pop them.
460    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461      unsigned Reg = DeadRegs[i];
462      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
463        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
464        freeStackSlotAfter(I, Reg-X86::FP0);
465      }
466    }
467
468    // Print out all of the instructions expanded to if -debug
469    DEBUG(
470      MachineBasicBlock::iterator PrevI(PrevMI);
471      if (I == PrevI) {
472        dbgs() << "Just deleted pseudo instruction\n";
473      } else {
474        MachineBasicBlock::iterator Start = I;
475        // Rewind to first instruction newly inserted.
476        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
477        dbgs() << "Inserted instructions:\n\t";
478        Start->print(dbgs(), &MF.getTarget());
479        while (++Start != llvm::next(I)) {}
480      }
481      dumpStack();
482    );
483
484    Changed = true;
485  }
486
487  finishBlockStack();
488
489  return Changed;
490}
491
492/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
493/// to match predecessors' live out stack.
494void FPS::setupBlockStack() {
495  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
496               << " derived from " << MBB->getName() << ".\n");
497  StackTop = 0;
498  const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
499
500  if (!Bundle.Mask) {
501    DEBUG(dbgs() << "Block has no FP live-ins.\n");
502    return;
503  }
504
505  // Depth-first iteration should ensure that we always have an assigned stack.
506  assert(Bundle.isFixed() && "Reached block before any predecessors");
507
508  // Push the fixed live-in registers.
509  for (unsigned i = Bundle.FixCount; i > 0; --i) {
510    MBB->addLiveIn(X86::ST0+i-1);
511    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
512                 << unsigned(Bundle.FixStack[i-1]) << '\n');
513    pushReg(Bundle.FixStack[i-1]);
514  }
515
516  // Kill off unwanted live-ins. This can happen with a critical edge.
517  // FIXME: We could keep these live registers around as zombies. They may need
518  // to be revived at the end of a short block. It might save a few instrs.
519  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
520  DEBUG(MBB->dump());
521}
522
523/// finishBlockStack - Revive live-outs that are implicitly defined out of
524/// MBB. Shuffle live registers to match the expected fixed stack of any
525/// predecessors, and ensure that all predecessors are expecting the same
526/// stack.
527void FPS::finishBlockStack() {
528  // The RET handling below takes care of return blocks for us.
529  if (MBB->succ_empty())
530    return;
531
532  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
533               << " derived from " << MBB->getName() << ".\n");
534
535  unsigned BundleIdx = BlockBundle.lookup(MBB).second;
536  LiveBundle &Bundle = LiveBundles[BundleIdx];
537
538  // We may need to kill and define some registers to match successors.
539  // FIXME: This can probably be combined with the shuffle below.
540  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
541  adjustLiveRegs(Bundle.Mask, Term);
542
543  if (!Bundle.Mask) {
544    DEBUG(dbgs() << "No live-outs.\n");
545    return;
546  }
547
548  // Has the stack order been fixed yet?
549  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
550  if (Bundle.isFixed()) {
551    DEBUG(dbgs() << "Shuffling stack to match.\n");
552    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
553  } else {
554    // Not fixed yet, we get to choose.
555    DEBUG(dbgs() << "Fixing stack order now.\n");
556    Bundle.FixCount = StackTop;
557    for (unsigned i = 0; i < StackTop; ++i)
558      Bundle.FixStack[i] = getStackEntry(i);
559  }
560}
561
562
563//===----------------------------------------------------------------------===//
564// Efficient Lookup Table Support
565//===----------------------------------------------------------------------===//
566
567namespace {
568  struct TableEntry {
569    unsigned from;
570    unsigned to;
571    bool operator<(const TableEntry &TE) const { return from < TE.from; }
572    friend bool operator<(const TableEntry &TE, unsigned V) {
573      return TE.from < V;
574    }
575    friend bool ATTRIBUTE_USED operator<(unsigned V, const TableEntry &TE) {
576      return V < TE.from;
577    }
578  };
579}
580
581#ifndef NDEBUG
582static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
583  for (unsigned i = 0; i != NumEntries-1; ++i)
584    if (!(Table[i] < Table[i+1])) return false;
585  return true;
586}
587#endif
588
589static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
590  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
591  if (I != Table+N && I->from == Opcode)
592    return I->to;
593  return -1;
594}
595
596#ifdef NDEBUG
597#define ASSERT_SORTED(TABLE)
598#else
599#define ASSERT_SORTED(TABLE)                                              \
600  { static bool TABLE##Checked = false;                                   \
601    if (!TABLE##Checked) {                                                \
602       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
603              "All lookup tables must be sorted for efficient access!");  \
604       TABLE##Checked = true;                                             \
605    }                                                                     \
606  }
607#endif
608
609//===----------------------------------------------------------------------===//
610// Register File -> Register Stack Mapping Methods
611//===----------------------------------------------------------------------===//
612
613// OpcodeTable - Sorted map of register instructions to their stack version.
