X86FrameLowering.cpp revision 396618b43a85e12d290a90b181c6af5d7c0c5f11
1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of TargetFrameLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86FrameLowering.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrInfo.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/Function.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/MC/MCAsmInfo.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/ADT/SmallSet.h"
32
33using namespace llvm;
34
35// FIXME: completely move here.
36extern cl::opt<bool> ForceStackAlign;
37
38bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
39  return !MF.getFrameInfo()->hasVarSizedObjects();
40}
41
42/// hasFP - Return true if the specified function should have a dedicated frame
43/// pointer register.  This is true if the function has variable sized allocas
44/// or if frame pointer elimination is disabled.
45bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
46  const MachineFrameInfo *MFI = MF.getFrameInfo();
47  const MachineModuleInfo &MMI = MF.getMMI();
48  const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
49
50  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
51          RegInfo->needsStackRealignment(MF) ||
52          MFI->hasVarSizedObjects() ||
53          MFI->isFrameAddressTaken() ||
54          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
55          MMI.callsUnwindInit());
56}
57
58static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
59  if (is64Bit) {
60    if (isInt<8>(Imm))
61      return X86::SUB64ri8;
62    return X86::SUB64ri32;
63  } else {
64    if (isInt<8>(Imm))
65      return X86::SUB32ri8;
66    return X86::SUB32ri;
67  }
68}
69
70static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
71  if (is64Bit) {
72    if (isInt<8>(Imm))
73      return X86::ADD64ri8;
74    return X86::ADD64ri32;
75  } else {
76    if (isInt<8>(Imm))
77      return X86::ADD32ri8;
78    return X86::ADD32ri;
79  }
80}
81
82static unsigned getLEArOpcode(unsigned is64Bit) {
83  return is64Bit ? X86::LEA64r : X86::LEA32r;
84}
85
86/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
87/// when it reaches the "return" instruction. We can then pop a stack object
88/// to this register without worry about clobbering it.
89static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
90                                       MachineBasicBlock::iterator &MBBI,
91                                       const TargetRegisterInfo &TRI,
92                                       bool Is64Bit) {
93  const MachineFunction *MF = MBB.getParent();
94  const Function *F = MF->getFunction();
95  if (!F || MF->getMMI().callsEHReturn())
96    return 0;
97
98  static const uint16_t CallerSavedRegs32Bit[] = {
99    X86::EAX, X86::EDX, X86::ECX, 0
100  };
101
102  static const uint16_t CallerSavedRegs64Bit[] = {
103    X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
104    X86::R8,  X86::R9,  X86::R10, X86::R11, 0
105  };
106
107  unsigned Opc = MBBI->getOpcode();
108  switch (Opc) {
109  default: return 0;
110  case X86::RET:
111  case X86::RETI:
112  case X86::TCRETURNdi:
113  case X86::TCRETURNri:
114  case X86::TCRETURNmi:
115  case X86::TCRETURNdi64:
116  case X86::TCRETURNri64:
117  case X86::TCRETURNmi64:
118  case X86::EH_RETURN:
119  case X86::EH_RETURN64: {
120    SmallSet<uint16_t, 8> Uses;
121    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
122      MachineOperand &MO = MBBI->getOperand(i);
123      if (!MO.isReg() || MO.isDef())
124        continue;
125      unsigned Reg = MO.getReg();
126      if (!Reg)
127        continue;
128      for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
129        Uses.insert(*AI);
130    }
131
132    const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
133    for (; *CS; ++CS)
134      if (!Uses.count(*CS))
135        return *CS;
136  }
137  }
138
139  return 0;
140}
141
142
143/// emitSPUpdate - Emit a series of instructions to increment / decrement the
144/// stack pointer by a constant value.
145static
146void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147                  unsigned StackPtr, int64_t NumBytes,
148                  bool Is64Bit, bool UseLEA,
149                  const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
150  bool isSub = NumBytes < 0;
151  uint64_t Offset = isSub ? -NumBytes : NumBytes;
152  unsigned Opc;
153  if (UseLEA)
154    Opc = getLEArOpcode(Is64Bit);
155  else
156    Opc = isSub
157      ? getSUBriOpcode(Is64Bit, Offset)
158      : getADDriOpcode(Is64Bit, Offset);
159
160  uint64_t Chunk = (1LL << 31) - 1;
161  DebugLoc DL = MBB.findDebugLoc(MBBI);
162
163  while (Offset) {
164    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
165    if (ThisVal == (Is64Bit ? 8 : 4)) {
166      // Use push / pop instead.
167      unsigned Reg = isSub
168        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
169        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
170      if (Reg) {
171        Opc = isSub
172          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
173          : (Is64Bit ? X86::POP64r  : X86::POP32r);
174        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
175          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
176        if (isSub)
177          MI->setFlag(MachineInstr::FrameSetup);
178        Offset -= ThisVal;
179        continue;
180      }
181    }
182
183    MachineInstr *MI = NULL;
184
185    if (UseLEA) {
186      MI =  addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
187                          StackPtr, false, isSub ? -ThisVal : ThisVal);
188    } else {
189      MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
190            .addReg(StackPtr)
191            .addImm(ThisVal);
192      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
193    }
194
195    if (isSub)
196      MI->setFlag(MachineInstr::FrameSetup);
197
198    Offset -= ThisVal;
199  }
200}
201
202/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
203static
204void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
205                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
206  if (MBBI == MBB.begin()) return;
207
208  MachineBasicBlock::iterator PI = prior(MBBI);
209  unsigned Opc = PI->getOpcode();
210  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
211       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
212       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
213      PI->getOperand(0).getReg() == StackPtr) {
214    if (NumBytes)
215      *NumBytes += PI->getOperand(2).getImm();
216    MBB.erase(PI);
217  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
218              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
219             PI->getOperand(0).getReg() == StackPtr) {
220    if (NumBytes)
221      *NumBytes -= PI->getOperand(2).getImm();
222    MBB.erase(PI);
223  }
224}
225
226/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
227static
228void mergeSPUpdatesDown(MachineBasicBlock &MBB,
229                        MachineBasicBlock::iterator &MBBI,
230                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
231  // FIXME:  THIS ISN'T RUN!!!
