1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "x86-isel"
39
40STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41
42//===----------------------------------------------------------------------===//
43//                      Pattern Matcher Implementation
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
48  /// SDValue's instead of register numbers for the leaves of the matched
49  /// tree.
50  struct X86ISelAddressMode {
51    enum {
52      RegBase,
53      FrameIndexBase
54    } BaseType;
55
56    // This is really a union, discriminated by BaseType!
57    SDValue Base_Reg;
58    int Base_FrameIndex;
59
60    unsigned Scale;
61    SDValue IndexReg;
62    int32_t Disp;
63    SDValue Segment;
64    const GlobalValue *GV;
65    const Constant *CP;
66    const BlockAddress *BlockAddr;
67    const char *ES;
68    int JT;
69    unsigned Align;    // CP alignment.
70    unsigned char SymbolFlags;  // X86II::MO_*
71
72    X86ISelAddressMode()
73      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
74        Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
75        JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
76    }
77
78    bool hasSymbolicDisplacement() const {
79      return GV != nullptr || CP != nullptr || ES != nullptr ||
80             JT != -1 || BlockAddr != nullptr;
81    }
82
83    bool hasBaseOrIndexReg() const {
84      return BaseType == FrameIndexBase ||
85             IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode())
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode())
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137#endif
138  };
139}
140
141namespace {
142  //===--------------------------------------------------------------------===//
143  /// ISel - X86 specific code to select X86 machine instructions for
144  /// SelectionDAG operations.
145  ///
146  class X86DAGToDAGISel final : public SelectionDAGISel {
147    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
148    /// make the right decision when generating code for different targets.
149    const X86Subtarget *Subtarget;
150
151    /// OptForSize - If true, selector should try to optimize for code size
152    /// instead of performance.
153    bool OptForSize;
154
155  public:
156    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
157      : SelectionDAGISel(tm, OptLevel),
158        Subtarget(&tm.getSubtarget<X86Subtarget>()),
159        OptForSize(false) {}
160
161    const char *getPassName() const override {
162      return "X86 DAG->DAG Instruction Selection";
163    }
164
165    bool runOnMachineFunction(MachineFunction &MF) override {
166      // Reset the subtarget each time through.
167      Subtarget = &TM.getSubtarget<X86Subtarget>();
168      SelectionDAGISel::runOnMachineFunction(MF);
169      return true;
170    }
171
172    void EmitFunctionEntryCode() override;
173
174    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
175
176    void PreprocessISelDAG() override;
177
178    inline bool immSext8(SDNode *N) const {
179      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
180    }
181
182    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
183    // sign extended field.
184    inline bool i64immSExt32(SDNode *N) const {
185      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
186      return (int64_t)v == (int32_t)v;
187    }
188
189// Include the pieces autogenerated from the target description.
190#include "X86GenDAGISel.inc"
191
192  private:
193    SDNode *Select(SDNode *N) override;
194    SDNode *SelectGather(SDNode *N, unsigned Opc);
195    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
196    SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
197
198    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
199    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
200    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
201    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
202    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
203                                 unsigned Depth);
204    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
205    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
206                    SDValue &Scale, SDValue &Index, SDValue &Disp,
207                    SDValue &Segment);
208    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
209    bool SelectLEAAddr(SDValue N, SDValue &Base,
210                       SDValue &Scale, SDValue &Index, SDValue &Disp,
211                       SDValue &Segment);
212    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
213                            SDValue &Scale, SDValue &Index, SDValue &Disp,
214                            SDValue &Segment);
215    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
216                           SDValue &Scale, SDValue &Index, SDValue &Disp,
217                           SDValue &Segment);
218    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
219                             SDValue &Base, SDValue &Scale,
220                             SDValue &Index, SDValue &Disp,
221                             SDValue &Segment,
222                             SDValue &NodeWithChain);
223
224    bool TryFoldLoad(SDNode *P, SDValue N,
225                     SDValue &Base, SDValue &Scale,
226                     SDValue &Index, SDValue &Disp,
227                     SDValue &Segment);
228
229    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
230    /// inline asm expressions.
231    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
232                                      char ConstraintCode,
233                                      std::vector<SDValue> &OutOps) override;
234
235    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
236
237    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
238                                   SDValue &Scale, SDValue &Index,
239                                   SDValue &Disp, SDValue &Segment) {
240      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
241        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
242                                    getTargetLowering()->getPointerTy()) :
243        AM.Base_Reg;
244      Scale = getI8Imm(AM.Scale);
245      Index = AM.IndexReg;
246      // These are 32-bit even in 64-bit mode since RIP relative offset
247      // is 32-bit.
248      if (AM.GV)
249        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
250                                              MVT::i32, AM.Disp,
251                                              AM.SymbolFlags);
252      else if (AM.CP)
253        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
254                                             AM.Align, AM.Disp, AM.SymbolFlags);
255      else if (AM.ES) {
256        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
257        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
258      } else if (AM.JT != -1) {
259        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
260        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
261      } else if (AM.BlockAddr)
262        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
263                                             AM.SymbolFlags);
264      else
265        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
266
267      if (AM.Segment.getNode())
268        Segment = AM.Segment;
269      else
270        Segment = CurDAG->getRegister(0, MVT::i32);
271    }
272
273    /// getI8Imm - Return a target constant with the specified value, of type
274    /// i8.
275    inline SDValue getI8Imm(unsigned Imm) {
276      return CurDAG->getTargetConstant(Imm, MVT::i8);
277    }
278
279    /// getI32Imm - Return a target constant with the specified value, of type
280    /// i32.
281    inline SDValue getI32Imm(unsigned Imm) {
282      return CurDAG->getTargetConstant(Imm, MVT::i32);
283    }
284
285    /// getGlobalBaseReg - Return an SDNode that returns the value of
286    /// the global base register. Output instructions required to
287    /// initialize the global base register, if necessary.
288    ///
289    SDNode *getGlobalBaseReg();
290
291    /// getTargetMachine - Return a reference to the TargetMachine, casted
292    /// to the target-specific type.
293    const X86TargetMachine &getTargetMachine() const {
294      return static_cast<const X86TargetMachine &>(TM);
295    }
296
297    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
298    /// to the target-specific type.
299    const X86InstrInfo *getInstrInfo() const {
300      return getTargetMachine().getInstrInfo();
301    }
302  };
303}
304
305
306bool
307X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
308  if (OptLevel == CodeGenOpt::None) return false;
309
310  if (!N.hasOneUse())
311    return false;
312
313  if (N.getOpcode() != ISD::LOAD)
314    return true;
315
316  // If N is a load, do additional profitability checks.
317  if (U == Root) {
318    switch (U->getOpcode()) {
319    default: break;
320    case X86ISD::ADD:
321    case X86ISD::SUB:
322    case X86ISD::AND:
323    case X86ISD::XOR:
324    case X86ISD::OR:
325    case ISD::ADD:
326    case ISD::ADDC:
327    case ISD::ADDE:
328    case ISD::AND:
329    case ISD::OR:
330    case ISD::XOR: {
331      SDValue Op1 = U->getOperand(1);
332
333      // If the other operand is a 8-bit immediate we should fold the immediate
334      // instead. This reduces code size.
335      // e.g.
336      // movl 4(%esp), %eax
337      // addl $4, %eax
338      // vs.
339      // movl $4, %eax
340      // addl 4(%esp), %eax
341      // The former is 2 bytes shorter. In case where the increment is 1, then
342      // the saving can be 4 bytes (by using incl %eax).
343      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
344        if (Imm->getAPIntValue().isSignedIntN(8))
345          return false;
346
347      // If the other operand is a TLS address, we should fold it instead.
348      // This produces
349      // movl    %gs:0, %eax
350      // leal    i@NTPOFF(%eax), %eax
351      // instead of
352      // movl    $i@NTPOFF, %eax
353      // addl    %gs:0, %eax
354      // if the block also has an access to a second TLS address this will save
355      // a load.
356      // FIXME: This is probably also true for non-TLS addresses.
357      if (Op1.getOpcode() == X86ISD::Wrapper) {
358        SDValue Val = Op1.getOperand(0);
359        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
360          return false;
361      }
362    }
363    }
364  }
365
366  return true;
367}
368
369/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
370/// load's chain operand and move load below the call's chain operand.
371static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
372                               SDValue Call, SDValue OrigChain) {
373  SmallVector<SDValue, 8> Ops;
374  SDValue Chain = OrigChain.getOperand(0);
375  if (Chain.getNode() == Load.getNode())
376    Ops.push_back(Load.getOperand(0));
377  else {
378    assert(Chain.getOpcode() == ISD::TokenFactor &&
379           "Unexpected chain operand");
380    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
381      if (Chain.getOperand(i).getNode() == Load.getNode())
382        Ops.push_back(Load.getOperand(0));
383      else
384        Ops.push_back(Chain.getOperand(i));
385    SDValue NewChain =
386      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
387    Ops.clear();
388    Ops.push_back(NewChain);
389  }
390  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
391    Ops.push_back(OrigChain.getOperand(i));
392  CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
393  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
394                             Load.getOperand(1), Load.getOperand(2));
395
396  unsigned NumOps = Call.getNode()->getNumOperands();
397  Ops.clear();
398  Ops.push_back(SDValue(Load.getNode(), 1));
399  for (unsigned i = 1, e = NumOps; i != e; ++i)
400    Ops.push_back(Call.getOperand(i));
401  CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
402}
403
404/// isCalleeLoad - Return true if call address is a load and it can be
405/// moved below CALLSEQ_START and the chains leading up to the call.
406/// Return the CALLSEQ_START by reference as a second output.
407/// In the case of a tail call, there isn't a callseq node between the call
408/// chain and the load.
409static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
410  // The transformation is somewhat dangerous if the call's chain was glued to
411  // the call. After MoveBelowOrigChain the load is moved between the call and
412  // the chain, this can create a cycle if the load is not folded. So it is
413  // *really* important that we are sure the load will be folded.
414  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
415    return false;
416  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
417  if (!LD ||
418      LD->isVolatile() ||
419      LD->getAddressingMode() != ISD::UNINDEXED ||
420      LD->getExtensionType() != ISD::NON_EXTLOAD)
421    return false;
422
423  // Now let's find the callseq_start.
424  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
425    if (!Chain.hasOneUse())
426      return false;
427    Chain = Chain.getOperand(0);
428  }
429
430  if (!Chain.getNumOperands())
431    return false;
432  // Since we are not checking for AA here, conservatively abort if the chain
433  // writes to memory. It's not safe to move the callee (a load) across a store.