614// The first element is an register file pseudo instruction, the second is the
615// concrete X86 instruction which uses the register stack.
616//
617static const TableEntry OpcodeTable[] = {
618  { X86::ABS_Fp32     , X86::ABS_F     },
619  { X86::ABS_Fp64     , X86::ABS_F     },
620  { X86::ABS_Fp80     , X86::ABS_F     },
621  { X86::ADD_Fp32m    , X86::ADD_F32m  },
622  { X86::ADD_Fp64m    , X86::ADD_F64m  },
623  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
624  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
625  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
626  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
627  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
628  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
629  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
630  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
631  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
632  { X86::CHS_Fp32     , X86::CHS_F     },
633  { X86::CHS_Fp64     , X86::CHS_F     },
634  { X86::CHS_Fp80     , X86::CHS_F     },
635  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
636  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
637  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
638  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
639  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
640  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
641  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
642  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
643  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
644  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
645  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
646  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
647  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
648  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
649  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
650  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
651  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
652  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
653  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
654  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
655  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
656  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
657  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
658  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
659  { X86::COS_Fp32     , X86::COS_F     },
660  { X86::COS_Fp64     , X86::COS_F     },
661  { X86::COS_Fp80     , X86::COS_F     },
662  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
663  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
664  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
665  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
666  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
667  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
668  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
669  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
670  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
671  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
672  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
673  { X86::DIV_Fp32m    , X86::DIV_F32m  },
674  { X86::DIV_Fp64m    , X86::DIV_F64m  },
675  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
676  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
677  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
678  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
679  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
680  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
681  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
682  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
683  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
684  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
685  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
686  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
687  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
688  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
689  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
690  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
691  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
692  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
693  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
694  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
695  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
696  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
697  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
698  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
699  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
700  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
701  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
702  { X86::IST_Fp16m32  , X86::IST_F16m  },
703  { X86::IST_Fp16m64  , X86::IST_F16m  },
704  { X86::IST_Fp16m80  , X86::IST_F16m  },
705  { X86::IST_Fp32m32  , X86::IST_F32m  },
706  { X86::IST_Fp32m64  , X86::IST_F32m  },
707  { X86::IST_Fp32m80  , X86::IST_F32m  },
708  { X86::IST_Fp64m32  , X86::IST_FP64m },
709  { X86::IST_Fp64m64  , X86::IST_FP64m },
710  { X86::IST_Fp64m80  , X86::IST_FP64m },
711  { X86::LD_Fp032     , X86::LD_F0     },
712  { X86::LD_Fp064     , X86::LD_F0     },
713  { X86::LD_Fp080     , X86::LD_F0     },
714  { X86::LD_Fp132     , X86::LD_F1     },
715  { X86::LD_Fp164     , X86::LD_F1     },
716  { X86::LD_Fp180     , X86::LD_F1     },
717  { X86::LD_Fp32m     , X86::LD_F32m   },
718  { X86::LD_Fp32m64   , X86::LD_F32m   },
719  { X86::LD_Fp32m80   , X86::LD_F32m   },
720  { X86::LD_Fp64m     , X86::LD_F64m   },
721  { X86::LD_Fp64m80   , X86::LD_F64m   },
722  { X86::LD_Fp80m     , X86::LD_F80m   },
723  { X86::MUL_Fp32m    , X86::MUL_F32m  },
724  { X86::MUL_Fp64m    , X86::MUL_F64m  },
725  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
726  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
727  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
728  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
729  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
730  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
731  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
732  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
733  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
734  { X86::SIN_Fp32     , X86::SIN_F     },
735  { X86::SIN_Fp64     , X86::SIN_F     },
736  { X86::SIN_Fp80     , X86::SIN_F     },
737  { X86::SQRT_Fp32    , X86::SQRT_F    },
738  { X86::SQRT_Fp64    , X86::SQRT_F    },
739  { X86::SQRT_Fp80    , X86::SQRT_F    },
740  { X86::ST_Fp32m     , X86::ST_F32m   },
741  { X86::ST_Fp64m     , X86::ST_F64m   },
742  { X86::ST_Fp64m32   , X86::ST_F32m   },
743  { X86::ST_Fp80m32   , X86::ST_F32m   },
744  { X86::ST_Fp80m64   , X86::ST_F64m   },
745  { X86::ST_FpP80m    , X86::ST_FP80m  },
746  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
747  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
748  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
749  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
750  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
751  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
752  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
753  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
754  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
755  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
756  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
757  { X86::SUB_Fp32m    , X86::SUB_F32m  },
758  { X86::SUB_Fp64m    , X86::SUB_F64m  },
759  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
760  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
761  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
762  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
763  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
764  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
765  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
766  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
767  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
768  { X86::TST_Fp32     , X86::TST_F     },
769  { X86::TST_Fp64     , X86::TST_F     },
770  { X86::TST_Fp80     , X86::TST_F     },
771  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
772  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
773  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
774  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
775  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
776  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
777};
778
779static unsigned getConcreteOpcode(unsigned Opcode) {
780  ASSERT_SORTED(OpcodeTable);
781  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
782  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
783  return Opc;
784}
785
786//===----------------------------------------------------------------------===//
787// Helper Methods
788//===----------------------------------------------------------------------===//
789
790// PopTable - Sorted map of instructions to their popping version.  The first
791// element is an instruction, the second is the version which pops.
