X86FloatingPoint.cpp revision d62d5d7e5bb353785784fc40c088836c4cf160b4
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "Support/Debug.h"
41#include "Support/DepthFirstIterator.h"
42#include "Support/Statistic.h"
43#include "Support/STLExtras.h"
44#include <algorithm>
45#include <set>
46using namespace llvm;
47
48namespace {
49  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
50  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
51
52  struct FPS : public MachineFunctionPass {
53    virtual bool runOnMachineFunction(MachineFunction &MF);
54
55    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
56
57    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58      AU.addRequired<LiveVariables>();
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61  private:
62    LiveVariables     *LV;    // Live variable info for current function...
63    MachineBasicBlock *MBB;   // Current basic block
64    unsigned Stack[8];        // FP<n> Registers in each stack slot...
65    unsigned RegMap[8];       // Track which stack slot contains each register
66    unsigned StackTop;        // The current top of the FP stack.
67
68    void dumpStack() const {
69      std::cerr << "Stack contents:";
70      for (unsigned i = 0; i != StackTop; ++i) {
71	std::cerr << " FP" << Stack[i];
72	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
73      }
74      std::cerr << "\n";
75    }
76  private:
77    // getSlot - Return the stack slot number a particular register number is
78    // in...
79    unsigned getSlot(unsigned RegNo) const {
80      assert(RegNo < 8 && "Regno out of range!");
81      return RegMap[RegNo];
82    }
83
84    // getStackEntry - Return the X86::FP<n> register in register ST(i)
85    unsigned getStackEntry(unsigned STi) const {
86      assert(STi < StackTop && "Access past stack top!");
87      return Stack[StackTop-1-STi];
88    }
89
90    // getSTReg - Return the X86::ST(i) register which contains the specified
91    // FP<RegNo> register
92    unsigned getSTReg(unsigned RegNo) const {
93      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
94    }
95
96    // pushReg - Push the specified FP<n> register onto the stack
97    void pushReg(unsigned Reg) {
98      assert(Reg < 8 && "Register number out of range!");
99      assert(StackTop < 8 && "Stack overflow!");
100      Stack[StackTop] = Reg;
101      RegMap[Reg] = StackTop++;
102    }
103
104    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
105    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
106      if (!isAtTop(RegNo)) {
107	unsigned Slot = getSlot(RegNo);
108	unsigned STReg = getSTReg(RegNo);
109	unsigned RegOnTop = getStackEntry(0);
110
111	// Swap the slots the regs are in
112	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
113
114	// Swap stack slot contents
115	assert(RegMap[RegOnTop] < StackTop);
116	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
117
118	// Emit an fxch to update the runtime processors version of the state
119	BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
120	NumFXCH++;
121      }
122    }
123
124    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
125      unsigned STReg = getSTReg(RegNo);
126      pushReg(AsReg);   // New register on top of stack
127
128      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
129    }
130
131    // popStackAfter - Pop the current value off of the top of the FP stack
132    // after the specified instruction.
133    void popStackAfter(MachineBasicBlock::iterator &I);
134
135    // freeStackSlotAfter - Free the specified register from the register stack,
136    // so that it is no longer in a register.  If the register is currently at
137    // the top of the stack, we just pop the current instruction, otherwise we
138    // store the current top-of-stack into the specified slot, then pop the top
139    // of stack.
140    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
141
142    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
143
144    void handleZeroArgFP(MachineBasicBlock::iterator &I);
145    void handleOneArgFP(MachineBasicBlock::iterator &I);
146    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
147    void handleTwoArgFP(MachineBasicBlock::iterator &I);
148    void handleCompareFP(MachineBasicBlock::iterator &I);
149    void handleCondMovFP(MachineBasicBlock::iterator &I);
150    void handleSpecialFP(MachineBasicBlock::iterator &I);
151  };
152}
153
154FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
155
156/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
157/// register references into FP stack references.