434  if (isa<MemSDNode>(Chain.getNode()) &&
435      cast<MemSDNode>(Chain.getNode())->writeMem())
436    return false;
437  if (Chain.getOperand(0).getNode() == Callee.getNode())
438    return true;
439  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
440      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
441      Callee.getValue(1).hasOneUse())
442    return true;
443  return false;
444}
445
446void X86DAGToDAGISel::PreprocessISelDAG() {
447  // OptForSize is used in pattern predicates that isel is matching.
448  OptForSize = MF->getFunction()->getAttributes().
449    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
450
451  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
452       E = CurDAG->allnodes_end(); I != E; ) {
453    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
454
455    if (OptLevel != CodeGenOpt::None &&
456        // Only does this when target favors doesn't favor register indirect
457        // call.
458        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
459         (N->getOpcode() == X86ISD::TC_RETURN &&
460          // Only does this if load can be folded into TC_RETURN.
461          (Subtarget->is64Bit() ||
462           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
463      /// Also try moving call address load from outside callseq_start to just
464      /// before the call to allow it to be folded.
465      ///
466      ///     [Load chain]
467      ///         ^
468      ///         |
469      ///       [Load]
470      ///       ^    ^
471      ///       |    |
472      ///      /      \--
473      ///     /          |
474      ///[CALLSEQ_START] |
475      ///     ^          |
476      ///     |          |
477      /// [LOAD/C2Reg]   |
478      ///     |          |
479      ///      \        /
480      ///       \      /
481      ///       [CALL]
482      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
483      SDValue Chain = N->getOperand(0);
484      SDValue Load  = N->getOperand(1);
485      if (!isCalleeLoad(Load, Chain, HasCallSeq))
486        continue;
487      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
488      ++NumLoadMoved;
489      continue;
490    }
491
492    // Lower fpround and fpextend nodes that target the FP stack to be store and
493    // load to the stack.  This is a gross hack.  We would like to simply mark
494    // these as being illegal, but when we do that, legalize produces these when
495    // it expands calls, then expands these in the same legalize pass.  We would
496    // like dag combine to be able to hack on these between the call expansion
497    // and the node legalization.  As such this pass basically does "really
498    // late" legalization of these inline with the X86 isel pass.
499    // FIXME: This should only happen when not compiled with -O0.
500    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
501      continue;
502
503    MVT SrcVT = N->getOperand(0).getSimpleValueType();
504    MVT DstVT = N->getSimpleValueType(0);
505
506    // If any of the sources are vectors, no fp stack involved.
507    if (SrcVT.isVector() || DstVT.isVector())
508      continue;
509
510    // If the source and destination are SSE registers, then this is a legal
511    // conversion that should not be lowered.
512    const X86TargetLowering *X86Lowering =
513        static_cast<const X86TargetLowering *>(getTargetLowering());
514    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
515    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
516    if (SrcIsSSE && DstIsSSE)
517      continue;
518
519    if (!SrcIsSSE && !DstIsSSE) {
520      // If this is an FPStack extension, it is a noop.
521      if (N->getOpcode() == ISD::FP_EXTEND)
522        continue;
523      // If this is a value-preserving FPStack truncation, it is a noop.
524      if (N->getConstantOperandVal(1))
525        continue;
526    }
527
528    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
529    // FPStack has extload and truncstore.  SSE can fold direct loads into other
530    // operations.  Based on this, decide what we want to do.
531    MVT MemVT;
532    if (N->getOpcode() == ISD::FP_ROUND)
533      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
534    else
535      MemVT = SrcIsSSE ? SrcVT : DstVT;
536
537    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
538    SDLoc dl(N);
539
540    // FIXME: optimize the case where the src/dest is a load or store?
541    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
542                                          N->getOperand(0),
543                                          MemTmp, MachinePointerInfo(), MemVT,
544                                          false, false, 0);
545    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
546                                        MachinePointerInfo(),
547                                        MemVT, false, false, 0);
548
549    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
550    // extload we created.  This will cause general havok on the dag because
551    // anything below the conversion could be folded into other existing nodes.
552    // To avoid invalidating 'I', back it up to the convert node.
553    --I;
554    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
555
556    // Now that we did that, the node is dead.  Increment the iterator to the
557    // next node to process, then delete N.
558    ++I;
559    CurDAG->DeleteNode(N);
560  }
561}
562
563
564/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
565/// the main function.
566void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
567                                             MachineFrameInfo *MFI) {
568  const TargetInstrInfo *TII = TM.getInstrInfo();
569  if (Subtarget->isTargetCygMing()) {
570    unsigned CallOp =
571      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
572    BuildMI(BB, DebugLoc(),
573            TII->get(CallOp)).addExternalSymbol("__main");
574  }
575}
576
577void X86DAGToDAGISel::EmitFunctionEntryCode() {
578  // If this is main, emit special code for main.
579  if (const Function *Fn = MF->getFunction())
580    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
581      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
582}
583
584static bool isDispSafeForFrameIndex(int64_t Val) {
585  // On 64-bit platforms, we can run into an issue where a frame index
586  // includes a displacement that, when added to the explicit displacement,
587  // will overflow the displacement field. Assuming that the frame index
588  // displacement fits into a 31-bit integer  (which is only slightly more
589  // aggressive than the current fundamental assumption that it fits into
590  // a 32-bit integer), a 31-bit disp should always be safe.
591  return isInt<31>(Val);
592}
593
594bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
595                                            X86ISelAddressMode &AM) {
596  int64_t Val = AM.Disp + Offset;
597  CodeModel::Model M = TM.getCodeModel();
598  if (Subtarget->is64Bit()) {
599    if (!X86::isOffsetSuitableForCodeModel(Val, M,
600                                           AM.hasSymbolicDisplacement()))
601      return true;
602    // In addition to the checks required for a register base, check that
603    // we do not try to use an unsafe Disp with a frame index.
604    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
605        !isDispSafeForFrameIndex(Val))
606      return true;
607  }
608  AM.Disp = Val;
609  return false;
610
611}
612
613bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
614  SDValue Address = N->getOperand(1);
615
616  // load gs:0 -> GS segment register.
617  // load fs:0 -> FS segment register.
618  //
619  // This optimization is valid because the GNU TLS model defines that
620  // gs:0 (or fs:0 on X86-64) contains its own address.
621  // For more information see http://people.redhat.com/drepper/tls.pdf
622  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
623    if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
624        Subtarget->isTargetLinux())
625      switch (N->getPointerInfo().getAddrSpace()) {
626      case 256:
627        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
628        return false;
629      case 257:
630        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
631        return false;
632      }
633
634  return true;
635}
636
637/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
638/// into an addressing mode.  These wrap things that will resolve down into a
639/// symbol reference.  If no match is possible, this returns true, otherwise it
640/// returns false.
641bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
642  // If the addressing mode already has a symbol as the displacement, we can
643  // never match another symbol.
644  if (AM.hasSymbolicDisplacement())
645    return true;
646
647  SDValue N0 = N.getOperand(0);
648  CodeModel::Model M = TM.getCodeModel();
649
650  // Handle X86-64 rip-relative addresses.  We check this before checking direct
651  // folding because RIP is preferable to non-RIP accesses.
652  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
653      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
654      // they cannot be folded into immediate fields.
655      // FIXME: This can be improved for kernel and other models?
656      (M == CodeModel::Small || M == CodeModel::Kernel)) {
657    // Base and index reg must be 0 in order to use %rip as base.
658    if (AM.hasBaseOrIndexReg())
659      return true;
660    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
661      X86ISelAddressMode Backup = AM;
662      AM.GV = G->getGlobal();
663      AM.SymbolFlags = G->getTargetFlags();
664      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
665        AM = Backup;
666        return true;
667      }
668    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
669      X86ISelAddressMode Backup = AM;
670      AM.CP = CP->getConstVal();
671      AM.Align = CP->getAlignment();
672      AM.SymbolFlags = CP->getTargetFlags();
673      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
674        AM = Backup;
675        return true;
676      }
677    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
678      AM.ES = S->getSymbol();
679      AM.SymbolFlags = S->getTargetFlags();
680    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
681      AM.JT = J->getIndex();
682      AM.SymbolFlags = J->getTargetFlags();
683    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
684      X86ISelAddressMode Backup = AM;
685      AM.BlockAddr = BA->getBlockAddress();
686      AM.SymbolFlags = BA->getTargetFlags();
687      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
688        AM = Backup;
689        return true;
690      }
691    } else
692      llvm_unreachable("Unhandled symbol reference node.");
693
694    if (N.getOpcode() == X86ISD::WrapperRIP)
695      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
696    return false;
697  }
698
699  // Handle the case when globals fit in our immediate field: This is true for
700  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
701  // mode, this only applies to a non-RIP-relative computation.
702  if (!Subtarget->is64Bit() ||
703      M == CodeModel::Small || M == CodeModel::Kernel) {
704    assert(N.getOpcode() != X86ISD::WrapperRIP &&
705           "RIP-relative addressing already handled");
706    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
707      AM.GV = G->getGlobal();
708      AM.Disp += G->getOffset();
709      AM.SymbolFlags = G->getTargetFlags();
710    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
711      AM.CP = CP->getConstVal();
712      AM.Align = CP->getAlignment();
713      AM.Disp += CP->getOffset();
714      AM.SymbolFlags = CP->getTargetFlags();
715    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
716      AM.ES = S->getSymbol();
717      AM.SymbolFlags = S->getTargetFlags();
718    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
719      AM.JT = J->getIndex();
720      AM.SymbolFlags = J->getTargetFlags();
721    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
722      AM.BlockAddr = BA->getBlockAddress();
723      AM.Disp += BA->getOffset();
724      AM.SymbolFlags = BA->getTargetFlags();
725    } else
726      llvm_unreachable("Unhandled symbol reference node.");
727    return false;
728  }
729
730  return true;
731}
732
733/// MatchAddress - Add the specified node to the specified addressing mode,
734/// returning true if it cannot be done.  This just pattern matches for the
735/// addressing mode.
736bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
737  if (MatchAddressRecursively(N, AM, 0))
738    return true;
739
740  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
741  // a smaller encoding and avoids a scaled-index.
742  if (AM.Scale == 2 &&
743      AM.BaseType == X86ISelAddressMode::RegBase &&
744      AM.Base_Reg.getNode() == nullptr) {
745    AM.Base_Reg = AM.IndexReg;
746    AM.Scale = 1;
747  }
748
749  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
750  // because it has a smaller encoding.
751  // TODO: Which other code models can use this?