792//
793static const TableEntry PopTable[] = {
794  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
795
796  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
797  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
798
799  { X86::IST_F16m  , X86::IST_FP16m   },
800  { X86::IST_F32m  , X86::IST_FP32m   },
801
802  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
803
804  { X86::ST_F32m   , X86::ST_FP32m    },
805  { X86::ST_F64m   , X86::ST_FP64m    },
806  { X86::ST_Frr    , X86::ST_FPrr     },
807
808  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
809  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
810
811  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
812
813  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
814  { X86::UCOM_Fr   , X86::UCOM_FPr    },
815};
816
817/// popStackAfter - Pop the current value off of the top of the FP stack after
818/// the specified instruction.  This attempts to be sneaky and combine the pop
819/// into the instruction itself if possible.  The iterator is left pointing to
820/// the last instruction, be it a new pop instruction inserted, or the old
821/// instruction if it was modified in place.
822///
823void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
824  MachineInstr* MI = I;
825  DebugLoc dl = MI->getDebugLoc();
826  ASSERT_SORTED(PopTable);
827  assert(StackTop > 0 && "Cannot pop empty stack!");
828  RegMap[Stack[--StackTop]] = ~0;     // Update state
829
830  // Check to see if there is a popping version of this instruction...
831  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
832  if (Opcode != -1) {
833    I->setDesc(TII->get(Opcode));
834    if (Opcode == X86::UCOM_FPPr)
835      I->RemoveOperand(0);
836  } else {    // Insert an explicit pop
837    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
838  }
839}
840
841/// freeStackSlotAfter - Free the specified register from the register stack, so
842/// that it is no longer in a register.  If the register is currently at the top
843/// of the stack, we just pop the current instruction, otherwise we store the
844/// current top-of-stack into the specified slot, then pop the top of stack.
845void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
846  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
847    popStackAfter(I);
848    return;
849  }
850
851  // Otherwise, store the top of stack into the dead slot, killing the operand
852  // without having to add in an explicit xchg then pop.
853  //
854  I = freeStackSlotBefore(++I, FPRegNo);
855}
856
857/// freeStackSlotBefore - Free the specified register without trying any
858/// folding.
859MachineBasicBlock::iterator
860FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
861  unsigned STReg    = getSTReg(FPRegNo);
862  unsigned OldSlot  = getSlot(FPRegNo);
863  unsigned TopReg   = Stack[StackTop-1];
864  Stack[OldSlot]    = TopReg;
865  RegMap[TopReg]    = OldSlot;
866  RegMap[FPRegNo]   = ~0;
867  Stack[--StackTop] = ~0;
868  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
869}
870
871/// adjustLiveRegs - Kill and revive registers such that exactly the FP
872/// registers with a bit in Mask are live.
873void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
874  unsigned Defs = Mask;
875  unsigned Kills = 0;
876  for (unsigned i = 0; i < StackTop; ++i) {
877    unsigned RegNo = Stack[i];
878    if (!(Defs & (1 << RegNo)))
879      // This register is live, but we don't want it.
880      Kills |= (1 << RegNo);
881    else
882      // We don't need to imp-def this live register.
883      Defs &= ~(1 << RegNo);
884  }
885  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
886
887  // Produce implicit-defs for free by using killed registers.
888  while (Kills && Defs) {
889    unsigned KReg = CountTrailingZeros_32(Kills);
890    unsigned DReg = CountTrailingZeros_32(Defs);
891    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
892    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
893    std::swap(RegMap[KReg], RegMap[DReg]);
894    Kills &= ~(1 << KReg);
895    Defs &= ~(1 << DReg);
896  }
897
898  // Kill registers by popping.