158///
159bool FPS::runOnMachineFunction(MachineFunction &MF) {
160  LV = &getAnalysis<LiveVariables>();
161  StackTop = 0;
162
163  // Process the function in depth first order so that we process at least one
164  // of the predecessors for every reachable block in the function.
165  std::set<MachineBasicBlock*> Processed;
166  MachineBasicBlock *Entry = MF.begin();
167
168  bool Changed = false;
169  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
170         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
171       I != E; ++I)
172    Changed |= processBasicBlock(MF, **I);
173
174  return Changed;
175}
176
177/// processBasicBlock - Loop over all of the instructions in the basic block,
178/// transforming FP instructions into their stack form.
179///
180bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
181  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
182  bool Changed = false;
183  MBB = &BB;
184
185  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
186    MachineInstr *MI = I;
187    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
188    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
189      continue;  // Efficiently ignore non-fp insts!
190
191    MachineInstr *PrevMI = 0;
192    if (I != BB.begin())
193        PrevMI = prior(I);
194
195    ++NumFP;  // Keep track of # of pseudo instrs
196    DEBUG(std::cerr << "\nFPInst:\t";
197	  MI->print(std::cerr, MF.getTarget()));
198
199    // Get dead variables list now because the MI pointer may be deleted as part
200    // of processing!
201    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
202    LiveVariables::killed_iterator IE = LV->dead_end(MI);
203
204    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
205	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
206	  LiveVariables::killed_iterator E = LV->killed_end(MI);
207	  if (I != E) {
208	    std::cerr << "Killed Operands:";
209	    for (; I != E; ++I)
210	      std::cerr << " %" << MRI->getName(I->second);
211	    std::cerr << "\n";
212	  });
213
214    switch (Flags & X86II::FPTypeMask) {
215    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
216    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
217    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
218    case X86II::TwoArgFP:
219      if (I->getOpcode() != X86::FpUCOM && I->getOpcode() != X86::FpUCOMI)
220        handleTwoArgFP(I);
221      else
222        handleCompareFP(I);
223      break;
224    case X86II::CondMovFP:  handleCondMovFP(I); break;
225    case X86II::SpecialFP:  handleSpecialFP(I); break;
226    default: assert(0 && "Unknown FP Type!");
227    }
228
229    // Check to see if any of the values defined by this instruction are dead
230    // after definition.  If so, pop them.
231    for (; IB != IE; ++IB) {
232      unsigned Reg = IB->second;
233      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
234	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
235        freeStackSlotAfter(I, Reg-X86::FP0);
236      }
237    }
238
239    // Print out all of the instructions expanded to if -debug
240    DEBUG(
241      MachineBasicBlock::iterator PrevI(PrevMI);
242      if (I == PrevI) {
243        std::cerr << "Just deleted pseudo instruction\n";
244      } else {
245        MachineBasicBlock::iterator Start = I;
246        // Rewind to first instruction newly inserted.
247        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
248        std::cerr << "Inserted instructions:\n\t";
249        Start->print(std::cerr, MF.getTarget());
250        while (++Start != next(I));
251      }
252      dumpStack();
253    );
254
255    Changed = true;
256  }
257
258  assert(StackTop == 0 && "Stack not empty at end of basic block?");
259  return Changed;
260}
261
262//===----------------------------------------------------------------------===//
263// Efficient Lookup Table Support
264//===----------------------------------------------------------------------===//
265
266namespace {
267  struct TableEntry {
268    unsigned from;
269    unsigned to;
270    bool operator<(const TableEntry &TE) const { return from < TE.from; }
271    bool operator<(unsigned V) const { return from < V; }
272  };
273}
274
275static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
276  for (unsigned i = 0; i != NumEntries-1; ++i)
277    if (!(Table[i] < Table[i+1])) return false;
278  return true;
279}
280
281static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
282  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
283  if (I != Table+N && I->from == Opcode)
284    return I->to;
285  return -1;
286}
287
288#define ARRAY_SIZE(TABLE)  \
289   (sizeof(TABLE)/sizeof(TABLE[0]))
290
291#ifdef NDEBUG
292#define ASSERT_SORTED(TABLE)
293#else
294#define ASSERT_SORTED(TABLE)                                              \
295  { static bool TABLE##Checked = false;                                   \
296    if (!TABLE##Checked)                                                  \
297       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
298              "All lookup tables must be sorted for efficient access!");  \
299  }
300#endif
301
302
303//===----------------------------------------------------------------------===//
304// Helper Methods
305//===----------------------------------------------------------------------===//
306
307// PopTable - Sorted map of instructions to their popping version.  The first
308// element is an instruction, the second is the version which pops.