752  if (TM.getCodeModel() == CodeModel::Small &&
753      Subtarget->is64Bit() &&
754      AM.Scale == 1 &&
755      AM.BaseType == X86ISelAddressMode::RegBase &&
756      AM.Base_Reg.getNode() == nullptr &&
757      AM.IndexReg.getNode() == nullptr &&
758      AM.SymbolFlags == X86II::MO_NO_FLAG &&
759      AM.hasSymbolicDisplacement())
760    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
761
762  return false;
763}
764
765// Insert a node into the DAG at least before the Pos node's position. This
766// will reposition the node as needed, and will assign it a node ID that is <=
767// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
768// IDs! The selection DAG must no longer depend on their uniqueness when this
769// is used.
770static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
771  if (N.getNode()->getNodeId() == -1 ||
772      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
773    DAG.RepositionNode(Pos.getNode(), N.getNode());
774    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
775  }
776}
777
778// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
779// allows us to convert the shift and and into an h-register extract and
780// a scaled index. Returns false if the simplification is performed.
781static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
782                                      uint64_t Mask,
783                                      SDValue Shift, SDValue X,
784                                      X86ISelAddressMode &AM) {
785  if (Shift.getOpcode() != ISD::SRL ||
786      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
787      !Shift.hasOneUse())
788    return true;
789
790  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
791  if (ScaleLog <= 0 || ScaleLog >= 4 ||
792      Mask != (0xffu << ScaleLog))
793    return true;
794
795  MVT VT = N.getSimpleValueType();
796  SDLoc DL(N);
797  SDValue Eight = DAG.getConstant(8, MVT::i8);
798  SDValue NewMask = DAG.getConstant(0xff, VT);
799  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
800  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
801  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
802  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
803
804  // Insert the new nodes into the topological ordering. We must do this in
805  // a valid topological ordering as nothing is going to go back and re-sort
806  // these nodes. We continually insert before 'N' in sequence as this is
807  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
808  // hierarchy left to express.
809  InsertDAGNode(DAG, N, Eight);
810  InsertDAGNode(DAG, N, Srl);
811  InsertDAGNode(DAG, N, NewMask);
812  InsertDAGNode(DAG, N, And);
813  InsertDAGNode(DAG, N, ShlCount);
814  InsertDAGNode(DAG, N, Shl);
815  DAG.ReplaceAllUsesWith(N, Shl);
816  AM.IndexReg = And;
817  AM.Scale = (1 << ScaleLog);
818  return false;
819}
820
821// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
822// allows us to fold the shift into this addressing mode. Returns false if the
823// transform succeeded.
824static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
825                                        uint64_t Mask,
826                                        SDValue Shift, SDValue X,
827                                        X86ISelAddressMode &AM) {
828  if (Shift.getOpcode() != ISD::SHL ||
829      !isa<ConstantSDNode>(Shift.getOperand(1)))
830    return true;
831
832  // Not likely to be profitable if either the AND or SHIFT node has more
833  // than one use (unless all uses are for address computation). Besides,
834  // isel mechanism requires their node ids to be reused.
835  if (!N.hasOneUse() || !Shift.hasOneUse())
836    return true;
837
838  // Verify that the shift amount is something we can fold.
839  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
840  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
841    return true;
842
843  MVT VT = N.getSimpleValueType();
844  SDLoc DL(N);
845  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
846  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
847  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
848
849  // Insert the new nodes into the topological ordering. We must do this in
850  // a valid topological ordering as nothing is going to go back and re-sort
851  // these nodes. We continually insert before 'N' in sequence as this is
852  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
853  // hierarchy left to express.
854  InsertDAGNode(DAG, N, NewMask);
855  InsertDAGNode(DAG, N, NewAnd);
856  InsertDAGNode(DAG, N, NewShift);
857  DAG.ReplaceAllUsesWith(N, NewShift);
858
859  AM.Scale = 1 << ShiftAmt;
860  AM.IndexReg = NewAnd;
861  return false;
862}
863
864// Implement some heroics to detect shifts of masked values where the mask can
865// be replaced by extending the shift and undoing that in the addressing mode
866// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
867// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
868// the addressing mode. This results in code such as:
869//
870//   int f(short *y, int *lookup_table) {
871//     ...
872//     return *y + lookup_table[*y >> 11];
873//   }
874//
875// Turning into:
876//   movzwl (%rdi), %eax
877//   movl %eax, %ecx
878//   shrl $11, %ecx
879//   addl (%rsi,%rcx,4), %eax
880//
881// Instead of:
882//   movzwl (%rdi), %eax
883//   movl %eax, %ecx
884//   shrl $9, %ecx
885//   andl $124, %rcx
886//   addl (%rsi,%rcx), %eax
887//
888// Note that this function assumes the mask is provided as a mask *after* the
889// value is shifted. The input chain may or may not match that, but computing
890// such a mask is trivial.
891static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
892                                    uint64_t Mask,
893                                    SDValue Shift, SDValue X,
894                                    X86ISelAddressMode &AM) {
895  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
896      !isa<ConstantSDNode>(Shift.getOperand(1)))
897    return true;
898
899  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
900  unsigned MaskLZ = countLeadingZeros(Mask);
901  unsigned MaskTZ = countTrailingZeros(Mask);
902
903  // The amount of shift we're trying to fit into the addressing mode is taken
904  // from the trailing zeros of the mask.
905  unsigned AMShiftAmt = MaskTZ;
906
907  // There is nothing we can do here unless the mask is removing some bits.
908  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
909  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
910
911  // We also need to ensure that mask is a continuous run of bits.
912  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
913
914  // Scale the leading zero count down based on the actual size of the value.
915  // Also scale it down based on the size of the shift.
916  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
917
918  // The final check is to ensure that any masked out high bits of X are
919  // already known to be zero. Otherwise, the mask has a semantic impact
920  // other than masking out a couple of low bits. Unfortunately, because of
921  // the mask, zero extensions will be removed from operands in some cases.
922  // This code works extra hard to look through extensions because we can
923  // replace them with zero extensions cheaply if necessary.
924  bool ReplacingAnyExtend = false;
925  if (X.getOpcode() == ISD::ANY_EXTEND) {
926    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
927                          X.getOperand(0).getSimpleValueType().getSizeInBits();
928    // Assume that we'll replace the any-extend with a zero-extend, and
929    // narrow the search to the extended value.
930    X = X.getOperand(0);
931    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
932    ReplacingAnyExtend = true;
933  }
934  APInt MaskedHighBits =
935    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
936  APInt KnownZero, KnownOne;
937  DAG.computeKnownBits(X, KnownZero, KnownOne);
938  if (MaskedHighBits != KnownZero) return true;
939
940  // We've identified a pattern that can be transformed into a single shift
941  // and an addressing mode. Make it so.
942  MVT VT = N.getSimpleValueType();
943  if (ReplacingAnyExtend) {
944    assert(X.getValueType() != VT);
945    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
946    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
947    InsertDAGNode(DAG, N, NewX);
948    X = NewX;
949  }
950  SDLoc DL(N);
951  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
952  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
953  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
954  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
955
956  // Insert the new nodes into the topological ordering. We must do this in
957  // a valid topological ordering as nothing is going to go back and re-sort
958  // these nodes. We continually insert before 'N' in sequence as this is
959  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
960  // hierarchy left to express.
961  InsertDAGNode(DAG, N, NewSRLAmt);
962  InsertDAGNode(DAG, N, NewSRL);
963  InsertDAGNode(DAG, N, NewSHLAmt);
964  InsertDAGNode(DAG, N, NewSHL);
965  DAG.ReplaceAllUsesWith(N, NewSHL);
966
967  AM.Scale = 1 << AMShiftAmt;
968  AM.IndexReg = NewSRL;
969  return false;
970}
971
972bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
973                                              unsigned Depth) {
974  SDLoc dl(N);
975  DEBUG({
976      dbgs() << "MatchAddress: ";
977      AM.dump();
978    });
979  // Limit recursion.
980  if (Depth > 5)
981    return MatchAddressBase(N, AM);
982
983  // If this is already a %rip relative address, we can only merge immediates
984  // into it.  Instead of handling this in every case, we handle it here.
985  // RIP relative addressing: %rip + 32-bit displacement!
986  if (AM.isRIPRelative()) {
987    // FIXME: JumpTable and ExternalSymbol address currently don't like
988    // displacements.  It isn't very important, but this should be fixed for
989    // consistency.
990    if (!AM.ES && AM.JT != -1) return true;
991
992    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
993      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
994        return false;
995    return true;
996  }
997
998  switch (N.getOpcode()) {
999  default: break;
1000  case ISD::Constant: {
1001    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1002    if (!FoldOffsetIntoAddress(Val, AM))
1003      return false;
1004    break;
1005  }
1006
1007  case X86ISD::Wrapper:
1008  case X86ISD::WrapperRIP:
1009    if (!MatchWrapper(N, AM))
1010      return false;
1011    break;
1012
1013  case ISD::LOAD:
1014    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1015      return false;
1016    break;
1017
1018  case ISD::FrameIndex:
1019    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1020        AM.Base_Reg.getNode() == nullptr &&
1021        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1022      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1023      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1024      return false;
1025    }
1026    break;
1027
1028  case ISD::SHL:
1029    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1030      break;
1031
1032    if (ConstantSDNode
1033          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1034      unsigned Val = CN->getZExtValue();
1035      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1036      // that the base operand remains free for further matching. If
1037      // the base doesn't end up getting used, a post-processing step
1038      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1039      if (Val == 1 || Val == 2 || Val == 3) {
1040        AM.Scale = 1 << Val;
1041        SDValue ShVal = N.getNode()->getOperand(0);
1042
1043        // Okay, we know that we have a scale by now.  However, if the scaled
1044        // value is an add of something and a constant, we can fold the
1045        // constant into the disp field here.
1046        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1047          AM.IndexReg = ShVal.getNode()->getOperand(0);
1048          ConstantSDNode *AddVal =
1049            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1050          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1051          if (!FoldOffsetIntoAddress(Disp, AM))
1052            return false;
1053        }
1054
1055        AM.IndexReg = ShVal;
1056        return false;
1057      }
1058    }
1059    break;
1060
1061  case ISD::SRL: {
1062    // Scale must not be used already.
1063    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1064
1065    SDValue And = N.getOperand(0);
1066    if (And.getOpcode() != ISD::AND) break;
1067    SDValue X = And.getOperand(0);
1068
1069    // We only handle up to 64-bit values here as those are what matter for
1070    // addressing mode optimizations.
1071    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1072
1073    // The mask used for the transform is expected to be post-shift, but we
1074    // found the shift first so just apply the shift to the mask before passing
1075    // it down.