899  if (Kills && I != MBB->begin()) {
900    MachineBasicBlock::iterator I2 = llvm::prior(I);
901    for (;;) {
902      unsigned KReg = getStackEntry(0);
903      if (!(Kills & (1 << KReg)))
904        break;
905      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
906      popStackAfter(I2);
907      Kills &= ~(1 << KReg);
908    }
909  }
910
911  // Manually kill the rest.
912  while (Kills) {
913    unsigned KReg = CountTrailingZeros_32(Kills);
914    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
915    freeStackSlotBefore(I, KReg);
916    Kills &= ~(1 << KReg);
917  }
918
919  // Load zeros for all the imp-defs.
920  while(Defs) {
921    unsigned DReg = CountTrailingZeros_32(Defs);
922    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
923    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
924    pushReg(DReg);
925    Defs &= ~(1 << DReg);
926  }
927
928  // Now we should have the correct registers live.
929  DEBUG(dumpStack());
930  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
931}
932
933/// shuffleStackTop - emit fxch instructions before I to shuffle the top
934/// FixCount entries into the order given by FixStack.
935/// FIXME: Is there a better algorithm than insertion sort?
936void FPS::shuffleStackTop(const unsigned char *FixStack,
937                          unsigned FixCount,
938                          MachineBasicBlock::iterator I) {
939  // Move items into place, starting from the desired stack bottom.
940  while (FixCount--) {
941    // Old register at position FixCount.
942    unsigned OldReg = getStackEntry(FixCount);
943    // Desired register at position FixCount.
944    unsigned Reg = FixStack[FixCount];
945    if (Reg == OldReg)
946      continue;
947    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
948    moveToTop(Reg, I);
949    moveToTop(OldReg, I);
950  }
951  DEBUG(dumpStack());
952}
953
954
955//===----------------------------------------------------------------------===//
956// Instruction transformation implementation
957//===----------------------------------------------------------------------===//
958
959/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
960///
961void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
962  MachineInstr *MI = I;
963  unsigned DestReg = getFPReg(MI->getOperand(0));
964
965  // Change from the pseudo instruction to the concrete instruction.
966  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
967  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
968
969  // Result gets pushed on the stack.
970  pushReg(DestReg);
971}
972
973/// handleOneArgFP - fst <mem>, ST(0)
974///
975void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
976  MachineInstr *MI = I;
977  unsigned NumOps = MI->getDesc().getNumOperands();
978  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
979         "Can only handle fst* & ftst instructions!");
980
981  // Is this the last use of the source register?
982  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
983  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
984
985  // FISTP64m is strange because there isn't a non-popping versions.
986  // If we have one _and_ we don't want to pop the operand, duplicate the value
987  // on the stack instead of moving it.  This ensure that popping the value is
988  // always ok.
989  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
990  //
991  if (!KillsSrc &&
992      (MI->getOpcode() == X86::IST_Fp64m32 ||
993       MI->getOpcode() == X86::ISTT_Fp16m32 ||
994       MI->getOpcode() == X86::ISTT_Fp32m32 ||
995       MI->getOpcode() == X86::ISTT_Fp64m32 ||
996       MI->getOpcode() == X86::IST_Fp64m64 ||
997       MI->getOpcode() == X86::ISTT_Fp16m64 ||
998       MI->getOpcode() == X86::ISTT_Fp32m64 ||
999       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1000       MI->getOpcode() == X86::IST_Fp64m80 ||
1001       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1002       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1003       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1004       MI->getOpcode() == X86::ST_FpP80m)) {
1005    duplicateToTop(Reg, getScratchReg(), I);
1006  } else {
1007    moveToTop(Reg, I);            // Move to the top of the stack...
1008  }
1009
1010  // Convert from the pseudo instruction to the concrete instruction.
1011  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1012  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1013
1014  if (MI->getOpcode() == X86::IST_FP64m ||
1015      MI->getOpcode() == X86::ISTT_FP16m ||
1016      MI->getOpcode() == X86::ISTT_FP32m ||
1017      MI->getOpcode() == X86::ISTT_FP64m ||
1018      MI->getOpcode() == X86::ST_FP80m) {
1019    assert(StackTop > 0 && "Stack empty??");
1020    --StackTop;
1021  } else if (KillsSrc) { // Last use of operand?
1022    popStackAfter(I);
1023  }
1024}
1025
1026
1027/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1028/// replace the value with a newly computed value.  These instructions may have
1029/// non-fp operands after their FP operands.
1030///
1031///  Examples:
1032///     R1 = fchs R2
1033///     R1 = fadd R2, [mem]
1034///
1035void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1036  MachineInstr *MI = I;
1037#ifndef NDEBUG
1038  unsigned NumOps = MI->getDesc().getNumOperands();
1039  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1040#endif
1041
1042  // Is this the last use of the source register?
