X86FloatingPoint.cpp revision cf00c4ab3ba308d45d98c5ccab87362cf802facb
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3// This file defines the pass which converts floating point instructions from
4// virtual registers into register stack instructions.
5//
6//===----------------------------------------------------------------------===//
7
8#define DEBUG_TYPE "fp"
9#include "X86.h"
10#include "X86InstrInfo.h"
11#include "llvm/CodeGen/MachineFunctionPass.h"
12#include "llvm/CodeGen/MachineInstrBuilder.h"
13#include "llvm/CodeGen/LiveVariables.h"
14#include "llvm/Target/TargetInstrInfo.h"
15#include "llvm/Target/TargetMachine.h"
16#include "Support/Debug.h"
17#include "Support/Statistic.h"
18#include <algorithm>
19#include <iostream>
20
21namespace {
22  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
23  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
24
25  struct FPS : public MachineFunctionPass {
26    virtual bool runOnMachineFunction(MachineFunction &MF);
27
28    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
29
30    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
31      AU.addRequired<LiveVariables>();
32      MachineFunctionPass::getAnalysisUsage(AU);
33    }
34  private:
35    LiveVariables     *LV;    // Live variable info for current function...
36    MachineBasicBlock *MBB;   // Current basic block
37    unsigned Stack[8];        // FP<n> Registers in each stack slot...
38    unsigned RegMap[8];       // Track which stack slot contains each register
39    unsigned StackTop;        // The current top of the FP stack.
40
41    void dumpStack() const {
42      std::cerr << "Stack contents:";
43      for (unsigned i = 0; i != StackTop; ++i) {
44	std::cerr << " FP" << Stack[i];
45	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
46      }
47      std::cerr << "\n";
48    }
49  private:
50    // getSlot - Return the stack slot number a particular register number is
51    // in...
52    unsigned getSlot(unsigned RegNo) const {
53      assert(RegNo < 8 && "Regno out of range!");
54      return RegMap[RegNo];
55    }
56
57    // getStackEntry - Return the X86::FP<n> register in register ST(i)
58    unsigned getStackEntry(unsigned STi) const {
59      assert(STi < StackTop && "Access past stack top!");
60      return Stack[StackTop-1-STi];
61    }
62
63    // getSTReg - Return the X86::ST(i) register which contains the specified
64    // FP<RegNo> register
65    unsigned getSTReg(unsigned RegNo) const {
66      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
67    }
68
69    // pushReg - Push the specifiex FP<n> register onto the stack
70    void pushReg(unsigned Reg) {
71      assert(Reg < 8 && "Register number out of range!");
72      assert(StackTop < 8 && "Stack overflow!");
73      Stack[StackTop] = Reg;
74      RegMap[Reg] = StackTop++;
75    }
76
77    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
78    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
79      if (!isAtTop(RegNo)) {
80	unsigned Slot = getSlot(RegNo);
81	unsigned STReg = getSTReg(RegNo);
82	unsigned RegOnTop = getStackEntry(0);
83
84	// Swap the slots the regs are in
85	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
86
87	// Swap stack slot contents
88	assert(RegMap[RegOnTop] < StackTop);
89	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
90
91	// Emit an fxch to update the runtime processors version of the state
92	MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
93	I = 1+MBB->insert(I, MI);
94	NumFXCH++;
95      }
96    }
97
98    void duplicateToTop(unsigned RegNo, unsigned AsReg,
99			MachineBasicBlock::iterator &I) {
100      unsigned STReg = getSTReg(RegNo);
101      pushReg(AsReg);   // New register on top of stack
102
103      MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
104      I = 1+MBB->insert(I, MI);
105    }
106
107    // popStackAfter - Pop the current value off of the top of the FP stack
108    // after the specified instruction.
109    void popStackAfter(MachineBasicBlock::iterator &I);
110
111    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
112
113    void handleZeroArgFP(MachineBasicBlock::iterator &I);
114    void handleOneArgFP(MachineBasicBlock::iterator &I);
115    void handleTwoArgFP(MachineBasicBlock::iterator &I);
116    void handleSpecialFP(MachineBasicBlock::iterator &I);
117  };
118}
119
120FunctionPass *createX86FloatingPointStackifierPass() { return new FPS(); }
121
122/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
123/// register references into FP stack references.