1076    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1077        !isa<ConstantSDNode>(And.getOperand(1)))
1078      break;
1079    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1080
1081    // Try to fold the mask and shift into the scale, and return false if we
1082    // succeed.
1083    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1084      return false;
1085    break;
1086  }
1087
1088  case ISD::SMUL_LOHI:
1089  case ISD::UMUL_LOHI:
1090    // A mul_lohi where we need the low part can be folded as a plain multiply.
1091    if (N.getResNo() != 0) break;
1092    // FALL THROUGH
1093  case ISD::MUL:
1094  case X86ISD::MUL_IMM:
1095    // X*[3,5,9] -> X+X*[2,4,8]
1096    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1097        AM.Base_Reg.getNode() == nullptr &&
1098        AM.IndexReg.getNode() == nullptr) {
1099      if (ConstantSDNode
1100            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1101        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1102            CN->getZExtValue() == 9) {
1103          AM.Scale = unsigned(CN->getZExtValue())-1;
1104
1105          SDValue MulVal = N.getNode()->getOperand(0);
1106          SDValue Reg;
1107
1108          // Okay, we know that we have a scale by now.  However, if the scaled
1109          // value is an add of something and a constant, we can fold the
1110          // constant into the disp field here.
1111          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1112              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1113            Reg = MulVal.getNode()->getOperand(0);
1114            ConstantSDNode *AddVal =
1115              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1116            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1117            if (FoldOffsetIntoAddress(Disp, AM))
1118              Reg = N.getNode()->getOperand(0);
1119          } else {
1120            Reg = N.getNode()->getOperand(0);
1121          }
1122
1123          AM.IndexReg = AM.Base_Reg = Reg;
1124          return false;
1125        }
1126    }
1127    break;
1128
1129  case ISD::SUB: {
1130    // Given A-B, if A can be completely folded into the address and
1131    // the index field with the index field unused, use -B as the index.
1132    // This is a win if a has multiple parts that can be folded into
1133    // the address. Also, this saves a mov if the base register has
1134    // other uses, since it avoids a two-address sub instruction, however
1135    // it costs an additional mov if the index register has other uses.
1136
1137    // Add an artificial use to this node so that we can keep track of
1138    // it if it gets CSE'd with a different node.
1139    HandleSDNode Handle(N);
1140
1141    // Test if the LHS of the sub can be folded.
1142    X86ISelAddressMode Backup = AM;
1143    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1144      AM = Backup;
1145      break;
1146    }
1147    // Test if the index field is free for use.
1148    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1149      AM = Backup;
1150      break;
1151    }
1152
1153    int Cost = 0;
1154    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1155    // If the RHS involves a register with multiple uses, this
1156    // transformation incurs an extra mov, due to the neg instruction
1157    // clobbering its operand.
1158    if (!RHS.getNode()->hasOneUse() ||
1159        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1160        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1161        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1162        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1163         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1164      ++Cost;
1165    // If the base is a register with multiple uses, this
1166    // transformation may save a mov.
1167    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1168         AM.Base_Reg.getNode() &&
1169         !AM.Base_Reg.getNode()->hasOneUse()) ||
1170        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1171      --Cost;
1172    // If the folded LHS was interesting, this transformation saves
1173    // address arithmetic.
1174    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1175        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1176        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1177      --Cost;
1178    // If it doesn't look like it may be an overall win, don't do it.
1179    if (Cost >= 0) {
1180      AM = Backup;
1181      break;
1182    }
1183
1184    // Ok, the transformation is legal and appears profitable. Go for it.
1185    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1186    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1187    AM.IndexReg = Neg;
1188    AM.Scale = 1;
1189
1190    // Insert the new nodes into the topological ordering.
1191    InsertDAGNode(*CurDAG, N, Zero);
1192    InsertDAGNode(*CurDAG, N, Neg);
1193    return false;
1194  }
1195
1196  case ISD::ADD: {
1197    // Add an artificial use to this node so that we can keep track of
1198    // it if it gets CSE'd with a different node.
1199    HandleSDNode Handle(N);
1200
1201    X86ISelAddressMode Backup = AM;
1202    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1203        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1204      return false;
1205    AM = Backup;
1206
1207    // Try again after commuting the operands.
1208    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1209        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1210      return false;
1211    AM = Backup;
1212
1213    // If we couldn't fold both operands into the address at the same time,
1214    // see if we can just put each operand into a register and fold at least
1215    // the add.
1216    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1217        !AM.Base_Reg.getNode() &&
1218        !AM.IndexReg.getNode()) {
1219      N = Handle.getValue();
1220      AM.Base_Reg = N.getOperand(0);
1221      AM.IndexReg = N.getOperand(1);
1222      AM.Scale = 1;
1223      return false;
1224    }
1225    N = Handle.getValue();
1226    break;
1227  }
1228
1229  case ISD::OR:
1230    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1231    if (CurDAG->isBaseWithConstantOffset(N)) {
1232      X86ISelAddressMode Backup = AM;
1233      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1234
1235      // Start with the LHS as an addr mode.
1236      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1237          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1238        return false;
1239      AM = Backup;
1240    }
1241    break;
1242
1243  case ISD::AND: {
1244    // Perform some heroic transforms on an and of a constant-count shift
1245    // with a constant to enable use of the scaled offset field.
1246
1247    // Scale must not be used already.
1248    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1249
1250    SDValue Shift = N.getOperand(0);
1251    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1252    SDValue X = Shift.getOperand(0);
1253
1254    // We only handle up to 64-bit values here as those are what matter for
1255    // addressing mode optimizations.
1256    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1257
1258    if (!isa<ConstantSDNode>(N.getOperand(1)))
1259      break;
1260    uint64_t Mask = N.getConstantOperandVal(1);
1261
1262    // Try to fold the mask and shift into an extract and scale.
1263    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1264      return false;
1265
1266    // Try to fold the mask and shift directly into the scale.
1267    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1268      return false;
1269
1270    // Try to swap the mask and shift to place shifts which can be done as
1271    // a scale on the outside of the mask.
1272    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1273      return false;
1274    break;
1275  }
1276  }
1277
1278  return MatchAddressBase(N, AM);
1279}
1280
1281/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1282/// specified addressing mode without any further recursion.
1283bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1284  // Is the base register already occupied?
1285  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1286    // If so, check to see if the scale index register is set.
1287    if (!AM.IndexReg.getNode()) {
1288      AM.IndexReg = N;
1289      AM.Scale = 1;
1290      return false;
1291    }
1292
1293    // Otherwise, we cannot select it.
1294    return true;
1295  }
1296
1297  // Default, generate it as a register.
1298  AM.BaseType = X86ISelAddressMode::RegBase;
1299  AM.Base_Reg = N;
1300  return false;
1301}
1302
1303/// SelectAddr - returns true if it is able pattern match an addressing mode.
1304/// It returns the operands which make up the maximal addressing mode it can
1305/// match by reference.
1306///
1307/// Parent is the parent node of the addr operand that is being matched.  It
1308/// is always a load, store, atomic node, or null.  It is only null when
1309/// checking memory operands for inline asm nodes.
1310bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1311                                 SDValue &Scale, SDValue &Index,
1312                                 SDValue &Disp, SDValue &Segment) {
1313  X86ISelAddressMode AM;
1314
1315  if (Parent &&
1316      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1317      // that are not a MemSDNode, and thus don't have proper addrspace info.
1318      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1319      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1320      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1321      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1322      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1323    unsigned AddrSpace =
1324      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1325    // AddrSpace 256 -> GS, 257 -> FS.
1326    if (AddrSpace == 256)
1327      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1328    if (AddrSpace == 257)
1329      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1330  }
1331
1332  if (MatchAddress(N, AM))
1333    return false;
1334
1335  MVT VT = N.getSimpleValueType();
1336  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1337    if (!AM.Base_Reg.getNode())
1338      AM.Base_Reg = CurDAG->getRegister(0, VT);
1339  }
1340
1341  if (!AM.IndexReg.getNode())
1342    AM.IndexReg = CurDAG->getRegister(0, VT);
1343
1344  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1345  return true;
1346}
1347
1348/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1349/// match a load whose top elements are either undef or zeros.  The load flavor
1350/// is derived from the type of N, which is either v4f32 or v2f64.
1351///
1352/// We also return:
1353///   PatternChainNode: this is the matched node that has a chain input and
1354///   output.
1355bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1356                                          SDValue N, SDValue &Base,
1357                                          SDValue &Scale, SDValue &Index,
1358                                          SDValue &Disp, SDValue &Segment,
1359                                          SDValue &PatternNodeWithChain) {
1360  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1361    PatternNodeWithChain = N.getOperand(0);
1362    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1363        PatternNodeWithChain.hasOneUse() &&
1364        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1365        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1366      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1367      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1368        return false;
1369      return true;
1370    }
1371  }
1372
1373  // Also handle the case where we explicitly require zeros in the top
1374  // elements.  This is a vector shuffle from the zero vector.
1375  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1376      // Check to see if the top elements are all zeros (or bitcast of zeros).
1377      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1378      N.getOperand(0).getNode()->hasOneUse() &&
1379      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1380      N.getOperand(0).getOperand(0).hasOneUse() &&
1381      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1382      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1383    // Okay, this is a zero extending load.  Fold it.
1384    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1385    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1386      return false;
1387    PatternNodeWithChain = SDValue(LD, 0);
1388    return true;
1389  }
1390  return false;
1391}
1392
1393
1394bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1395  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1396    uint64_t ImmVal = CN->getZExtValue();
1397    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1398      return false;
1399
1400    Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1401    return true;
1402  }
1403
1404  // In static codegen with small code model, we can get the address of a label
1405  // into a register with 'movl'. TableGen has already made sure we're looking
1406  // at a label of some kind.
1407  assert(N->getOpcode() == X86ISD::Wrapper &&
1408         "Unexpected node type for MOV32ri64");
1409  N = N.getOperand(0);
1410
1411  if (N->getOpcode() != ISD::TargetConstantPool &&
1412      N->getOpcode() != ISD::TargetJumpTable &&
1413      N->getOpcode() != ISD::TargetGlobalAddress &&
1414      N->getOpcode() != ISD::TargetExternalSymbol &&
1415      N->getOpcode() != ISD::TargetBlockAddress)
1416    return false;
1417
1418  Imm = N;
1419  return TM.getCodeModel() == CodeModel::Small;
1420}
1421
1422bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1423                                         SDValue &Scale, SDValue &Index,
1424                                         SDValue &Disp, SDValue &Segment) {
1425  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1426    return false;
1427
1428  SDLoc DL(N);
1429  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1430  if (RN && RN->getReg() == 0)
1431    Base = CurDAG->getRegister(0, MVT::i64);
1432  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1433    // Base could already be %rip, particularly in the x32 ABI.