309//
310static const TableEntry PopTable[] = {
311  { X86::FADDrST0 , X86::FADDPrST0  },
312
313  { X86::FDIVRrST0, X86::FDIVRPrST0 },
314  { X86::FDIVrST0 , X86::FDIVPrST0  },
315
316  { X86::FIST16m  , X86::FISTP16m   },
317  { X86::FIST32m  , X86::FISTP32m   },
318
319  { X86::FMULrST0 , X86::FMULPrST0  },
320
321  { X86::FST32m   , X86::FSTP32m    },
322  { X86::FST64m   , X86::FSTP64m    },
323  { X86::FSTrr    , X86::FSTPrr     },
324
325  { X86::FSUBRrST0, X86::FSUBRPrST0 },
326  { X86::FSUBrST0 , X86::FSUBPrST0  },
327
328  { X86::FUCOMIr  , X86::FUCOMIPr   },
329
330  { X86::FUCOMPr  , X86::FUCOMPPr   },
331  { X86::FUCOMr   , X86::FUCOMPr    },
332};
333
334/// popStackAfter - Pop the current value off of the top of the FP stack after
335/// the specified instruction.  This attempts to be sneaky and combine the pop
336/// into the instruction itself if possible.  The iterator is left pointing to
337/// the last instruction, be it a new pop instruction inserted, or the old
338/// instruction if it was modified in place.
339///
340void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
341  ASSERT_SORTED(PopTable);
342  assert(StackTop > 0 && "Cannot pop empty stack!");
343  RegMap[Stack[--StackTop]] = ~0;     // Update state
344
345  // Check to see if there is a popping version of this instruction...
346  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
347  if (Opcode != -1) {
348    I->setOpcode(Opcode);
349    if (Opcode == X86::FUCOMPPr)
350      I->RemoveOperand(0);
351
352  } else {    // Insert an explicit pop
353    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
354  }
355}
356
357/// freeStackSlotAfter - Free the specified register from the register stack, so
358/// that it is no longer in a register.  If the register is currently at the top
359/// of the stack, we just pop the current instruction, otherwise we store the
360/// current top-of-stack into the specified slot, then pop the top of stack.
361void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
362  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
363    popStackAfter(I);
364    return;
365  }
366
367  // Otherwise, store the top of stack into the dead slot, killing the operand
368  // without having to add in an explicit xchg then pop.
369  //
370  unsigned STReg    = getSTReg(FPRegNo);
371  unsigned OldSlot  = getSlot(FPRegNo);
372  unsigned TopReg   = Stack[StackTop-1];
373  Stack[OldSlot]    = TopReg;
374  RegMap[TopReg]    = OldSlot;
375  RegMap[FPRegNo]   = ~0;
376  Stack[--StackTop] = ~0;
377  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
378}
379
380
381static unsigned getFPReg(const MachineOperand &MO) {
382  assert(MO.isRegister() && "Expected an FP register!");
383  unsigned Reg = MO.getReg();
384  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
385  return Reg - X86::FP0;
386}
387
388
389//===----------------------------------------------------------------------===//
390// Instruction transformation implementation
391//===----------------------------------------------------------------------===//
392
393/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
394///
395void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
396  MachineInstr *MI = I;
397  unsigned DestReg = getFPReg(MI->getOperand(0));
398  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
399
400  // Result gets pushed on the stack...