1043  unsigned Reg = getFPReg(MI->getOperand(1));
1044  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1045
1046  if (KillsSrc) {
1047    // If this is the last use of the source register, just make sure it's on
1048    // the top of the stack.
1049    moveToTop(Reg, I);
1050    assert(StackTop > 0 && "Stack cannot be empty!");
1051    --StackTop;
1052    pushReg(getFPReg(MI->getOperand(0)));
1053  } else {
1054    // If this is not the last use of the source register, _copy_ it to the top
1055    // of the stack.
1056    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1057  }
1058
1059  // Change from the pseudo instruction to the concrete instruction.
1060  MI->RemoveOperand(1);   // Drop the source operand.
1061  MI->RemoveOperand(0);   // Drop the destination operand.
1062  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1063}
1064
1065
1066//===----------------------------------------------------------------------===//
1067// Define tables of various ways to map pseudo instructions
1068//
1069
1070// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1071static const TableEntry ForwardST0Table[] = {
1072  { X86::ADD_Fp32  , X86::ADD_FST0r },
1073  { X86::ADD_Fp64  , X86::ADD_FST0r },
1074  { X86::ADD_Fp80  , X86::ADD_FST0r },
1075  { X86::DIV_Fp32  , X86::DIV_FST0r },
1076  { X86::DIV_Fp64  , X86::DIV_FST0r },
1077  { X86::DIV_Fp80  , X86::DIV_FST0r },
1078  { X86::MUL_Fp32  , X86::MUL_FST0r },
1079  { X86::MUL_Fp64  , X86::MUL_FST0r },
1080  { X86::MUL_Fp80  , X86::MUL_FST0r },
1081  { X86::SUB_Fp32  , X86::SUB_FST0r },
1082  { X86::SUB_Fp64  , X86::SUB_FST0r },
1083  { X86::SUB_Fp80  , X86::SUB_FST0r },
1084};
1085
1086// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1087static const TableEntry ReverseST0Table[] = {
1088  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1089  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1090  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1091  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1092  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1093  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1094  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1095  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1096  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1097  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1098  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1099  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1100};
1101
1102// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1103static const TableEntry ForwardSTiTable[] = {
1104  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1105  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1106  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1107  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1108  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1109  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1110  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1111  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1112  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1113  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1114  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1115  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1116};
1117
1118// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1119static const TableEntry ReverseSTiTable[] = {
1120  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1121  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1122  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1123  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1124  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1125  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1126  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1127  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1128  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1129  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1130  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1131  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1132};
1133
1134
1135/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1136/// instructions which need to be simplified and possibly transformed.
1137///
1138/// Result: ST(0) = fsub  ST(0), ST(i)
1139///         ST(i) = fsub  ST(0), ST(i)
1140///         ST(0) = fsubr ST(0), ST(i)
1141///         ST(i) = fsubr ST(0), ST(i)
1142///
1143void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1144  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1145  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1146  MachineInstr *MI = I;
1147
1148  unsigned NumOperands = MI->getDesc().getNumOperands();
1149  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1150  unsigned Dest = getFPReg(MI->getOperand(0));
1151  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1152  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1153  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1154  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1155  DebugLoc dl = MI->getDebugLoc();
1156
1157  unsigned TOS = getStackEntry(0);
1158
1159  // One of our operands must be on the top of the stack.  If neither is yet, we
1160  // need to move one.
1161  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1162    // We can choose to move either operand to the top of the stack.  If one of
1163    // the operands is killed by this instruction, we want that one so that we
1164    // can update right on top of the old version.
1165    if (KillsOp0) {
1166      moveToTop(Op0, I);         // Move dead operand to TOS.
1167      TOS = Op0;
1168    } else if (KillsOp1) {
1169      moveToTop(Op1, I);
1170      TOS = Op1;
1171    } else {
1172      // All of the operands are live after this instruction executes, so we
1173      // cannot update on top of any operand.  Because of this, we must
1174      // duplicate one of the stack elements to the top.  It doesn't matter
1175      // which one we pick.
1176      //
1177      duplicateToTop(Op0, Dest, I);
1178      Op0 = TOS = Dest;
1179      KillsOp0 = true;
1180    }
1181  } else if (!KillsOp0 && !KillsOp1) {
1182    // If we DO have one of our operands at the top of the stack, but we don't
1183    // have a dead operand, we must duplicate one of the operands to a new slot
1184    // on the stack.
1185    duplicateToTop(Op0, Dest, I);
1186    Op0 = TOS = Dest;
1187    KillsOp0 = true;
1188  }
1189
1190  // Now we know that one of our operands is on the top of the stack, and at
1191  // least one of our operands is killed by this instruction.
1192  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1193         "Stack conditions not set up right!");
1194
1195  // We decide which form to use based on what is on the top of the stack, and
1196  // which operand is killed by this instruction.