232  return;
233
234  if (MBBI == MBB.end()) return;
235
236  MachineBasicBlock::iterator NI = llvm::next(MBBI);
237  if (NI == MBB.end()) return;
238
239  unsigned Opc = NI->getOpcode();
240  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
241       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
242      NI->getOperand(0).getReg() == StackPtr) {
243    if (NumBytes)
244      *NumBytes -= NI->getOperand(2).getImm();
245    MBB.erase(NI);
246    MBBI = NI;
247  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
248              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
249             NI->getOperand(0).getReg() == StackPtr) {
250    if (NumBytes)
251      *NumBytes += NI->getOperand(2).getImm();
252    MBB.erase(NI);
253    MBBI = NI;
254  }
255}
256
257/// mergeSPUpdates - Checks the instruction before/after the passed
258/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
259/// stack adjustment is returned as a positive value for ADD/LEA and a negative for
260/// SUB.
261static int mergeSPUpdates(MachineBasicBlock &MBB,
262                           MachineBasicBlock::iterator &MBBI,
263                           unsigned StackPtr,
264                           bool doMergeWithPrevious) {
265  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
266      (!doMergeWithPrevious && MBBI == MBB.end()))
267    return 0;
268
269  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
270  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
271  unsigned Opc = PI->getOpcode();
272  int Offset = 0;
273
274  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
275       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
276       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
277      PI->getOperand(0).getReg() == StackPtr){
278    Offset += PI->getOperand(2).getImm();
279    MBB.erase(PI);
280    if (!doMergeWithPrevious) MBBI = NI;
281  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
282              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
283             PI->getOperand(0).getReg() == StackPtr) {
284    Offset -= PI->getOperand(2).getImm();
285    MBB.erase(PI);
286    if (!doMergeWithPrevious) MBBI = NI;
287  }
288
289  return Offset;
290}
291
292static bool isEAXLiveIn(MachineFunction &MF) {
293  for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
294       EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
295    unsigned Reg = II->first;
296
297    if (Reg == X86::EAX || Reg == X86::AX ||
298        Reg == X86::AH || Reg == X86::AL)
299      return true;
300  }
301
302  return false;
303}
304
305void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
306                                                 MCSymbol *Label,
307                                                 unsigned FramePtr) const {
308  MachineFrameInfo *MFI = MF.getFrameInfo();
309  MachineModuleInfo &MMI = MF.getMMI();
310
311  // Add callee saved registers to move list.
312  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
313  if (CSI.empty()) return;
314
315  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
316  const TargetData *TD = TM.getTargetData();
317  bool HasFP = hasFP(MF);
318
319  // Calculate amount of bytes used for return address storing.
320  int stackGrowth = -TD->getPointerSize();
321
322  // FIXME: This is dirty hack. The code itself is pretty mess right now.
323  // It should be rewritten from scratch and generalized sometimes.
324
325  // Determine maximum offset (minimum due to stack growth).
326  int64_t MaxOffset = 0;
327  for (std::vector<CalleeSavedInfo>::const_iterator
328         I = CSI.begin(), E = CSI.end(); I != E; ++I)
329    MaxOffset = std::min(MaxOffset,
330                         MFI->getObjectOffset(I->getFrameIdx()));
331
332  // Calculate offsets.
333  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
334  for (std::vector<CalleeSavedInfo>::const_iterator
335         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
336    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
337    unsigned Reg = I->getReg();
338    Offset = MaxOffset - Offset + saveAreaOffset;
339
340    // Don't output a new machine move if we're re-saving the frame
341    // pointer. This happens when the PrologEpilogInserter has inserted an extra
342    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
343    // generates one when frame pointers are used. If we generate a "machine
344    // move" for this extra "PUSH", the linker will lose track of the fact that
345    // the frame pointer should have the value of the first "PUSH" when it's
346    // trying to unwind.
347    //
348    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
349    //        another bug. I.e., one where we generate a prolog like this:
350    //
351    //          pushl  %ebp
352    //          movl   %esp, %ebp
353    //          pushl  %ebp
354    //          pushl  %esi
355    //           ...
356    //
357    //        The immediate re-push of EBP is unnecessary. At the least, it's an
358    //        optimization bug. EBP can be used as a scratch register in certain
359    //        cases, but probably not when we have a frame pointer.
360    if (HasFP && FramePtr == Reg)
361      continue;
362
363    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
364    MachineLocation CSSrc(Reg);
365    Moves.push_back(MachineMove(Label, CSDst, CSSrc));
366  }
367}
368
369/// getCompactUnwindRegNum - Get the compact unwind number for a given
370/// register. The number corresponds to the enum lists in
371/// compact_unwind_encoding.h.
372static int getCompactUnwindRegNum(const uint16_t *CURegs, unsigned Reg) {
373  for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
374    if (*CURegs == Reg)
375      return Idx;
376
377  return -1;
378}
379
380// Number of registers that can be saved in a compact unwind encoding.
381#define CU_NUM_SAVED_REGS 6
382
383/// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
384/// used with frameless stacks. It is passed the number of registers to be saved
385/// and an array of the registers saved.
386static uint32_t
387encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
388                                         unsigned RegCount, bool Is64Bit) {
389  // The saved registers are numbered from 1 to 6. In order to encode the order
390  // in which they were saved, we re-number them according to their place in the
391  // register order. The re-numbering is relative to the last re-numbered
392  // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
393  //
394  //    Orig  Re-Num
395  //    ----  ------
396  //     6       6
397  //     2       2
398  //     4       3
399  //     5       3
400  //
401  static const uint16_t CU32BitRegs[] = {
402    X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
403  };
404  static const uint16_t CU64BitRegs[] = {
405    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
406  };
407  const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
408
409  for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
410    int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
411    if (CUReg == -1) return ~0U;
412    SavedRegs[i] = CUReg;
413  }
414
415  // Reverse the list.
416  std::swap(SavedRegs[0], SavedRegs[5]);
417  std::swap(SavedRegs[1], SavedRegs[4]);
418  std::swap(SavedRegs[2], SavedRegs[3]);
419
420  uint32_t RenumRegs[CU_NUM_SAVED_REGS];
421  for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
422    unsigned Countless = 0;
423    for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
424      if (SavedRegs[j] < SavedRegs[i])
425        ++Countless;
426
427    RenumRegs[i] = SavedRegs[i] - Countless - 1;
428  }
429
430  // Take the renumbered values and encode them into a 10-bit number.
