X86FloatingPoint.cpp revision a5545bc2b9b1295f8443f6350487ec9b775b2d73
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/CodeGen/EdgeBundles.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP  , "Number of floating point instructions");
50
51namespace {
52  struct FPS : public MachineFunctionPass {
53    static char ID;
54    FPS() : MachineFunctionPass(ID) {
55      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
56      // This is really only to keep valgrind quiet.
57      // The logic in isLive() is too much for it.
58      memset(Stack, 0, sizeof(Stack));
59      memset(RegMap, 0, sizeof(RegMap));
60    }
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.setPreservesCFG();
64      AU.addRequired<EdgeBundles>();
65      AU.addPreservedID(MachineLoopInfoID);
66      AU.addPreservedID(MachineDominatorsID);
67      MachineFunctionPass::getAnalysisUsage(AU);
68    }
69
70    virtual bool runOnMachineFunction(MachineFunction &MF);
71
72    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
74  private:
75    const TargetInstrInfo *TII; // Machine instruction info.
76
77    // Two CFG edges are related if they leave the same block, or enter the same
78    // block. The transitive closure of an edge under this relation is a
79    // LiveBundle. It represents a set of CFG edges where the live FP stack
80    // registers must be allocated identically in the x87 stack.
81    //
82    // A LiveBundle is usually all the edges leaving a block, or all the edges
83    // entering a block, but it can contain more edges if critical edges are
84    // present.
85    //
86    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87    // but the exact mapping of FP registers to stack slots is fixed later.
88    struct LiveBundle {
89      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90      unsigned Mask;
91
92      // Number of pre-assigned live registers in FixStack. This is 0 when the
93      // stack order has not yet been fixed.
94      unsigned FixCount;
95
96      // Assigned stack order for live-in registers.
97      // FixStack[i] == getStackEntry(i) for all i < FixCount.
98      unsigned char FixStack[8];
99
100      LiveBundle() : Mask(0), FixCount(0) {}
101
102      // Have the live registers been assigned a stack order yet?
103      bool isFixed() const { return !Mask || FixCount; }
104    };
105
106    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107    // with no live FP registers.
108    SmallVector<LiveBundle, 8> LiveBundles;
109
110    // The edge bundle analysis provides indices into the LiveBundles vector.
111    EdgeBundles *Bundles;
112
113    // Return a bitmask of FP registers in block's live-in list.
114    static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
115      unsigned Mask = 0;
116      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117           E = MBB->livein_end(); I != E; ++I) {
118        unsigned Reg = *I;
119        if (Reg < X86::FP0 || Reg > X86::FP6)
120          continue;
121        Mask |= 1 << (Reg - X86::FP0);
122      }
123      return Mask;
124    }
125
126    // Partition all the CFG edges into LiveBundles.
127    void bundleCFG(MachineFunction &MF);
128
129    MachineBasicBlock *MBB;     // Current basic block
130
131    // The hardware keeps track of how many FP registers are live, so we have
132    // to model that exactly. Usually, each live register corresponds to an
133    // FP<n> register, but when dealing with calls, returns, and inline
134    // assembly, it is sometimes necessary to have live scratch registers.
135    unsigned Stack[8];          // FP<n> Registers in each stack slot...
136    unsigned StackTop;          // The current top of the FP stack.
137
138    enum {
139      NumFPRegs = 16            // Including scratch pseudo-registers.
140    };
141
142    // For each live FP<n> register, point to its Stack[] entry.
143    // The first entries correspond to FP0-FP6, the rest are scratch registers
144    // used when we need slightly different live registers than what the
145    // register allocator thinks.
146    unsigned RegMap[NumFPRegs];
147
148    // Pending fixed registers - Inline assembly needs FP registers to appear
149    // in fixed stack slot positions. This is handled by copying FP registers
150    // to ST registers before the instruction, and copying back after the
151    // instruction.
152    //
153    // This is modeled with pending ST registers. NumPendingSTs is the number
154    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155    // register that holds the ST value. The ST registers are not moved into
156    // place until immediately before the instruction that needs them.
157    //
158    // It can happen that we need an ST register to be live when no FP register
159    // holds the value:
160    //
161    //   %ST0 = COPY %FP4<kill>
162    //
163    // When that happens, we allocate a scratch FP register to hold the ST
164    // value. That means every register in PendingST must be live.
165
166    unsigned NumPendingSTs;
167    unsigned char PendingST[8];
168
169    // Set up our stack model to match the incoming registers to MBB.
170    void setupBlockStack();
171
172    // Shuffle live registers to match the expectations of successor blocks.
173    void finishBlockStack();
174
175#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
176    void dumpStack() const {
177      dbgs() << "Stack contents:";
178      for (unsigned i = 0; i != StackTop; ++i) {
179        dbgs() << " FP" << Stack[i];
180        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
181      }
182      for (unsigned i = 0; i != NumPendingSTs; ++i)
183        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
184      dbgs() << "\n";
185    }
186#endif
187
188    /// getSlot - Return the stack slot number a particular register number is
189    /// in.
190    unsigned getSlot(unsigned RegNo) const {
191      assert(RegNo < NumFPRegs && "Regno out of range!");
192      return RegMap[RegNo];
193    }
194
195    /// isLive - Is RegNo currently live in the stack?
196    bool isLive(unsigned RegNo) const {
197      unsigned Slot = getSlot(RegNo);
198      return Slot < StackTop && Stack[Slot] == RegNo;
199    }
200
201    /// getScratchReg - Return an FP register that is not currently in use.
202    unsigned getScratchReg() const {
203      for (int i = NumFPRegs - 1; i >= 8; --i)
204        if (!isLive(i))
205          return i;
206      llvm_unreachable("Ran out of scratch FP registers");
207    }
208
209    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
210    static bool isScratchReg(unsigned RegNo) {
211      return RegNo > 8 && RegNo < NumFPRegs;
212    }
213
214    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
215    unsigned getStackEntry(unsigned STi) const {
216      if (STi >= StackTop)
217        report_fatal_error("Access past stack top!");
218      return Stack[StackTop-1-STi];
219    }
220
221    /// getSTReg - Return the X86::ST(i) register which contains the specified
222    /// FP<RegNo> register.
223    unsigned getSTReg(unsigned RegNo) const {
224      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
225    }
226
227    // pushReg - Push the specified FP<n> register onto the stack.
228    void pushReg(unsigned Reg) {
229      assert(Reg < NumFPRegs && "Register number out of range!");
230      if (StackTop >= 8)
231        report_fatal_error("Stack overflow!");
232      Stack[StackTop] = Reg;
233      RegMap[Reg] = StackTop++;
234    }
235
236    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
237    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
238      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
239      if (isAtTop(RegNo)) return;
240
241      unsigned STReg = getSTReg(RegNo);
242      unsigned RegOnTop = getStackEntry(0);
243
244      // Swap the slots the regs are in.
245      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
246
247      // Swap stack slot contents.
248      if (RegMap[RegOnTop] >= StackTop)
249        report_fatal_error("Access past stack top!");
250      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
251
252      // Emit an fxch to update the runtime processors version of the state.