1197  const TableEntry *InstTable;
1198  bool isForward = TOS == Op0;
1199  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1200  if (updateST0) {
1201    if (isForward)
1202      InstTable = ForwardST0Table;
1203    else
1204      InstTable = ReverseST0Table;
1205  } else {
1206    if (isForward)
1207      InstTable = ForwardSTiTable;
1208    else
1209      InstTable = ReverseSTiTable;
1210  }
1211
1212  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1213                      MI->getOpcode());
1214  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1215
1216  // NotTOS - The register which is not on the top of stack...
1217  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1218
1219  // Replace the old instruction with a new instruction
1220  MBB->remove(I++);
1221  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1222
1223  // If both operands are killed, pop one off of the stack in addition to
1224  // overwriting the other one.
1225  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1226    assert(!updateST0 && "Should have updated other operand!");
1227    popStackAfter(I);   // Pop the top of stack
1228  }
1229
1230  // Update stack information so that we know the destination register is now on
1231  // the stack.
1232  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1233  assert(UpdatedSlot < StackTop && Dest < 7);
1234  Stack[UpdatedSlot]   = Dest;
1235  RegMap[Dest]         = UpdatedSlot;
1236  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1237}
1238
1239/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1240/// register arguments and no explicit destinations.
1241///
1242void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1243  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1244  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1245  MachineInstr *MI = I;
1246
1247  unsigned NumOperands = MI->getDesc().getNumOperands();
1248  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1249  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1250  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1251  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1252  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1253
1254  // Make sure the first operand is on the top of stack, the other one can be
1255  // anywhere.
1256  moveToTop(Op0, I);
1257
1258  // Change from the pseudo instruction to the concrete instruction.
1259  MI->getOperand(0).setReg(getSTReg(Op1));
1260  MI->RemoveOperand(1);
1261  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1262
1263  // If any of the operands are killed by this instruction, free them.
1264  if (KillsOp0) freeStackSlotAfter(I, Op0);
1265  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1266}
1267
1268/// handleCondMovFP - Handle two address conditional move instructions.  These
1269/// instructions move a st(i) register to st(0) iff a condition is true.  These
1270/// instructions require that the first operand is at the top of the stack, but
1271/// otherwise don't modify the stack at all.
1272void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1273  MachineInstr *MI = I;
1274
1275  unsigned Op0 = getFPReg(MI->getOperand(0));
1276  unsigned Op1 = getFPReg(MI->getOperand(2));
1277  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1278
1279  // The first operand *must* be on the top of the stack.
1280  moveToTop(Op0, I);
1281
1282  // Change the second operand to the stack register that the operand is in.
1283  // Change from the pseudo instruction to the concrete instruction.
1284  MI->RemoveOperand(0);
1285  MI->RemoveOperand(1);
1286  MI->getOperand(0).setReg(getSTReg(Op1));
1287  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1288
1289  // If we kill the second operand, make sure to pop it from the stack.
1290  if (Op0 != Op1 && KillsOp1) {
1291    // Get this value off of the register stack.
1292    freeStackSlotAfter(I, Op1);
1293  }
1294}
1295
1296
1297/// handleSpecialFP - Handle special instructions which behave unlike other
1298/// floating point instructions.  This is primarily intended for use by pseudo
1299/// instructions.
1300///
1301void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1302  MachineInstr *MI = I;
1303  DebugLoc dl = MI->getDebugLoc();
1304  switch (MI->getOpcode()) {
1305  default: llvm_unreachable("Unknown SpecialFP instruction!");
1306  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1307  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1308  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
1309    assert(StackTop == 0 && "Stack should be empty after a call!");
1310    pushReg(getFPReg(MI->getOperand(0)));
1311    break;
1312  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1313  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1314  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1315    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1316    // The pattern we expect is:
1317    //  CALL
1318    //  FP1 = FpGET_ST0
1319    //  FP4 = FpGET_ST1
1320    //
1321    // At this point, we've pushed FP1 on the top of stack, so it should be
1322    // present if it isn't dead.  If it was dead, we already emitted a pop to
1323    // remove it from the stack and StackTop = 0.
1324
1325    // Push FP4 as top of stack next.
1326    pushReg(getFPReg(MI->getOperand(0)));
1327
1328    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1329    // dead.  In this case, the ST(1) value is the only thing that is live, so
1330    // it should be on the TOS (after the pop that was emitted) and is.  Just
1331    // continue in this case.
1332    if (StackTop == 1)
1333      break;
1334
1335    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1336    // elements so that our accounting is correct.
1337    unsigned RegOnTop = getStackEntry(0);
1338    unsigned RegNo = getStackEntry(1);
1339
1340    // Swap the slots the regs are in.