124///
125bool FPS::runOnMachineFunction(MachineFunction &MF) {
126  LV = &getAnalysis<LiveVariables>();
127  StackTop = 0;
128
129  bool Changed = false;
130  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
131    Changed |= processBasicBlock(MF, *I);
132  return Changed;
133}
134
135/// processBasicBlock - Loop over all of the instructions in the basic block,
136/// transforming FP instructions into their stack form.
137///
138bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
139  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
140  bool Changed = false;
141  MBB = &BB;
142
143  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
144    MachineInstr *MI = *I;
145    MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
146    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
147
148    if ((Flags & X86II::FPTypeMask) == 0) continue;  // Ignore non-fp insts!
149
150    ++NumFP;  // Keep track of # of pseudo instrs
151    DEBUG(std::cerr << "\nFPInst:\t";
152	  MI->print(std::cerr, MF.getTarget()));
153
154    // Get dead variables list now because the MI pointer may be deleted as part
155    // of processing!
156    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
157    LiveVariables::killed_iterator IE = LV->dead_end(MI);
158
159    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
160	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
161	  LiveVariables::killed_iterator E = LV->killed_end(MI);
162	  if (I != E) {
163	    std::cerr << "Killed Operands:";
164	    for (; I != E; ++I)
165	      std::cerr << " %" << MRI->getName(I->second);
166	    std::cerr << "\n";
167	  });
168
169    switch (Flags & X86II::FPTypeMask) {
170    case X86II::ZeroArgFP: handleZeroArgFP(I); break;
171    case X86II::OneArgFP:  handleOneArgFP(I);  break;
172
173    case X86II::OneArgFPRW:   // ST(0) = fsqrt(ST(0))
174      assert(0 && "FP instr type not handled yet!");
175
176    case X86II::TwoArgFP:  handleTwoArgFP(I);  break;
177    case X86II::SpecialFP: handleSpecialFP(I); break;
178    default: assert(0 && "Unknown FP Type!");
179    }
180
181    // Check to see if any of the values defined by this instruction are dead
182    // after definition.  If so, pop them.
183    for (; IB != IE; ++IB) {
184      unsigned Reg = IB->second;
185      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
186	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
187	++I;                         // Insert fxch AFTER the instruction
188	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
189	--I;                         // Move to fxch or old instruction
190	popStackAfter(I);            // Pop the top of the stack, killing value
191      }
192    }
193
194    // Print out all of the instructions expanded to if -debug
195    DEBUG(if (*I == PrevMI) {
196            std::cerr<< "Just deleted pseudo instruction\n";
197          } else {
198	    MachineBasicBlock::iterator Start = I;
199	    // Rewind to first instruction newly inserted.
200	    while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
201	    std::cerr << "Inserted instructions:\n\t";
202	    (*Start)->print(std::cerr, MF.getTarget());
203	    while (++Start != I+1);
204	  }
205	  dumpStack();
206	  );
207
208    Changed = true;
209  }
210
211  assert(StackTop == 0 && "Stack not empty at end of basic block?");
212  return Changed;
213}
214
215//===----------------------------------------------------------------------===//
216// Efficient Lookup Table Support
217//===----------------------------------------------------------------------===//
218
219struct TableEntry {
220  unsigned from;
221  unsigned to;
222  bool operator<(const TableEntry &TE) const { return from < TE.from; }
223  bool operator<(unsigned V) const { return from < V; }
224};
225
226static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
227  for (unsigned i = 0; i != NumEntries-1; ++i)
228    if (!(Table[i] < Table[i+1])) return false;
229  return true;
230}
231
232static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
233  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
234  if (I != Table+N && I->from == Opcode)
235    return I->to;
236  return -1;
237}
238
239#define ARRAY_SIZE(TABLE)  \
240   (sizeof(TABLE)/sizeof(TABLE[0]))
241
242#ifdef NDEBUG
243#define ASSERT_SORTED(TABLE)
244#else
245#define ASSERT_SORTED(TABLE)                                              \
246  { static bool TABLE##Checked = false;                                   \
247    if (!TABLE##Checked)                                                  \
248       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
249              "All lookup tables must be sorted for efficient access!");  \
250  }
251#endif
252
253
254//===----------------------------------------------------------------------===//
255// Helper Methods
256//===----------------------------------------------------------------------===//
257
258// PopTable - Sorted map of instructions to their popping version.  The first
259// element is an instruction, the second is the version which pops.
