X86FloatingPoint.cpp revision a0eedac226e79d818ce1124fe500a6e354e3444a
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP  , "Number of floating point instructions");
52
53namespace {
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    static char ID;
56    FPS() : MachineFunctionPass(&ID) {}
57
58    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59      AU.addPreservedID(MachineLoopInfoID);
60      AU.addPreservedID(MachineDominatorsID);
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    virtual bool runOnMachineFunction(MachineFunction &MF);
65
66    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
67
68  private:
69    const TargetInstrInfo *TII; // Machine instruction info.
70    MachineBasicBlock *MBB;     // Current basic block
71    unsigned Stack[8];          // FP<n> Registers in each stack slot...
72    unsigned RegMap[8];         // Track which stack slot contains each register
73    unsigned StackTop;          // The current top of the FP stack.
74
75    void dumpStack() const {
76      cerr << "Stack contents:";
77      for (unsigned i = 0; i != StackTop; ++i) {
78        cerr << " FP" << Stack[i];
79        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
80      }
81      cerr << "\n";
82    }
83  private:
84    /// isStackEmpty - Return true if the FP stack is empty.
85    bool isStackEmpty() const {
86      return StackTop == 0;
87    }
88
89    // getSlot - Return the stack slot number a particular register number is
90    // in.
91    unsigned getSlot(unsigned RegNo) const {
92      assert(RegNo < 8 && "Regno out of range!");
93      return RegMap[RegNo];
94    }
95
96    // getStackEntry - Return the X86::FP<n> register in register ST(i).
97    unsigned getStackEntry(unsigned STi) const {
98      assert(STi < StackTop && "Access past stack top!");
99      return Stack[StackTop-1-STi];
100    }
101
102    // getSTReg - Return the X86::ST(i) register which contains the specified
103    // FP<RegNo> register.
104    unsigned getSTReg(unsigned RegNo) const {
105      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
106    }
107
108    // pushReg - Push the specified FP<n> register onto the stack.
109    void pushReg(unsigned Reg) {
110      assert(Reg < 8 && "Register number out of range!");
111      assert(StackTop < 8 && "Stack overflow!");
112      Stack[StackTop] = Reg;
113      RegMap[Reg] = StackTop++;
114    }
115
116    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
117    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
118      if (isAtTop(RegNo)) return;
119
120      unsigned STReg = getSTReg(RegNo);
121      unsigned RegOnTop = getStackEntry(0);
122
123      // Swap the slots the regs are in.
124      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
125
126      // Swap stack slot contents.
127      assert(RegMap[RegOnTop] < StackTop);
128      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
129
130      // Emit an fxch to update the runtime processors version of the state.
131      BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
132      NumFXCH++;
133    }
134
135    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
136      unsigned STReg = getSTReg(RegNo);
137      pushReg(AsReg);   // New register on top of stack
138
139      BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
140    }
141
142    // popStackAfter - Pop the current value off of the top of the FP stack
143    // after the specified instruction.
144    void popStackAfter(MachineBasicBlock::iterator &I);
145
146    // freeStackSlotAfter - Free the specified register from the register stack,
147    // so that it is no longer in a register.  If the register is currently at
148    // the top of the stack, we just pop the current instruction, otherwise we
149    // store the current top-of-stack into the specified slot, then pop the top
150    // of stack.
151    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
152
153    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
154
155    void handleZeroArgFP(MachineBasicBlock::iterator &I);
156    void handleOneArgFP(MachineBasicBlock::iterator &I);
157    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
158    void handleTwoArgFP(MachineBasicBlock::iterator &I);
159    void handleCompareFP(MachineBasicBlock::iterator &I);
160    void handleCondMovFP(MachineBasicBlock::iterator &I);
161    void handleSpecialFP(MachineBasicBlock::iterator &I);
162  };
163  char FPS::ID = 0;
164}
165
166FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
167
168/// getFPReg - Return the X86::FPx register number for the specified operand.
169/// For example, this returns 3 for X86::FP3.
170static unsigned getFPReg(const MachineOperand &MO) {
171  assert(MO.isReg() && "Expected an FP register!");
172  unsigned Reg = MO.getReg();
173  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
174  return Reg - X86::FP0;
175}
176
177
178/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
179/// register references into FP stack references.
180///
181bool FPS::runOnMachineFunction(MachineFunction &MF) {
182  // We only need to run this pass if there are any FP registers used in this
183  // function.  If it is all integer, there is nothing for us to do!
184  bool FPIsUsed = false;
185
186  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
187  for (unsigned i = 0; i <= 6; ++i)
188    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
189      FPIsUsed = true;
190      break;
191    }
192
193  // Early exit.