253      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
254      ++NumFXCH;
255    }
256
257    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
258      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
259      unsigned STReg = getSTReg(RegNo);
260      pushReg(AsReg);   // New register on top of stack
261
262      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
263    }
264
265    /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
266    /// RegNo. If any PendingST registers still need the RegNo value, duplicate
267    /// them to new scratch registers.
268    void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
269      for (unsigned i = 0; i != NumPendingSTs; ++i) {
270        if (PendingST[i] != RegNo)
271          continue;
272        unsigned SR = getScratchReg();
273        DEBUG(dbgs() << "Duplicating pending ST" << i
274                     << " in FP" << RegNo << " to FP" << SR << '\n');
275        duplicateToTop(RegNo, SR, I);
276        PendingST[i] = SR;
277      }
278    }
279
280    /// popStackAfter - Pop the current value off of the top of the FP stack
281    /// after the specified instruction.
282    void popStackAfter(MachineBasicBlock::iterator &I);
283
284    /// freeStackSlotAfter - Free the specified register from the register
285    /// stack, so that it is no longer in a register.  If the register is
286    /// currently at the top of the stack, we just pop the current instruction,
287    /// otherwise we store the current top-of-stack into the specified slot,
288    /// then pop the top of stack.
289    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
290
291    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
292    /// instruction.
293    MachineBasicBlock::iterator
294    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
295
296    /// Adjust the live registers to be the set in Mask.
297    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
298
299    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
300    /// st(0), FP reg FixStack[1] is st(1) etc.
301    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
302                         MachineBasicBlock::iterator I);
303
304    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
305
306    void handleZeroArgFP(MachineBasicBlock::iterator &I);
307    void handleOneArgFP(MachineBasicBlock::iterator &I);
308    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
309    void handleTwoArgFP(MachineBasicBlock::iterator &I);
310    void handleCompareFP(MachineBasicBlock::iterator &I);
311    void handleCondMovFP(MachineBasicBlock::iterator &I);
312    void handleSpecialFP(MachineBasicBlock::iterator &I);
313
314    // Check if a COPY instruction is using FP registers.
315    static bool isFPCopy(MachineInstr *MI) {
316      unsigned DstReg = MI->getOperand(0).getReg();
317      unsigned SrcReg = MI->getOperand(1).getReg();
318
319      return X86::RFP80RegClass.contains(DstReg) ||
320        X86::RFP80RegClass.contains(SrcReg);
321    }
322  };
323  char FPS::ID = 0;
324}
325
326FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
327
328/// getFPReg - Return the X86::FPx register number for the specified operand.
329/// For example, this returns 3 for X86::FP3.
330static unsigned getFPReg(const MachineOperand &MO) {
331  assert(MO.isReg() && "Expected an FP register!");
332  unsigned Reg = MO.getReg();
333  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
334  return Reg - X86::FP0;
335}
336
337/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
338/// register references into FP stack references.
339///
340bool FPS::runOnMachineFunction(MachineFunction &MF) {
341  // We only need to run this pass if there are any FP registers used in this
342  // function.  If it is all integer, there is nothing for us to do!
343  bool FPIsUsed = false;
344
345  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
346  for (unsigned i = 0; i <= 6; ++i)
347    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
348      FPIsUsed = true;
349      break;
350    }
351
352  // Early exit.
353  if (!FPIsUsed) return false;
354
355  Bundles = &getAnalysis<EdgeBundles>();
356  TII = MF.getTarget().getInstrInfo();
357
358  // Prepare cross-MBB liveness.
359  bundleCFG(MF);
360
361  StackTop = 0;
362
363  // Process the function in depth first order so that we process at least one
364  // of the predecessors for every reachable block in the function.
365  SmallPtrSet<MachineBasicBlock*, 8> Processed;
366  MachineBasicBlock *Entry = MF.begin();
367
368  bool Changed = false;
369  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
370         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
371       I != E; ++I)
372    Changed |= processBasicBlock(MF, **I);
373
374  // Process any unreachable blocks in arbitrary order now.
375  if (MF.size() != Processed.size())
376    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
377      if (Processed.insert(BB))
378        Changed |= processBasicBlock(MF, *BB);
379
380  LiveBundles.clear();
381
382  return Changed;
383}
384
385/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
386/// live-out sets for the FP registers. Consistent means that the set of
387/// registers live-out from a block is identical to the live-in set of all
388/// successors. This is not enforced by the normal live-in lists since
389/// registers may be implicitly defined, or not used by all successors.
390void FPS::bundleCFG(MachineFunction &MF) {
391  assert(LiveBundles.empty() && "Stale data in LiveBundles");
392  LiveBundles.resize(Bundles->getNumBundles());
393
394  // Gather the actual live-in masks for all MBBs.
395  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
396    MachineBasicBlock *MBB = I;
397    const unsigned Mask = calcLiveInMask(MBB);
398    if (!Mask)
399      continue;
400    // Update MBB ingoing bundle mask.
401    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
402  }
403}
404
405/// processBasicBlock - Loop over all of the instructions in the basic block,
406/// transforming FP instructions into their stack form.
407///
408bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
409  bool Changed = false;
410  MBB = &BB;
411  NumPendingSTs = 0;
412
413  setupBlockStack();
414
415  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
416    MachineInstr *MI = I;
417    uint64_t Flags = MI->getDesc().TSFlags;
418
419    unsigned FPInstClass = Flags & X86II::FPTypeMask;
420    if (MI->isInlineAsm())
421      FPInstClass = X86II::SpecialFP;
422
423    if (MI->isCopy() && isFPCopy(MI))
424      FPInstClass = X86II::SpecialFP;
425
426    if (MI->isImplicitDef() &&
427        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
428      FPInstClass = X86II::SpecialFP;
429
430    if (FPInstClass == X86II::NotFP)
431      continue;  // Efficiently ignore non-fp insts!
432
433    MachineInstr *PrevMI = 0;
434    if (I != BB.begin())
435      PrevMI = prior(I);
436
437    ++NumFP;  // Keep track of # of pseudo instrs
438    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
439
440    // Get dead variables list now because the MI pointer may be deleted as part
441    // of processing!
442    SmallVector<unsigned, 8> DeadRegs;
443    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
444      const MachineOperand &MO = MI->getOperand(i);
445      if (MO.isReg() && MO.isDead())
446        DeadRegs.push_back(MO.getReg());
447    }
448
449    switch (FPInstClass) {
450    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
451    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
452    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
453    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
454    case X86II::CompareFP:  handleCompareFP(I); break;
455    case X86II::CondMovFP:  handleCondMovFP(I); break;
456    case X86II::SpecialFP:  handleSpecialFP(I); break;
457    default: llvm_unreachable("Unknown FP Type!");
458    }
459
460    // Check to see if any of the values defined by this instruction are dead
461    // after definition.  If so, pop them.
462    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
463      unsigned Reg = DeadRegs[i];
464      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
465        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
466        freeStackSlotAfter(I, Reg-X86::FP0);
467      }
468    }
469
470    // Print out all of the instructions expanded to if -debug
471    DEBUG(
472      MachineBasicBlock::iterator PrevI(PrevMI);
473      if (I == PrevI) {
474        dbgs() << "Just deleted pseudo instruction\n";
475      } else {
476        MachineBasicBlock::iterator Start = I;
477        // Rewind to first instruction newly inserted.