431  uint32_t permutationEncoding = 0;
432  switch (RegCount) {
433  case 6:
434    permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
435                           + 6 * RenumRegs[2] +  2 * RenumRegs[3]
436                           +     RenumRegs[4];
437    break;
438  case 5:
439    permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
440                           + 6 * RenumRegs[3] +  2 * RenumRegs[4]
441                           +     RenumRegs[5];
442    break;
443  case 4:
444    permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
445                           + 3 * RenumRegs[4] +      RenumRegs[5];
446    break;
447  case 3:
448    permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
449                           +     RenumRegs[5];
450    break;
451  case 2:
452    permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
453    break;
454  case 1:
455    permutationEncoding |=       RenumRegs[5];
456    break;
457  }
458
459  assert((permutationEncoding & 0x3FF) == permutationEncoding &&
460         "Invalid compact register encoding!");
461  return permutationEncoding;
462}
463
464/// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
465/// compact encoding with a frame pointer.
466static uint32_t
467encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
468                                      bool Is64Bit) {
469  static const uint16_t CU32BitRegs[] = {
470    X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
471  };
472  static const uint16_t CU64BitRegs[] = {
473    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
474  };
475  const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
476
477  // Encode the registers in the order they were saved, 3-bits per register. The
478  // registers are numbered from 1 to CU_NUM_SAVED_REGS.
479  uint32_t RegEnc = 0;
480  for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
481    unsigned Reg = SavedRegs[I];
482    if (Reg == 0) continue;
483
484    int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
485    if (CURegNum == -1) return ~0U;
486
487    // Encode the 3-bit register number in order, skipping over 3-bits for each
488    // register.
489    RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
490  }
491
492  assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
493  return RegEnc;
494}
495
496uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
497  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
498  unsigned FramePtr = RegInfo->getFrameRegister(MF);
499  unsigned StackPtr = RegInfo->getStackRegister();
500
501  bool Is64Bit = STI.is64Bit();
502  bool HasFP = hasFP(MF);
503
504  unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
505  unsigned SavedRegIdx = 0;
506
507  unsigned OffsetSize = (Is64Bit ? 8 : 4);
508
509  unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
510  unsigned PushInstrSize = 1;
511  unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
512  unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
513  unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
514
515  unsigned StackDivide = (Is64Bit ? 8 : 4);
516
517  unsigned InstrOffset = 0;
518  unsigned StackAdjust = 0;
519  unsigned StackSize = 0;
520
521  MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
522  bool ExpectEnd = false;
523  for (MachineBasicBlock::iterator
524         MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
525    MachineInstr &MI = *MBBI;
526    unsigned Opc = MI.getOpcode();
527    if (Opc == X86::PROLOG_LABEL) continue;
528    if (!MI.getFlag(MachineInstr::FrameSetup)) break;
529
530    // We don't exect any more prolog instructions.
531    if (ExpectEnd) return 0;
532
533    if (Opc == PushInstr) {
534      // If there are too many saved registers, we cannot use compact encoding.
535      if (SavedRegIdx >= CU_NUM_SAVED_REGS) return 0;
536
537      SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
538      StackAdjust += OffsetSize;
539      InstrOffset += PushInstrSize;
540    } else if (Opc == MoveInstr) {
541      unsigned SrcReg = MI.getOperand(1).getReg();
542      unsigned DstReg = MI.getOperand(0).getReg();
543
544      if (DstReg != FramePtr || SrcReg != StackPtr)
545        return 0;
546
547      StackAdjust = 0;
548      memset(SavedRegs, 0, sizeof(SavedRegs));
549      SavedRegIdx = 0;
550      InstrOffset += MoveInstrSize;
551    } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
552               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
553      if (StackSize)
554        // We already have a stack size.
555        return 0;
556
557      if (!MI.getOperand(0).isReg() ||
558          MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
559          MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
560        // We need this to be a stack adjustment pointer. Something like:
561        //
562        //   %RSP<def> = SUB64ri8 %RSP, 48
563        return 0;
564
565      StackSize = MI.getOperand(2).getImm() / StackDivide;
566      SubtractInstrIdx += InstrOffset;
567      ExpectEnd = true;
568    }
569  }
570
571  // Encode that we are using EBP/RBP as the frame pointer.
572  uint32_t CompactUnwindEncoding = 0;
573  StackAdjust /= StackDivide;
574  if (HasFP) {
575    if ((StackAdjust & 0xFF) != StackAdjust)
576      // Offset was too big for compact encoding.
577      return 0;
578
579    // Get the encoding of the saved registers when we have a frame pointer.
580    uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
581    if (RegEnc == ~0U) return 0;
582
583    CompactUnwindEncoding |= 0x01000000;
584    CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
585    CompactUnwindEncoding |= RegEnc & 0x7FFF;
586  } else {
587    ++StackAdjust;
588    uint32_t TotalStackSize = StackAdjust + StackSize;
589    if ((TotalStackSize & 0xFF) == TotalStackSize) {
590      // Frameless stack with a small stack size.
591      CompactUnwindEncoding |= 0x02000000;
592
593      // Encode the stack size.
594      CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
595    } else {
596      if ((StackAdjust & 0x7) != StackAdjust)
597        // The extra stack adjustments are too big for us to handle.
598        return 0;
599
600      // Frameless stack with an offset too large for us to encode compactly.
601      CompactUnwindEncoding |= 0x03000000;
602
603      // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
604      // instruction.
605      CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
606
607      // Encode any extra stack stack adjustments (done via push instructions).
608      CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
609    }
610
611    // Encode the number of registers saved.
612    CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
613
614    // Get the encoding of the saved registers when we don't have a frame
615    // pointer.
616    uint32_t RegEnc =
617      encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
618                                               Is64Bit);
619    if (RegEnc == ~0U) return 0;
620
621    // Encode the register encoding.
622    CompactUnwindEncoding |= RegEnc & 0x3FF;
623  }
624
625  return CompactUnwindEncoding;
626}
627
628/// emitPrologue - Push callee-saved registers onto the stack, which
629/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
630/// space for local variables. Also emit labels used by the exception handler to
631/// generate the exception handling frames.