194  if (!FPIsUsed) return false;
195
196  TII = MF.getTarget().getInstrInfo();
197  StackTop = 0;
198
199  // Process the function in depth first order so that we process at least one
200  // of the predecessors for every reachable block in the function.
201  SmallPtrSet<MachineBasicBlock*, 8> Processed;
202  MachineBasicBlock *Entry = MF.begin();
203
204  bool Changed = false;
205  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
206         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
207       I != E; ++I)
208    Changed |= processBasicBlock(MF, **I);
209
210  return Changed;
211}
212
213/// processBasicBlock - Loop over all of the instructions in the basic block,
214/// transforming FP instructions into their stack form.
215///
216bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
217  bool Changed = false;
218  MBB = &BB;
219
220  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
221    MachineInstr *MI = I;
222    unsigned Flags = MI->getDesc().TSFlags;
223
224    unsigned FPInstClass = Flags & X86II::FPTypeMask;
225    if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
226      FPInstClass = X86II::SpecialFP;
227
228    if (FPInstClass == X86II::NotFP)
229      continue;  // Efficiently ignore non-fp insts!
230
231    MachineInstr *PrevMI = 0;
232    if (I != BB.begin())
233      PrevMI = prior(I);
234
235    ++NumFP;  // Keep track of # of pseudo instrs
236    DOUT << "\nFPInst:\t" << *MI;
237
238    // Get dead variables list now because the MI pointer may be deleted as part
239    // of processing!
240    SmallVector<unsigned, 8> DeadRegs;
241    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
242      const MachineOperand &MO = MI->getOperand(i);
243      if (MO.isReg() && MO.isDead())
244        DeadRegs.push_back(MO.getReg());
245    }
246
247    switch (FPInstClass) {
248    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
249    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
250    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
251    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
252    case X86II::CompareFP:  handleCompareFP(I); break;
253    case X86II::CondMovFP:  handleCondMovFP(I); break;
254    case X86II::SpecialFP:  handleSpecialFP(I); break;
255    default: assert(0 && "Unknown FP Type!");
256    }
257
258    // Check to see if any of the values defined by this instruction are dead
259    // after definition.  If so, pop them.
260    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
261      unsigned Reg = DeadRegs[i];
262      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
263        DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
264        freeStackSlotAfter(I, Reg-X86::FP0);
265      }
266    }
267
268    // Print out all of the instructions expanded to if -debug
269    DEBUG(
270      MachineBasicBlock::iterator PrevI(PrevMI);
271      if (I == PrevI) {
272        cerr << "Just deleted pseudo instruction\n";
273      } else {
274        MachineBasicBlock::iterator Start = I;
275        // Rewind to first instruction newly inserted.
276        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
277        cerr << "Inserted instructions:\n\t";
278        Start->print(*cerr.stream(), &MF.getTarget());
279        while (++Start != next(I)) {}
280      }
281      dumpStack();
282    );
283
284    Changed = true;
285  }
286
287  assert(isStackEmpty() && "Stack not empty at end of basic block?");
288  return Changed;
289}
290
291//===----------------------------------------------------------------------===//
292// Efficient Lookup Table Support
293//===----------------------------------------------------------------------===//
294
295namespace {
296  struct TableEntry {
297    unsigned from;
298    unsigned to;
299    bool operator<(const TableEntry &TE) const { return from < TE.from; }
300    friend bool operator<(const TableEntry &TE, unsigned V) {
301      return TE.from < V;
302    }
303    friend bool operator<(unsigned V, const TableEntry &TE) {
304      return V < TE.from;
305    }
306  };
307}
308
309#ifndef NDEBUG
310static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
311  for (unsigned i = 0; i != NumEntries-1; ++i)
312    if (!(Table[i] < Table[i+1])) return false;
313  return true;
314}
315#endif
316
317static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
318  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
319  if (I != Table+N && I->from == Opcode)
320    return I->to;
321  return -1;
322}
323
324#ifdef NDEBUG
325#define ASSERT_SORTED(TABLE)
326#else
327#define ASSERT_SORTED(TABLE)                                              \
328  { static bool TABLE##Checked = false;                                   \
329    if (!TABLE##Checked) {                                                \
330       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
331              "All lookup tables must be sorted for efficient access!");  \
332       TABLE##Checked = true;                                             \
333    }                                                                     \
334  }
335#endif
336
337//===----------------------------------------------------------------------===//
338// Register File -> Register Stack Mapping Methods
339//===----------------------------------------------------------------------===//
340
341// OpcodeTable - Sorted map of register instructions to their stack version.