478        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
479        dbgs() << "Inserted instructions:\n\t";
480        Start->print(dbgs(), &MF.getTarget());
481        while (++Start != llvm::next(I)) {}
482      }
483      dumpStack();
484    );
485    (void)PrevMI;
486
487    Changed = true;
488  }
489
490  finishBlockStack();
491
492  return Changed;
493}
494
495/// setupBlockStack - Use the live bundles to set up our model of the stack
496/// to match predecessors' live out stack.
497void FPS::setupBlockStack() {
498  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
499               << " derived from " << MBB->getName() << ".\n");
500  StackTop = 0;
501  // Get the live-in bundle for MBB.
502  const LiveBundle &Bundle =
503    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
504
505  if (!Bundle.Mask) {
506    DEBUG(dbgs() << "Block has no FP live-ins.\n");
507    return;
508  }
509
510  // Depth-first iteration should ensure that we always have an assigned stack.
511  assert(Bundle.isFixed() && "Reached block before any predecessors");
512
513  // Push the fixed live-in registers.
514  for (unsigned i = Bundle.FixCount; i > 0; --i) {
515    MBB->addLiveIn(X86::ST0+i-1);
516    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
517                 << unsigned(Bundle.FixStack[i-1]) << '\n');
518    pushReg(Bundle.FixStack[i-1]);
519  }
520
521  // Kill off unwanted live-ins. This can happen with a critical edge.
522  // FIXME: We could keep these live registers around as zombies. They may need
523  // to be revived at the end of a short block. It might save a few instrs.
524  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
525  DEBUG(MBB->dump());
526}
527
528/// finishBlockStack - Revive live-outs that are implicitly defined out of
529/// MBB. Shuffle live registers to match the expected fixed stack of any
530/// predecessors, and ensure that all predecessors are expecting the same
531/// stack.
532void FPS::finishBlockStack() {
533  // The RET handling below takes care of return blocks for us.
534  if (MBB->succ_empty())
535    return;
536
537  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
538               << " derived from " << MBB->getName() << ".\n");
539
540  // Get MBB's live-out bundle.
541  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
542  LiveBundle &Bundle = LiveBundles[BundleIdx];
543
544  // We may need to kill and define some registers to match successors.
545  // FIXME: This can probably be combined with the shuffle below.
546  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
547  adjustLiveRegs(Bundle.Mask, Term);
548
549  if (!Bundle.Mask) {
550    DEBUG(dbgs() << "No live-outs.\n");
551    return;
552  }
553
554  // Has the stack order been fixed yet?
555  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
556  if (Bundle.isFixed()) {
557    DEBUG(dbgs() << "Shuffling stack to match.\n");
558    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
559  } else {
560    // Not fixed yet, we get to choose.
561    DEBUG(dbgs() << "Fixing stack order now.\n");
562    Bundle.FixCount = StackTop;
563    for (unsigned i = 0; i < StackTop; ++i)
564      Bundle.FixStack[i] = getStackEntry(i);
565  }
566}
567
568
569//===----------------------------------------------------------------------===//
570// Efficient Lookup Table Support
571//===----------------------------------------------------------------------===//
572
573namespace {
574  struct TableEntry {
575    uint16_t from;
576    uint16_t to;
577    bool operator<(const TableEntry &TE) const { return from < TE.from; }
578    friend bool operator<(const TableEntry &TE, unsigned V) {
579      return TE.from < V;
580    }
581    friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
582                                                const TableEntry &TE) {
583      return V < TE.from;
584    }
585  };
586}
587
588#ifndef NDEBUG
589static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
590  for (unsigned i = 0; i != NumEntries-1; ++i)
591    if (!(Table[i] < Table[i+1])) return false;
592  return true;
593}
594#endif
595
596static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
597  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
598  if (I != Table+N && I->from == Opcode)
599    return I->to;
600  return -1;
601}
602
603#ifdef NDEBUG
604#define ASSERT_SORTED(TABLE)
605#else
606#define ASSERT_SORTED(TABLE)                                              \
607  { static bool TABLE##Checked = false;                                   \
608    if (!TABLE##Checked) {                                                \
609       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
610              "All lookup tables must be sorted for efficient access!");  \
611       TABLE##Checked = true;                                             \
612    }                                                                     \
613  }
614#endif
615
616//===----------------------------------------------------------------------===//
617// Register File -> Register Stack Mapping Methods
618//===----------------------------------------------------------------------===//
619
620// OpcodeTable - Sorted map of register instructions to their stack version.
621// The first element is an register file pseudo instruction, the second is the
622// concrete X86 instruction which uses the register stack.
623//
624static const TableEntry OpcodeTable[] = {
625  { X86::ABS_Fp32     , X86::ABS_F     },
626  { X86::ABS_Fp64     , X86::ABS_F     },
627  { X86::ABS_Fp80     , X86::ABS_F     },
628  { X86::ADD_Fp32m    , X86::ADD_F32m  },
629  { X86::ADD_Fp64m    , X86::ADD_F64m  },
630  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
631  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
632  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
633  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
634  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
635  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
636  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
637  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
638  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
639  { X86::CHS_Fp32     , X86::CHS_F     },
640  { X86::CHS_Fp64     , X86::CHS_F     },
641  { X86::CHS_Fp80     , X86::CHS_F     },
642  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
643  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
644  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
645  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
646  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
647  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
648  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
649  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
650  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
651  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
652  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
653  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
654  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
655  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
656  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
657  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
658  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
659  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
660  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
661  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
662  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
663  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
664  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
665  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
666  { X86::COS_Fp32     , X86::COS_F     },
667  { X86::COS_Fp64     , X86::COS_F     },
668  { X86::COS_Fp80     , X86::COS_F     },
669  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
670  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
671  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
672  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
673  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
674  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
675  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
676  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
677  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
678  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
679  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
680  { X86::DIV_Fp32m    , X86::DIV_F32m  },
681  { X86::DIV_Fp64m    , X86::DIV_F64m  },
682  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
683  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
684  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
685  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
686  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
687  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
688  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
689  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
690  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
691  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
692  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
693  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
694  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
695  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
696  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
697  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
698  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
699  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
700  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
701  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
702  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
703  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
704  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