401  pushReg(DestReg);
402}
403
404/// handleOneArgFP - fst <mem>, ST(0)
405///
406void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
407  MachineInstr *MI = I;
408  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
409         "Can only handle fst* & ftst instructions!");
410
411  // Is this the last use of the source register?
412  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
413  bool KillsSrc = false;
414  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
415	 E = LV->killed_end(MI); KI != E; ++KI)
416    KillsSrc |= KI->second == X86::FP0+Reg;
417
418  // FSTP80r and FISTP64r are strange because there are no non-popping versions.
419  // If we have one _and_ we don't want to pop the operand, duplicate the value
420  // on the stack instead of moving it.  This ensure that popping the value is
421  // always ok.
422  //
423  if ((MI->getOpcode() == X86::FSTP80m ||
424       MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
425    duplicateToTop(Reg, 7 /*temp register*/, I);
426  } else {
427    moveToTop(Reg, I);            // Move to the top of the stack...
428  }
429  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
430
431  if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
432    assert(StackTop > 0 && "Stack empty??");
433    --StackTop;
434  } else if (KillsSrc) { // Last use of operand?
435    popStackAfter(I);
436  }
437}
438
439
440/// handleOneArgFPRW: Handle instructions that read from the top of stack and
441/// replace the value with a newly computed value.  These instructions may have
442/// non-fp operands after their FP operands.
443///
444///  Examples:
445///     R1 = fchs R2
446///     R1 = fadd R2, [mem]
447///
448void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
449  MachineInstr *MI = I;
450  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
451
452  // Is this the last use of the source register?
453  unsigned Reg = getFPReg(MI->getOperand(1));
454  bool KillsSrc = false;
455  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
456	 E = LV->killed_end(MI); KI != E; ++KI)
457    KillsSrc |= KI->second == X86::FP0+Reg;
458
459  if (KillsSrc) {
460    // If this is the last use of the source register, just make sure it's on
461    // the top of the stack.
462    moveToTop(Reg, I);
463    assert(StackTop > 0 && "Stack cannot be empty!");
464    --StackTop;
465    pushReg(getFPReg(MI->getOperand(0)));
466  } else {
467    // If this is not the last use of the source register, _copy_ it to the top
468    // of the stack.
469    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
470  }
471
472  MI->RemoveOperand(1);   // Drop the source operand.
473  MI->RemoveOperand(0);   // Drop the destination operand.
474}
475
476
477//===----------------------------------------------------------------------===//
478// Define tables of various ways to map pseudo instructions
479//
480
481// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
482static const TableEntry ForwardST0Table[] = {
483  { X86::FpADD  , X86::FADDST0r },
484  { X86::FpDIV  , X86::FDIVST0r },
485  { X86::FpMUL  , X86::FMULST0r },
486  { X86::FpSUB  , X86::FSUBST0r },
487};
488
489// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
490static const TableEntry ReverseST0Table[] = {
491  { X86::FpADD  , X86::FADDST0r  },   // commutative
492  { X86::FpDIV  , X86::FDIVRST0r },
493  { X86::FpMUL  , X86::FMULST0r  },   // commutative
494  { X86::FpSUB  , X86::FSUBRST0r },
495};
496
497// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
498static const TableEntry ForwardSTiTable[] = {
499  { X86::FpADD  , X86::FADDrST0  },   // commutative
500  { X86::FpDIV  , X86::FDIVRrST0 },
501  { X86::FpMUL  , X86::FMULrST0  },   // commutative
502  { X86::FpSUB  , X86::FSUBRrST0 },
503};
504
505// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
506static const TableEntry ReverseSTiTable[] = {
507  { X86::FpADD  , X86::FADDrST0 },
508  { X86::FpDIV  , X86::FDIVrST0 },
509  { X86::FpMUL  , X86::FMULrST0 },
510  { X86::FpSUB  , X86::FSUBrST0 },
511};
512
513
514/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
515/// instructions which need to be simplified and possibly transformed.