342// The first element is an register file pseudo instruction, the second is the
343// concrete X86 instruction which uses the register stack.
344//
345static const TableEntry OpcodeTable[] = {
346  { X86::ABS_Fp32     , X86::ABS_F     },
347  { X86::ABS_Fp64     , X86::ABS_F     },
348  { X86::ABS_Fp80     , X86::ABS_F     },
349  { X86::ADD_Fp32m    , X86::ADD_F32m  },
350  { X86::ADD_Fp64m    , X86::ADD_F64m  },
351  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
352  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
353  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
354  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
355  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
356  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
357  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
358  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
359  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
360  { X86::CHS_Fp32     , X86::CHS_F     },
361  { X86::CHS_Fp64     , X86::CHS_F     },
362  { X86::CHS_Fp80     , X86::CHS_F     },
363  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
364  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
365  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
366  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
367  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
368  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
369  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
370  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
371  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
372  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
373  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
374  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
375  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
376  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
377  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
378  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
379  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
380  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
381  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
382  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
383  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
384  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
385  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
386  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
387  { X86::COS_Fp32     , X86::COS_F     },
388  { X86::COS_Fp64     , X86::COS_F     },
389  { X86::COS_Fp80     , X86::COS_F     },
390  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
391  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
392  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
393  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
394  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
395  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
396  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
397  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
398  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
399  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
400  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
401  { X86::DIV_Fp32m    , X86::DIV_F32m  },
402  { X86::DIV_Fp64m    , X86::DIV_F64m  },
403  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
404  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
405  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
406  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
407  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
408  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
409  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
410  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
411  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
412  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
413  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
414  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
415  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
416  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
417  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
418  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
419  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
420  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
421  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
422  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
423  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
424  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
425  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
426  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
427  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
428  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
429  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
430  { X86::IST_Fp16m32  , X86::IST_F16m  },
431  { X86::IST_Fp16m64  , X86::IST_F16m  },
432  { X86::IST_Fp16m80  , X86::IST_F16m  },
433  { X86::IST_Fp32m32  , X86::IST_F32m  },
434  { X86::IST_Fp32m64  , X86::IST_F32m  },
435  { X86::IST_Fp32m80  , X86::IST_F32m  },
436  { X86::IST_Fp64m32  , X86::IST_FP64m },
437  { X86::IST_Fp64m64  , X86::IST_FP64m },
438  { X86::IST_Fp64m80  , X86::IST_FP64m },
439  { X86::LD_Fp032     , X86::LD_F0     },
440  { X86::LD_Fp064     , X86::LD_F0     },
441  { X86::LD_Fp080     , X86::LD_F0     },
442  { X86::LD_Fp132     , X86::LD_F1     },
443  { X86::LD_Fp164     , X86::LD_F1     },
444  { X86::LD_Fp180     , X86::LD_F1     },
445  { X86::LD_Fp32m     , X86::LD_F32m   },
446  { X86::LD_Fp32m64   , X86::LD_F32m   },
447  { X86::LD_Fp32m80   , X86::LD_F32m   },
448  { X86::LD_Fp64m     , X86::LD_F64m   },
449  { X86::LD_Fp64m80   , X86::LD_F64m   },
450  { X86::LD_Fp80m     , X86::LD_F80m   },
451  { X86::MUL_Fp32m    , X86::MUL_F32m  },
452  { X86::MUL_Fp64m    , X86::MUL_F64m  },
453  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
454  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
455  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
456  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
457  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
458  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
459  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
460  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
461  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
462  { X86::SIN_Fp32     , X86::SIN_F     },
463  { X86::SIN_Fp64     , X86::SIN_F     },
464  { X86::SIN_Fp80     , X86::SIN_F     },
465  { X86::SQRT_Fp32    , X86::SQRT_F    },
466  { X86::SQRT_Fp64    , X86::SQRT_F    },
467  { X86::SQRT_Fp80    , X86::SQRT_F    },
468  { X86::ST_Fp32m     , X86::ST_F32m   },
469  { X86::ST_Fp64m     , X86::ST_F64m   },
470  { X86::ST_Fp64m32   , X86::ST_F32m   },
471  { X86::ST_Fp80m32   , X86::ST_F32m   },
472  { X86::ST_Fp80m64   , X86::ST_F64m   },
473  { X86::ST_FpP80m    , X86::ST_FP80m  },
474  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
475  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
476  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
477  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
478  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
479  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
480  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
481  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
482  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
483  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
484  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
485  { X86::SUB_Fp32m    , X86::SUB_F32m  },
486  { X86::SUB_Fp64m    , X86::SUB_F64m  },
487  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
488  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
489  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
490  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
491  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
492  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
493  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
494  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
495  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
496  { X86::TST_Fp32     , X86::TST_F     },
497  { X86::TST_Fp64     , X86::TST_F     },
498  { X86::TST_Fp80     , X86::TST_F     },
499  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
500  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
501  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
502  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
503  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
504  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
505};
506
507static unsigned getConcreteOpcode(unsigned Opcode) {
508  ASSERT_SORTED(OpcodeTable);
509  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
510  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
511  return Opc;
512}
513
514//===----------------------------------------------------------------------===//
515// Helper Methods
516//===----------------------------------------------------------------------===//
517
518// PopTable - Sorted map of instructions to their popping version.  The first
519// element is an instruction, the second is the version which pops.
