X86FloatingPoint.cpp revision 8e475b8cfdd3c7a86afa6aa21326c7bad0be7f02
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Function.h"     // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h"  // FIXME: remove when using MBB CFG!
42#include "Support/Debug.h"
43#include "Support/DepthFirstIterator.h"
44#include "Support/Statistic.h"
45#include "Support/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53
54  struct FPS : public MachineFunctionPass {
55    virtual bool runOnMachineFunction(MachineFunction &MF);
56
57    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<LiveVariables>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63  private:
64    LiveVariables     *LV;    // Live variable info for current function...
65    MachineBasicBlock *MBB;   // Current basic block
66    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67    unsigned RegMap[8];       // Track which stack slot contains each register
68    unsigned StackTop;        // The current top of the FP stack.
69
70    void dumpStack() const {
71      std::cerr << "Stack contents:";
72      for (unsigned i = 0; i != StackTop; ++i) {
73	std::cerr << " FP" << Stack[i];
74	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75      }
76      std::cerr << "\n";
77    }
78  private:
79    // getSlot - Return the stack slot number a particular register number is
80    // in...
81    unsigned getSlot(unsigned RegNo) const {
82      assert(RegNo < 8 && "Regno out of range!");
83      return RegMap[RegNo];
84    }
85
86    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87    unsigned getStackEntry(unsigned STi) const {
88      assert(STi < StackTop && "Access past stack top!");
89      return Stack[StackTop-1-STi];
90    }
91
92    // getSTReg - Return the X86::ST(i) register which contains the specified
93    // FP<RegNo> register
94    unsigned getSTReg(unsigned RegNo) const {
95      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96    }
97
98    // pushReg - Push the specified FP<n> register onto the stack
99    void pushReg(unsigned Reg) {
100      assert(Reg < 8 && "Register number out of range!");
101      assert(StackTop < 8 && "Stack overflow!");
102      Stack[StackTop] = Reg;
103      RegMap[Reg] = StackTop++;
104    }
105
106    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108      if (!isAtTop(RegNo)) {
109	unsigned Slot = getSlot(RegNo);
110	unsigned STReg = getSTReg(RegNo);
111	unsigned RegOnTop = getStackEntry(0);
112
113	// Swap the slots the regs are in
114	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116	// Swap stack slot contents
117	assert(RegMap[RegOnTop] < StackTop);
118	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120	// Emit an fxch to update the runtime processors version of the state
121	MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
122	MBB->insert(I, MI);
123	NumFXCH++;
124      }
125    }
126
127    void duplicateToTop(unsigned RegNo, unsigned AsReg,
128			MachineBasicBlock::iterator &I) {
129      unsigned STReg = getSTReg(RegNo);
130      pushReg(AsReg);   // New register on top of stack
131
132      MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
133      MBB->insert(I, MI);
134    }
135
136    // popStackAfter - Pop the current value off of the top of the FP stack
137    // after the specified instruction.
138    void popStackAfter(MachineBasicBlock::iterator &I);
139
140    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
141
142    void handleZeroArgFP(MachineBasicBlock::iterator &I);
143    void handleOneArgFP(MachineBasicBlock::iterator &I);
144    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
145    void handleTwoArgFP(MachineBasicBlock::iterator &I);
146    void handleSpecialFP(MachineBasicBlock::iterator &I);
147  };
148}
149
150FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
151
152/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
153/// register references into FP stack references.
154///
155bool FPS::runOnMachineFunction(MachineFunction &MF) {
156  LV = &getAnalysis<LiveVariables>();
157  StackTop = 0;
158
159  // Figure out the mapping of MBB's to BB's.
160  //
161  // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
162  // we will need to extend this when one llvm basic block can codegen to
163  // multiple MBBs.
164  //
165  // FIXME again: Just use the mapping established by LiveVariables!
166  //
167  std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
168  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
169    MBBMap[I->getBasicBlock()] = I;
170
171  // Process the function in depth first order so that we process at least one
172  // of the predecessors for every reachable block in the function.
173  std::set<const BasicBlock*> Processed;
174  const BasicBlock *Entry = MF.getFunction()->begin();
175
176  bool Changed = false;
177  for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
178         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
179       I != E; ++I)
180    Changed |= processBasicBlock(MF, *MBBMap[*I]);
181
182  assert(MBBMap.size() == Processed.size() &&
183         "Doesn't handle unreachable code yet!");
184
185  return Changed;
186}
187
188/// processBasicBlock - Loop over all of the instructions in the basic block,
189/// transforming FP instructions into their stack form.
