X86ISelLowering.cpp revision b1df5b013a38ab7381630af8b3142c56f604d85b
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86CallingConv.h"
20#include "X86InstrBuilder.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/VariadicFunction.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalAlias.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/MC/MCAsmInfo.h"
44#include "llvm/MC/MCContext.h"
45#include "llvm/MC/MCExpr.h"
46#include "llvm/MC/MCSymbol.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Target/TargetOptions.h"
52#include <bitset>
53#include <cctype>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
63                                SelectionDAG &DAG, SDLoc dl,
64                                unsigned vectorWidth) {
65  assert((vectorWidth == 128 || vectorWidth == 256) &&
66         "Unsupported vector width");
67  EVT VT = Vec.getValueType();
68  EVT ElVT = VT.getVectorElementType();
69  unsigned Factor = VT.getSizeInBits()/vectorWidth;
70  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
71                                  VT.getVectorNumElements()/Factor);
72
73  // Extract from UNDEF is UNDEF.
74  if (Vec.getOpcode() == ISD::UNDEF)
75    return DAG.getUNDEF(ResultVT);
76
77  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
78  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
79
80  // This is the index of the first element of the vectorWidth-bit chunk
81  // we want.
82  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
83                               * ElemsPerChunk);
84
85  // If the input is a buildvector just emit a smaller one.
86  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
87    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
88                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
89
90  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
91  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
92                               VecIdx);
93
94  return Result;
95
96}
97/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
98/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
99/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
100/// instructions or a simple subregister reference. Idx is an index in the
101/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
102/// lowering EXTRACT_VECTOR_ELT operations easier.
103static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
104                                   SelectionDAG &DAG, SDLoc dl) {
105  assert((Vec.getValueType().is256BitVector() ||
106          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
107  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
108}
109
110/// Generate a DAG to grab 256-bits from a 512-bit vector.
111static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
112                                   SelectionDAG &DAG, SDLoc dl) {
113  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
114  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
115}
116
117static SDValue InsertSubVector(SDValue Result, SDValue Vec,
118                               unsigned IdxVal, SelectionDAG &DAG,
119                               SDLoc dl, unsigned vectorWidth) {
120  assert((vectorWidth == 128 || vectorWidth == 256) &&
121         "Unsupported vector width");
122  // Inserting UNDEF is Result
123  if (Vec.getOpcode() == ISD::UNDEF)
124    return Result;
125  EVT VT = Vec.getValueType();
126  EVT ElVT = VT.getVectorElementType();
127  EVT ResultVT = Result.getValueType();
128
129  // Insert the relevant vectorWidth bits.
130  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
131
132  // This is the index of the first element of the vectorWidth-bit chunk
133  // we want.
134  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
135                               * ElemsPerChunk);
136
137  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
138  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
139                     VecIdx);
140}
141/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
142/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
143/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
144/// simple superregister reference.  Idx is an index in the 128 bits
145/// we want.  It need not be aligned to a 128-bit bounday.  That makes
146/// lowering INSERT_VECTOR_ELT operations easier.
147static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
148                                  unsigned IdxVal, SelectionDAG &DAG,
149                                  SDLoc dl) {
150  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
151  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
152}
153
154static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
155                                  unsigned IdxVal, SelectionDAG &DAG,
156                                  SDLoc dl) {
157  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
158  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
159}
160
161/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
162/// instructions. This is used because creating CONCAT_VECTOR nodes of
163/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
164/// large BUILD_VECTORS.
165static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
166                                   unsigned NumElems, SelectionDAG &DAG,
167                                   SDLoc dl) {
168  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
169  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
170}
171
172static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
173                                   unsigned NumElems, SelectionDAG &DAG,
174                                   SDLoc dl) {
175  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
176  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
177}
178
179static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
180  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
181  bool is64Bit = Subtarget->is64Bit();
182
183  if (Subtarget->isTargetEnvMacho()) {
184    if (is64Bit)
185      return new X86_64MachoTargetObjectFile();
186    return new TargetLoweringObjectFileMachO();
187  }
188
189  if (Subtarget->isTargetLinux())
190    return new X86LinuxTargetObjectFile();
191  if (Subtarget->isTargetELF())
192    return new TargetLoweringObjectFileELF();
193  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
194    return new TargetLoweringObjectFileCOFF();
195  llvm_unreachable("unknown subtarget type");
196}
197
198X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
199  : TargetLowering(TM, createTLOF(TM)) {
200  Subtarget = &TM.getSubtarget<X86Subtarget>();
201  X86ScalarSSEf64 = Subtarget->hasSSE2();
202  X86ScalarSSEf32 = Subtarget->hasSSE1();
203  TD = getDataLayout();
204
205  resetOperationActions();
206}
207
208void X86TargetLowering::resetOperationActions() {
209  const TargetMachine &TM = getTargetMachine();
210  static bool FirstTimeThrough = true;
211
212  // If none of the target options have changed, then we don't need to reset the
213  // operation actions.
214  if (!FirstTimeThrough && TO == TM.Options) return;
215
216  if (!FirstTimeThrough) {
217    // Reinitialize the actions.
218    initActions();
219    FirstTimeThrough = false;
220  }
221
222  TO = TM.Options;
223
224  // Set up the TargetLowering object.
225  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
226
227  // X86 is weird, it always uses i8 for shift amounts and setcc results.
228  setBooleanContents(ZeroOrOneBooleanContent);
229  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
230  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231
232  // For 64-bit since we have so many registers use the ILP scheduler, for
233  // 32-bit code use the register pressure specific scheduling.