705  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
706  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
707  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
708  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
709  { X86::IST_Fp16m32  , X86::IST_F16m  },
710  { X86::IST_Fp16m64  , X86::IST_F16m  },
711  { X86::IST_Fp16m80  , X86::IST_F16m  },
712  { X86::IST_Fp32m32  , X86::IST_F32m  },
713  { X86::IST_Fp32m64  , X86::IST_F32m  },
714  { X86::IST_Fp32m80  , X86::IST_F32m  },
715  { X86::IST_Fp64m32  , X86::IST_FP64m },
716  { X86::IST_Fp64m64  , X86::IST_FP64m },
717  { X86::IST_Fp64m80  , X86::IST_FP64m },
718  { X86::LD_Fp032     , X86::LD_F0     },
719  { X86::LD_Fp064     , X86::LD_F0     },
720  { X86::LD_Fp080     , X86::LD_F0     },
721  { X86::LD_Fp132     , X86::LD_F1     },
722  { X86::LD_Fp164     , X86::LD_F1     },
723  { X86::LD_Fp180     , X86::LD_F1     },
724  { X86::LD_Fp32m     , X86::LD_F32m   },
725  { X86::LD_Fp32m64   , X86::LD_F32m   },
726  { X86::LD_Fp32m80   , X86::LD_F32m   },
727  { X86::LD_Fp64m     , X86::LD_F64m   },
728  { X86::LD_Fp64m80   , X86::LD_F64m   },
729  { X86::LD_Fp80m     , X86::LD_F80m   },
730  { X86::MUL_Fp32m    , X86::MUL_F32m  },
731  { X86::MUL_Fp64m    , X86::MUL_F64m  },
732  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
733  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
734  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
735  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
736  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
737  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
738  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
739  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
740  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
741  { X86::SIN_Fp32     , X86::SIN_F     },
742  { X86::SIN_Fp64     , X86::SIN_F     },
743  { X86::SIN_Fp80     , X86::SIN_F     },
744  { X86::SQRT_Fp32    , X86::SQRT_F    },
745  { X86::SQRT_Fp64    , X86::SQRT_F    },
746  { X86::SQRT_Fp80    , X86::SQRT_F    },
747  { X86::ST_Fp32m     , X86::ST_F32m   },
748  { X86::ST_Fp64m     , X86::ST_F64m   },
749  { X86::ST_Fp64m32   , X86::ST_F32m   },
750  { X86::ST_Fp80m32   , X86::ST_F32m   },
751  { X86::ST_Fp80m64   , X86::ST_F64m   },
752  { X86::ST_FpP80m    , X86::ST_FP80m  },
753  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
754  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
755  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
756  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
757  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
758  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
759  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
760  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
761  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
762  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
763  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
764  { X86::SUB_Fp32m    , X86::SUB_F32m  },
765  { X86::SUB_Fp64m    , X86::SUB_F64m  },
766  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
767  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
768  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
769  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
770  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
771  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
772  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
773  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
774  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
775  { X86::TST_Fp32     , X86::TST_F     },
776  { X86::TST_Fp64     , X86::TST_F     },
777  { X86::TST_Fp80     , X86::TST_F     },
778  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
779  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
780  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
781  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
782  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
783  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
784};
785
786static unsigned getConcreteOpcode(unsigned Opcode) {
787  ASSERT_SORTED(OpcodeTable);
788  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
789  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
790  return Opc;
791}
792
793//===----------------------------------------------------------------------===//
794// Helper Methods
795//===----------------------------------------------------------------------===//
796
797// PopTable - Sorted map of instructions to their popping version.  The first
798// element is an instruction, the second is the version which pops.
799//
800static const TableEntry PopTable[] = {
801  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
802
803  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
804  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
805
806  { X86::IST_F16m  , X86::IST_FP16m   },
807  { X86::IST_F32m  , X86::IST_FP32m   },
808
809  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
810
811  { X86::ST_F32m   , X86::ST_FP32m    },
812  { X86::ST_F64m   , X86::ST_FP64m    },
813  { X86::ST_Frr    , X86::ST_FPrr     },
814
815  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
816  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
817
818  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
819
820  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
821  { X86::UCOM_Fr   , X86::UCOM_FPr    },
822};
823
824/// popStackAfter - Pop the current value off of the top of the FP stack after
825/// the specified instruction.  This attempts to be sneaky and combine the pop
826/// into the instruction itself if possible.  The iterator is left pointing to
827/// the last instruction, be it a new pop instruction inserted, or the old
828/// instruction if it was modified in place.
829///
830void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
831  MachineInstr* MI = I;
832  DebugLoc dl = MI->getDebugLoc();
833  ASSERT_SORTED(PopTable);
834  if (StackTop == 0)
835    report_fatal_error("Cannot pop empty stack!");
836  RegMap[Stack[--StackTop]] = ~0;     // Update state
837
838  // Check to see if there is a popping version of this instruction...
839  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
840  if (Opcode != -1) {
841    I->setDesc(TII->get(Opcode));
842    if (Opcode == X86::UCOM_FPPr)
843      I->RemoveOperand(0);
844  } else {    // Insert an explicit pop
845    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
846  }
847}
848
849/// freeStackSlotAfter - Free the specified register from the register stack, so
850/// that it is no longer in a register.  If the register is currently at the top
851/// of the stack, we just pop the current instruction, otherwise we store the
852/// current top-of-stack into the specified slot, then pop the top of stack.
853void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
854  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
855    popStackAfter(I);
856    return;
857  }
858
859  // Otherwise, store the top of stack into the dead slot, killing the operand
860  // without having to add in an explicit xchg then pop.
861  //
862  I = freeStackSlotBefore(++I, FPRegNo);
863}
864
865/// freeStackSlotBefore - Free the specified register without trying any
866/// folding.
867MachineBasicBlock::iterator
868FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
869  unsigned STReg    = getSTReg(FPRegNo);
870  unsigned OldSlot  = getSlot(FPRegNo);
871  unsigned TopReg   = Stack[StackTop-1];
872  Stack[OldSlot]    = TopReg;
873  RegMap[TopReg]    = OldSlot;
874  RegMap[FPRegNo]   = ~0;
875  Stack[--StackTop] = ~0;
876  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
877}
878
879/// adjustLiveRegs - Kill and revive registers such that exactly the FP
880/// registers with a bit in Mask are live.
881void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
882  unsigned Defs = Mask;
883  unsigned Kills = 0;
884  for (unsigned i = 0; i < StackTop; ++i) {
885    unsigned RegNo = Stack[i];
886    if (!(Defs & (1 << RegNo)))
887      // This register is live, but we don't want it.
888      Kills |= (1 << RegNo);
889    else
890      // We don't need to imp-def this live register.
891      Defs &= ~(1 << RegNo);
892  }
893  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
894
895  // Produce implicit-defs for free by using killed registers.
896  while (Kills && Defs) {
897    unsigned KReg = countTrailingZeros(Kills);
898    unsigned DReg = countTrailingZeros(Defs);
899    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
900    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
901    std::swap(RegMap[KReg], RegMap[DReg]);
902    Kills &= ~(1 << KReg);
903    Defs &= ~(1 << DReg);
904  }
905
906  // Kill registers by popping.
907  if (Kills && I != MBB->begin()) {
908    MachineBasicBlock::iterator I2 = llvm::prior(I);
909    while (StackTop) {
910      unsigned KReg = getStackEntry(0);
911      if (!(Kills & (1 << KReg)))
912        break;
913      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
914      popStackAfter(I2);
915      Kills &= ~(1 << KReg);
916    }
917  }
918
919  // Manually kill the rest.
920  while (Kills) {
921    unsigned KReg = countTrailingZeros(Kills);
922    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
923    freeStackSlotBefore(I, KReg);
924    Kills &= ~(1 << KReg);
925  }
926
927  // Load zeros for all the imp-defs.
928  while(Defs) {
929    unsigned DReg = countTrailingZeros(Defs);
930    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
931    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
932    pushReg(DReg);
933    Defs &= ~(1 << DReg);
934  }
935
936  // Now we should have the correct registers live.
937  DEBUG(dumpStack());
938  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
939}
940
941/// shuffleStackTop - emit fxch instructions before I to shuffle the top
942/// FixCount entries into the order given by FixStack.