516///
517/// Result: ST(0) = fsub  ST(0), ST(i)
518///         ST(i) = fsub  ST(0), ST(i)
519///         ST(0) = fsubr ST(0), ST(i)
520///         ST(i) = fsubr ST(0), ST(i)
521///
522void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
523  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
524  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
525  MachineInstr *MI = I;
526
527  unsigned NumOperands = MI->getNumOperands();
528  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
529  unsigned Dest = getFPReg(MI->getOperand(0));
530  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
531  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
532  bool KillsOp0 = false, KillsOp1 = false;
533
534  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
535	 E = LV->killed_end(MI); KI != E; ++KI) {
536    KillsOp0 |= (KI->second == X86::FP0+Op0);
537    KillsOp1 |= (KI->second == X86::FP0+Op1);
538  }
539
540  unsigned TOS = getStackEntry(0);
541
542  // One of our operands must be on the top of the stack.  If neither is yet, we
543  // need to move one.
544  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
545    // We can choose to move either operand to the top of the stack.  If one of
546    // the operands is killed by this instruction, we want that one so that we
547    // can update right on top of the old version.
548    if (KillsOp0) {
549      moveToTop(Op0, I);         // Move dead operand to TOS.
550      TOS = Op0;
551    } else if (KillsOp1) {
552      moveToTop(Op1, I);
553      TOS = Op1;
554    } else {
555      // All of the operands are live after this instruction executes, so we
556      // cannot update on top of any operand.  Because of this, we must
557      // duplicate one of the stack elements to the top.  It doesn't matter
558      // which one we pick.
559      //
560      duplicateToTop(Op0, Dest, I);
561      Op0 = TOS = Dest;
562      KillsOp0 = true;
563    }
564  } else if (!KillsOp0 && !KillsOp1) {
565    // If we DO have one of our operands at the top of the stack, but we don't
566    // have a dead operand, we must duplicate one of the operands to a new slot
567    // on the stack.
568    duplicateToTop(Op0, Dest, I);
569    Op0 = TOS = Dest;
570    KillsOp0 = true;
571  }
572
573  // Now we know that one of our operands is on the top of the stack, and at
574  // least one of our operands is killed by this instruction.
575  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
576	 "Stack conditions not set up right!");
577
578  // We decide which form to use based on what is on the top of the stack, and
579  // which operand is killed by this instruction.
580  const TableEntry *InstTable;
581  bool isForward = TOS == Op0;
582  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
583  if (updateST0) {
584    if (isForward)
585      InstTable = ForwardST0Table;
586    else
587      InstTable = ReverseST0Table;
588  } else {
589    if (isForward)
590      InstTable = ForwardSTiTable;
591    else
592      InstTable = ReverseSTiTable;
593  }
594
595  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
596  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
597
598  // NotTOS - The register which is not on the top of stack...
599  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
600
601  // Replace the old instruction with a new instruction
602  MBB->remove(I++);
603  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
604
605  // If both operands are killed, pop one off of the stack in addition to
606  // overwriting the other one.
607  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
608    assert(!updateST0 && "Should have updated other operand!");
609    popStackAfter(I);   // Pop the top of stack
610  }
611
612  // Update stack information so that we know the destination register is now on
613  // the stack.
614  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
615  assert(UpdatedSlot < StackTop && Dest < 7);
616  Stack[UpdatedSlot]   = Dest;
617  RegMap[Dest]         = UpdatedSlot;
618  delete MI;   // Remove the old instruction
619}
620
621/// handleCompareFP - Handle FpUCOM and FpUCOMI instructions, which have two FP
622/// register arguments and no explicit destinations.