190///
191bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
192  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
193  bool Changed = false;
194  MBB = &BB;
195
196  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
197    MachineInstr *MI = I;
198    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
199    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
200      continue;  // Efficiently ignore non-fp insts!
201
202    MachineInstr *PrevMI = 0;
203    if (I != BB.begin())
204        PrevMI = prior(I);
205
206    ++NumFP;  // Keep track of # of pseudo instrs
207    DEBUG(std::cerr << "\nFPInst:\t";
208	  MI->print(std::cerr, MF.getTarget()));
209
210    // Get dead variables list now because the MI pointer may be deleted as part
211    // of processing!
212    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
213    LiveVariables::killed_iterator IE = LV->dead_end(MI);
214
215    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
216	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
217	  LiveVariables::killed_iterator E = LV->killed_end(MI);
218	  if (I != E) {
219	    std::cerr << "Killed Operands:";
220	    for (; I != E; ++I)
221	      std::cerr << " %" << MRI->getName(I->second);
222	    std::cerr << "\n";
223	  });
224
225    switch (Flags & X86II::FPTypeMask) {
226    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
227    case X86II::OneArgFP:   handleOneArgFP(I);  break;   // fstp ST(0)
228    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
229    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
230    case X86II::SpecialFP:  handleSpecialFP(I); break;
231    default: assert(0 && "Unknown FP Type!");
232    }
233
234    // Check to see if any of the values defined by this instruction are dead
235    // after definition.  If so, pop them.
236    for (; IB != IE; ++IB) {
237      unsigned Reg = IB->second;
238      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
239	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
240	++I;                         // Insert fxch AFTER the instruction
241	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
242	--I;                         // Move to fxch or old instruction
243	popStackAfter(I);            // Pop the top of the stack, killing value
244      }
245    }
246
247    // Print out all of the instructions expanded to if -debug
248    DEBUG(
249      MachineBasicBlock::iterator PrevI(PrevMI);
250      if (I == PrevI) {
251        std::cerr<< "Just deleted pseudo instruction\n";
252      } else {
253        MachineBasicBlock::iterator Start = I;
254        // Rewind to first instruction newly inserted.
255        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
256        std::cerr << "Inserted instructions:\n\t";
257        Start->print(std::cerr, MF.getTarget());
258        while (++Start != next(I));
259      }
260      dumpStack();
261    );
262
263    Changed = true;
264  }
265
266  assert(StackTop == 0 && "Stack not empty at end of basic block?");
267  return Changed;
268}
269
270//===----------------------------------------------------------------------===//
271// Efficient Lookup Table Support
272//===----------------------------------------------------------------------===//
273
274namespace {
275  struct TableEntry {
276    unsigned from;
277    unsigned to;
278    bool operator<(const TableEntry &TE) const { return from < TE.from; }
279    bool operator<(unsigned V) const { return from < V; }
280  };
281}
282
283static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
284  for (unsigned i = 0; i != NumEntries-1; ++i)
285    if (!(Table[i] < Table[i+1])) return false;
286  return true;
287}
288
289static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
290  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
291  if (I != Table+N && I->from == Opcode)
292    return I->to;
293  return -1;
294}
295
296#define ARRAY_SIZE(TABLE)  \
297   (sizeof(TABLE)/sizeof(TABLE[0]))
298
299#ifdef NDEBUG
300#define ASSERT_SORTED(TABLE)
301#else
302#define ASSERT_SORTED(TABLE)                                              \
303  { static bool TABLE##Checked = false;                                   \
304    if (!TABLE##Checked)                                                  \
305       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
306              "All lookup tables must be sorted for efficient access!");  \
307  }
308#endif
309
310
311//===----------------------------------------------------------------------===//
312// Helper Methods
313//===----------------------------------------------------------------------===//
314
315// PopTable - Sorted map of instructions to their popping version.  The first
316// element is an instruction, the second is the version which pops.