520//
521static const TableEntry PopTable[] = {
522  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
523
524  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
525  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
526
527  { X86::IST_F16m  , X86::IST_FP16m   },
528  { X86::IST_F32m  , X86::IST_FP32m   },
529
530  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
531
532  { X86::ST_F32m   , X86::ST_FP32m    },
533  { X86::ST_F64m   , X86::ST_FP64m    },
534  { X86::ST_Frr    , X86::ST_FPrr     },
535
536  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
537  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
538
539  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
540
541  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
542  { X86::UCOM_Fr   , X86::UCOM_FPr    },
543};
544
545/// popStackAfter - Pop the current value off of the top of the FP stack after
546/// the specified instruction.  This attempts to be sneaky and combine the pop
547/// into the instruction itself if possible.  The iterator is left pointing to
548/// the last instruction, be it a new pop instruction inserted, or the old
549/// instruction if it was modified in place.
550///
551void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
552  ASSERT_SORTED(PopTable);
553  assert(StackTop > 0 && "Cannot pop empty stack!");
554  RegMap[Stack[--StackTop]] = ~0;     // Update state
555
556  // Check to see if there is a popping version of this instruction...
557  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
558  if (Opcode != -1) {
559    I->setDesc(TII->get(Opcode));
560    if (Opcode == X86::UCOM_FPPr)
561      I->RemoveOperand(0);
562  } else {    // Insert an explicit pop
563    I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
564  }
565}
566
567/// freeStackSlotAfter - Free the specified register from the register stack, so
568/// that it is no longer in a register.  If the register is currently at the top
569/// of the stack, we just pop the current instruction, otherwise we store the
570/// current top-of-stack into the specified slot, then pop the top of stack.
571void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
572  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
573    popStackAfter(I);
574    return;
575  }
576
577  // Otherwise, store the top of stack into the dead slot, killing the operand
578  // without having to add in an explicit xchg then pop.
579  //
580  unsigned STReg    = getSTReg(FPRegNo);
581  unsigned OldSlot  = getSlot(FPRegNo);
582  unsigned TopReg   = Stack[StackTop-1];
583  Stack[OldSlot]    = TopReg;
584  RegMap[TopReg]    = OldSlot;
585  RegMap[FPRegNo]   = ~0;
586  Stack[--StackTop] = ~0;
587  I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
588}
589
590
591//===----------------------------------------------------------------------===//
592// Instruction transformation implementation
593//===----------------------------------------------------------------------===//
594
595/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
596///
597void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
598  MachineInstr *MI = I;
599  unsigned DestReg = getFPReg(MI->getOperand(0));
600
601  // Change from the pseudo instruction to the concrete instruction.
602  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
603  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
604
605  // Result gets pushed on the stack.
606  pushReg(DestReg);
607}
608
609/// handleOneArgFP - fst <mem>, ST(0)
610///
611void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
612  MachineInstr *MI = I;
613  unsigned NumOps = MI->getDesc().getNumOperands();
614  assert((NumOps == 5 || NumOps == 1) &&
615         "Can only handle fst* & ftst instructions!");
616
617  // Is this the last use of the source register?
618  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
619  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
620
621  // FISTP64m is strange because there isn't a non-popping versions.
622  // If we have one _and_ we don't want to pop the operand, duplicate the value
623  // on the stack instead of moving it.  This ensure that popping the value is
624  // always ok.