1434    Base = SDValue(CurDAG->getMachineNode(
1435                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1436                       CurDAG->getTargetConstant(0, MVT::i64),
1437                       Base,
1438                       CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1439                   0);
1440  }
1441
1442  RN = dyn_cast<RegisterSDNode>(Index);
1443  if (RN && RN->getReg() == 0)
1444    Index = CurDAG->getRegister(0, MVT::i64);
1445  else {
1446    assert(Index.getValueType() == MVT::i32 &&
1447           "Expect to be extending 32-bit registers for use in LEA");
1448    Index = SDValue(CurDAG->getMachineNode(
1449                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1450                        CurDAG->getTargetConstant(0, MVT::i64),
1451                        Index,
1452                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1453                    0);
1454  }
1455
1456  return true;
1457}
1458
1459/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1460/// mode it matches can be cost effectively emitted as an LEA instruction.
1461bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1462                                    SDValue &Base, SDValue &Scale,
1463                                    SDValue &Index, SDValue &Disp,
1464                                    SDValue &Segment) {
1465  X86ISelAddressMode AM;
1466
1467  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1468  // segments.
1469  SDValue Copy = AM.Segment;
1470  SDValue T = CurDAG->getRegister(0, MVT::i32);
1471  AM.Segment = T;
1472  if (MatchAddress(N, AM))
1473    return false;
1474  assert (T == AM.Segment);
1475  AM.Segment = Copy;
1476
1477  MVT VT = N.getSimpleValueType();
1478  unsigned Complexity = 0;
1479  if (AM.BaseType == X86ISelAddressMode::RegBase)
1480    if (AM.Base_Reg.getNode())
1481      Complexity = 1;
1482    else
1483      AM.Base_Reg = CurDAG->getRegister(0, VT);
1484  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1485    Complexity = 4;
1486
1487  if (AM.IndexReg.getNode())
1488    Complexity++;
1489  else
1490    AM.IndexReg = CurDAG->getRegister(0, VT);
1491
1492  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1493  // a simple shift.
1494  if (AM.Scale > 1)
1495    Complexity++;
1496
1497  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1498  // to a LEA. This is determined with some expermentation but is by no means
1499  // optimal (especially for code size consideration). LEA is nice because of
1500  // its three-address nature. Tweak the cost function again when we can run
1501  // convertToThreeAddress() at register allocation time.
1502  if (AM.hasSymbolicDisplacement()) {
1503    // For X86-64, we should always use lea to materialize RIP relative
1504    // addresses.
1505    if (Subtarget->is64Bit())
1506      Complexity = 4;
1507    else
1508      Complexity += 2;
1509  }
1510
1511  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1512    Complexity++;
1513
1514  // If it isn't worth using an LEA, reject it.
1515  if (Complexity <= 2)
1516    return false;
1517
1518  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1519  return true;
1520}
1521
1522/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1523bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1524                                        SDValue &Scale, SDValue &Index,
1525                                        SDValue &Disp, SDValue &Segment) {
1526  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1527  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1528
1529  X86ISelAddressMode AM;
1530  AM.GV = GA->getGlobal();
1531  AM.Disp += GA->getOffset();
1532  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1533  AM.SymbolFlags = GA->getTargetFlags();
1534
1535  if (N.getValueType() == MVT::i32) {
1536    AM.Scale = 1;
1537    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1538  } else {
1539    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1540  }
1541
1542  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1543  return true;
1544}
1545
1546
1547bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1548                                  SDValue &Base, SDValue &Scale,
1549                                  SDValue &Index, SDValue &Disp,
1550                                  SDValue &Segment) {
1551  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1552      !IsProfitableToFold(N, P, P) ||
1553      !IsLegalToFold(N, P, P, OptLevel))
1554    return false;
1555
1556  return SelectAddr(N.getNode(),
1557                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1558}
1559
1560/// getGlobalBaseReg - Return an SDNode that returns the value of
1561/// the global base register. Output instructions required to
1562/// initialize the global base register, if necessary.
1563///
1564SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1565  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1566  return CurDAG->getRegister(GlobalBaseReg,
1567                             getTargetLowering()->getPointerTy()).getNode();
1568}
1569
1570SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1571  SDValue Chain = Node->getOperand(0);
1572  SDValue In1 = Node->getOperand(1);
1573  SDValue In2L = Node->getOperand(2);
1574  SDValue In2H = Node->getOperand(3);
1575
1576  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1577  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1578    return nullptr;
1579  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1580  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1581  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1582  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1583                                           MVT::i32, MVT::i32, MVT::Other, Ops);
1584  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1585  return ResNode;
1586}
1587
1588/// Atomic opcode table
1589///
1590enum AtomicOpc {
1591  ADD,
1592  SUB,
1593  INC,
1594  DEC,
1595  OR,
1596  AND,
1597  XOR,
1598  AtomicOpcEnd
1599};
1600
1601enum AtomicSz {
1602  ConstantI8,
1603  I8,
1604  SextConstantI16,
1605  ConstantI16,
1606  I16,
1607  SextConstantI32,
1608  ConstantI32,
1609  I32,
1610  SextConstantI64,
1611  ConstantI64,
1612  I64,
1613  AtomicSzEnd
1614};
1615
1616static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1617  {
1618    X86::LOCK_ADD8mi,
1619    X86::LOCK_ADD8mr,
1620    X86::LOCK_ADD16mi8,
1621    X86::LOCK_ADD16mi,
1622    X86::LOCK_ADD16mr,
1623    X86::LOCK_ADD32mi8,
1624    X86::LOCK_ADD32mi,
1625    X86::LOCK_ADD32mr,
1626    X86::LOCK_ADD64mi8,
1627    X86::LOCK_ADD64mi32,
1628    X86::LOCK_ADD64mr,
1629  },
1630  {
1631    X86::LOCK_SUB8mi,
1632    X86::LOCK_SUB8mr,
1633    X86::LOCK_SUB16mi8,
1634    X86::LOCK_SUB16mi,
1635    X86::LOCK_SUB16mr,
1636    X86::LOCK_SUB32mi8,
1637    X86::LOCK_SUB32mi,
1638    X86::LOCK_SUB32mr,
1639    X86::LOCK_SUB64mi8,
1640    X86::LOCK_SUB64mi32,
1641    X86::LOCK_SUB64mr,
1642  },
1643  {
1644    0,
1645    X86::LOCK_INC8m,
1646    0,
1647    0,
1648    X86::LOCK_INC16m,
1649    0,
1650    0,
1651    X86::LOCK_INC32m,
1652    0,
1653    0,
1654    X86::LOCK_INC64m,
1655  },
1656  {
1657    0,
1658    X86::LOCK_DEC8m,
1659    0,
1660    0,
1661    X86::LOCK_DEC16m,
1662    0,
1663    0,
1664    X86::LOCK_DEC32m,
1665    0,
1666    0,
1667    X86::LOCK_DEC64m,
1668  },
1669  {
1670    X86::LOCK_OR8mi,
1671    X86::LOCK_OR8mr,
1672    X86::LOCK_OR16mi8,
1673    X86::LOCK_OR16mi,
1674    X86::LOCK_OR16mr,
1675    X86::LOCK_OR32mi8,
1676    X86::LOCK_OR32mi,
1677    X86::LOCK_OR32mr,
1678    X86::LOCK_OR64mi8,
1679    X86::LOCK_OR64mi32,
1680    X86::LOCK_OR64mr,
1681  },
1682  {
1683    X86::LOCK_AND8mi,
1684    X86::LOCK_AND8mr,
1685    X86::LOCK_AND16mi8,
1686    X86::LOCK_AND16mi,
1687    X86::LOCK_AND16mr,
1688    X86::LOCK_AND32mi8,
1689    X86::LOCK_AND32mi,
1690    X86::LOCK_AND32mr,
1691    X86::LOCK_AND64mi8,
1692    X86::LOCK_AND64mi32,
1693    X86::LOCK_AND64mr,
1694  },
1695  {
1696    X86::LOCK_XOR8mi,
1697    X86::LOCK_XOR8mr,
1698    X86::LOCK_XOR16mi8,
1699    X86::LOCK_XOR16mi,
1700    X86::LOCK_XOR16mr,
1701    X86::LOCK_XOR32mi8,
1702    X86::LOCK_XOR32mi,
1703    X86::LOCK_XOR32mr,
1704    X86::LOCK_XOR64mi8,
1705    X86::LOCK_XOR64mi32,
1706    X86::LOCK_XOR64mr,
1707  }
1708};
1709
1710// Return the target constant operand for atomic-load-op and do simple
1711// translations, such as from atomic-load-add to lock-sub. The return value is
1712// one of the following 3 cases:
1713// + target-constant, the operand could be supported as a target constant.
1714// + empty, the operand is not needed any more with the new op selected.
1715// + non-empty, otherwise.
1716static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1717                                                SDLoc dl,
1718                                                enum AtomicOpc &Op, MVT NVT,
1719                                                SDValue Val) {
1720  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1721    int64_t CNVal = CN->getSExtValue();
1722    // Quit if not 32-bit imm.
1723    if ((int32_t)CNVal != CNVal)
1724      return Val;
1725    // For atomic-load-add, we could do some optimizations.
1726    if (Op == ADD) {
1727      // Translate to INC/DEC if ADD by 1 or -1.
1728      if ((CNVal == 1) || (CNVal == -1)) {
1729        Op = (CNVal == 1) ? INC : DEC;
1730        // No more constant operand after being translated into INC/DEC.
1731        return SDValue();
1732      }
1733      // Translate to SUB if ADD by negative value.
1734      if (CNVal < 0) {
1735        Op = SUB;
1736        CNVal = -CNVal;
1737      }
1738    }
1739    return CurDAG->getTargetConstant(CNVal, NVT);
1740  }
1741
1742  // If the value operand is single-used, try to optimize it.
1743  if (Op == ADD && Val.hasOneUse()) {
1744    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1745    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1746      Op = SUB;
1747      return Val.getOperand(1);
1748    }
1749    // A special case for i16, which needs truncating as, in most cases, it's
1750    // promoted to i32. We will translate
1751    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1752    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1753        Val.getOperand(0).getOpcode() == ISD::SUB &&
1754        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1755      Op = SUB;
1756      Val = Val.getOperand(0);
1757      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1758                                            Val.getOperand(1));
1759    }
1760  }
1761
1762  return Val;
1763}
1764
1765SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1766  if (Node->hasAnyUseOfValue(0))
1767    return nullptr;
1768
1769  SDLoc dl(Node);
1770
1771  // Optimize common patterns for __sync_or_and_fetch and similar arith
1772  // operations where the result is not used. This allows us to use the "lock"
1773  // version of the arithmetic instruction.
