X86FloatingPoint.cpp revision c1bab32bc56e6d27d1223431716523bbe35e4d2e
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Function.h"     // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h"  // FIXME: remove when using MBB CFG!
42#include "Support/Debug.h"
43#include "Support/DepthFirstIterator.h"
44#include "Support/Statistic.h"
45#include "Support/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
53
54  struct FPS : public MachineFunctionPass {
55    virtual bool runOnMachineFunction(MachineFunction &MF);
56
57    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<LiveVariables>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63  private:
64    LiveVariables     *LV;    // Live variable info for current function...
65    MachineBasicBlock *MBB;   // Current basic block
66    unsigned Stack[8];        // FP<n> Registers in each stack slot...
67    unsigned RegMap[8];       // Track which stack slot contains each register
68    unsigned StackTop;        // The current top of the FP stack.
69
70    void dumpStack() const {
71      std::cerr << "Stack contents:";
72      for (unsigned i = 0; i != StackTop; ++i) {
73	std::cerr << " FP" << Stack[i];
74	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75      }
76      std::cerr << "\n";
77    }
78  private:
79    // getSlot - Return the stack slot number a particular register number is
80    // in...
81    unsigned getSlot(unsigned RegNo) const {
82      assert(RegNo < 8 && "Regno out of range!");
83      return RegMap[RegNo];
84    }
85
86    // getStackEntry - Return the X86::FP<n> register in register ST(i)
87    unsigned getStackEntry(unsigned STi) const {
88      assert(STi < StackTop && "Access past stack top!");
89      return Stack[StackTop-1-STi];
90    }
91
92    // getSTReg - Return the X86::ST(i) register which contains the specified
93    // FP<RegNo> register
94    unsigned getSTReg(unsigned RegNo) const {
95      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
96    }
97
98    // pushReg - Push the specified FP<n> register onto the stack
99    void pushReg(unsigned Reg) {
100      assert(Reg < 8 && "Register number out of range!");
101      assert(StackTop < 8 && "Stack overflow!");
102      Stack[StackTop] = Reg;
103      RegMap[Reg] = StackTop++;
104    }
105
106    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108      if (!isAtTop(RegNo)) {
109	unsigned Slot = getSlot(RegNo);
110	unsigned STReg = getSTReg(RegNo);
111	unsigned RegOnTop = getStackEntry(0);
112
113	// Swap the slots the regs are in
114	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116	// Swap stack slot contents
117	assert(RegMap[RegOnTop] < StackTop);
118	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120	// Emit an fxch to update the runtime processors version of the state
121	MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
122	MBB->insert(I, MI);
123	NumFXCH++;
124      }
125    }
126
127    void duplicateToTop(unsigned RegNo, unsigned AsReg,
128			MachineBasicBlock::iterator &I) {
129      unsigned STReg = getSTReg(RegNo);
130      pushReg(AsReg);   // New register on top of stack
131
132      MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
133      MBB->insert(I, MI);
134    }
135
136    // popStackAfter - Pop the current value off of the top of the FP stack
137    // after the specified instruction.
138    void popStackAfter(MachineBasicBlock::iterator &I);
139
140    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
141
142    void handleZeroArgFP(MachineBasicBlock::iterator &I);
143    void handleOneArgFP(MachineBasicBlock::iterator &I);
144    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
145    void handleTwoArgFP(MachineBasicBlock::iterator &I);
146    void handleCondMovFP(MachineBasicBlock::iterator &I);
147    void handleSpecialFP(MachineBasicBlock::iterator &I);
148  };
149}
150
151FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
152
153/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
154/// register references into FP stack references.
155///
156bool FPS::runOnMachineFunction(MachineFunction &MF) {
157  LV = &getAnalysis<LiveVariables>();
158  StackTop = 0;
159
160  // Figure out the mapping of MBB's to BB's.
161  //
162  // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
163  // we will need to extend this when one llvm basic block can codegen to
164  // multiple MBBs.
165  //
166  // FIXME again: Just use the mapping established by LiveVariables!
167  //
168  std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
169  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
170    MBBMap[I->getBasicBlock()] = I;
171
172  // Process the function in depth first order so that we process at least one
173  // of the predecessors for every reachable block in the function.
174  std::set<const BasicBlock*> Processed;
175  const BasicBlock *Entry = MF.getFunction()->begin();
176
177  bool Changed = false;
178  for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
179         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
180       I != E; ++I)
181    Changed |= processBasicBlock(MF, *MBBMap[*I]);
182
183  assert(MBBMap.size() == Processed.size() &&
184         "Doesn't handle unreachable code yet!");
185
186  return Changed;
187}
188
189/// processBasicBlock - Loop over all of the instructions in the basic block,
190/// transforming FP instructions into their stack form.