260//
261static const TableEntry PopTable[] = {
262  { X86::FADDrST0 , X86::FADDPrST0  },
263
264  { X86::FDIVRrST0, X86::FDIVRPrST0 },
265  { X86::FDIVrST0 , X86::FDIVPrST0  },
266
267  { X86::FISTr16  , X86::FISTPr16   },
268  { X86::FISTr32  , X86::FISTPr32   },
269
270  { X86::FMULrST0 , X86::FMULPrST0  },
271
272  { X86::FSTr32   , X86::FSTPr32    },
273  { X86::FSTr64   , X86::FSTPr64    },
274  { X86::FSTrr    , X86::FSTPrr     },
275
276  { X86::FSUBRrST0, X86::FSUBRPrST0 },
277  { X86::FSUBrST0 , X86::FSUBPrST0  },
278
279  { X86::FUCOMPr  , X86::FUCOMPPr   },
280  { X86::FUCOMr   , X86::FUCOMPr    },
281};
282
283/// popStackAfter - Pop the current value off of the top of the FP stack after
284/// the specified instruction.  This attempts to be sneaky and combine the pop
285/// into the instruction itself if possible.  The iterator is left pointing to
286/// the last instruction, be it a new pop instruction inserted, or the old
287/// instruction if it was modified in place.
288///
289void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
290  ASSERT_SORTED(PopTable);
291  assert(StackTop > 0 && "Cannot pop empty stack!");
292  RegMap[Stack[--StackTop]] = ~0;     // Update state
293
294  // Check to see if there is a popping version of this instruction...
295  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
296  if (Opcode != -1) {
297    (*I)->setOpcode(Opcode);
298    if (Opcode == X86::FUCOMPPr)
299      (*I)->RemoveOperand(0);
300
301  } else {    // Insert an explicit pop
302    MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
303    I = MBB->insert(I+1, MI);
304  }
305}
306
307static unsigned getFPReg(const MachineOperand &MO) {
308  assert(MO.isPhysicalRegister() && "Expected an FP register!");
309  unsigned Reg = MO.getReg();
310  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
311  return Reg - X86::FP0;
312}
313
314
315//===----------------------------------------------------------------------===//
316// Instruction transformation implementation
317//===----------------------------------------------------------------------===//
318
319/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
320//
321void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
322  MachineInstr *MI = *I;
323  unsigned DestReg = getFPReg(MI->getOperand(0));
324  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
325
326  // Result gets pushed on the stack...
327  pushReg(DestReg);
328}
329
330/// handleOneArgFP - fst ST(0), <mem>
331//
332void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
333  MachineInstr *MI = *I;
334  assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
335
336  unsigned Reg = getFPReg(MI->getOperand(4));
337  bool KillsSrc = false;
338  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
339	 E = LV->killed_end(MI); KI != E; ++KI)
340    KillsSrc |= KI->second == X86::FP0+Reg;
341
342  // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
343  // If we have one _and_ we don't want to pop the operand, duplicate the value
344  // on the stack instead of moving it.  This ensure that popping the value is
345  // always ok.
346  //
347  if ((MI->getOpcode() == X86::FSTPr80 ||
348       MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
349    duplicateToTop(Reg, 7 /*temp register*/, I);
350  } else {
351    moveToTop(Reg, I);            // Move to the top of the stack...
352  }
353  MI->RemoveOperand(4);           // Remove explicit ST(0) operand
354
355  if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
356    assert(StackTop > 0 && "Stack empty??");
357    --StackTop;
358  } else if (KillsSrc) { // Last use of operand?