1774  SDValue Chain = Node->getOperand(0);
1775  SDValue Ptr = Node->getOperand(1);
1776  SDValue Val = Node->getOperand(2);
1777  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1778  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1779    return nullptr;
1780
1781  // Which index into the table.
1782  enum AtomicOpc Op;
1783  switch (Node->getOpcode()) {
1784    default:
1785      return nullptr;
1786    case ISD::ATOMIC_LOAD_OR:
1787      Op = OR;
1788      break;
1789    case ISD::ATOMIC_LOAD_AND:
1790      Op = AND;
1791      break;
1792    case ISD::ATOMIC_LOAD_XOR:
1793      Op = XOR;
1794      break;
1795    case ISD::ATOMIC_LOAD_ADD:
1796      Op = ADD;
1797      break;
1798  }
1799
1800  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1801  bool isUnOp = !Val.getNode();
1802  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1803
1804  unsigned Opc = 0;
1805  switch (NVT.SimpleTy) {
1806    default: return nullptr;
1807    case MVT::i8:
1808      if (isCN)
1809        Opc = AtomicOpcTbl[Op][ConstantI8];
1810      else
1811        Opc = AtomicOpcTbl[Op][I8];
1812      break;
1813    case MVT::i16:
1814      if (isCN) {
1815        if (immSext8(Val.getNode()))
1816          Opc = AtomicOpcTbl[Op][SextConstantI16];
1817        else
1818          Opc = AtomicOpcTbl[Op][ConstantI16];
1819      } else
1820        Opc = AtomicOpcTbl[Op][I16];
1821      break;
1822    case MVT::i32:
1823      if (isCN) {
1824        if (immSext8(Val.getNode()))
1825          Opc = AtomicOpcTbl[Op][SextConstantI32];
1826        else
1827          Opc = AtomicOpcTbl[Op][ConstantI32];
1828      } else
1829        Opc = AtomicOpcTbl[Op][I32];
1830      break;
1831    case MVT::i64:
1832      Opc = AtomicOpcTbl[Op][I64];
1833      if (isCN) {
1834        if (immSext8(Val.getNode()))
1835          Opc = AtomicOpcTbl[Op][SextConstantI64];
1836        else if (i64immSExt32(Val.getNode()))
1837          Opc = AtomicOpcTbl[Op][ConstantI64];
1838      }
1839      break;
1840  }
1841
1842  assert(Opc != 0 && "Invalid arith lock transform!");
1843
1844  SDValue Ret;
1845  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1846                                                 dl, NVT), 0);
1847  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1848  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1849  if (isUnOp) {
1850    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1851    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1852  } else {
1853    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1854    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1855  }
1856  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1857  SDValue RetVals[] = { Undef, Ret };
1858  return CurDAG->getMergeValues(RetVals, dl).getNode();
1859}
1860
1861/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1862/// any uses which require the SF or OF bits to be accurate.
1863static bool HasNoSignedComparisonUses(SDNode *N) {
1864  // Examine each user of the node.
1865  for (SDNode::use_iterator UI = N->use_begin(),
1866         UE = N->use_end(); UI != UE; ++UI) {
1867    // Only examine CopyToReg uses.
1868    if (UI->getOpcode() != ISD::CopyToReg)
1869      return false;
1870    // Only examine CopyToReg uses that copy to EFLAGS.
1871    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1872          X86::EFLAGS)
1873      return false;
1874    // Examine each user of the CopyToReg use.
1875    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1876           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1877      // Only examine the Flag result.
1878      if (FlagUI.getUse().getResNo() != 1) continue;
1879      // Anything unusual: assume conservatively.
1880      if (!FlagUI->isMachineOpcode()) return false;
1881      // Examine the opcode of the user.
1882      switch (FlagUI->getMachineOpcode()) {
1883      // These comparisons don't treat the most significant bit specially.
1884      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1885      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1886      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1887      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1888      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1889      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1890      case X86::CMOVA16rr: case X86::CMOVA16rm:
1891      case X86::CMOVA32rr: case X86::CMOVA32rm:
1892      case X86::CMOVA64rr: case X86::CMOVA64rm:
1893      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1894      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1895      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1896      case X86::CMOVB16rr: case X86::CMOVB16rm:
1897      case X86::CMOVB32rr: case X86::CMOVB32rm:
1898      case X86::CMOVB64rr: case X86::CMOVB64rm:
1899      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1900      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1901      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1902      case X86::CMOVE16rr: case X86::CMOVE16rm:
1903      case X86::CMOVE32rr: case X86::CMOVE32rm:
1904      case X86::CMOVE64rr: case X86::CMOVE64rm:
1905      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1906      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1907      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1908      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1909      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1910      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1911      case X86::CMOVP16rr: case X86::CMOVP16rm:
1912      case X86::CMOVP32rr: case X86::CMOVP32rm:
1913      case X86::CMOVP64rr: case X86::CMOVP64rm:
1914        continue;
1915      // Anything else: assume conservatively.
1916      default: return false;
1917      }
1918    }
1919  }
1920  return true;
1921}
1922
1923/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1924/// is suitable for doing the {load; increment or decrement; store} to modify
1925/// transformation.
1926static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1927                                SDValue StoredVal, SelectionDAG *CurDAG,
1928                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1929
1930  // is the value stored the result of a DEC or INC?
1931  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1932
1933  // is the stored value result 0 of the load?
1934  if (StoredVal.getResNo() != 0) return false;
1935
1936  // are there other uses of the loaded value than the inc or dec?
1937  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1938
1939  // is the store non-extending and non-indexed?
1940  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1941    return false;
1942
1943  SDValue Load = StoredVal->getOperand(0);
1944  // Is the stored value a non-extending and non-indexed load?
1945  if (!ISD::isNormalLoad(Load.getNode())) return false;
1946
1947  // Return LoadNode by reference.
1948  LoadNode = cast<LoadSDNode>(Load);
1949  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1950  EVT LdVT = LoadNode->getMemoryVT();
1951  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1952      LdVT != MVT::i8)
1953    return false;
1954
1955  // Is store the only read of the loaded value?
1956  if (!Load.hasOneUse())
1957    return false;
1958
1959  // Is the address of the store the same as the load?
1960  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1961      LoadNode->getOffset() != StoreNode->getOffset())
1962    return false;
1963
1964  // Check if the chain is produced by the load or is a TokenFactor with
1965  // the load output chain as an operand. Return InputChain by reference.
1966  SDValue Chain = StoreNode->getChain();
1967
1968  bool ChainCheck = false;
1969  if (Chain == Load.getValue(1)) {
1970    ChainCheck = true;
1971    InputChain = LoadNode->getChain();
1972  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1973    SmallVector<SDValue, 4> ChainOps;
1974    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1975      SDValue Op = Chain.getOperand(i);
1976      if (Op == Load.getValue(1)) {
1977        ChainCheck = true;
1978        continue;
1979      }
1980
1981      // Make sure using Op as part of the chain would not cause a cycle here.
1982      // In theory, we could check whether the chain node is a predecessor of
1983      // the load. But that can be very expensive. Instead visit the uses and
1984      // make sure they all have smaller node id than the load.
1985      int LoadId = LoadNode->getNodeId();
1986      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1987             UE = UI->use_end(); UI != UE; ++UI) {
1988        if (UI.getUse().getResNo() != 0)
1989          continue;
1990        if (UI->getNodeId() > LoadId)
1991          return false;
1992      }
1993
1994      ChainOps.push_back(Op);
1995    }
1996
1997    if (ChainCheck)
1998      // Make a new TokenFactor with all the other input chains except
1999      // for the load.
2000      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2001                                   MVT::Other, ChainOps);
2002  }
2003  if (!ChainCheck)
2004    return false;
2005
2006  return true;
2007}
2008
2009/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2010/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2011static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2012  if (Opc == X86ISD::DEC) {
2013    if (LdVT == MVT::i64) return X86::DEC64m;
2014    if (LdVT == MVT::i32) return X86::DEC32m;
2015    if (LdVT == MVT::i16) return X86::DEC16m;
2016    if (LdVT == MVT::i8)  return X86::DEC8m;
2017  } else {
2018    assert(Opc == X86ISD::INC && "unrecognized opcode");
2019    if (LdVT == MVT::i64) return X86::INC64m;
2020    if (LdVT == MVT::i32) return X86::INC32m;
2021    if (LdVT == MVT::i16) return X86::INC16m;
2022    if (LdVT == MVT::i8)  return X86::INC8m;
2023  }
2024  llvm_unreachable("unrecognized size for LdVT");
2025}
2026
2027/// SelectGather - Customized ISel for GATHER operations.
2028///
2029SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2030  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2031  SDValue Chain = Node->getOperand(0);
2032  SDValue VSrc = Node->getOperand(2);
2033  SDValue Base = Node->getOperand(3);
2034  SDValue VIdx = Node->getOperand(4);
2035  SDValue VMask = Node->getOperand(5);
2036  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2037  if (!Scale)
2038    return nullptr;
2039
2040  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2041                                   MVT::Other);
2042
2043  // Memory Operands: Base, Scale, Index, Disp, Segment
2044  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2045  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2046  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2047                          Disp, Segment, VMask, Chain};
2048  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2049  // Node has 2 outputs: VDst and MVT::Other.
2050  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2051  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2052  // of ResNode.
2053  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2054  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2055  return ResNode;
2056}
2057
2058SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2059  MVT NVT = Node->getSimpleValueType(0);
2060  unsigned Opc, MOpc;
2061  unsigned Opcode = Node->getOpcode();
2062  SDLoc dl(Node);
2063
2064  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2065
2066  if (Node->isMachineOpcode()) {
2067    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2068    Node->setNodeId(-1);
2069    return nullptr;   // Already selected.