625  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
626  //
627  if (!KillsSrc &&
628      (MI->getOpcode() == X86::IST_Fp64m32 ||
629       MI->getOpcode() == X86::ISTT_Fp16m32 ||
630       MI->getOpcode() == X86::ISTT_Fp32m32 ||
631       MI->getOpcode() == X86::ISTT_Fp64m32 ||
632       MI->getOpcode() == X86::IST_Fp64m64 ||
633       MI->getOpcode() == X86::ISTT_Fp16m64 ||
634       MI->getOpcode() == X86::ISTT_Fp32m64 ||
635       MI->getOpcode() == X86::ISTT_Fp64m64 ||
636       MI->getOpcode() == X86::IST_Fp64m80 ||
637       MI->getOpcode() == X86::ISTT_Fp16m80 ||
638       MI->getOpcode() == X86::ISTT_Fp32m80 ||
639       MI->getOpcode() == X86::ISTT_Fp64m80 ||
640       MI->getOpcode() == X86::ST_FpP80m)) {
641    duplicateToTop(Reg, 7 /*temp register*/, I);
642  } else {
643    moveToTop(Reg, I);            // Move to the top of the stack...
644  }
645
646  // Convert from the pseudo instruction to the concrete instruction.
647  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
648  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
649
650  if (MI->getOpcode() == X86::IST_FP64m ||
651      MI->getOpcode() == X86::ISTT_FP16m ||
652      MI->getOpcode() == X86::ISTT_FP32m ||
653      MI->getOpcode() == X86::ISTT_FP64m ||
654      MI->getOpcode() == X86::ST_FP80m) {
655    assert(StackTop > 0 && "Stack empty??");
656    --StackTop;
657  } else if (KillsSrc) { // Last use of operand?
658    popStackAfter(I);
659  }
660}
661
662
663/// handleOneArgFPRW: Handle instructions that read from the top of stack and
664/// replace the value with a newly computed value.  These instructions may have
665/// non-fp operands after their FP operands.
666///
667///  Examples:
668///     R1 = fchs R2
669///     R1 = fadd R2, [mem]
670///
671void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
672  MachineInstr *MI = I;
673#ifndef NDEBUG
674  unsigned NumOps = MI->getDesc().getNumOperands();
675  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
676#endif
677
678  // Is this the last use of the source register?
679  unsigned Reg = getFPReg(MI->getOperand(1));
680  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
681
682  if (KillsSrc) {
683    // If this is the last use of the source register, just make sure it's on
684    // the top of the stack.
685    moveToTop(Reg, I);
686    assert(StackTop > 0 && "Stack cannot be empty!");
687    --StackTop;
688    pushReg(getFPReg(MI->getOperand(0)));
689  } else {
690    // If this is not the last use of the source register, _copy_ it to the top
691    // of the stack.
692    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
693  }
694
695  // Change from the pseudo instruction to the concrete instruction.
696  MI->RemoveOperand(1);   // Drop the source operand.
697  MI->RemoveOperand(0);   // Drop the destination operand.
698  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
699}
700
701
702//===----------------------------------------------------------------------===//
703// Define tables of various ways to map pseudo instructions
704//
705
706// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
707static const TableEntry ForwardST0Table[] = {
708  { X86::ADD_Fp32  , X86::ADD_FST0r },
709  { X86::ADD_Fp64  , X86::ADD_FST0r },
710  { X86::ADD_Fp80  , X86::ADD_FST0r },
711  { X86::DIV_Fp32  , X86::DIV_FST0r },
712  { X86::DIV_Fp64  , X86::DIV_FST0r },
713  { X86::DIV_Fp80  , X86::DIV_FST0r },
714  { X86::MUL_Fp32  , X86::MUL_FST0r },
715  { X86::MUL_Fp64  , X86::MUL_FST0r },
716  { X86::MUL_Fp80  , X86::MUL_FST0r },
717  { X86::SUB_Fp32  , X86::SUB_FST0r },
718  { X86::SUB_Fp64  , X86::SUB_FST0r },
719  { X86::SUB_Fp80  , X86::SUB_FST0r },
720};
721
722// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
723static const TableEntry ReverseST0Table[] = {
724  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
725  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
726  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
727  { X86::DIV_Fp32  , X86::DIVR_FST0r },
728  { X86::DIV_Fp64  , X86::DIVR_FST0r },
729  { X86::DIV_Fp80  , X86::DIVR_FST0r },
730  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
731  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
732  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
733  { X86::SUB_Fp32  , X86::SUBR_FST0r },
734  { X86::SUB_Fp64  , X86::SUBR_FST0r },
735  { X86::SUB_Fp80  , X86::SUBR_FST0r },
736};
737
738// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
739static const TableEntry ForwardSTiTable[] = {
740  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
741  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
742  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
743  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
744  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
745  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
746  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
747  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
748  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
749  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
750  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
751  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
752};
753
754// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
755static const TableEntry ReverseSTiTable[] = {
756  { X86::ADD_Fp32  , X86::ADD_FrST0 },
757  { X86::ADD_Fp64  , X86::ADD_FrST0 },
758  { X86::ADD_Fp80  , X86::ADD_FrST0 },
759  { X86::DIV_Fp32  , X86::DIV_FrST0 },
760  { X86::DIV_Fp64  , X86::DIV_FrST0 },
761  { X86::DIV_Fp80  , X86::DIV_FrST0 },
762  { X86::MUL_Fp32  , X86::MUL_FrST0 },
763  { X86::MUL_Fp64  , X86::MUL_FrST0 },
764  { X86::MUL_Fp80  , X86::MUL_FrST0 },
765  { X86::SUB_Fp32  , X86::SUB_FrST0 },
766  { X86::SUB_Fp64  , X86::SUB_FrST0 },
767  { X86::SUB_Fp80  , X86::SUB_FrST0 },
768};
769
770
771/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
772/// instructions which need to be simplified and possibly transformed.