623///
624void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
625  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
626  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
627  MachineInstr *MI = I;
628
629  unsigned NumOperands = MI->getNumOperands();
630  assert(NumOperands == 2 && "Illegal FpUCOM* instruction!");
631  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
632  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
633  bool KillsOp0 = false, KillsOp1 = false;
634
635  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
636	 E = LV->killed_end(MI); KI != E; ++KI) {
637    KillsOp0 |= (KI->second == X86::FP0+Op0);
638    KillsOp1 |= (KI->second == X86::FP0+Op1);
639  }
640
641  // Make sure the first operand is on the top of stack, the other one can be
642  // anywhere.
643  moveToTop(Op0, I);
644
645  // Replace the old instruction with a new instruction
646  MBB->remove(I++);
647  unsigned Opcode = MI->getOpcode() == X86::FpUCOM ? X86::FUCOMr : X86::FUCOMIr;
648  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(Op1));
649
650  // If any of the operands are killed by this instruction, free them.
651  if (KillsOp0) freeStackSlotAfter(I, Op0);
652  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
653  delete MI;   // Remove the old instruction
654}
655
656/// handleCondMovFP - Handle two address conditional move instructions.  These
657/// instructions move a st(i) register to st(0) iff a condition is true.  These
658/// instructions require that the first operand is at the top of the stack, but
659/// otherwise don't modify the stack at all.
660void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
661  MachineInstr *MI = I;
662
663  unsigned Op0 = getFPReg(MI->getOperand(0));
664  unsigned Op1 = getFPReg(MI->getOperand(1));
665
666  // The first operand *must* be on the top of the stack.
667  moveToTop(Op0, I);
668
669  // Change the second operand to the stack register that the operand is in.
670  MI->RemoveOperand(0);
671  MI->getOperand(0).setReg(getSTReg(Op1));
672
673  // If we kill the second operand, make sure to pop it from the stack.
674  if (Op0 != Op1)
675    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
676           E = LV->killed_end(MI); KI != E; ++KI)
677      if (KI->second == X86::FP0+Op1) {
678        // Get this value off of the register stack.
679        freeStackSlotAfter(I, Op1);
680        break;
681      }
682}
683
684
685/// handleSpecialFP - Handle special instructions which behave unlike other
686/// floating point instructions.  This is primarily intended for use by pseudo
687/// instructions.
688///
689void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
690  MachineInstr *MI = I;
691  switch (MI->getOpcode()) {
692  default: assert(0 && "Unknown SpecialFP instruction!");
693  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
694    assert(StackTop == 0 && "Stack should be empty after a call!");
695    pushReg(getFPReg(MI->getOperand(0)));
696    break;
697  case X86::FpSETRESULT:
698    assert(StackTop == 1 && "Stack should have one element on it to return!");
699    --StackTop;   // "Forget" we have something on the top of stack!
700    break;
701  case X86::FpMOV: {
702    unsigned SrcReg = getFPReg(MI->getOperand(1));
703    unsigned DestReg = getFPReg(MI->getOperand(0));
704    bool KillsSrc = false;
705    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
706	   E = LV->killed_end(MI); KI != E; ++KI)
707      KillsSrc |= KI->second == X86::FP0+SrcReg;
708
709    if (KillsSrc) {
710      // If the input operand is killed, we can just change the owner of the
711      // incoming stack slot into the result.
712      unsigned Slot = getSlot(SrcReg);
713      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
714      Stack[Slot] = DestReg;
715      RegMap[DestReg] = Slot;
716
717    } else {
718      // For FMOV we just duplicate the specified value to a new stack slot.
719      // This could be made better, but would require substantial changes.
720      duplicateToTop(SrcReg, DestReg, I);
721    }
722    break;
723  }
724  }
725
726  I = MBB->erase(I);  // Remove the pseudo instruction
727  --I;
728}
729