317//
318static const TableEntry PopTable[] = {
319  { X86::FADDrST0 , X86::FADDPrST0  },
320
321  { X86::FDIVRrST0, X86::FDIVRPrST0 },
322  { X86::FDIVrST0 , X86::FDIVPrST0  },
323
324  { X86::FISTm16  , X86::FISTPm16   },
325  { X86::FISTm32  , X86::FISTPm32   },
326
327  { X86::FMULrST0 , X86::FMULPrST0  },
328
329  { X86::FSTm32   , X86::FSTPm32    },
330  { X86::FSTm64   , X86::FSTPm64    },
331  { X86::FSTrr    , X86::FSTPrr     },
332
333  { X86::FSUBRrST0, X86::FSUBRPrST0 },
334  { X86::FSUBrST0 , X86::FSUBPrST0  },
335
336  { X86::FUCOMPr  , X86::FUCOMPPr   },
337  { X86::FUCOMr   , X86::FUCOMPr    },
338};
339
340/// popStackAfter - Pop the current value off of the top of the FP stack after
341/// the specified instruction.  This attempts to be sneaky and combine the pop
342/// into the instruction itself if possible.  The iterator is left pointing to
343/// the last instruction, be it a new pop instruction inserted, or the old
344/// instruction if it was modified in place.
345///
346void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
347  ASSERT_SORTED(PopTable);
348  assert(StackTop > 0 && "Cannot pop empty stack!");
349  RegMap[Stack[--StackTop]] = ~0;     // Update state
350
351  // Check to see if there is a popping version of this instruction...
352  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
353  if (Opcode != -1) {
354    I->setOpcode(Opcode);
355    if (Opcode == X86::FUCOMPPr)
356      I->RemoveOperand(0);
357
358  } else {    // Insert an explicit pop
359    MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
360    I = MBB->insert(++I, MI);
361  }
362}
363
364static unsigned getFPReg(const MachineOperand &MO) {
365  assert(MO.isRegister() && "Expected an FP register!");
366  unsigned Reg = MO.getReg();
367  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
368  return Reg - X86::FP0;
369}
370
371
372//===----------------------------------------------------------------------===//
373// Instruction transformation implementation
374//===----------------------------------------------------------------------===//
375
376/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
377///
378void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
379  MachineInstr *MI = I;
380  unsigned DestReg = getFPReg(MI->getOperand(0));
381  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
382
383  // Result gets pushed on the stack...
384  pushReg(DestReg);
385}
386
387/// handleOneArgFP - fst <mem>, ST(0)
388///
389void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
390  MachineInstr *MI = I;
391  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
392         "Can only handle fst* & ftst instructions!");
393
394  // Is this the last use of the source register?
395  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
396  bool KillsSrc = false;
397  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
398	 E = LV->killed_end(MI); KI != E; ++KI)
399    KillsSrc |= KI->second == X86::FP0+Reg;
400
401  // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
402  // If we have one _and_ we don't want to pop the operand, duplicate the value
403  // on the stack instead of moving it.  This ensure that popping the value is
404  // always ok.
405  //
406  if ((MI->getOpcode() == X86::FSTPm80 ||
407       MI->getOpcode() == X86::FISTPm64) && !KillsSrc) {
408    duplicateToTop(Reg, 7 /*temp register*/, I);
409  } else {
410    moveToTop(Reg, I);            // Move to the top of the stack...
411  }
412  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
413
414  if (MI->getOpcode() == X86::FSTPm80 || MI->getOpcode() == X86::FISTPm64) {
415    assert(StackTop > 0 && "Stack empty??");
416    --StackTop;
417  } else if (KillsSrc) { // Last use of operand?
418    popStackAfter(I);
419  }
420}
421
422
423/// handleOneArgFPRW - fchs - ST(0) = -ST(0)
424///
425void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
426  MachineInstr *MI = I;
427  assert(MI->getNumOperands() == 2 && "Can only handle fst* instructions!");
428
429  // Is this the last use of the source register?
430  unsigned Reg = getFPReg(MI->getOperand(1));
431  bool KillsSrc = false;
432  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
433	 E = LV->killed_end(MI); KI != E; ++KI)
434    KillsSrc |= KI->second == X86::FP0+Reg;
435
436  if (KillsSrc) {
437    // If this is the last use of the source register, just make sure it's on
438    // the top of the stack.
439    moveToTop(Reg, I);
440    assert(StackTop > 0 && "Stack cannot be empty!");
441    --StackTop;
442    pushReg(getFPReg(MI->getOperand(0)));
443  } else {
444    // If this is not the last use of the source register, _copy_ it to the top
445    // of the stack.