191///
192bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
193  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
194  bool Changed = false;
195  MBB = &BB;
196
197  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
198    MachineInstr *MI = I;
199    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
200    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
201      continue;  // Efficiently ignore non-fp insts!
202
203    MachineInstr *PrevMI = 0;
204    if (I != BB.begin())
205        PrevMI = prior(I);
206
207    ++NumFP;  // Keep track of # of pseudo instrs
208    DEBUG(std::cerr << "\nFPInst:\t";
209	  MI->print(std::cerr, MF.getTarget()));
210
211    // Get dead variables list now because the MI pointer may be deleted as part
212    // of processing!
213    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
214    LiveVariables::killed_iterator IE = LV->dead_end(MI);
215
216    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
217	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
218	  LiveVariables::killed_iterator E = LV->killed_end(MI);
219	  if (I != E) {
220	    std::cerr << "Killed Operands:";
221	    for (; I != E; ++I)
222	      std::cerr << " %" << MRI->getName(I->second);
223	    std::cerr << "\n";
224	  });
225
226    switch (Flags & X86II::FPTypeMask) {
227    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
228    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
229    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
230    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
231    case X86II::CondMovFP:  handleCondMovFP(I); break;
232    case X86II::SpecialFP:  handleSpecialFP(I); break;
233    default: assert(0 && "Unknown FP Type!");
234    }
235
236    // Check to see if any of the values defined by this instruction are dead
237    // after definition.  If so, pop them.
238    for (; IB != IE; ++IB) {
239      unsigned Reg = IB->second;
240      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
241	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
242	++I;                         // Insert fxch AFTER the instruction
243	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
244	--I;                         // Move to fxch or old instruction
245	popStackAfter(I);            // Pop the top of the stack, killing value
246      }
247    }
248
249    // Print out all of the instructions expanded to if -debug
250    DEBUG(
251      MachineBasicBlock::iterator PrevI(PrevMI);
252      if (I == PrevI) {
253        std::cerr<< "Just deleted pseudo instruction\n";
254      } else {
255        MachineBasicBlock::iterator Start = I;
256        // Rewind to first instruction newly inserted.
257        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
258        std::cerr << "Inserted instructions:\n\t";
259        Start->print(std::cerr, MF.getTarget());
260        while (++Start != next(I));
261      }
262      dumpStack();
263    );
264
265    Changed = true;
266  }
267
268  assert(StackTop == 0 && "Stack not empty at end of basic block?");
269  return Changed;
270}
271
272//===----------------------------------------------------------------------===//
273// Efficient Lookup Table Support
274//===----------------------------------------------------------------------===//
275
276namespace {
277  struct TableEntry {
278    unsigned from;
279    unsigned to;
280    bool operator<(const TableEntry &TE) const { return from < TE.from; }
281    bool operator<(unsigned V) const { return from < V; }
282  };
283}
284
285static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
286  for (unsigned i = 0; i != NumEntries-1; ++i)
287    if (!(Table[i] < Table[i+1])) return false;
288  return true;
289}
290
291static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
292  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
293  if (I != Table+N && I->from == Opcode)
294    return I->to;
295  return -1;
296}
297
298#define ARRAY_SIZE(TABLE)  \
299   (sizeof(TABLE)/sizeof(TABLE[0]))
300
301#ifdef NDEBUG
302#define ASSERT_SORTED(TABLE)
303#else
304#define ASSERT_SORTED(TABLE)                                              \
305  { static bool TABLE##Checked = false;                                   \
306    if (!TABLE##Checked)                                                  \
307       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
308              "All lookup tables must be sorted for efficient access!");  \
309  }
310#endif
311
312
313//===----------------------------------------------------------------------===//
314// Helper Methods
315//===----------------------------------------------------------------------===//
316
317// PopTable - Sorted map of instructions to their popping version.  The first
318// element is an instruction, the second is the version which pops.