632void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
633  MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
634  MachineBasicBlock::iterator MBBI = MBB.begin();
635  MachineFrameInfo *MFI = MF.getFrameInfo();
636  const Function *Fn = MF.getFunction();
637  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
638  const X86InstrInfo &TII = *TM.getInstrInfo();
639  MachineModuleInfo &MMI = MF.getMMI();
640  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
641  bool needsFrameMoves = MMI.hasDebugInfo() ||
642    Fn->needsUnwindTableEntry();
643  uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
644  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
645  bool HasFP = hasFP(MF);
646  bool Is64Bit = STI.is64Bit();
647  bool IsWin64 = STI.isTargetWin64();
648  bool UseLEA = STI.useLeaForSP();
649  unsigned StackAlign = getStackAlignment();
650  unsigned SlotSize = RegInfo->getSlotSize();
651  unsigned FramePtr = RegInfo->getFrameRegister(MF);
652  unsigned StackPtr = RegInfo->getStackRegister();
653  DebugLoc DL;
654
655  // If we're forcing a stack realignment we can't rely on just the frame
656  // info, we need to know the ABI stack alignment as well in case we
657  // have a call out.  Otherwise just make sure we have some alignment - we'll
658  // go with the minimum SlotSize.
659  if (ForceStackAlign) {
660    if (MFI->hasCalls())
661      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
662    else if (MaxAlign < SlotSize)
663      MaxAlign = SlotSize;
664  }
665
666  // Add RETADDR move area to callee saved frame size.
667  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
668  if (TailCallReturnAddrDelta < 0)
669    X86FI->setCalleeSavedFrameSize(
670      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
671
672  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
673  // function, and use up to 128 bytes of stack space, don't have a frame
674  // pointer, calls, or dynamic alloca then we do not need to adjust the
675  // stack pointer (we fit in the Red Zone).
676  if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
677      !RegInfo->needsStackRealignment(MF) &&
678      !MFI->hasVarSizedObjects() &&                     // No dynamic alloca.
679      !MFI->adjustsStack() &&                           // No calls.
680      !IsWin64 &&                                       // Win64 has no Red Zone
681      !MF.getTarget().Options.EnableSegmentedStacks) {  // Regular stack
682    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
683    if (HasFP) MinSize += SlotSize;
684    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
685    MFI->setStackSize(StackSize);
686  }
687
688  // Insert stack pointer adjustment for later moving of return addr.  Only
689  // applies to tail call optimized functions where the callee argument stack
690  // size is bigger than the callers.
691  if (TailCallReturnAddrDelta < 0) {
692    MachineInstr *MI =
693      BuildMI(MBB, MBBI, DL,
694              TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
695              StackPtr)
696        .addReg(StackPtr)
697        .addImm(-TailCallReturnAddrDelta)
698        .setMIFlag(MachineInstr::FrameSetup);
699    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
700  }
701
702  // Mapping for machine moves:
703  //
704  //   DST: VirtualFP AND
705  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
706  //        ELSE                        => DW_CFA_def_cfa
707  //
708  //   SRC: VirtualFP AND
709  //        DST: Register               => DW_CFA_def_cfa_register
710  //
711  //   ELSE
712  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
713  //        REG < 64                    => DW_CFA_offset + Reg
714  //        ELSE                        => DW_CFA_offset_extended
715
716  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
717  const TargetData *TD = MF.getTarget().getTargetData();
718  uint64_t NumBytes = 0;
719  int stackGrowth = -TD->getPointerSize();
720
721  if (HasFP) {
722    // Calculate required stack adjustment.
723    uint64_t FrameSize = StackSize - SlotSize;
724    if (RegInfo->needsStackRealignment(MF))
725      FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
726
727    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
728
729    // Get the offset of the stack slot for the EBP register, which is
730    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
731    // Update the frame offset adjustment.
732    MFI->setOffsetAdjustment(-NumBytes);
733
734    // Save EBP/RBP into the appropriate stack slot.
735    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
736      .addReg(FramePtr, RegState::Kill)
737      .setMIFlag(MachineInstr::FrameSetup);
738
739    if (needsFrameMoves) {
740      // Mark the place where EBP/RBP was saved.
741      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
742      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
743        .addSym(FrameLabel);
744
745      // Define the current CFA rule to use the provided offset.
746      if (StackSize) {
747        MachineLocation SPDst(MachineLocation::VirtualFP);
748        MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
749        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
750      } else {
751        MachineLocation SPDst(StackPtr);
752        MachineLocation SPSrc(StackPtr, stackGrowth);
753        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
754      }
755
756      // Change the rule for the FramePtr to be an "offset" rule.
757      MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
758      MachineLocation FPSrc(FramePtr);
759      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
760    }
761
762    // Update EBP with the new base value.
763    BuildMI(MBB, MBBI, DL,
764            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
765        .addReg(StackPtr)
766        .setMIFlag(MachineInstr::FrameSetup);
767
768    if (needsFrameMoves) {
769      // Mark effective beginning of when frame pointer becomes valid.
770      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
771      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
772        .addSym(FrameLabel);
773
774      // Define the current CFA to use the EBP/RBP register.
775      MachineLocation FPDst(FramePtr);
776      MachineLocation FPSrc(MachineLocation::VirtualFP);
777      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
778    }
779
780    // Mark the FramePtr as live-in in every block except the entry.
781    for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
782         I != E; ++I)
783      I->addLiveIn(FramePtr);
784
785    // Realign stack
786    if (RegInfo->needsStackRealignment(MF)) {
787      MachineInstr *MI =
788        BuildMI(MBB, MBBI, DL,
789                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
790        .addReg(StackPtr)
791        .addImm(-MaxAlign)
792        .setMIFlag(MachineInstr::FrameSetup);
793
794      // The EFLAGS implicit def is dead.
795      MI->getOperand(3).setIsDead();
796    }
797  } else {
798    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
799  }
800
801  // Skip the callee-saved push instructions.
802  bool PushedRegs = false;
803  int StackOffset = 2 * stackGrowth;
804
805  while (MBBI != MBB.end() &&
806         (MBBI->getOpcode() == X86::PUSH32r ||
807          MBBI->getOpcode() == X86::PUSH64r)) {
808    PushedRegs = true;
809    MBBI->setFlag(MachineInstr::FrameSetup);
810    ++MBBI;
811
812    if (!HasFP && needsFrameMoves) {
813      // Mark callee-saved push instruction.