359    popStackAfter(I);
360  }
361}
362
363//===----------------------------------------------------------------------===//
364// Define tables of various ways to map pseudo instructions
365//
366
367// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
368static const TableEntry ForwardST0Table[] = {
369  { X86::FpADD,  X86::FADDST0r  },
370  { X86::FpDIV,  X86::FDIVST0r  },
371  { X86::FpMUL,  X86::FMULST0r  },
372  { X86::FpSUB,  X86::FSUBST0r  },
373  { X86::FpUCOM, X86::FUCOMr    },
374};
375
376// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
377static const TableEntry ReverseST0Table[] = {
378  { X86::FpADD,  X86::FADDST0r  },   // commutative
379  { X86::FpDIV,  X86::FDIVRST0r },
380  { X86::FpMUL,  X86::FMULST0r  },   // commutative
381  { X86::FpSUB,  X86::FSUBRST0r },
382  { X86::FpUCOM, ~0             },
383};
384
385// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
386static const TableEntry ForwardSTiTable[] = {
387  { X86::FpADD,  X86::FADDrST0  },   // commutative
388  { X86::FpDIV,  X86::FDIVRrST0 },
389  { X86::FpMUL,  X86::FMULrST0  },   // commutative
390  { X86::FpSUB,  X86::FSUBRrST0 },
391  { X86::FpUCOM, X86::FUCOMr    },
392};
393
394// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
395static const TableEntry ReverseSTiTable[] = {
396  { X86::FpADD,  X86::FADDrST0 },
397  { X86::FpDIV,  X86::FDIVrST0 },
398  { X86::FpMUL,  X86::FMULrST0 },
399  { X86::FpSUB,  X86::FSUBrST0 },
400  { X86::FpUCOM, ~0            },
401};
402
403
404/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
405/// instructions which need to be simplified and possibly transformed.
406///
407/// Result: ST(0) = fsub  ST(0), ST(i)
408///         ST(i) = fsub  ST(0), ST(i)
409///         ST(0) = fsubr ST(0), ST(i)
410///         ST(i) = fsubr ST(0), ST(i)
411///
412/// In addition to three address instructions, this also handles the FpUCOM
413/// instruction which only has two operands, but no destination.  This
414/// instruction is also annoying because there is no "reverse" form of it
415/// available.
416///
417void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
418  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
419  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
420  MachineInstr *MI = *I;
421
422  unsigned NumOperands = MI->getNumOperands();
423  assert(NumOperands == 3 ||
424	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
425	 "Illegal TwoArgFP instruction!");
426  unsigned Dest = getFPReg(MI->getOperand(0));
427  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
428  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
429  bool KillsOp0 = false, KillsOp1 = false;
430
431  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
432	 E = LV->killed_end(MI); KI != E; ++KI) {
433    KillsOp0 |= (KI->second == X86::FP0+Op0);
434    KillsOp1 |= (KI->second == X86::FP0+Op1);
435  }
436
437  // If this is an FpUCOM instruction, we must make sure the first operand is on
438  // the top of stack, the other one can be anywhere...
439  if (MI->getOpcode() == X86::FpUCOM)
440    moveToTop(Op0, I);
441
442  unsigned TOS = getStackEntry(0);
443
444  // One of our operands must be on the top of the stack.  If neither is yet, we
445  // need to move one.
446  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
447    // We can choose to move either operand to the top of the stack.  If one of
448    // the operands is killed by this instruction, we want that one so that we
449    // can update right on top of the old version.
450    if (KillsOp0) {
451      moveToTop(Op0, I);         // Move dead operand to TOS.
452      TOS = Op0;
453    } else if (KillsOp1) {
454      moveToTop(Op1, I);
455      TOS = Op1;
456    } else {
457      // All of the operands are live after this instruction executes, so we
458      // cannot update on top of any operand.  Because of this, we must
459      // duplicate one of the stack elements to the top.  It doesn't matter
460      // which one we pick.
461      //
462      duplicateToTop(Op0, Dest, I);
463      Op0 = TOS = Dest;
464      KillsOp0 = true;
465    }
466  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM)  {
467    // If we DO have one of our operands at the top of the stack, but we don't
468    // have a dead operand, we must duplicate one of the operands to a new slot
469    // on the stack.
470    duplicateToTop(Op0, Dest, I);
471    Op0 = TOS = Dest;
472    KillsOp0 = true;
473  }
474
475  // Now we know that one of our operands is on the top of the stack, and at
476  // least one of our operands is killed by this instruction.