2070  }
2071
2072  switch (Opcode) {
2073  default: break;
2074  case ISD::INTRINSIC_W_CHAIN: {
2075    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2076    switch (IntNo) {
2077    default: break;
2078    case Intrinsic::x86_avx2_gather_d_pd:
2079    case Intrinsic::x86_avx2_gather_d_pd_256:
2080    case Intrinsic::x86_avx2_gather_q_pd:
2081    case Intrinsic::x86_avx2_gather_q_pd_256:
2082    case Intrinsic::x86_avx2_gather_d_ps:
2083    case Intrinsic::x86_avx2_gather_d_ps_256:
2084    case Intrinsic::x86_avx2_gather_q_ps:
2085    case Intrinsic::x86_avx2_gather_q_ps_256:
2086    case Intrinsic::x86_avx2_gather_d_q:
2087    case Intrinsic::x86_avx2_gather_d_q_256:
2088    case Intrinsic::x86_avx2_gather_q_q:
2089    case Intrinsic::x86_avx2_gather_q_q_256:
2090    case Intrinsic::x86_avx2_gather_d_d:
2091    case Intrinsic::x86_avx2_gather_d_d_256:
2092    case Intrinsic::x86_avx2_gather_q_d:
2093    case Intrinsic::x86_avx2_gather_q_d_256: {
2094      if (!Subtarget->hasAVX2())
2095        break;
2096      unsigned Opc;
2097      switch (IntNo) {
2098      default: llvm_unreachable("Impossible intrinsic");
2099      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2100      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2101      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2102      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2103      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2104      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2105      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2106      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2107      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2108      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2109      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2110      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2111      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2112      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2113      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2114      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2115      }
2116      SDNode *RetVal = SelectGather(Node, Opc);
2117      if (RetVal)
2118        // We already called ReplaceUses inside SelectGather.
2119        return nullptr;
2120      break;
2121    }
2122    }
2123    break;
2124  }
2125  case X86ISD::GlobalBaseReg:
2126    return getGlobalBaseReg();
2127
2128
2129  case ISD::ATOMIC_LOAD_XOR:
2130  case ISD::ATOMIC_LOAD_AND:
2131  case ISD::ATOMIC_LOAD_OR:
2132  case ISD::ATOMIC_LOAD_ADD: {
2133    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2134    if (RetVal)
2135      return RetVal;
2136    break;
2137  }
2138  case ISD::AND:
2139  case ISD::OR:
2140  case ISD::XOR: {
2141    // For operations of the form (x << C1) op C2, check if we can use a smaller
2142    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2143    SDValue N0 = Node->getOperand(0);
2144    SDValue N1 = Node->getOperand(1);
2145
2146    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2147      break;
2148
2149    // i8 is unshrinkable, i16 should be promoted to i32.
2150    if (NVT != MVT::i32 && NVT != MVT::i64)
2151      break;
2152
2153    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2154    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2155    if (!Cst || !ShlCst)
2156      break;
2157
2158    int64_t Val = Cst->getSExtValue();
2159    uint64_t ShlVal = ShlCst->getZExtValue();
2160
2161    // Make sure that we don't change the operation by removing bits.
2162    // This only matters for OR and XOR, AND is unaffected.
2163    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2164    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2165      break;
2166
2167    unsigned ShlOp, Op;
2168    MVT CstVT = NVT;
2169
2170    // Check the minimum bitwidth for the new constant.
2171    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2172    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2173    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2174    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2175      CstVT = MVT::i8;
2176    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2177      CstVT = MVT::i32;
2178
2179    // Bail if there is no smaller encoding.
2180    if (NVT == CstVT)
2181      break;
2182
2183    switch (NVT.SimpleTy) {
2184    default: llvm_unreachable("Unsupported VT!");
2185    case MVT::i32:
2186      assert(CstVT == MVT::i8);
2187      ShlOp = X86::SHL32ri;
2188
2189      switch (Opcode) {
2190      default: llvm_unreachable("Impossible opcode");
2191      case ISD::AND: Op = X86::AND32ri8; break;
2192      case ISD::OR:  Op =  X86::OR32ri8; break;
2193      case ISD::XOR: Op = X86::XOR32ri8; break;
2194      }
2195      break;
2196    case MVT::i64:
2197      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2198      ShlOp = X86::SHL64ri;
2199
2200      switch (Opcode) {
2201      default: llvm_unreachable("Impossible opcode");
2202      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2203      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2204      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2205      }
2206      break;
2207    }
2208
2209    // Emit the smaller op and the shift.
2210    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2211    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2212    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2213                                getI8Imm(ShlVal));
2214  }
2215  case X86ISD::UMUL: {
2216    SDValue N0 = Node->getOperand(0);
2217    SDValue N1 = Node->getOperand(1);
2218
2219    unsigned LoReg;
2220    switch (NVT.SimpleTy) {
2221    default: llvm_unreachable("Unsupported VT!");
2222    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2223    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2224    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2225    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2226    }
2227
2228    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2229                                          N0, SDValue()).getValue(1);
2230
2231    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2232    SDValue Ops[] = {N1, InFlag};
2233    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2234
2235    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2236    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2237    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2238    return nullptr;
2239  }
2240
2241  case ISD::SMUL_LOHI:
2242  case ISD::UMUL_LOHI: {
2243    SDValue N0 = Node->getOperand(0);
2244    SDValue N1 = Node->getOperand(1);
2245
2246    bool isSigned = Opcode == ISD::SMUL_LOHI;
2247    bool hasBMI2 = Subtarget->hasBMI2();
2248    if (!isSigned) {
2249      switch (NVT.SimpleTy) {
2250      default: llvm_unreachable("Unsupported VT!");
2251      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2252      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2253      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2254                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2255      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2256                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2257      }
2258    } else {
2259      switch (NVT.SimpleTy) {
2260      default: llvm_unreachable("Unsupported VT!");
2261      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2262      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2263      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2264      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2265      }
2266    }
2267
2268    unsigned SrcReg, LoReg, HiReg;
2269    switch (Opc) {
2270    default: llvm_unreachable("Unknown MUL opcode!");
2271    case X86::IMUL8r:
2272    case X86::MUL8r:
2273      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2274      break;
2275    case X86::IMUL16r:
2276    case X86::MUL16r:
2277      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2278      break;
2279    case X86::IMUL32r:
2280    case X86::MUL32r:
2281      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2282      break;
2283    case X86::IMUL64r:
2284    case X86::MUL64r:
2285      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2286      break;
2287    case X86::MULX32rr:
2288      SrcReg = X86::EDX; LoReg = HiReg = 0;
2289      break;
2290    case X86::MULX64rr:
2291      SrcReg = X86::RDX; LoReg = HiReg = 0;
2292      break;
2293    }
2294
2295    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2296    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2297    // Multiply is commmutative.
2298    if (!foldedLoad) {
2299      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2300      if (foldedLoad)
2301        std::swap(N0, N1);
2302    }
2303
2304    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2305                                          N0, SDValue()).getValue(1);
2306    SDValue ResHi, ResLo;
2307
2308    if (foldedLoad) {
2309      SDValue Chain;
2310      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2311                        InFlag };
2312      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2313        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2314        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2315        ResHi = SDValue(CNode, 0);
2316        ResLo = SDValue(CNode, 1);
2317        Chain = SDValue(CNode, 2);
2318        InFlag = SDValue(CNode, 3);
2319      } else {
2320        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2321        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2322        Chain = SDValue(CNode, 0);
2323        InFlag = SDValue(CNode, 1);
2324      }
2325
2326      // Update the chain.
2327      ReplaceUses(N1.getValue(1), Chain);
2328    } else {
2329      SDValue Ops[] = { N1, InFlag };
2330      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2331        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2332        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2333        ResHi = SDValue(CNode, 0);
2334        ResLo = SDValue(CNode, 1);
2335        InFlag = SDValue(CNode, 2);
2336      } else {
2337        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2338        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2339        InFlag = SDValue(CNode, 0);
2340      }
2341    }
2342
2343    // Prevent use of AH in a REX instruction by referencing AX instead.
2344    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2345        !SDValue(Node, 1).use_empty()) {
2346      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2347                                              X86::AX, MVT::i16, InFlag);
2348      InFlag = Result.getValue(2);
2349      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2350      // registers.
2351      if (!SDValue(Node, 0).use_empty())
2352        ReplaceUses(SDValue(Node, 1),
2353          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2354
2355      // Shift AX down 8 bits.
2356      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2357                                              Result,
2358                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2359      // Then truncate it down to i8.
2360      ReplaceUses(SDValue(Node, 1),
2361        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2362    }
2363    // Copy the low half of the result, if it is needed.
2364    if (!SDValue(Node, 0).use_empty()) {
2365      if (!ResLo.getNode()) {
2366        assert(LoReg && "Register for low half is not defined!");
2367        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2368                                       InFlag);
2369        InFlag = ResLo.getValue(2);
2370      }
2371      ReplaceUses(SDValue(Node, 0), ResLo);
2372      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2373    }
2374    // Copy the high half of the result, if it is needed.
2375    if (!SDValue(Node, 1).use_empty()) {
2376      if (!ResHi.getNode()) {
2377        assert(HiReg && "Register for high half is not defined!");
2378        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2379                                       InFlag);
2380        InFlag = ResHi.getValue(2);
2381      }
2382      ReplaceUses(SDValue(Node, 1), ResHi);
2383      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2384    }
2385
2386    return nullptr;
2387  }
2388
2389  case ISD::SDIVREM:
2390  case ISD::UDIVREM: {
2391    SDValue N0 = Node->getOperand(0);
2392    SDValue N1 = Node->getOperand(1);
2393
2394    bool isSigned = Opcode == ISD::SDIVREM;
2395    if (!isSigned) {
2396      switch (NVT.SimpleTy) {
2397      default: llvm_unreachable("Unsupported VT!");
2398      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2399      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2400      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2401      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2402      }
2403    } else {
2404      switch (NVT.SimpleTy) {
2405      default: llvm_unreachable("Unsupported VT!");
2406      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2407      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2408      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2409      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2410      }
2411    }
2412
2413    unsigned LoReg, HiReg, ClrReg;
2414    unsigned SExtOpcode;
2415    switch (NVT.SimpleTy) {
2416    default: llvm_unreachable("Unsupported VT!");
2417    case MVT::i8:
2418      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2419      SExtOpcode = X86::CBW;
2420      break;
2421    case MVT::i16:
2422      LoReg = X86::AX;  HiReg = X86::DX;
2423      ClrReg = X86::DX;
2424      SExtOpcode = X86::CWD;
2425      break;
2426    case MVT::i32:
2427      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2428      SExtOpcode = X86::CDQ;
2429      break;
2430    case MVT::i64:
2431      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2432      SExtOpcode = X86::CQO;
2433      break;
2434    }
2435
2436    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2437    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2438    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2439
2440    SDValue InFlag;
2441    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2442      // Special case for div8, just use a move with zero extension to AX to
2443      // clear the upper 8 bits (AH).