319//
320static const TableEntry PopTable[] = {
321  { X86::FADDrST0 , X86::FADDPrST0  },
322
323  { X86::FDIVRrST0, X86::FDIVRPrST0 },
324  { X86::FDIVrST0 , X86::FDIVPrST0  },
325
326  { X86::FIST16m  , X86::FISTP16m   },
327  { X86::FIST32m  , X86::FISTP32m   },
328
329  { X86::FMULrST0 , X86::FMULPrST0  },
330
331  { X86::FST32m   , X86::FSTP32m    },
332  { X86::FST64m   , X86::FSTP64m    },
333  { X86::FSTrr    , X86::FSTPrr     },
334
335  { X86::FSUBRrST0, X86::FSUBRPrST0 },
336  { X86::FSUBrST0 , X86::FSUBPrST0  },
337
338  { X86::FUCOMPr  , X86::FUCOMPPr   },
339  { X86::FUCOMr   , X86::FUCOMPr    },
340};
341
342/// popStackAfter - Pop the current value off of the top of the FP stack after
343/// the specified instruction.  This attempts to be sneaky and combine the pop
344/// into the instruction itself if possible.  The iterator is left pointing to
345/// the last instruction, be it a new pop instruction inserted, or the old
346/// instruction if it was modified in place.
347///
348void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
349  ASSERT_SORTED(PopTable);
350  assert(StackTop > 0 && "Cannot pop empty stack!");
351  RegMap[Stack[--StackTop]] = ~0;     // Update state
352
353  // Check to see if there is a popping version of this instruction...
354  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
355  if (Opcode != -1) {
356    I->setOpcode(Opcode);
357    if (Opcode == X86::FUCOMPPr)
358      I->RemoveOperand(0);
359
360  } else {    // Insert an explicit pop
361    MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
362    I = MBB->insert(++I, MI);
363  }
364}
365
366static unsigned getFPReg(const MachineOperand &MO) {
367  assert(MO.isRegister() && "Expected an FP register!");
368  unsigned Reg = MO.getReg();
369  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
370  return Reg - X86::FP0;
371}
372
373
374//===----------------------------------------------------------------------===//
375// Instruction transformation implementation
376//===----------------------------------------------------------------------===//
377
378/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
379///
380void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
381  MachineInstr *MI = I;
382  unsigned DestReg = getFPReg(MI->getOperand(0));
383  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
384
385  // Result gets pushed on the stack...
386  pushReg(DestReg);
387}
388
389/// handleOneArgFP - fst <mem>, ST(0)
390///
391void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
392  MachineInstr *MI = I;
393  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
394         "Can only handle fst* & ftst instructions!");
395
396  // Is this the last use of the source register?
397  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
398  bool KillsSrc = false;
399  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
400	 E = LV->killed_end(MI); KI != E; ++KI)
401    KillsSrc |= KI->second == X86::FP0+Reg;
402
403  // FSTP80r and FISTP64r are strange because there are no non-popping versions.
404  // If we have one _and_ we don't want to pop the operand, duplicate the value
405  // on the stack instead of moving it.  This ensure that popping the value is
406  // always ok.
407  //
408  if ((MI->getOpcode() == X86::FSTP80m ||
409       MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
410    duplicateToTop(Reg, 7 /*temp register*/, I);
411  } else {
412    moveToTop(Reg, I);            // Move to the top of the stack...
413  }
414  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
415
416  if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
417    assert(StackTop > 0 && "Stack empty??");
418    --StackTop;
419  } else if (KillsSrc) { // Last use of operand?
420    popStackAfter(I);
421  }
422}
423
424
425/// handleOneArgFPRW - fchs - ST(0) = -ST(0)
426///
427void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
428  MachineInstr *MI = I;
429  assert(MI->getNumOperands() == 2 && "Can only handle fst* instructions!");
430
431  // Is this the last use of the source register?
432  unsigned Reg = getFPReg(MI->getOperand(1));
433  bool KillsSrc = false;
434  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
435	 E = LV->killed_end(MI); KI != E; ++KI)
436    KillsSrc |= KI->second == X86::FP0+Reg;
437
438  if (KillsSrc) {
439    // If this is the last use of the source register, just make sure it's on
440    // the top of the stack.
441    moveToTop(Reg, I);
442    assert(StackTop > 0 && "Stack cannot be empty!");
443    --StackTop;
444    pushReg(getFPReg(MI->getOperand(0)));
445  } else {
446    // If this is not the last use of the source register, _copy_ it to the top
447    // of the stack.