773///
774/// Result: ST(0) = fsub  ST(0), ST(i)
775///         ST(i) = fsub  ST(0), ST(i)
776///         ST(0) = fsubr ST(0), ST(i)
777///         ST(i) = fsubr ST(0), ST(i)
778///
779void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
780  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
781  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
782  MachineInstr *MI = I;
783
784  unsigned NumOperands = MI->getDesc().getNumOperands();
785  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
786  unsigned Dest = getFPReg(MI->getOperand(0));
787  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
788  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
789  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
790  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
791
792  unsigned TOS = getStackEntry(0);
793
794  // One of our operands must be on the top of the stack.  If neither is yet, we
795  // need to move one.
796  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
797    // We can choose to move either operand to the top of the stack.  If one of
798    // the operands is killed by this instruction, we want that one so that we
799    // can update right on top of the old version.
800    if (KillsOp0) {
801      moveToTop(Op0, I);         // Move dead operand to TOS.
802      TOS = Op0;
803    } else if (KillsOp1) {
804      moveToTop(Op1, I);
805      TOS = Op1;
806    } else {
807      // All of the operands are live after this instruction executes, so we
808      // cannot update on top of any operand.  Because of this, we must
809      // duplicate one of the stack elements to the top.  It doesn't matter
810      // which one we pick.
811      //
812      duplicateToTop(Op0, Dest, I);
813      Op0 = TOS = Dest;
814      KillsOp0 = true;
815    }
816  } else if (!KillsOp0 && !KillsOp1) {
817    // If we DO have one of our operands at the top of the stack, but we don't
818    // have a dead operand, we must duplicate one of the operands to a new slot
819    // on the stack.
820    duplicateToTop(Op0, Dest, I);
821    Op0 = TOS = Dest;
822    KillsOp0 = true;
823  }
824
825  // Now we know that one of our operands is on the top of the stack, and at
826  // least one of our operands is killed by this instruction.
827  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
828         "Stack conditions not set up right!");
829
830  // We decide which form to use based on what is on the top of the stack, and
831  // which operand is killed by this instruction.
832  const TableEntry *InstTable;
833  bool isForward = TOS == Op0;
834  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
835  if (updateST0) {
836    if (isForward)
837      InstTable = ForwardST0Table;
838    else
839      InstTable = ReverseST0Table;
840  } else {
841    if (isForward)
842      InstTable = ForwardSTiTable;
843    else
844      InstTable = ReverseSTiTable;
845  }
846
847  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
848                      MI->getOpcode());
849  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
850
851  // NotTOS - The register which is not on the top of stack...
852  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
853
854  // Replace the old instruction with a new instruction
855  MBB->remove(I++);
856  I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
857
858  // If both operands are killed, pop one off of the stack in addition to
859  // overwriting the other one.
860  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
861    assert(!updateST0 && "Should have updated other operand!");
862    popStackAfter(I);   // Pop the top of stack
863  }
864
865  // Update stack information so that we know the destination register is now on
866  // the stack.
867  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
868  assert(UpdatedSlot < StackTop && Dest < 7);
869  Stack[UpdatedSlot]   = Dest;
870  RegMap[Dest]         = UpdatedSlot;
871  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
872}
873
874/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
875/// register arguments and no explicit destinations.
876///
877void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
878  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
879  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
880  MachineInstr *MI = I;
881
882  unsigned NumOperands = MI->getDesc().getNumOperands();
883  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
884  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
885  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
886  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
887  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
888
889  // Make sure the first operand is on the top of stack, the other one can be
890  // anywhere.
891  moveToTop(Op0, I);
892
893  // Change from the pseudo instruction to the concrete instruction.