814      MCSymbol *Label = MMI.getContext().CreateTempSymbol();
815      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
816
817      // Define the current CFA rule to use the provided offset.
818      unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
819      MachineLocation SPDst(Ptr);
820      MachineLocation SPSrc(Ptr, StackOffset);
821      Moves.push_back(MachineMove(Label, SPDst, SPSrc));
822      StackOffset += stackGrowth;
823    }
824  }
825
826  DL = MBB.findDebugLoc(MBBI);
827
828  // If there is an SUB32ri of ESP immediately before this instruction, merge
829  // the two. This can be the case when tail call elimination is enabled and
830  // the callee has more arguments then the caller.
831  NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
832
833  // If there is an ADD32ri or SUB32ri of ESP immediately after this
834  // instruction, merge the two instructions.
835  mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
836
837  // Adjust stack pointer: ESP -= numbytes.
838
839  // Windows and cygwin/mingw require a prologue helper routine when allocating
840  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
841  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
842  // stack and adjust the stack pointer in one go.  The 64-bit version of
843  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
844  // responsible for adjusting the stack pointer.  Touching the stack at 4K
845  // increments is necessary to ensure that the guard pages used by the OS
846  // virtual memory manager are allocated in correct sequence.
847  if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
848    const char *StackProbeSymbol;
849    bool isSPUpdateNeeded = false;
850
851    if (Is64Bit) {
852      if (STI.isTargetCygMing())
853        StackProbeSymbol = "___chkstk";
854      else {
855        StackProbeSymbol = "__chkstk";
856        isSPUpdateNeeded = true;
857      }
858    } else if (STI.isTargetCygMing())
859      StackProbeSymbol = "_alloca";
860    else
861      StackProbeSymbol = "_chkstk";
862
863    // Check whether EAX is livein for this function.
864    bool isEAXAlive = isEAXLiveIn(MF);
865
866    if (isEAXAlive) {
867      // Sanity check that EAX is not livein for this function.
868      // It should not be, so throw an assert.
869      assert(!Is64Bit && "EAX is livein in x64 case!");
870
871      // Save EAX
872      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
873        .addReg(X86::EAX, RegState::Kill)
874        .setMIFlag(MachineInstr::FrameSetup);
875    }
876
877    if (Is64Bit) {
878      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
879      // Function prologue is responsible for adjusting the stack pointer.
880      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
881        .addImm(NumBytes)
882        .setMIFlag(MachineInstr::FrameSetup);
883    } else {
884      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
885      // We'll also use 4 already allocated bytes for EAX.
886      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
887        .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
888        .setMIFlag(MachineInstr::FrameSetup);
889    }
890
891    BuildMI(MBB, MBBI, DL,
892            TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
893      .addExternalSymbol(StackProbeSymbol)
894      .addReg(StackPtr,    RegState::Define | RegState::Implicit)
895      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
896      .setMIFlag(MachineInstr::FrameSetup);
897
898    // MSVC x64's __chkstk needs to adjust %rsp.
899    // FIXME: %rax preserves the offset and should be available.
900    if (isSPUpdateNeeded)
901      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
902                   UseLEA, TII, *RegInfo);
903
904    if (isEAXAlive) {
905        // Restore EAX
906        MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
907                                                X86::EAX),
908                                        StackPtr, false, NumBytes - 4);
909        MI->setFlag(MachineInstr::FrameSetup);
910        MBB.insert(MBBI, MI);
911    }
912  } else if (NumBytes)
913    emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
914                 UseLEA, TII, *RegInfo);
915
916  if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
917    // Mark end of stack pointer adjustment.
918    MCSymbol *Label = MMI.getContext().CreateTempSymbol();
919    BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
920      .addSym(Label);
921
922    if (!HasFP && NumBytes) {
923      // Define the current CFA rule to use the provided offset.
924      if (StackSize) {
925        MachineLocation SPDst(MachineLocation::VirtualFP);
926        MachineLocation SPSrc(MachineLocation::VirtualFP,
927                              -StackSize + stackGrowth);
928        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
929      } else {
930        MachineLocation SPDst(StackPtr);
931        MachineLocation SPSrc(StackPtr, stackGrowth);
932        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
933      }
934    }
935
936    // Emit DWARF info specifying the offsets of the callee-saved registers.
937    if (PushedRegs)
938      emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
939  }
940
941  // Darwin 10.7 and greater has support for compact unwind encoding.
942  if (STI.getTargetTriple().isMacOSX() &&
943      !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
944    MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
945}
946
947void X86FrameLowering::emitEpilogue(MachineFunction &MF,
948                                    MachineBasicBlock &MBB) const {
949  const MachineFrameInfo *MFI = MF.getFrameInfo();
950  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
951  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
952  const X86InstrInfo &TII = *TM.getInstrInfo();
953  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
954  assert(MBBI != MBB.end() && "Returning block has no instructions");
955  unsigned RetOpcode = MBBI->getOpcode();
956  DebugLoc DL = MBBI->getDebugLoc();
957  bool Is64Bit = STI.is64Bit();
958  bool UseLEA = STI.useLeaForSP();
959  unsigned StackAlign = getStackAlignment();
960  unsigned SlotSize = RegInfo->getSlotSize();
961  unsigned FramePtr = RegInfo->getFrameRegister(MF);
962  unsigned StackPtr = RegInfo->getStackRegister();
963
964  switch (RetOpcode) {
965  default:
966    llvm_unreachable("Can only insert epilog into returning blocks");
967  case X86::RET:
968  case X86::RETI:
969  case X86::TCRETURNdi:
970  case X86::TCRETURNri:
971  case X86::TCRETURNmi:
972  case X86::TCRETURNdi64:
973  case X86::TCRETURNri64:
974  case X86::TCRETURNmi64:
975  case X86::EH_RETURN:
976  case X86::EH_RETURN64:
977    break;  // These are ok
978  }
979
980  // Get the number of bytes to allocate from the FrameInfo.