943/// FIXME: Is there a better algorithm than insertion sort?
944void FPS::shuffleStackTop(const unsigned char *FixStack,
945                          unsigned FixCount,
946                          MachineBasicBlock::iterator I) {
947  // Move items into place, starting from the desired stack bottom.
948  while (FixCount--) {
949    // Old register at position FixCount.
950    unsigned OldReg = getStackEntry(FixCount);
951    // Desired register at position FixCount.
952    unsigned Reg = FixStack[FixCount];
953    if (Reg == OldReg)
954      continue;
955    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
956    moveToTop(Reg, I);
957    if (FixCount > 0)
958      moveToTop(OldReg, I);
959  }
960  DEBUG(dumpStack());
961}
962
963
964//===----------------------------------------------------------------------===//
965// Instruction transformation implementation
966//===----------------------------------------------------------------------===//
967
968/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
969///
970void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
971  MachineInstr *MI = I;
972  unsigned DestReg = getFPReg(MI->getOperand(0));
973
974  // Change from the pseudo instruction to the concrete instruction.
975  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
976  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
977
978  // Result gets pushed on the stack.
979  pushReg(DestReg);
980}
981
982/// handleOneArgFP - fst <mem>, ST(0)
983///
984void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
985  MachineInstr *MI = I;
986  unsigned NumOps = MI->getDesc().getNumOperands();
987  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
988         "Can only handle fst* & ftst instructions!");
989
990  // Is this the last use of the source register?
991  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
992  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
993
994  if (KillsSrc)
995    duplicatePendingSTBeforeKill(Reg, I);
996
997  // FISTP64m is strange because there isn't a non-popping versions.
998  // If we have one _and_ we don't want to pop the operand, duplicate the value
999  // on the stack instead of moving it.  This ensure that popping the value is
1000  // always ok.
1001  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1002  //
1003  if (!KillsSrc &&
1004      (MI->getOpcode() == X86::IST_Fp64m32 ||
1005       MI->getOpcode() == X86::ISTT_Fp16m32 ||
1006       MI->getOpcode() == X86::ISTT_Fp32m32 ||
1007       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1008       MI->getOpcode() == X86::IST_Fp64m64 ||
1009       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1010       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1011       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1012       MI->getOpcode() == X86::IST_Fp64m80 ||
1013       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1014       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1015       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1016       MI->getOpcode() == X86::ST_FpP80m)) {
1017    duplicateToTop(Reg, getScratchReg(), I);
1018  } else {
1019    moveToTop(Reg, I);            // Move to the top of the stack...
1020  }
1021
1022  // Convert from the pseudo instruction to the concrete instruction.
1023  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1024  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1025
1026  if (MI->getOpcode() == X86::IST_FP64m ||
1027      MI->getOpcode() == X86::ISTT_FP16m ||
1028      MI->getOpcode() == X86::ISTT_FP32m ||
1029      MI->getOpcode() == X86::ISTT_FP64m ||
1030      MI->getOpcode() == X86::ST_FP80m) {
1031    if (StackTop == 0)
1032      report_fatal_error("Stack empty??");
1033    --StackTop;
1034  } else if (KillsSrc) { // Last use of operand?
1035    popStackAfter(I);
1036  }
1037}
1038
1039
1040/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1041/// replace the value with a newly computed value.  These instructions may have
1042/// non-fp operands after their FP operands.
1043///
1044///  Examples:
1045///     R1 = fchs R2
1046///     R1 = fadd R2, [mem]
1047///
1048void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1049  MachineInstr *MI = I;
1050#ifndef NDEBUG
1051  unsigned NumOps = MI->getDesc().getNumOperands();
1052  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1053#endif
1054
1055  // Is this the last use of the source register?
1056  unsigned Reg = getFPReg(MI->getOperand(1));
1057  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1058
1059  if (KillsSrc) {
1060    duplicatePendingSTBeforeKill(Reg, I);
1061    // If this is the last use of the source register, just make sure it's on
1062    // the top of the stack.
1063    moveToTop(Reg, I);
1064    if (StackTop == 0)
1065      report_fatal_error("Stack cannot be empty!");
1066    --StackTop;
1067    pushReg(getFPReg(MI->getOperand(0)));
1068  } else {
1069    // If this is not the last use of the source register, _copy_ it to the top
1070    // of the stack.
1071    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1072  }
1073
1074  // Change from the pseudo instruction to the concrete instruction.
1075  MI->RemoveOperand(1);   // Drop the source operand.
1076  MI->RemoveOperand(0);   // Drop the destination operand.
1077  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1078}
1079
1080
1081//===----------------------------------------------------------------------===//
1082// Define tables of various ways to map pseudo instructions
1083//
1084
1085// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1086static const TableEntry ForwardST0Table[] = {
1087  { X86::ADD_Fp32  , X86::ADD_FST0r },
1088  { X86::ADD_Fp64  , X86::ADD_FST0r },
1089  { X86::ADD_Fp80  , X86::ADD_FST0r },
1090  { X86::DIV_Fp32  , X86::DIV_FST0r },
1091  { X86::DIV_Fp64  , X86::DIV_FST0r },
1092  { X86::DIV_Fp80  , X86::DIV_FST0r },
1093  { X86::MUL_Fp32  , X86::MUL_FST0r },
1094  { X86::MUL_Fp64  , X86::MUL_FST0r },
1095  { X86::MUL_Fp80  , X86::MUL_FST0r },
1096  { X86::SUB_Fp32  , X86::SUB_FST0r },
1097  { X86::SUB_Fp64  , X86::SUB_FST0r },
1098  { X86::SUB_Fp80  , X86::SUB_FST0r },
1099};
1100
1101// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1102static const TableEntry ReverseST0Table[] = {
1103  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1104  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1105  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1106  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1107  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1108  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1109  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1110  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1111  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1112  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1113  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1114  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1115};
1116
1117// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1118static const TableEntry ForwardSTiTable[] = {
1119  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1120  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1121  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1122  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1123  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1124  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1125  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1126  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1127  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1128  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1129  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1130  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1131};
1132
1133// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1134static const TableEntry ReverseSTiTable[] = {
1135  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1136  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1137  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1138  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1139  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1140  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1141  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1142  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1143  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1144  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1145  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1146  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1147};
1148
1149
1150/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1151/// instructions which need to be simplified and possibly transformed.
1152///
1153/// Result: ST(0) = fsub  ST(0), ST(i)
1154///         ST(i) = fsub  ST(0), ST(i)
1155///         ST(0) = fsubr ST(0), ST(i)
1156///         ST(i) = fsubr ST(0), ST(i)
1157///
1158void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1159  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1160  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1161  MachineInstr *MI = I;
1162
1163  unsigned NumOperands = MI->getDesc().getNumOperands();
1164  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1165  unsigned Dest = getFPReg(MI->getOperand(0));
1166  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1167  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1168  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1169  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1170  DebugLoc dl = MI->getDebugLoc();
1171
1172  unsigned TOS = getStackEntry(0);
1173
1174  // One of our operands must be on the top of the stack.  If neither is yet, we
1175  // need to move one.
1176  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1177    // We can choose to move either operand to the top of the stack.  If one of
1178    // the operands is killed by this instruction, we want that one so that we
1179    // can update right on top of the old version.