448    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
449  }
450
451  MI->RemoveOperand(1);   // Drop the source operand.
452  MI->RemoveOperand(0);   // Drop the destination operand.
453}
454
455
456//===----------------------------------------------------------------------===//
457// Define tables of various ways to map pseudo instructions
458//
459
460// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
461static const TableEntry ForwardST0Table[] = {
462  { X86::FpADD,  X86::FADDST0r  },
463  { X86::FpDIV,  X86::FDIVST0r  },
464  { X86::FpMUL,  X86::FMULST0r  },
465  { X86::FpSUB,  X86::FSUBST0r  },
466  { X86::FpUCOM, X86::FUCOMr    },
467};
468
469// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
470static const TableEntry ReverseST0Table[] = {
471  { X86::FpADD,  X86::FADDST0r  },   // commutative
472  { X86::FpDIV,  X86::FDIVRST0r },
473  { X86::FpMUL,  X86::FMULST0r  },   // commutative
474  { X86::FpSUB,  X86::FSUBRST0r },
475  { X86::FpUCOM, ~0             },
476};
477
478// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
479static const TableEntry ForwardSTiTable[] = {
480  { X86::FpADD,  X86::FADDrST0  },   // commutative
481  { X86::FpDIV,  X86::FDIVRrST0 },
482  { X86::FpMUL,  X86::FMULrST0  },   // commutative
483  { X86::FpSUB,  X86::FSUBRrST0 },
484  { X86::FpUCOM, X86::FUCOMr    },
485};
486
487// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
488static const TableEntry ReverseSTiTable[] = {
489  { X86::FpADD,  X86::FADDrST0 },
490  { X86::FpDIV,  X86::FDIVrST0 },
491  { X86::FpMUL,  X86::FMULrST0 },
492  { X86::FpSUB,  X86::FSUBrST0 },
493  { X86::FpUCOM, ~0            },
494};
495
496
497/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
498/// instructions which need to be simplified and possibly transformed.
499///
500/// Result: ST(0) = fsub  ST(0), ST(i)
501///         ST(i) = fsub  ST(0), ST(i)
502///         ST(0) = fsubr ST(0), ST(i)
503///         ST(i) = fsubr ST(0), ST(i)
504///
505/// In addition to three address instructions, this also handles the FpUCOM
506/// instruction which only has two operands, but no destination.  This
507/// instruction is also annoying because there is no "reverse" form of it
508/// available.
509///
510void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
511  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
512  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
513  MachineInstr *MI = I;
514
515  unsigned NumOperands = MI->getNumOperands();
516  assert(NumOperands == 3 ||
517	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
518	 "Illegal TwoArgFP instruction!");
519  unsigned Dest = getFPReg(MI->getOperand(0));
520  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
521  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
522  bool KillsOp0 = false, KillsOp1 = false;
523
524  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
525	 E = LV->killed_end(MI); KI != E; ++KI) {
526    KillsOp0 |= (KI->second == X86::FP0+Op0);
527    KillsOp1 |= (KI->second == X86::FP0+Op1);
528  }
529
530  // If this is an FpUCOM instruction, we must make sure the first operand is on
531  // the top of stack, the other one can be anywhere...
532  if (MI->getOpcode() == X86::FpUCOM)
533    moveToTop(Op0, I);
534
535  unsigned TOS = getStackEntry(0);
536
537  // One of our operands must be on the top of the stack.  If neither is yet, we
538  // need to move one.
539  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
540    // We can choose to move either operand to the top of the stack.  If one of
541    // the operands is killed by this instruction, we want that one so that we
542    // can update right on top of the old version.
543    if (KillsOp0) {
544      moveToTop(Op0, I);         // Move dead operand to TOS.
545      TOS = Op0;
546    } else if (KillsOp1) {
547      moveToTop(Op1, I);
548      TOS = Op1;
549    } else {
550      // All of the operands are live after this instruction executes, so we
551      // cannot update on top of any operand.  Because of this, we must
552      // duplicate one of the stack elements to the top.  It doesn't matter
553      // which one we pick.
554      //
555      duplicateToTop(Op0, Dest, I);
556      Op0 = TOS = Dest;
557      KillsOp0 = true;
558    }
559  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
560    // If we DO have one of our operands at the top of the stack, but we don't
561    // have a dead operand, we must duplicate one of the operands to a new slot
562    // on the stack.
563    duplicateToTop(Op0, Dest, I);
564    Op0 = TOS = Dest;
565    KillsOp0 = true;
566  }
567
568  // Now we know that one of our operands is on the top of the stack, and at
569  // least one of our operands is killed by this instruction.
570  assert((TOS == Op0 || TOS == Op1) &&
571	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
572	 "Stack conditions not set up right!");
573
574  // We decide which form to use based on what is on the top of the stack, and
575  // which operand is killed by this instruction.
576  const TableEntry *InstTable;
577  bool isForward = TOS == Op0;
578  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
579  if (updateST0) {
580    if (isForward)
581      InstTable = ForwardST0Table;
582    else
583      InstTable = ReverseST0Table;
584  } else {
585    if (isForward)
586      InstTable = ForwardSTiTable;
587    else
588      InstTable = ReverseSTiTable;
589  }
590
591  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
592  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
593
594  // NotTOS - The register which is not on the top of stack...