981  uint64_t StackSize = MFI->getStackSize();
982  uint64_t MaxAlign  = MFI->getMaxAlignment();
983  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
984  uint64_t NumBytes = 0;
985
986  // If we're forcing a stack realignment we can't rely on just the frame
987  // info, we need to know the ABI stack alignment as well in case we
988  // have a call out.  Otherwise just make sure we have some alignment - we'll
989  // go with the minimum.
990  if (ForceStackAlign) {
991    if (MFI->hasCalls())
992      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
993    else
994      MaxAlign = MaxAlign ? MaxAlign : 4;
995  }
996
997  if (hasFP(MF)) {
998    // Calculate required stack adjustment.
999    uint64_t FrameSize = StackSize - SlotSize;
1000    if (RegInfo->needsStackRealignment(MF))
1001      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1002
1003    NumBytes = FrameSize - CSSize;
1004
1005    // Pop EBP.
1006    BuildMI(MBB, MBBI, DL,
1007            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1008  } else {
1009    NumBytes = StackSize - CSSize;
1010  }
1011
1012  // Skip the callee-saved pop instructions.
1013  MachineBasicBlock::iterator LastCSPop = MBBI;
1014  while (MBBI != MBB.begin()) {
1015    MachineBasicBlock::iterator PI = prior(MBBI);
1016    unsigned Opc = PI->getOpcode();
1017
1018    if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
1019        !PI->isTerminator())
1020      break;
1021
1022    --MBBI;
1023  }
1024
1025  DL = MBBI->getDebugLoc();
1026
1027  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1028  // instruction, merge the two instructions.
1029  if (NumBytes || MFI->hasVarSizedObjects())
1030    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1031
1032  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1033  // slot before popping them off! Same applies for the case, when stack was
1034  // realigned.
1035  if (RegInfo->needsStackRealignment(MF)) {
1036    // We cannot use LEA here, because stack pointer was realigned. We need to
1037    // deallocate local frame back.
1038    if (CSSize) {
1039      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, UseLEA, TII,
1040                   *RegInfo);
1041      MBBI = prior(LastCSPop);
1042    }
1043
1044    BuildMI(MBB, MBBI, DL,
1045            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1046            StackPtr).addReg(FramePtr);
1047  } else if (MFI->hasVarSizedObjects()) {
1048    if (CSSize) {
1049      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1050      MachineInstr *MI =
1051        addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1052                     FramePtr, false, -CSSize);
1053      MBB.insert(MBBI, MI);
1054    } else {
1055      BuildMI(MBB, MBBI, DL,
1056              TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
1057        .addReg(FramePtr);
1058    }
1059  } else if (NumBytes) {
1060    // Adjust stack pointer back: ESP += numbytes.
1061    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, UseLEA, TII, *RegInfo);
1062  }
1063
1064  // We're returning from function via eh_return.
1065  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1066    MBBI = MBB.getLastNonDebugInstr();
1067    MachineOperand &DestAddr  = MBBI->getOperand(0);
1068    assert(DestAddr.isReg() && "Offset should be in register!");
1069    BuildMI(MBB, MBBI, DL,
1070            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1071            StackPtr).addReg(DestAddr.getReg());
1072  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1073             RetOpcode == X86::TCRETURNmi ||
1074             RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1075             RetOpcode == X86::TCRETURNmi64) {
1076    bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1077    // Tail call return: adjust the stack pointer and jump to callee.
1078    MBBI = MBB.getLastNonDebugInstr();
1079    MachineOperand &JumpTarget = MBBI->getOperand(0);
1080    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1081    assert(StackAdjust.isImm() && "Expecting immediate value.");
1082
1083    // Adjust stack pointer.
1084    int StackAdj = StackAdjust.getImm();
1085    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1086    int Offset = 0;
1087    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1088
1089    // Incoporate the retaddr area.
1090    Offset = StackAdj-MaxTCDelta;
1091    assert(Offset >= 0 && "Offset should never be negative");
1092
1093    if (Offset) {
1094      // Check for possible merge with preceding ADD instruction.
1095      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1096      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, UseLEA, TII, *RegInfo);
1097    }
1098
1099    // Jump to label or value in register.
1100    if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1101      MachineInstrBuilder MIB =
1102        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1103                                       ? X86::TAILJMPd : X86::TAILJMPd64));
1104      if (JumpTarget.isGlobal())
1105        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1106                             JumpTarget.getTargetFlags());
1107      else {
1108        assert(JumpTarget.isSymbol());
1109        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1110                              JumpTarget.getTargetFlags());
1111      }
1112    } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1113      MachineInstrBuilder MIB =
1114        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1115                                       ? X86::TAILJMPm : X86::TAILJMPm64));
1116      for (unsigned i = 0; i != 5; ++i)
1117        MIB.addOperand(MBBI->getOperand(i));
1118    } else if (RetOpcode == X86::TCRETURNri64) {
1119      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1120        addReg(JumpTarget.getReg(), RegState::Kill);
1121    } else {
1122      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1123        addReg(JumpTarget.getReg(), RegState::Kill);
1124    }
1125
1126    MachineInstr *NewMI = prior(MBBI);
1127    for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
1128      NewMI->addOperand(MBBI->getOperand(i));
1129
1130    // Delete the pseudo instruction TCRETURN.
1131    MBB.erase(MBBI);
1132  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1133             (X86FI->getTCReturnAddrDelta() < 0)) {
1134    // Add the return addr area delta back since we are not tail calling.
1135    int delta = -1*X86FI->getTCReturnAddrDelta();
1136    MBBI = MBB.getLastNonDebugInstr();
1137
1138    // Check for possible merge with preceding ADD instruction.
1139    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1140    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, UseLEA, TII, *RegInfo);
1141  }
1142}
1143
1144int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
1145  const X86RegisterInfo *RegInfo =
1146    static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1147  const MachineFrameInfo *MFI = MF.getFrameInfo();
1148  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1149  uint64_t StackSize = MFI->getStackSize();
1150
1151  if (RegInfo->needsStackRealignment(MF)) {
1152    if (FI < 0) {
1153      // Skip the saved EBP.
1154      return Offset + RegInfo->getSlotSize();
1155    } else {
1156      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1157      return Offset + StackSize;
1158    }
1159    // FIXME: Support tail calls
1160  } else {
1161    if (!hasFP(MF))
1162      return Offset + StackSize;
1163
1164    // Skip the saved EBP.