446    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
447  }
448
449  MI->RemoveOperand(1);   // Drop the source operand.
450  MI->RemoveOperand(0);   // Drop the destination operand.
451}
452
453
454//===----------------------------------------------------------------------===//
455// Define tables of various ways to map pseudo instructions
456//
457
458// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
459static const TableEntry ForwardST0Table[] = {
460  { X86::FpADD,  X86::FADDST0r  },
461  { X86::FpDIV,  X86::FDIVST0r  },
462  { X86::FpMUL,  X86::FMULST0r  },
463  { X86::FpSUB,  X86::FSUBST0r  },
464  { X86::FpUCOM, X86::FUCOMr    },
465};
466
467// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
468static const TableEntry ReverseST0Table[] = {
469  { X86::FpADD,  X86::FADDST0r  },   // commutative
470  { X86::FpDIV,  X86::FDIVRST0r },
471  { X86::FpMUL,  X86::FMULST0r  },   // commutative
472  { X86::FpSUB,  X86::FSUBRST0r },
473  { X86::FpUCOM, ~0             },
474};
475
476// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
477static const TableEntry ForwardSTiTable[] = {
478  { X86::FpADD,  X86::FADDrST0  },   // commutative
479  { X86::FpDIV,  X86::FDIVRrST0 },
480  { X86::FpMUL,  X86::FMULrST0  },   // commutative
481  { X86::FpSUB,  X86::FSUBRrST0 },
482  { X86::FpUCOM, X86::FUCOMr    },
483};
484
485// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
486static const TableEntry ReverseSTiTable[] = {
487  { X86::FpADD,  X86::FADDrST0 },
488  { X86::FpDIV,  X86::FDIVrST0 },
489  { X86::FpMUL,  X86::FMULrST0 },
490  { X86::FpSUB,  X86::FSUBrST0 },
491  { X86::FpUCOM, ~0            },
492};
493
494
495/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
496/// instructions which need to be simplified and possibly transformed.
497///
498/// Result: ST(0) = fsub  ST(0), ST(i)
499///         ST(i) = fsub  ST(0), ST(i)
500///         ST(0) = fsubr ST(0), ST(i)
501///         ST(i) = fsubr ST(0), ST(i)
502///
503/// In addition to three address instructions, this also handles the FpUCOM
504/// instruction which only has two operands, but no destination.  This
505/// instruction is also annoying because there is no "reverse" form of it
506/// available.
507///
508void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
509  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
510  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
511  MachineInstr *MI = I;
512
513  unsigned NumOperands = MI->getNumOperands();
514  assert(NumOperands == 3 ||
515	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
516	 "Illegal TwoArgFP instruction!");
517  unsigned Dest = getFPReg(MI->getOperand(0));
518  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
519  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
520  bool KillsOp0 = false, KillsOp1 = false;
521
522  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
523	 E = LV->killed_end(MI); KI != E; ++KI) {
524    KillsOp0 |= (KI->second == X86::FP0+Op0);
525    KillsOp1 |= (KI->second == X86::FP0+Op1);
526  }
527
528  // If this is an FpUCOM instruction, we must make sure the first operand is on
529  // the top of stack, the other one can be anywhere...
530  if (MI->getOpcode() == X86::FpUCOM)
531    moveToTop(Op0, I);
532
533  unsigned TOS = getStackEntry(0);
534
535  // One of our operands must be on the top of the stack.  If neither is yet, we
536  // need to move one.
537  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
538    // We can choose to move either operand to the top of the stack.  If one of
539    // the operands is killed by this instruction, we want that one so that we
540    // can update right on top of the old version.
541    if (KillsOp0) {
542      moveToTop(Op0, I);         // Move dead operand to TOS.
543      TOS = Op0;
544    } else if (KillsOp1) {
545      moveToTop(Op1, I);
546      TOS = Op1;
547    } else {
548      // All of the operands are live after this instruction executes, so we
549      // cannot update on top of any operand.  Because of this, we must
550      // duplicate one of the stack elements to the top.  It doesn't matter
551      // which one we pick.
552      //
553      duplicateToTop(Op0, Dest, I);
554      Op0 = TOS = Dest;
555      KillsOp0 = true;
556    }
557  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM)  {
558    // If we DO have one of our operands at the top of the stack, but we don't
559    // have a dead operand, we must duplicate one of the operands to a new slot
560    // on the stack.