477  assert((TOS == Op0 || TOS == Op1) &&
478	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
479	 "Stack conditions not set up right!");
480
481  // We decide which form to use based on what is on the top of the stack, and
482  // which operand is killed by this instruction.
483  const TableEntry *InstTable;
484  bool isForward = TOS == Op0;
485  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
486  if (updateST0) {
487    if (isForward)
488      InstTable = ForwardST0Table;
489    else
490      InstTable = ReverseST0Table;
491  } else {
492    if (isForward)
493      InstTable = ForwardSTiTable;
494    else
495      InstTable = ReverseSTiTable;
496  }
497
498  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
499  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
500
501  // NotTOS - The register which is not on the top of stack...
502  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
503
504  // Replace the old instruction with a new instruction
505  *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
506
507  // If both operands are killed, pop one off of the stack in addition to
508  // overwriting the other one.
509  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
510    assert(!updateST0 && "Should have updated other operand!");
511    popStackAfter(I);   // Pop the top of stack
512  }
513
514  // Insert an explicit pop of the "updated" operand for FUCOM
515  if (MI->getOpcode() == X86::FpUCOM) {
516    if (KillsOp0 && !KillsOp1)
517      popStackAfter(I);   // If we kill the first operand, pop it!
518    else if (KillsOp1 && Op0 != Op1) {
519      if (getStackEntry(0) == Op1) {
520	popStackAfter(I);     // If it's right at the top of stack, just pop it
521      } else {
522	// Otherwise, move the top of stack into the dead slot, killing the
523	// operand without having to add in an explicit xchg then pop.
524	//
525	unsigned STReg    = getSTReg(Op1);
526	unsigned OldSlot  = getSlot(Op1);
527	unsigned TopReg   = Stack[StackTop-1];
528	Stack[OldSlot]    = TopReg;
529	RegMap[TopReg]    = OldSlot;
530	RegMap[Op1]       = ~0;
531	Stack[--StackTop] = ~0;
532
533	MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
534	I = MBB->insert(I+1, MI);
535      }
536    }
537  }
538
539  // Update stack information so that we know the destination register is now on
540  // the stack.
541  if (MI->getOpcode() != X86::FpUCOM) {
542    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
543    assert(UpdatedSlot < StackTop && Dest < 7);
544    Stack[UpdatedSlot]   = Dest;
545    RegMap[Dest]         = UpdatedSlot;
546  }
547  delete MI;   // Remove the old instruction
548}
549
550
551/// handleSpecialFP - Handle special instructions which behave unlike other
552/// floating point instructions.  This is primarily intended for use by pseudo
553/// instructions.
554///
555void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
556  MachineInstr *MI = *I;
557  switch (MI->getOpcode()) {
558  default: assert(0 && "Unknown SpecialFP instruction!");
559  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
560    assert(StackTop == 0 && "Stack should be empty after a call!");
561    pushReg(getFPReg(MI->getOperand(0)));
562    break;
563  case X86::FpSETRESULT:
564    assert(StackTop == 1 && "Stack should have one element on it to return!");
565    --StackTop;   // "Forget" we have something on the top of stack!
566    break;
567  case X86::FpMOV: {
568    unsigned SrcReg = getFPReg(MI->getOperand(1));
569    unsigned DestReg = getFPReg(MI->getOperand(0));
570    bool KillsSrc = false;
571    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
572	   E = LV->killed_end(MI); KI != E; ++KI)
573      KillsSrc |= KI->second == X86::FP0+SrcReg;
574
575    if (KillsSrc) {
576      // If the input operand is killed, we can just change the owner of the
577      // incoming stack slot into the result.
578      unsigned Slot = getSlot(SrcReg);
579      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
580      Stack[Slot] = DestReg;
581      RegMap[DestReg] = Slot;
582
583    } else {
584      // For FMOV we just duplicate the specified value to a new stack slot.
585      // This could be made better, but would require substantial changes.
586      duplicateToTop(SrcReg, DestReg, I);
587    }
588    break;
589  }
590  }
591
592  I = MBB->erase(I)-1;  // Remove the pseudo instruction
593}
594