1165    Offset += RegInfo->getSlotSize();
1166
1167    // Skip the RETADDR move area
1168    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1169    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1170    if (TailCallReturnAddrDelta < 0)
1171      Offset -= TailCallReturnAddrDelta;
1172  }
1173
1174  return Offset;
1175}
1176
1177int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1178                                             unsigned &FrameReg) const {
1179  const X86RegisterInfo *RegInfo =
1180      static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1181  // We can't calculate offset from frame pointer if the stack is realigned,
1182  // so enforce usage of stack pointer.
1183  FrameReg = (RegInfo->needsStackRealignment(MF)) ?
1184    RegInfo->getStackRegister() : RegInfo->getFrameRegister(MF);
1185  return getFrameIndexOffset(MF, FI);
1186}
1187
1188bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1189                                             MachineBasicBlock::iterator MI,
1190                                        const std::vector<CalleeSavedInfo> &CSI,
1191                                          const TargetRegisterInfo *TRI) const {
1192  if (CSI.empty())
1193    return false;
1194
1195  DebugLoc DL = MBB.findDebugLoc(MI);
1196
1197  MachineFunction &MF = *MBB.getParent();
1198
1199  unsigned SlotSize = STI.is64Bit() ? 8 : 4;
1200  unsigned FPReg = TRI->getFrameRegister(MF);
1201  unsigned CalleeFrameSize = 0;
1202
1203  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1204  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1205
1206  // Push GPRs. It increases frame size.
1207  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1208  for (unsigned i = CSI.size(); i != 0; --i) {
1209    unsigned Reg = CSI[i-1].getReg();
1210    if (!X86::GR64RegClass.contains(Reg) &&
1211        !X86::GR32RegClass.contains(Reg))
1212      continue;
1213    // Add the callee-saved register as live-in. It's killed at the spill.
1214    MBB.addLiveIn(Reg);
1215    if (Reg == FPReg)
1216      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
1217      continue;
1218    CalleeFrameSize += SlotSize;
1219    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1220      .setMIFlag(MachineInstr::FrameSetup);
1221  }
1222
1223  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
1224
1225  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1226  // It can be done by spilling XMMs to stack frame.
1227  // Note that only Win64 ABI might spill XMMs.
1228  for (unsigned i = CSI.size(); i != 0; --i) {
1229    unsigned Reg = CSI[i-1].getReg();
1230    if (X86::GR64RegClass.contains(Reg) ||
1231        X86::GR32RegClass.contains(Reg))
1232      continue;
1233    // Add the callee-saved register as live-in. It's killed at the spill.
1234    MBB.addLiveIn(Reg);
1235    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1236    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
1237                            RC, TRI);
1238  }
1239
1240  return true;
1241}
1242
1243bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1244                                               MachineBasicBlock::iterator MI,
1245                                        const std::vector<CalleeSavedInfo> &CSI,
1246                                          const TargetRegisterInfo *TRI) const {
1247  if (CSI.empty())
1248    return false;
1249
1250  DebugLoc DL = MBB.findDebugLoc(MI);
1251
1252  MachineFunction &MF = *MBB.getParent();
1253  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1254
1255  // Reload XMMs from stack frame.
1256  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1257    unsigned Reg = CSI[i].getReg();
1258    if (X86::GR64RegClass.contains(Reg) ||
1259        X86::GR32RegClass.contains(Reg))
1260      continue;
1261    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1262    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
1263                             RC, TRI);
1264  }
1265
1266  // POP GPRs.
1267  unsigned FPReg = TRI->getFrameRegister(MF);
1268  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1269  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1270    unsigned Reg = CSI[i].getReg();
1271    if (!X86::GR64RegClass.contains(Reg) &&
1272        !X86::GR32RegClass.contains(Reg))
1273      continue;
1274    if (Reg == FPReg)
1275      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
1276      continue;
1277    BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1278  }
1279  return true;
1280}
1281
1282void
1283X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1284                                                   RegScavenger *RS) const {
1285  MachineFrameInfo *MFI = MF.getFrameInfo();
1286  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
1287  unsigned SlotSize = RegInfo->getSlotSize();
1288
1289  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1290  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1291
1292  if (TailCallReturnAddrDelta < 0) {
1293    // create RETURNADDR area
1294    //   arg
1295    //   arg
1296    //   RETADDR
1297    //   { ...
1298    //     RETADDR area
1299    //     ...
1300    //   }
1301    //   [EBP]
1302    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1303                           (-1U*SlotSize)+TailCallReturnAddrDelta, true);
1304  }
1305
1306  if (hasFP(MF)) {
1307    assert((TailCallReturnAddrDelta <= 0) &&
1308           "The Delta should always be zero or negative");
1309    const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
1310
1311    // Create a frame entry for the EBP register that must be saved.
1312    int FrameIdx = MFI->CreateFixedObject(SlotSize,
1313                                          -(int)SlotSize +
1314                                          TFI.getOffsetOfLocalArea() +
1315                                          TailCallReturnAddrDelta,
1316                                          true);
1317    assert(FrameIdx == MFI->getObjectIndexBegin() &&
1318           "Slot for EBP register must be last in order to be found!");
1319    (void)FrameIdx;
1320  }
1321}
1322
1323static bool
1324HasNestArgument(const MachineFunction *MF) {
1325  const Function *F = MF->getFunction();
1326  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1327       I != E; I++) {
1328    if (I->hasNestAttr())
1329      return true;
1330  }
1331  return false;
1332}
1333
1334
1335/// GetScratchRegister - Get a register for performing work in the segmented
1336/// stack prologue. Depending on platform and the properties of the function
1337/// either one or two registers will be needed. Set primary to true for
1338/// the first register, false for the second.
1339static unsigned
1340GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
1341  if (Is64Bit)
1342    return Primary ? X86::R11 : X86::R12;
1343
1344  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1345  bool IsNested = HasNestArgument(&MF);
1346
1347  if (CallingConvention == CallingConv::X86_FastCall ||
1348      CallingConvention == CallingConv::Fast) {
1349    if (IsNested)
1350      report_fatal_error("Segmented stacks does not support fastcall with "
1351                         "nested function.");
1352    return Primary ? X86::EAX : X86::ECX;
1353  }
1354  if (IsNested)
1355    return Primary ? X86::EDX : X86::EAX;
1356  return Primary ? X86::ECX : X86::EAX;
1357}
1358
1359// The stack limit in the TCB is set to this many bytes above the actual stack
1360// limit.