595  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
596
597  // Replace the old instruction with a new instruction
598  MBB->remove(I++);
599  BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
600  --I;
601
602  // If both operands are killed, pop one off of the stack in addition to
603  // overwriting the other one.
604  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
605    assert(!updateST0 && "Should have updated other operand!");
606    popStackAfter(I);   // Pop the top of stack
607  }
608
609  // Insert an explicit pop of the "updated" operand for FUCOM
610  if (MI->getOpcode() == X86::FpUCOM) {
611    if (KillsOp0 && !KillsOp1)
612      popStackAfter(I);   // If we kill the first operand, pop it!
613    else if (KillsOp1 && Op0 != Op1) {
614      if (getStackEntry(0) == Op1) {
615	popStackAfter(I);     // If it's right at the top of stack, just pop it
616      } else {
617	// Otherwise, move the top of stack into the dead slot, killing the
618	// operand without having to add in an explicit xchg then pop.
619	//
620	unsigned STReg    = getSTReg(Op1);
621	unsigned OldSlot  = getSlot(Op1);
622	unsigned TopReg   = Stack[StackTop-1];
623	Stack[OldSlot]    = TopReg;
624	RegMap[TopReg]    = OldSlot;
625	RegMap[Op1]       = ~0;
626	Stack[--StackTop] = ~0;
627
628	MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
629	I = MBB->insert(++I, MI);
630      }
631    }
632  }
633
634  // Update stack information so that we know the destination register is now on
635  // the stack.
636  if (MI->getOpcode() != X86::FpUCOM) {
637    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
638    assert(UpdatedSlot < StackTop && Dest < 7);
639    Stack[UpdatedSlot]   = Dest;
640    RegMap[Dest]         = UpdatedSlot;
641  }
642  delete MI;   // Remove the old instruction
643}
644
645/// handleCondMovFP - Handle two address conditional move instructions.  These
646/// instructions move a st(i) register to st(0) iff a condition is true.  These
647/// instructions require that the first operand is at the top of the stack, but
648/// otherwise don't modify the stack at all.
649void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
650  MachineInstr *MI = I;
651
652  unsigned Op0 = getFPReg(MI->getOperand(0));
653  unsigned Op1 = getFPReg(MI->getOperand(1));
654
655  // The first operand *must* be on the top of the stack.
656  moveToTop(Op0, I);
657
658  // Change the second operand to the stack register that the operand is in.
659  MI->RemoveOperand(0);
660  MI->getOperand(0).setReg(getSTReg(Op1));
661
662  // If we kill the second operand, make sure to pop it from the stack.
663  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
664	 E = LV->killed_end(MI); KI != E; ++KI)
665    if (KI->second == X86::FP0+Op1) {
666      ++I;
667      moveToTop(Op1, I);  // Insert fxch if necessary
668      --I;
669      popStackAfter(I);            // Pop the top of the stack, killing value
670      break;
671    }
672}
673
674
675/// handleSpecialFP - Handle special instructions which behave unlike other
676/// floating point instructions.  This is primarily intended for use by pseudo
677/// instructions.
678///
679void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
680  MachineInstr *MI = I;
681  switch (MI->getOpcode()) {
682  default: assert(0 && "Unknown SpecialFP instruction!");
683  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
684    assert(StackTop == 0 && "Stack should be empty after a call!");
685    pushReg(getFPReg(MI->getOperand(0)));
686    break;
687  case X86::FpSETRESULT:
688    assert(StackTop == 1 && "Stack should have one element on it to return!");
689    --StackTop;   // "Forget" we have something on the top of stack!
690    break;
691  case X86::FpMOV: {
692    unsigned SrcReg = getFPReg(MI->getOperand(1));
693    unsigned DestReg = getFPReg(MI->getOperand(0));
694    bool KillsSrc = false;
695    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
696	   E = LV->killed_end(MI); KI != E; ++KI)
697      KillsSrc |= KI->second == X86::FP0+SrcReg;
698
699    if (KillsSrc) {
700      // If the input operand is killed, we can just change the owner of the
701      // incoming stack slot into the result.
702      unsigned Slot = getSlot(SrcReg);
703      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
704      Stack[Slot] = DestReg;
705      RegMap[DestReg] = Slot;
706
707    } else {
708      // For FMOV we just duplicate the specified value to a new stack slot.
709      // This could be made better, but would require substantial changes.
710      duplicateToTop(SrcReg, DestReg, I);
711    }
712    break;
713  }
714  }
715
716  I = MBB->erase(I);  // Remove the pseudo instruction
717  --I;
718}
719