561    duplicateToTop(Op0, Dest, I);
562    Op0 = TOS = Dest;
563    KillsOp0 = true;
564  }
565
566  // Now we know that one of our operands is on the top of the stack, and at
567  // least one of our operands is killed by this instruction.
568  assert((TOS == Op0 || TOS == Op1) &&
569	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
570	 "Stack conditions not set up right!");
571
572  // We decide which form to use based on what is on the top of the stack, and
573  // which operand is killed by this instruction.
574  const TableEntry *InstTable;
575  bool isForward = TOS == Op0;
576  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
577  if (updateST0) {
578    if (isForward)
579      InstTable = ForwardST0Table;
580    else
581      InstTable = ReverseST0Table;
582  } else {
583    if (isForward)
584      InstTable = ForwardSTiTable;
585    else
586      InstTable = ReverseSTiTable;
587  }
588
589  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
590  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
591
592  // NotTOS - The register which is not on the top of stack...
593  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
594
595  // Replace the old instruction with a new instruction
596  MBB->remove(I);
597  I = MBB->insert(I, BuildMI(Opcode, 1).addReg(getSTReg(NotTOS)));
598
599  // If both operands are killed, pop one off of the stack in addition to
600  // overwriting the other one.
601  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
602    assert(!updateST0 && "Should have updated other operand!");
603    popStackAfter(I);   // Pop the top of stack
604  }
605
606  // Insert an explicit pop of the "updated" operand for FUCOM
607  if (MI->getOpcode() == X86::FpUCOM) {
608    if (KillsOp0 && !KillsOp1)
609      popStackAfter(I);   // If we kill the first operand, pop it!
610    else if (KillsOp1 && Op0 != Op1) {
611      if (getStackEntry(0) == Op1) {
612	popStackAfter(I);     // If it's right at the top of stack, just pop it
613      } else {
614	// Otherwise, move the top of stack into the dead slot, killing the
615	// operand without having to add in an explicit xchg then pop.
616	//
617	unsigned STReg    = getSTReg(Op1);
618	unsigned OldSlot  = getSlot(Op1);
619	unsigned TopReg   = Stack[StackTop-1];
620	Stack[OldSlot]    = TopReg;
621	RegMap[TopReg]    = OldSlot;
622	RegMap[Op1]       = ~0;
623	Stack[--StackTop] = ~0;
624
625	MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
626	I = MBB->insert(++I, MI);
627      }
628    }
629  }
630
631  // Update stack information so that we know the destination register is now on
632  // the stack.
633  if (MI->getOpcode() != X86::FpUCOM) {
634    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
635    assert(UpdatedSlot < StackTop && Dest < 7);
636    Stack[UpdatedSlot]   = Dest;
637    RegMap[Dest]         = UpdatedSlot;
638  }
639  delete MI;   // Remove the old instruction
640}
641
642
643/// handleSpecialFP - Handle special instructions which behave unlike other
644/// floating point instructions.  This is primarily intended for use by pseudo
645/// instructions.
646///
647void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
648  MachineInstr *MI = I;
649  switch (MI->getOpcode()) {
650  default: assert(0 && "Unknown SpecialFP instruction!");
651  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
652    assert(StackTop == 0 && "Stack should be empty after a call!");
653    pushReg(getFPReg(MI->getOperand(0)));
654    break;
655  case X86::FpSETRESULT:
656    assert(StackTop == 1 && "Stack should have one element on it to return!");
657    --StackTop;   // "Forget" we have something on the top of stack!
658    break;
659  case X86::FpMOV: {
660    unsigned SrcReg = getFPReg(MI->getOperand(1));
661    unsigned DestReg = getFPReg(MI->getOperand(0));
662    bool KillsSrc = false;
663    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
664	   E = LV->killed_end(MI); KI != E; ++KI)
665      KillsSrc |= KI->second == X86::FP0+SrcReg;
666
667    if (KillsSrc) {
668      // If the input operand is killed, we can just change the owner of the
669      // incoming stack slot into the result.
670      unsigned Slot = getSlot(SrcReg);
671      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
672      Stack[Slot] = DestReg;
673      RegMap[DestReg] = Slot;
674
675    } else {
676      // For FMOV we just duplicate the specified value to a new stack slot.
677      // This could be made better, but would require substantial changes.
678      duplicateToTop(SrcReg, DestReg, I);
679    }
680    break;
681  }
682  }
683
684  I = MBB->erase(I);  // Remove the pseudo instruction
685  --I;
686}
687