1361static const uint64_t kSplitStackAvailable = 256;
1362
1363void
1364X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1365  MachineBasicBlock &prologueMBB = MF.front();
1366  MachineFrameInfo *MFI = MF.getFrameInfo();
1367  const X86InstrInfo &TII = *TM.getInstrInfo();
1368  uint64_t StackSize;
1369  bool Is64Bit = STI.is64Bit();
1370  unsigned TlsReg, TlsOffset;
1371  DebugLoc DL;
1372  const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
1373
1374  unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1375  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1376         "Scratch register is live-in");
1377
1378  if (MF.getFunction()->isVarArg())
1379    report_fatal_error("Segmented stacks do not support vararg functions.");
1380  if (!ST->isTargetLinux() && !ST->isTargetDarwin() &&
1381      !ST->isTargetWin32() && !ST->isTargetFreeBSD())
1382    report_fatal_error("Segmented stacks not supported on this platform.");
1383
1384  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1385  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1386  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1387  bool IsNested = false;
1388
1389  // We need to know if the function has a nest argument only in 64 bit mode.
1390  if (Is64Bit)
1391    IsNested = HasNestArgument(&MF);
1392
1393  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1394  // allocMBB needs to be last (terminating) instruction.
1395
1396  for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1397         e = prologueMBB.livein_end(); i != e; i++) {
1398    allocMBB->addLiveIn(*i);
1399    checkMBB->addLiveIn(*i);
1400  }
1401
1402  if (IsNested)
1403    allocMBB->addLiveIn(X86::R10);
1404
1405  MF.push_front(allocMBB);
1406  MF.push_front(checkMBB);
1407
1408  // Eventually StackSize will be calculated by a link-time pass; which will
1409  // also decide whether checking code needs to be injected into this particular
1410  // prologue.
1411  StackSize = MFI->getStackSize();
1412
1413  // When the frame size is less than 256 we just compare the stack
1414  // boundary directly to the value of the stack pointer, per gcc.
1415  bool CompareStackPointer = StackSize < kSplitStackAvailable;
1416
1417  // Read the limit off the current stacklet off the stack_guard location.
1418  if (Is64Bit) {
1419    if (ST->isTargetLinux()) {
1420      TlsReg = X86::FS;
1421      TlsOffset = 0x70;
1422    } else if (ST->isTargetDarwin()) {
1423      TlsReg = X86::GS;
1424      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
1425    } else if (ST->isTargetFreeBSD()) {
1426      TlsReg = X86::FS;
1427      TlsOffset = 0x18;
1428    } else {
1429      report_fatal_error("Segmented stacks not supported on this platform.");
1430    }
1431
1432    if (CompareStackPointer)
1433      ScratchReg = X86::RSP;
1434    else
1435      BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
1436        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1437
1438    BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
1439      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1440  } else {
1441    if (ST->isTargetLinux()) {
1442      TlsReg = X86::GS;
1443      TlsOffset = 0x30;
1444    } else if (ST->isTargetDarwin()) {
1445      TlsReg = X86::GS;
1446      TlsOffset = 0x48 + 90*4;
1447    } else if (ST->isTargetWin32()) {
1448      TlsReg = X86::FS;
1449      TlsOffset = 0x14; // pvArbitrary, reserved for application use
1450    } else if (ST->isTargetFreeBSD()) {
1451      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
1452    } else {
1453      report_fatal_error("Segmented stacks not supported on this platform.");
1454    }
1455
1456    if (CompareStackPointer)
1457      ScratchReg = X86::ESP;
1458    else
1459      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1460        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1461
1462    if (ST->isTargetLinux() || ST->isTargetWin32()) {
1463      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1464        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1465    } else if (ST->isTargetDarwin()) {
1466
1467      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
1468      unsigned ScratchReg2;
1469      bool SaveScratch2;
1470      if (CompareStackPointer) {
1471        // The primary scratch register is available for holding the TLS offset
1472        ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
1473        SaveScratch2 = false;
1474      } else {
1475        // Need to use a second register to hold the TLS offset
1476        ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
1477
1478        // Unfortunately, with fastcc the second scratch register may hold an arg
1479        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
1480      }
1481
1482      // If Scratch2 is live-in then it needs to be saved
1483      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
1484             "Scratch register is live-in and not saved");
1485
1486      if (SaveScratch2)
1487        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
1488          .addReg(ScratchReg2, RegState::Kill);
1489
1490      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
1491        .addImm(TlsOffset);
1492      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
1493        .addReg(ScratchReg)
1494        .addReg(ScratchReg2).addImm(1).addReg(0)
1495        .addImm(0)
1496        .addReg(TlsReg);
1497
1498      if (SaveScratch2)
1499        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
1500    }
1501  }
1502
1503  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1504  // It jumps to normal execution of the function body.
1505  BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
1506
1507  // On 32 bit we first push the arguments size and then the frame size. On 64
1508  // bit, we pass the stack frame size in r10 and the argument size in r11.
1509  if (Is64Bit) {
1510    // Functions with nested arguments use R10, so it needs to be saved across
1511    // the call to _morestack
1512
1513    if (IsNested)
1514      BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
1515
1516    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
1517      .addImm(StackSize);
1518    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
1519      .addImm(X86FI->getArgumentStackSize());
1520    MF.getRegInfo().setPhysRegUsed(X86::R10);
1521    MF.getRegInfo().setPhysRegUsed(X86::R11);
1522  } else {
1523    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1524      .addImm(X86FI->getArgumentStackSize());
1525    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1526      .addImm(StackSize);
1527  }
1528
1529  // __morestack is in libgcc
1530  if (Is64Bit)
1531    BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1532      .addExternalSymbol("__morestack");
1533  else
1534    BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1535      .addExternalSymbol("__morestack");
1536
1537  if (IsNested)
1538    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
1539  else
1540    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
1541
1542  allocMBB->addSuccessor(&prologueMBB);
1543
1544  checkMBB->addSuccessor(allocMBB);
1545  checkMBB->addSuccessor(&prologueMBB);
1546
1547#ifdef XDEBUG
1548  MF.verify();
1549#endif
1550}
1551