1180    if (KillsOp0) {
1181      moveToTop(Op0, I);         // Move dead operand to TOS.
1182      TOS = Op0;
1183    } else if (KillsOp1) {
1184      moveToTop(Op1, I);
1185      TOS = Op1;
1186    } else {
1187      // All of the operands are live after this instruction executes, so we
1188      // cannot update on top of any operand.  Because of this, we must
1189      // duplicate one of the stack elements to the top.  It doesn't matter
1190      // which one we pick.
1191      //
1192      duplicateToTop(Op0, Dest, I);
1193      Op0 = TOS = Dest;
1194      KillsOp0 = true;
1195    }
1196  } else if (!KillsOp0 && !KillsOp1) {
1197    // If we DO have one of our operands at the top of the stack, but we don't
1198    // have a dead operand, we must duplicate one of the operands to a new slot
1199    // on the stack.
1200    duplicateToTop(Op0, Dest, I);
1201    Op0 = TOS = Dest;
1202    KillsOp0 = true;
1203  }
1204
1205  // Now we know that one of our operands is on the top of the stack, and at
1206  // least one of our operands is killed by this instruction.
1207  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1208         "Stack conditions not set up right!");
1209
1210  // We decide which form to use based on what is on the top of the stack, and
1211  // which operand is killed by this instruction.
1212  const TableEntry *InstTable;
1213  bool isForward = TOS == Op0;
1214  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1215  if (updateST0) {
1216    if (isForward)
1217      InstTable = ForwardST0Table;
1218    else
1219      InstTable = ReverseST0Table;
1220  } else {
1221    if (isForward)
1222      InstTable = ForwardSTiTable;
1223    else
1224      InstTable = ReverseSTiTable;
1225  }
1226
1227  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1228                      MI->getOpcode());
1229  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1230
1231  // NotTOS - The register which is not on the top of stack...
1232  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1233
1234  // Replace the old instruction with a new instruction
1235  MBB->remove(I++);
1236  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1237
1238  // If both operands are killed, pop one off of the stack in addition to
1239  // overwriting the other one.
1240  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1241    assert(!updateST0 && "Should have updated other operand!");
1242    popStackAfter(I);   // Pop the top of stack
1243  }
1244
1245  // Update stack information so that we know the destination register is now on
1246  // the stack.
1247  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1248  assert(UpdatedSlot < StackTop && Dest < 7);
1249  Stack[UpdatedSlot]   = Dest;
1250  RegMap[Dest]         = UpdatedSlot;
1251  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1252}
1253
1254/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1255/// register arguments and no explicit destinations.
1256///
1257void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1258  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1259  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1260  MachineInstr *MI = I;
1261
1262  unsigned NumOperands = MI->getDesc().getNumOperands();
1263  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1264  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1265  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1266  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1267  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1268
1269  // Make sure the first operand is on the top of stack, the other one can be
1270  // anywhere.
1271  moveToTop(Op0, I);
1272
1273  // Change from the pseudo instruction to the concrete instruction.
1274  MI->getOperand(0).setReg(getSTReg(Op1));
1275  MI->RemoveOperand(1);
1276  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1277
1278  // If any of the operands are killed by this instruction, free them.
1279  if (KillsOp0) freeStackSlotAfter(I, Op0);
1280  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1281}
1282
1283/// handleCondMovFP - Handle two address conditional move instructions.  These
1284/// instructions move a st(i) register to st(0) iff a condition is true.  These
1285/// instructions require that the first operand is at the top of the stack, but
1286/// otherwise don't modify the stack at all.
1287void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1288  MachineInstr *MI = I;
1289
1290  unsigned Op0 = getFPReg(MI->getOperand(0));
1291  unsigned Op1 = getFPReg(MI->getOperand(2));
1292  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1293
1294  // The first operand *must* be on the top of the stack.
1295  moveToTop(Op0, I);
1296
1297  // Change the second operand to the stack register that the operand is in.
1298  // Change from the pseudo instruction to the concrete instruction.
1299  MI->RemoveOperand(0);
1300  MI->RemoveOperand(1);
1301  MI->getOperand(0).setReg(getSTReg(Op1));
1302  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1303
1304  // If we kill the second operand, make sure to pop it from the stack.
1305  if (Op0 != Op1 && KillsOp1) {
1306    // Get this value off of the register stack.
1307    freeStackSlotAfter(I, Op1);
1308  }
1309}
1310
1311
1312/// handleSpecialFP - Handle special instructions which behave unlike other
1313/// floating point instructions.  This is primarily intended for use by pseudo
1314/// instructions.
1315///
1316void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1317  MachineInstr *MI = I;
1318  switch (MI->getOpcode()) {
1319  default: llvm_unreachable("Unknown SpecialFP instruction!");
1320  case TargetOpcode::COPY: {
1321    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1322    const MachineOperand &MO1 = MI->getOperand(1);
1323    const MachineOperand &MO0 = MI->getOperand(0);
1324    unsigned DstST = MO0.getReg() - X86::ST0;
1325    unsigned SrcST = MO1.getReg() - X86::ST0;
1326    bool KillsSrc = MI->killsRegister(MO1.getReg());
1327
1328    // ST = COPY FP. Set up a pending ST register.
1329    if (DstST < 8) {
1330      unsigned SrcFP = getFPReg(MO1);
1331      assert(isLive(SrcFP) && "Cannot copy dead register");
1332      assert(!MO0.isDead() && "Cannot copy to dead ST register");
1333
1334      // Unallocated STs are marked as the nonexistent FP255.
1335      while (NumPendingSTs <= DstST)
1336        PendingST[NumPendingSTs++] = NumFPRegs;
1337
1338      // STi could still be live from a previous inline asm.
1339      if (isScratchReg(PendingST[DstST])) {
1340        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1341                     << '\n');
1342        freeStackSlotBefore(MI, PendingST[DstST]);
1343      }
1344
1345      // When the source is killed, allocate a scratch FP register.
1346      if (KillsSrc) {
1347        duplicatePendingSTBeforeKill(SrcFP, I);
1348        unsigned Slot = getSlot(SrcFP);
1349        unsigned SR = getScratchReg();
1350        PendingST[DstST] = SR;
1351        Stack[Slot] = SR;
1352        RegMap[SR] = Slot;
1353      } else
1354        PendingST[DstST] = SrcFP;
1355      break;
1356    }
1357
1358    // FP = COPY ST. Extract fixed stack value.
1359    // Any instruction defining ST registers must have assigned them to a
1360    // scratch register.
1361    if (SrcST < 8) {
1362      unsigned DstFP = getFPReg(MO0);
1363      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1364      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1365      unsigned SrcFP = PendingST[SrcST];
1366      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1367      assert(isLive(SrcFP) && "Scratch holding ST is dead");
1368
1369      // DstFP steals the stack slot from SrcFP.
1370      unsigned Slot = getSlot(SrcFP);
1371      Stack[Slot] = DstFP;
1372      RegMap[DstFP] = Slot;
1373
1374      // Always treat the ST as killed.
1375      PendingST[SrcST] = NumFPRegs;
1376      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1377        --NumPendingSTs;
1378      break;
1379    }
1380
1381    // FP <- FP copy.