894  MI->getOperand(0).setReg(getSTReg(Op1));
895  MI->RemoveOperand(1);
896  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
897
898  // If any of the operands are killed by this instruction, free them.
899  if (KillsOp0) freeStackSlotAfter(I, Op0);
900  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
901}
902
903/// handleCondMovFP - Handle two address conditional move instructions.  These
904/// instructions move a st(i) register to st(0) iff a condition is true.  These
905/// instructions require that the first operand is at the top of the stack, but
906/// otherwise don't modify the stack at all.
907void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
908  MachineInstr *MI = I;
909
910  unsigned Op0 = getFPReg(MI->getOperand(0));
911  unsigned Op1 = getFPReg(MI->getOperand(2));
912  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
913
914  // The first operand *must* be on the top of the stack.
915  moveToTop(Op0, I);
916
917  // Change the second operand to the stack register that the operand is in.
918  // Change from the pseudo instruction to the concrete instruction.
919  MI->RemoveOperand(0);
920  MI->RemoveOperand(1);
921  MI->getOperand(0).setReg(getSTReg(Op1));
922  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
923
924  // If we kill the second operand, make sure to pop it from the stack.
925  if (Op0 != Op1 && KillsOp1) {
926    // Get this value off of the register stack.
927    freeStackSlotAfter(I, Op1);
928  }
929}
930
931
932/// handleSpecialFP - Handle special instructions which behave unlike other
933/// floating point instructions.  This is primarily intended for use by pseudo
934/// instructions.
935///
936void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
937  MachineInstr *MI = I;
938  switch (MI->getOpcode()) {
939  default: assert(0 && "Unknown SpecialFP instruction!");
940  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
941  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
942  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
943    assert(StackTop == 0 && "Stack should be empty after a call!");
944    pushReg(getFPReg(MI->getOperand(0)));
945    break;
946  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
947  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
948  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
949    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
950    // The pattern we expect is:
951    //  CALL
952    //  FP1 = FpGET_ST0
953    //  FP4 = FpGET_ST1
954    //
955    // At this point, we've pushed FP1 on the top of stack, so it should be
956    // present if it isn't dead.  If it was dead, we already emitted a pop to
957    // remove it from the stack and StackTop = 0.
958
959    // Push FP4 as top of stack next.
960    pushReg(getFPReg(MI->getOperand(0)));
961
962    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
963    // dead.  In this case, the ST(1) value is the only thing that is live, so
964    // it should be on the TOS (after the pop that was emitted) and is.  Just
965    // continue in this case.
966    if (StackTop == 1)
967      break;
968
969    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
970    // elements so that our accounting is correct.
971    unsigned RegOnTop = getStackEntry(0);
972    unsigned RegNo = getStackEntry(1);
973
974    // Swap the slots the regs are in.
975    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
976
977    // Swap stack slot contents.
978    assert(RegMap[RegOnTop] < StackTop);
979    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
980    break;
981  }
982  case X86::FpSET_ST0_32:
983  case X86::FpSET_ST0_64:
984  case X86::FpSET_ST0_80:
985    assert((StackTop == 1 || StackTop == 2)
986           && "Stack should have one or two element on it to return!");
987    --StackTop;   // "Forget" we have something on the top of stack!
988    break;
989  case X86::FpSET_ST1_32:
990  case X86::FpSET_ST1_64:
991  case X86::FpSET_ST1_80:
992    // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
993    if (StackTop == 1) {
994      BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(X86::ST1);
995      NumFXCH++;
996      StackTop = 0;
997      break;
998    }
999    assert(StackTop == 2 && "Stack should have two element on it to return!");
1000    --StackTop;   // "Forget" we have something on the top of stack!
1001    break;
1002  case X86::MOV_Fp3232:
1003  case X86::MOV_Fp3264:
1004  case X86::MOV_Fp6432:
1005  case X86::MOV_Fp6464:
1006  case X86::MOV_Fp3280:
1007  case X86::MOV_Fp6480:
1008  case X86::MOV_Fp8032:
1009  case X86::MOV_Fp8064:
1010  case X86::MOV_Fp8080: {
1011    unsigned SrcReg = getFPReg(MI->getOperand(1));
1012    unsigned DestReg = getFPReg(MI->getOperand(0));
1013
1014    if (MI->killsRegister(X86::FP0+SrcReg)) {
1015      // If the input operand is killed, we can just change the owner of the
1016      // incoming stack slot into the result.
1017      unsigned Slot = getSlot(SrcReg);
1018      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1019      Stack[Slot] = DestReg;
1020      RegMap[DestReg] = Slot;
1021
1022    } else {
1023      // For FMOV we just duplicate the specified value to a new stack slot.