1341    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1342
1343    // Swap stack slot contents.
1344    assert(RegMap[RegOnTop] < StackTop);
1345    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1346    break;
1347  }
1348  case X86::FpSET_ST0_32:
1349  case X86::FpSET_ST0_64:
1350  case X86::FpSET_ST0_80: {
1351    // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1352    // arguments that use an st constraint. We expect a sequence of
1353    // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1354    unsigned Op0 = getFPReg(MI->getOperand(0));
1355
1356    if (!MI->killsRegister(X86::FP0 + Op0)) {
1357      // Duplicate Op0 into a temporary on the stack top.
1358      duplicateToTop(Op0, getScratchReg(), I);
1359    } else {
1360      // Op0 is killed, so just swap it into position.
1361      moveToTop(Op0, I);
1362    }
1363    --StackTop;   // "Forget" we have something on the top of stack!
1364    break;
1365  }
1366  case X86::FpSET_ST1_32:
1367  case X86::FpSET_ST1_64:
1368  case X86::FpSET_ST1_80: {
1369    // Set up st(1) for inline asm. We are assuming that st(0) has already been
1370    // set up by FpSET_ST0, and our StackTop is off by one because of it.
1371    unsigned Op0 = getFPReg(MI->getOperand(0));
1372    // Restore the actual StackTop from before Fp_SET_ST0.
1373    // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1374    // are not enforcing the constraint.
1375    ++StackTop;
1376    unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1377    if (!MI->killsRegister(X86::FP0 + Op0)) {
1378      duplicateToTop(Op0, getScratchReg(), I);
1379      moveToTop(RegOnTop, I);
1380    } else if (getSTReg(Op0) != X86::ST1) {
1381      // We have the wrong value at st(1). Shuffle! Untested!
1382      moveToTop(getStackEntry(1), I);
1383      moveToTop(Op0, I);
1384      moveToTop(RegOnTop, I);
1385    }
1386    assert(StackTop >= 2 && "Too few live registers");
1387    StackTop -= 2; // "Forget" both st(0) and st(1).
1388    break;
1389  }
1390  case X86::MOV_Fp3232:
1391  case X86::MOV_Fp3264:
1392  case X86::MOV_Fp6432:
1393  case X86::MOV_Fp6464:
1394  case X86::MOV_Fp3280:
1395  case X86::MOV_Fp6480:
1396  case X86::MOV_Fp8032:
1397  case X86::MOV_Fp8064:
1398  case X86::MOV_Fp8080: {
1399    const MachineOperand &MO1 = MI->getOperand(1);
1400    unsigned SrcReg = getFPReg(MO1);
1401
1402    const MachineOperand &MO0 = MI->getOperand(0);
1403    unsigned DestReg = getFPReg(MO0);
1404    if (MI->killsRegister(X86::FP0+SrcReg)) {
1405      // If the input operand is killed, we can just change the owner of the
1406      // incoming stack slot into the result.
1407      unsigned Slot = getSlot(SrcReg);
1408      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1409      Stack[Slot] = DestReg;
1410      RegMap[DestReg] = Slot;
1411
1412    } else {
1413      // For FMOV we just duplicate the specified value to a new stack slot.
1414      // This could be made better, but would require substantial changes.
1415      duplicateToTop(SrcReg, DestReg, I);
1416    }
1417    }
1418    break;
1419  case TargetOpcode::INLINEASM: {
1420    // The inline asm MachineInstr currently only *uses* FP registers for the
1421    // 'f' constraint.  These should be turned into the current ST(x) register
1422    // in the machine instr.  Also, any kills should be explicitly popped after
1423    // the inline asm.
1424    unsigned Kills = 0;
1425    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1426      MachineOperand &Op = MI->getOperand(i);
1427      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1428        continue;
1429      assert(Op.isUse() && "Only handle inline asm uses right now");
1430
1431      unsigned FPReg = getFPReg(Op);
1432      Op.setReg(getSTReg(FPReg));
1433
1434      // If we kill this operand, make sure to pop it from the stack after the
1435      // asm.  We just remember it for now, and pop them all off at the end in
1436      // a batch.
1437      if (Op.isKill())
1438        Kills |= 1U << FPReg;
1439    }
1440
1441    // If this asm kills any FP registers (is the last use of them) we must
1442    // explicitly emit pop instructions for them.  Do this now after the asm has
1443    // executed so that the ST(x) numbers are not off (which would happen if we
1444    // did this inline with operand rewriting).
1445    //
1446    // Note: this might be a non-optimal pop sequence.  We might be able to do
1447    // better by trying to pop in stack order or something.