1382    unsigned DstFP = getFPReg(MO0);
1383    unsigned SrcFP = getFPReg(MO1);
1384    assert(isLive(SrcFP) && "Cannot copy dead register");
1385    if (KillsSrc) {
1386      // If the input operand is killed, we can just change the owner of the
1387      // incoming stack slot into the result.
1388      unsigned Slot = getSlot(SrcFP);
1389      Stack[Slot] = DstFP;
1390      RegMap[DstFP] = Slot;
1391    } else {
1392      // For COPY we just duplicate the specified value to a new stack slot.
1393      // This could be made better, but would require substantial changes.
1394      duplicateToTop(SrcFP, DstFP, I);
1395    }
1396    break;
1397  }
1398
1399  case TargetOpcode::IMPLICIT_DEF: {
1400    // All FP registers must be explicitly defined, so load a 0 instead.
1401    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1402    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1403    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1404    pushReg(Reg);
1405    break;
1406  }
1407
1408  case X86::FpPOP_RETVAL: {
1409    // The FpPOP_RETVAL instruction is used after calls that return a value on
1410    // the floating point stack. We cannot model this with ST defs since CALL
1411    // instructions have fixed clobber lists. This instruction is interpreted
1412    // to mean that there is one more live register on the stack than we
1413    // thought.
1414    //
1415    // This means that StackTop does not match the hardware stack between a
1416    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
1417    // between CALL and FpPOP_RETVAL as long as they don't overflow the
1418    // hardware stack.
1419    unsigned DstFP = getFPReg(MI->getOperand(0));
1420
1421    // Move existing stack elements up to reflect reality.
1422    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1423    if (StackTop) {
1424      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1425      for (unsigned i = 0; i != NumFPRegs; ++i)
1426        ++RegMap[i];
1427    }
1428    ++StackTop;
1429
1430    // DstFP is the new bottom of the stack.
1431    Stack[0] = DstFP;
1432    RegMap[DstFP] = 0;
1433
1434    // DstFP will be killed by processBasicBlock if this was a dead def.
1435    break;
1436  }
1437
1438  case TargetOpcode::INLINEASM: {
1439    // The inline asm MachineInstr currently only *uses* FP registers for the
1440    // 'f' constraint.  These should be turned into the current ST(x) register
1441    // in the machine instr.
1442    //
1443    // There are special rules for x87 inline assembly. The compiler must know
1444    // exactly how many registers are popped and pushed implicitly by the asm.
1445    // Otherwise it is not possible to restore the stack state after the inline
1446    // asm.
1447    //
1448    // There are 3 kinds of input operands:
1449    //
1450    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1451    //    popped input operand must be in a fixed stack slot, and it is either
1452    //    tied to an output operand, or in the clobber list. The MI has ST use
1453    //    and def operands for these inputs.
1454    //
1455    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1456    //    preserved by the inline asm. The fixed stack slots must be STn-STm
1457    //    following the popped inputs. A fixed input operand cannot be tied to
1458    //    an output or appear in the clobber list. The MI has ST use operands
1459    //    and no defs for these inputs.
1460    //
1461    // 3. Preserved inputs. These inputs use the "f" constraint which is
1462    //    represented as an FP register. The inline asm won't change these
1463    //    stack slots.
1464    //
1465    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1466    // registers do not count as output operands. The inline asm changes the
1467    // stack as if it popped all the popped inputs and then pushed all the
1468    // output operands.
1469
1470    // Scan the assembly for ST registers used, defined and clobbered. We can
1471    // only tell clobbers from defs by looking at the asm descriptor.
1472    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1473    unsigned NumOps = 0;
1474    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1475         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1476      unsigned Flags = MI->getOperand(i).getImm();
1477      NumOps = InlineAsm::getNumOperandRegisters(Flags);
1478      if (NumOps != 1)
1479        continue;
1480      const MachineOperand &MO = MI->getOperand(i + 1);
1481      if (!MO.isReg())
1482        continue;
1483      unsigned STReg = MO.getReg() - X86::ST0;
1484      if (STReg >= 8)
1485        continue;
1486
1487      switch (InlineAsm::getKind(Flags)) {
1488      case InlineAsm::Kind_RegUse:
1489        STUses |= (1u << STReg);
1490        break;
1491      case InlineAsm::Kind_RegDef:
1492      case InlineAsm::Kind_RegDefEarlyClobber:
1493        STDefs |= (1u << STReg);
1494        if (MO.isDead())
1495          STDeadDefs |= (1u << STReg);
1496        break;
1497      case InlineAsm::Kind_Clobber:
1498        STClobbers |= (1u << STReg);
1499        break;
1500      default:
1501        break;
1502      }
1503    }
1504
1505    if (STUses && !isMask_32(STUses))
1506      MI->emitError("fixed input regs must be last on the x87 stack");
1507    unsigned NumSTUses = CountTrailingOnes_32(STUses);
1508
1509    // Defs must be contiguous from the stack top. ST0-STn.
1510    if (STDefs && !isMask_32(STDefs)) {
1511      MI->emitError("output regs must be last on the x87 stack");
1512      STDefs = NextPowerOf2(STDefs) - 1;
1513    }
1514    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1515
1516    // So must the clobbered stack slots. ST0-STm, m >= n.
1517    if (STClobbers && !isMask_32(STDefs | STClobbers))
1518      MI->emitError("clobbers must be last on the x87 stack");
1519
1520    // Popped inputs are the ones that are also clobbered or defined.
1521    unsigned STPopped = STUses & (STDefs | STClobbers);
1522    if (STPopped && !isMask_32(STPopped))
1523      MI->emitError("implicitly popped regs must be last on the x87 stack");
1524    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1525
1526    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1527                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1528
1529    // Scan the instruction for FP uses corresponding to "f" constraints.
1530    // Collect FP registers to kill afer the instruction.
1531    // Always kill all the scratch regs.
1532    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1533    unsigned FPUsed = 0;
1534    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1535      MachineOperand &Op = MI->getOperand(i);
1536      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1537        continue;
1538      if (!Op.isUse())
1539        MI->emitError("illegal \"f\" output constraint");
1540      unsigned FPReg = getFPReg(Op);
1541      FPUsed |= 1U << FPReg;
1542
1543      // If we kill this operand, make sure to pop it from the stack after the
1544      // asm.  We just remember it for now, and pop them all off at the end in
1545      // a batch.
1546      if (Op.isKill())
1547        FPKills |= 1U << FPReg;
1548    }
1549
1550    // The popped inputs will be killed by the instruction, so duplicate them
1551    // if the FP register needs to be live after the instruction, or if it is
1552    // used in the instruction itself. We effectively treat the popped inputs
1553    // as early clobbers.
1554    for (unsigned i = 0; i < NumSTPopped; ++i) {
1555      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1556        continue;
1557      unsigned SR = getScratchReg();
1558      duplicateToTop(PendingST[i], SR, I);
1559      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1560                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1561      PendingST[i] = SR;
1562    }
1563
1564    // Make sure we have a unique live register for every fixed use. Some of
1565    // them could be undef uses, and we need to emit LD_F0 instructions.
1566    for (unsigned i = 0; i < NumSTUses; ++i) {
1567      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1568        // Check for shared assignments.