1024      // This could be made better, but would require substantial changes.
1025      duplicateToTop(SrcReg, DestReg, I);
1026    }
1027    }
1028    break;
1029  case TargetInstrInfo::INLINEASM: {
1030    // The inline asm MachineInstr currently only *uses* FP registers for the
1031    // 'f' constraint.  These should be turned into the current ST(x) register
1032    // in the machine instr.  Also, any kills should be explicitly popped after
1033    // the inline asm.
1034    unsigned Kills[7];
1035    unsigned NumKills = 0;
1036    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1037      MachineOperand &Op = MI->getOperand(i);
1038      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1039        continue;
1040      assert(Op.isUse() && "Only handle inline asm uses right now");
1041
1042      unsigned FPReg = getFPReg(Op);
1043      Op.setReg(getSTReg(FPReg));
1044
1045      // If we kill this operand, make sure to pop it from the stack after the
1046      // asm.  We just remember it for now, and pop them all off at the end in
1047      // a batch.
1048      if (Op.isKill())
1049        Kills[NumKills++] = FPReg;
1050    }
1051
1052    // If this asm kills any FP registers (is the last use of them) we must
1053    // explicitly emit pop instructions for them.  Do this now after the asm has
1054    // executed so that the ST(x) numbers are not off (which would happen if we
1055    // did this inline with operand rewriting).
1056    //
1057    // Note: this might be a non-optimal pop sequence.  We might be able to do
1058    // better by trying to pop in stack order or something.
1059    MachineBasicBlock::iterator InsertPt = MI;
1060    while (NumKills)
1061      freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1062
1063    // Don't delete the inline asm!
1064    return;
1065  }
1066
1067  case X86::RET:
1068  case X86::RETI:
1069    // If RET has an FP register use operand, pass the first one in ST(0) and
1070    // the second one in ST(1).
1071    if (isStackEmpty()) return;  // Quick check to see if any are possible.
1072
1073    // Find the register operands.
1074    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1075
1076    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1077      MachineOperand &Op = MI->getOperand(i);
1078      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1079        continue;
1080      // FP Register uses must be kills unless there are two uses of the same
1081      // register, in which case only one will be a kill.
1082      assert(Op.isUse() &&
1083             (Op.isKill() ||                        // Marked kill.
1084              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1085              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1086             "Ret only defs operands, and values aren't live beyond it");
1087
1088      if (FirstFPRegOp == ~0U)
1089        FirstFPRegOp = getFPReg(Op);
1090      else {
1091        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1092        SecondFPRegOp = getFPReg(Op);
1093      }
1094
1095      // Remove the operand so that later passes don't see it.
1096      MI->RemoveOperand(i);
1097      --i, --e;
1098    }
1099
1100    // There are only four possibilities here:
1101    // 1) we are returning a single FP value.  In this case, it has to be in
1102    //    ST(0) already, so just declare success by removing the value from the
1103    //    FP Stack.
1104    if (SecondFPRegOp == ~0U) {
1105      // Assert that the top of stack contains the right FP register.
1106      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1107             "Top of stack not the right register for RET!");
1108
1109      // Ok, everything is good, mark the value as not being on the stack
1110      // anymore so that our assertion about the stack being empty at end of
1111      // block doesn't fire.
1112      StackTop = 0;
1113      return;
1114    }
1115
1116    // Otherwise, we are returning two values:
1117    // 2) If returning the same value for both, we only have one thing in the FP
1118    //    stack.  Consider:  RET FP1, FP1
1119    if (StackTop == 1) {
1120      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1121             "Stack misconfiguration for RET!");
1122
1123      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1124      // register to hold it.
1125      unsigned NewReg = (FirstFPRegOp+1)%7;
1126      duplicateToTop(FirstFPRegOp, NewReg, MI);
1127      FirstFPRegOp = NewReg;
1128    }
1129
1130    /// Okay we know we have two different FPx operands now:
1131    assert(StackTop == 2 && "Must have two values live!");
1132
1133    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1134    ///    in ST(1).  In this case, emit an fxch.
1135    if (getStackEntry(0) == SecondFPRegOp) {
1136      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1137      moveToTop(FirstFPRegOp, MI);
1138    }
1139
1140    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1141    /// ST(1).  Just remove both from our understanding of the stack and return.
1142    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1143    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1144    StackTop = 0;
1145    return;
1146  }
1147
1148  I = MBB->erase(I);  // Remove the pseudo instruction
1149  --I;
1150}
1151