1448    MachineBasicBlock::iterator InsertPt = MI;
1449    while (Kills) {
1450      unsigned FPReg = CountTrailingZeros_32(Kills);
1451      freeStackSlotAfter(InsertPt, FPReg);
1452      Kills &= ~(1U << FPReg);
1453    }
1454    // Don't delete the inline asm!
1455    return;
1456  }
1457
1458  case X86::RET:
1459  case X86::RETI:
1460    // If RET has an FP register use operand, pass the first one in ST(0) and
1461    // the second one in ST(1).
1462
1463    // Find the register operands.
1464    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1465    unsigned LiveMask = 0;
1466
1467    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1468      MachineOperand &Op = MI->getOperand(i);
1469      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1470        continue;
1471      // FP Register uses must be kills unless there are two uses of the same
1472      // register, in which case only one will be a kill.
1473      assert(Op.isUse() &&
1474             (Op.isKill() ||                        // Marked kill.
1475              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1476              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1477             "Ret only defs operands, and values aren't live beyond it");
1478
1479      if (FirstFPRegOp == ~0U)
1480        FirstFPRegOp = getFPReg(Op);
1481      else {
1482        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1483        SecondFPRegOp = getFPReg(Op);
1484      }
1485      LiveMask |= (1 << getFPReg(Op));
1486
1487      // Remove the operand so that later passes don't see it.
1488      MI->RemoveOperand(i);
1489      --i, --e;
1490    }
1491
1492    // We may have been carrying spurious live-ins, so make sure only the returned
1493    // registers are left live.
1494    adjustLiveRegs(LiveMask, MI);
1495    if (!LiveMask) return;  // Quick check to see if any are possible.
1496
1497    // There are only four possibilities here:
1498    // 1) we are returning a single FP value.  In this case, it has to be in
1499    //    ST(0) already, so just declare success by removing the value from the
1500    //    FP Stack.
1501    if (SecondFPRegOp == ~0U) {
1502      // Assert that the top of stack contains the right FP register.
1503      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1504             "Top of stack not the right register for RET!");
1505
1506      // Ok, everything is good, mark the value as not being on the stack
1507      // anymore so that our assertion about the stack being empty at end of
1508      // block doesn't fire.
1509      StackTop = 0;
1510      return;
1511    }
1512
1513    // Otherwise, we are returning two values:
1514    // 2) If returning the same value for both, we only have one thing in the FP
1515    //    stack.  Consider:  RET FP1, FP1
1516    if (StackTop == 1) {
1517      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1518             "Stack misconfiguration for RET!");
1519
1520      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1521      // register to hold it.
1522      unsigned NewReg = getScratchReg();
1523      duplicateToTop(FirstFPRegOp, NewReg, MI);
1524      FirstFPRegOp = NewReg;
1525    }
1526
1527    /// Okay we know we have two different FPx operands now:
1528    assert(StackTop == 2 && "Must have two values live!");
1529
1530    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1531    ///    in ST(1).  In this case, emit an fxch.
1532    if (getStackEntry(0) == SecondFPRegOp) {
1533      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1534      moveToTop(FirstFPRegOp, MI);
1535    }
1536
1537    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1538    /// ST(1).  Just remove both from our understanding of the stack and return.
1539    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1540    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1541    StackTop = 0;
1542    return;
1543  }
1544
1545  I = MBB->erase(I);  // Remove the pseudo instruction
1546
1547  // We want to leave I pointing to the previous instruction, but what if we
1548  // just erased the first instruction?
1549  if (I == MBB->begin()) {
1550    DEBUG(dbgs() << "Inserting dummy KILL\n");
1551    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1552  } else
1553    --I;
1554}
1555
1556// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1557bool FPS::translateCopy(MachineInstr *MI) {
1558  unsigned DstReg = MI->getOperand(0).getReg();
1559  unsigned SrcReg = MI->getOperand(1).getReg();
1560
1561  if (DstReg == X86::ST0) {
1562    MI->setDesc(TII->get(X86::FpSET_ST0_80));
1563    MI->RemoveOperand(0);
1564    return true;
1565  }
1566  if (DstReg == X86::ST1) {
1567    MI->setDesc(TII->get(X86::FpSET_ST1_80));
1568    MI->RemoveOperand(0);
1569    return true;
1570  }
1571  if (SrcReg == X86::ST0) {
1572    MI->setDesc(TII->get(X86::FpGET_ST0_80));
1573    return true;
1574  }
1575  if (SrcReg == X86::ST1) {
1576    MI->setDesc(TII->get(X86::FpGET_ST1_80));
1577    return true;
1578  }
1579  if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1580    MI->setDesc(TII->get(X86::MOV_Fp8080));
1581    return true;
1582  }
1583  return false;
1584}
1585