1569        for (unsigned j = 0; j < i; ++j) {
1570          if (PendingST[j] != PendingST[i])
1571            continue;
1572          // STi and STj are inn the same register, create a copy.
1573          unsigned SR = getScratchReg();
1574          duplicateToTop(PendingST[i], SR, I);
1575          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1576                       << unsigned(PendingST[i])
1577                       << " to avoid collision with ST" << j << '\n');
1578          PendingST[i] = SR;
1579        }
1580        continue;
1581      }
1582      unsigned SR = getScratchReg();
1583      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1584      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1585      pushReg(SR);
1586      PendingST[i] = SR;
1587      if (NumPendingSTs == i)
1588        ++NumPendingSTs;
1589    }
1590    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1591
1592    // Now we can rearrange the live registers to match what was requested.
1593    shuffleStackTop(PendingST, NumPendingSTs, I);
1594    DEBUG({dbgs() << "Before asm: "; dumpStack();});
1595
1596    // With the stack layout fixed, rewrite the FP registers.
1597    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1598      MachineOperand &Op = MI->getOperand(i);
1599      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1600        continue;
1601      unsigned FPReg = getFPReg(Op);
1602      Op.setReg(getSTReg(FPReg));
1603    }
1604
1605    // Simulate the inline asm popping its inputs and pushing its outputs.
1606    StackTop -= NumSTPopped;
1607
1608    // Hold the fixed output registers in scratch FP registers. They will be
1609    // transferred to real FP registers by copies.
1610    NumPendingSTs = 0;
1611    for (unsigned i = 0; i < NumSTDefs; ++i) {
1612      unsigned SR = getScratchReg();
1613      pushReg(SR);
1614      FPKills &= ~(1u << SR);
1615    }
1616    for (unsigned i = 0; i < NumSTDefs; ++i)
1617      PendingST[NumPendingSTs++] = getStackEntry(i);
1618    DEBUG({dbgs() << "After asm: "; dumpStack();});
1619
1620    // If any of the ST defs were dead, pop them immediately. Our caller only
1621    // handles dead FP defs.
1622    MachineBasicBlock::iterator InsertPt = MI;
1623    for (unsigned i = 0; STDefs & (1u << i); ++i) {
1624      if (!(STDeadDefs & (1u << i)))
1625        continue;
1626      freeStackSlotAfter(InsertPt, PendingST[i]);
1627      PendingST[i] = NumFPRegs;
1628    }
1629    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1630      --NumPendingSTs;
1631
1632    // If this asm kills any FP registers (is the last use of them) we must
1633    // explicitly emit pop instructions for them.  Do this now after the asm has
1634    // executed so that the ST(x) numbers are not off (which would happen if we
1635    // did this inline with operand rewriting).
1636    //
1637    // Note: this might be a non-optimal pop sequence.  We might be able to do
1638    // better by trying to pop in stack order or something.
1639    while (FPKills) {
1640      unsigned FPReg = countTrailingZeros(FPKills);
1641      if (isLive(FPReg))
1642        freeStackSlotAfter(InsertPt, FPReg);
1643      FPKills &= ~(1U << FPReg);
1644    }
1645    // Don't delete the inline asm!
1646    return;
1647  }
1648
1649  case X86::WIN_FTOL_32:
1650  case X86::WIN_FTOL_64: {
1651    // Push the operand into ST0.
1652    MachineOperand &Op = MI->getOperand(0);
1653    assert(Op.isUse() && Op.isReg() &&
1654      Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1655    unsigned FPReg = getFPReg(Op);
1656    if (Op.isKill())
1657      moveToTop(FPReg, I);
1658    else
1659      duplicateToTop(FPReg, FPReg, I);
1660
1661    // Emit the call. This will pop the operand.
1662    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1663      .addExternalSymbol("_ftol2")
1664      .addReg(X86::ST0, RegState::ImplicitKill)
1665      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1666      .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1667      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1668    --StackTop;
1669
1670    break;
1671  }
1672
1673  case X86::RET:
1674  case X86::RETI:
1675    // If RET has an FP register use operand, pass the first one in ST(0) and
1676    // the second one in ST(1).
1677
1678    // Find the register operands.
1679    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1680    unsigned LiveMask = 0;
1681
1682    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1683      MachineOperand &Op = MI->getOperand(i);
1684      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1685        continue;
1686      // FP Register uses must be kills unless there are two uses of the same
1687      // register, in which case only one will be a kill.
1688      assert(Op.isUse() &&
1689             (Op.isKill() ||                        // Marked kill.
1690              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1691              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1692             "Ret only defs operands, and values aren't live beyond it");
1693
1694      if (FirstFPRegOp == ~0U)
1695        FirstFPRegOp = getFPReg(Op);
1696      else {
1697        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1698        SecondFPRegOp = getFPReg(Op);
1699      }
1700      LiveMask |= (1 << getFPReg(Op));
1701
1702      // Remove the operand so that later passes don't see it.
1703      MI->RemoveOperand(i);
1704      --i, --e;
1705    }
1706
1707    // We may have been carrying spurious live-ins, so make sure only the returned
1708    // registers are left live.
1709    adjustLiveRegs(LiveMask, MI);
1710    if (!LiveMask) return;  // Quick check to see if any are possible.
1711
1712    // There are only four possibilities here:
1713    // 1) we are returning a single FP value.  In this case, it has to be in
1714    //    ST(0) already, so just declare success by removing the value from the
1715    //    FP Stack.
1716    if (SecondFPRegOp == ~0U) {
1717      // Assert that the top of stack contains the right FP register.
1718      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1719             "Top of stack not the right register for RET!");
1720
1721      // Ok, everything is good, mark the value as not being on the stack
1722      // anymore so that our assertion about the stack being empty at end of
1723      // block doesn't fire.
1724      StackTop = 0;
1725      return;
1726    }
1727
1728    // Otherwise, we are returning two values:
1729    // 2) If returning the same value for both, we only have one thing in the FP
1730    //    stack.  Consider:  RET FP1, FP1
1731    if (StackTop == 1) {
1732      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1733             "Stack misconfiguration for RET!");
1734
1735      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1736      // register to hold it.
1737      unsigned NewReg = getScratchReg();
1738      duplicateToTop(FirstFPRegOp, NewReg, MI);
1739      FirstFPRegOp = NewReg;
1740    }
1741
1742    /// Okay we know we have two different FPx operands now:
1743    assert(StackTop == 2 && "Must have two values live!");
1744
1745    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1746    ///    in ST(1).  In this case, emit an fxch.
1747    if (getStackEntry(0) == SecondFPRegOp) {
1748      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1749      moveToTop(FirstFPRegOp, MI);
1750    }
1751
1752    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1753    /// ST(1).  Just remove both from our understanding of the stack and return.
1754    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1755    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1756    StackTop = 0;
1757    return;
1758  }
1759
1760  I = MBB->erase(I);  // Remove the pseudo instruction
1761
1762  // We want to leave I pointing to the previous instruction, but what if we
1763  // just erased the first instruction?
1764  if (I == MBB->begin()) {
1765    DEBUG(dbgs() << "Inserting dummy KILL\n");
1766    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1767  } else
1768    --I;
1769}
1770