2444      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2445      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2446        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2447        Move =
2448          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2449                                         MVT::Other, Ops), 0);
2450        Chain = Move.getValue(1);
2451        ReplaceUses(N0.getValue(1), Chain);
2452      } else {
2453        Move =
2454          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2455        Chain = CurDAG->getEntryNode();
2456      }
2457      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2458      InFlag = Chain.getValue(1);
2459    } else {
2460      InFlag =
2461        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2462                             LoReg, N0, SDValue()).getValue(1);
2463      if (isSigned && !signBitIsZero) {
2464        // Sign extend the low part into the high part.
2465        InFlag =
2466          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2467      } else {
2468        // Zero out the high part, effectively zero extending the input.
2469        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2470        switch (NVT.SimpleTy) {
2471        case MVT::i16:
2472          ClrNode =
2473              SDValue(CurDAG->getMachineNode(
2474                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2475                          CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2476                      0);
2477          break;
2478        case MVT::i32:
2479          break;
2480        case MVT::i64:
2481          ClrNode =
2482              SDValue(CurDAG->getMachineNode(
2483                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2484                          CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2485                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2486                      0);
2487          break;
2488        default:
2489          llvm_unreachable("Unexpected division source");
2490        }
2491
2492        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2493                                      ClrNode, InFlag).getValue(1);
2494      }
2495    }
2496
2497    if (foldedLoad) {
2498      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2499                        InFlag };
2500      SDNode *CNode =
2501        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2502      InFlag = SDValue(CNode, 1);
2503      // Update the chain.
2504      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2505    } else {
2506      InFlag =
2507        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2508    }
2509
2510    // Prevent use of AH in a REX instruction by referencing AX instead.
2511    // Shift it down 8 bits.
2512    //
2513    // The current assumption of the register allocator is that isel
2514    // won't generate explicit references to the GPR8_NOREX registers. If
2515    // the allocator and/or the backend get enhanced to be more robust in
2516    // that regard, this can be, and should be, removed.
2517    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2518        !SDValue(Node, 1).use_empty()) {
2519      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2520                                              X86::AX, MVT::i16, InFlag);
2521      InFlag = Result.getValue(2);
2522
2523      // If we also need AL (the quotient), get it by extracting a subreg from
2524      // Result. The fast register allocator does not like multiple CopyFromReg
2525      // nodes using aliasing registers.
2526      if (!SDValue(Node, 0).use_empty())
2527        ReplaceUses(SDValue(Node, 0),
2528          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2529
2530      // Shift AX right by 8 bits instead of using AH.
2531      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2532                                         Result,
2533                                         CurDAG->getTargetConstant(8, MVT::i8)),
2534                       0);
2535      ReplaceUses(SDValue(Node, 1),
2536        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2537    }
2538    // Copy the division (low) result, if it is needed.
2539    if (!SDValue(Node, 0).use_empty()) {
2540      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2541                                                LoReg, NVT, InFlag);
2542      InFlag = Result.getValue(2);
2543      ReplaceUses(SDValue(Node, 0), Result);
2544      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2545    }
2546    // Copy the remainder (high) result, if it is needed.
2547    if (!SDValue(Node, 1).use_empty()) {
2548      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2549                                              HiReg, NVT, InFlag);
2550      InFlag = Result.getValue(2);
2551      ReplaceUses(SDValue(Node, 1), Result);
2552      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2553    }
2554    return nullptr;
2555  }
2556
2557  case X86ISD::CMP:
2558  case X86ISD::SUB: {
2559    // Sometimes a SUB is used to perform comparison.
2560    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2561      // This node is not a CMP.
2562      break;
2563    SDValue N0 = Node->getOperand(0);
2564    SDValue N1 = Node->getOperand(1);
2565
2566    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2567    // use a smaller encoding.
2568    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2569        HasNoSignedComparisonUses(Node))
2570      // Look past the truncate if CMP is the only use of it.
2571      N0 = N0.getOperand(0);
2572    if ((N0.getNode()->getOpcode() == ISD::AND ||
2573         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2574        N0.getNode()->hasOneUse() &&
2575        N0.getValueType() != MVT::i8 &&
2576        X86::isZeroNode(N1)) {
2577      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2578      if (!C) break;
2579
2580      // For example, convert "testl %eax, $8" to "testb %al, $8"
2581      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2582          (!(C->getZExtValue() & 0x80) ||
2583           HasNoSignedComparisonUses(Node))) {
2584        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2585        SDValue Reg = N0.getNode()->getOperand(0);
2586
2587        // On x86-32, only the ABCD registers have 8-bit subregisters.
2588        if (!Subtarget->is64Bit()) {
2589          const TargetRegisterClass *TRC;
2590          switch (N0.getSimpleValueType().SimpleTy) {
2591          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2592          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2593          default: llvm_unreachable("Unsupported TEST operand type!");
2594          }
2595          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2596          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2597                                               Reg.getValueType(), Reg, RC), 0);
2598        }
2599
2600        // Extract the l-register.
2601        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2602                                                        MVT::i8, Reg);
2603
2604        // Emit a testb.
2605        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2606                                                 Subreg, Imm);
2607        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2608        // one, do not call ReplaceAllUsesWith.
2609        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2610                    SDValue(NewNode, 0));
2611        return nullptr;
2612      }
2613
2614      // For example, "testl %eax, $2048" to "testb %ah, $8".
2615      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2616          (!(C->getZExtValue() & 0x8000) ||
2617           HasNoSignedComparisonUses(Node))) {
2618        // Shift the immediate right by 8 bits.
2619        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2620                                                       MVT::i8);
2621        SDValue Reg = N0.getNode()->getOperand(0);
2622
2623        // Put the value in an ABCD register.
2624        const TargetRegisterClass *TRC;
2625        switch (N0.getSimpleValueType().SimpleTy) {
2626        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2627        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2628        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2629        default: llvm_unreachable("Unsupported TEST operand type!");
2630        }
2631        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2632        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2633                                             Reg.getValueType(), Reg, RC), 0);
2634
2635        // Extract the h-register.
2636        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2637                                                        MVT::i8, Reg);
2638
2639        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2640        // target GR8_NOREX registers, so make sure the register class is
2641        // forced.
2642        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2643                                                 MVT::i32, Subreg, ShiftedImm);
2644        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2645        // one, do not call ReplaceAllUsesWith.
2646        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2647                    SDValue(NewNode, 0));
2648        return nullptr;
2649      }
2650
2651      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2652      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2653          N0.getValueType() != MVT::i16 &&
2654          (!(C->getZExtValue() & 0x8000) ||
2655           HasNoSignedComparisonUses(Node))) {
2656        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2657        SDValue Reg = N0.getNode()->getOperand(0);
2658
2659        // Extract the 16-bit subregister.
2660        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2661                                                        MVT::i16, Reg);
2662
2663        // Emit a testw.
2664        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2665                                                 Subreg, Imm);
2666        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2667        // one, do not call ReplaceAllUsesWith.
2668        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2669                    SDValue(NewNode, 0));
2670        return nullptr;
2671      }
2672
2673      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2674      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2675          N0.getValueType() == MVT::i64 &&
2676          (!(C->getZExtValue() & 0x80000000) ||
2677           HasNoSignedComparisonUses(Node))) {
2678        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2679        SDValue Reg = N0.getNode()->getOperand(0);
2680
2681        // Extract the 32-bit subregister.
2682        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2683                                                        MVT::i32, Reg);
2684
2685        // Emit a testl.
2686        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2687                                                 Subreg, Imm);
2688        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2689        // one, do not call ReplaceAllUsesWith.
2690        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2691                    SDValue(NewNode, 0));
2692        return nullptr;
2693      }
2694    }
2695    break;
2696  }
2697  case ISD::STORE: {
2698    // Change a chain of {load; incr or dec; store} of the same value into
2699    // a simple increment or decrement through memory of that value, if the
2700    // uses of the modified value and its address are suitable.
2701    // The DEC64m tablegen pattern is currently not able to match the case where
2702    // the EFLAGS on the original DEC are used. (This also applies to
2703    // {INC,DEC}X{64,32,16,8}.)
2704    // We'll need to improve tablegen to allow flags to be transferred from a
2705    // node in the pattern to the result node.  probably with a new keyword
2706    // for example, we have this
2707    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2708    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2709    //   (implicit EFLAGS)]>;
2710    // but maybe need something like this
2711    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2712    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2713    //   (transferrable EFLAGS)]>;
2714
2715    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2716    SDValue StoredVal = StoreNode->getOperand(1);
2717    unsigned Opc = StoredVal->getOpcode();
2718
2719    LoadSDNode *LoadNode = nullptr;
2720    SDValue InputChain;
2721    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2722                             LoadNode, InputChain))
2723      break;
2724
2725    SDValue Base, Scale, Index, Disp, Segment;
2726    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2727                    Base, Scale, Index, Disp, Segment))
2728      break;
2729
2730    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2731    MemOp[0] = StoreNode->getMemOperand();
2732    MemOp[1] = LoadNode->getMemOperand();
2733    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2734    EVT LdVT = LoadNode->getMemoryVT();
2735    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2736    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2737                                                   SDLoc(Node),
2738                                                   MVT::i32, MVT::Other, Ops);
2739    Result->setMemRefs(MemOp, MemOp + 2);
2740
2741    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2742    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2743
2744    return Result;
2745  }
2746  }
2747
2748  SDNode *ResNode = SelectCode(Node);
2749
2750  DEBUG(dbgs() << "=> ";
2751        if (ResNode == nullptr || ResNode == Node)
2752          Node->dump(CurDAG);
2753        else
2754          ResNode->dump(CurDAG);
2755        dbgs() << '\n');
2756
2757  return ResNode;
2758}
2759
2760bool X86DAGToDAGISel::
2761SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2762                             std::vector<SDValue> &OutOps) {
2763  SDValue Op0, Op1, Op2, Op3, Op4;
2764  switch (ConstraintCode) {
2765  case 'o':   // offsetable        ??
2766  case 'v':   // not offsetable    ??
2767  default: return true;
2768  case 'm':   // memory
2769    if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2770      return true;
2771    break;
2772  }
2773
2774  OutOps.push_back(Op0);
2775  OutOps.push_back(Op1);
2776  OutOps.push_back(Op2);
2777  OutOps.push_back(Op3);
2778  OutOps.push_back(Op4);
2779  return false;
2780}
2781
2782/// createX86ISelDag - This pass converts a legalized DAG into a
2783/// X86-specific DAG, ready for instruction scheduling.
2784///
2785FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2786                                     CodeGenOpt::Level OptLevel) {
2787  return new X86DAGToDAGISel(TM, OptLevel);
2788}
2789