234  // For Atom, always use ILP scheduling.
235  if (Subtarget->isAtom())
236    setSchedulingPreference(Sched::ILP);
237  else if (Subtarget->is64Bit())
238    setSchedulingPreference(Sched::ILP);
239  else
240    setSchedulingPreference(Sched::RegPressure);
241  const X86RegisterInfo *RegInfo =
242    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
243  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
244
245  // Bypass expensive divides on Atom when compiling with O2
246  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
247    addBypassSlowDiv(32, 8);
248    if (Subtarget->is64Bit())
249      addBypassSlowDiv(64, 16);
250  }
251
252  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
253    // Setup Windows compiler runtime calls.
254    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
255    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
256    setLibcallName(RTLIB::SREM_I64, "_allrem");
257    setLibcallName(RTLIB::UREM_I64, "_aullrem");
258    setLibcallName(RTLIB::MUL_I64, "_allmul");
259    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
260    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
261    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
262    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
263    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
264
265    // The _ftol2 runtime function has an unusual calling conv, which
266    // is modeled by a special pseudo-instruction.
267    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
268    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
269    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
270    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
271  }
272
273  if (Subtarget->isTargetDarwin()) {
274    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
275    setUseUnderscoreSetJmp(false);
276    setUseUnderscoreLongJmp(false);
277  } else if (Subtarget->isTargetMingw()) {
278    // MS runtime is weird: it exports _setjmp, but longjmp!
279    setUseUnderscoreSetJmp(true);
280    setUseUnderscoreLongJmp(false);
281  } else {
282    setUseUnderscoreSetJmp(true);
283    setUseUnderscoreLongJmp(true);
284  }
285
286  // Set up the register classes.
287  addRegisterClass(MVT::i8, &X86::GR8RegClass);
288  addRegisterClass(MVT::i16, &X86::GR16RegClass);
289  addRegisterClass(MVT::i32, &X86::GR32RegClass);
290  if (Subtarget->is64Bit())
291    addRegisterClass(MVT::i64, &X86::GR64RegClass);
292
293  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
294
295  // We don't accept any truncstore of integer registers.
296  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
297  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
298  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
299  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
300  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
301  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
302
303  // SETOEQ and SETUNE require checking two conditions.
304  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
305  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
306  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
307  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
308  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
309  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
310
311  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
312  // operation.
313  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
314  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
315  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
316
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
319    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
320  } else if (!TM.Options.UseSoftFloat) {
321    // We have an algorithm for SSE2->double, and we turn this into a
322    // 64-bit FILD followed by conditional FADD for other targets.
323    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
324    // We have an algorithm for SSE2, and we turn this into a 64-bit
325    // FILD for other targets.
326    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
327  }
328
329  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
330  // this operation.
331  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
332  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
333
334  if (!TM.Options.UseSoftFloat) {
335    // SSE has no i16 to fp conversion, only i32
336    if (X86ScalarSSEf32) {
337      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
338      // f32 and f64 cases are Legal, f80 case is not
339      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
340    } else {
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
342      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
343    }
344  } else {
345    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
346    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
347  }
348
349  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
350  // are Legal, f80 is custom lowered.
351  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
352  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
353
354  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
355  // this operation.
356  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
357  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
358
359  if (X86ScalarSSEf32) {
360    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
361    // f32 and f64 cases are Legal, f80 case is not
362    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
363  } else {
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
365    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
366  }
367
368  // Handle FP_TO_UINT by promoting the destination to a larger signed
369  // conversion.
370  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
371  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
372  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
373
374  if (Subtarget->is64Bit()) {
375    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
376    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
377  } else if (!TM.Options.UseSoftFloat) {
378    // Since AVX is a superset of SSE3, only check for SSE here.
379    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
380      // Expand FP_TO_UINT into a select.
381      // FIXME: We would like to use a Custom expander here eventually to do
382      // the optimal thing for SSE vs. the default expansion in the legalizer.
383      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
384    else
385      // With SSE3 we can use fisttpll to convert to a signed i64; without
386      // SSE, we're stuck with a fistpll.
387      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
388  }
389
390  if (isTargetFTOL()) {
391    // Use the _ftol2 runtime function, which has a pseudo-instruction
392    // to handle its weird calling convention.
393    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
394  }
395
396  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
397  if (!X86ScalarSSEf64) {
398    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
399    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
400    if (Subtarget->is64Bit()) {
401      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
402      // Without SSE, i64->f64 goes through memory.
403      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
404    }
405  }
406
407  // Scalar integer divide and remainder are lowered to use operations that
408  // produce two results, to match the available instructions. This exposes
409  // the two-result form to trivial CSE, which is able to combine x/y and x%y
410  // into a single instruction.
411  //
412  // Scalar integer multiply-high is also lowered to use two-result
413  // operations, to match the available instructions. However, plain multiply
414  // (low) operations are left as Legal, as there are single-result
415  // instructions for this in x86. Using the two-result multiply instructions
416  // when both high and low results are needed must be arranged by dagcombine.
417  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
418    MVT VT = IntVTs[i];
419    setOperationAction(ISD::MULHS, VT, Expand);
420    setOperationAction(ISD::MULHU, VT, Expand);
421    setOperationAction(ISD::SDIV, VT, Expand);
422    setOperationAction(ISD::UDIV, VT, Expand);
423    setOperationAction(ISD::SREM, VT, Expand);
424    setOperationAction(ISD::UREM, VT, Expand);
425
426    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
427    setOperationAction(ISD::ADDC, VT, Custom);
428    setOperationAction(ISD::ADDE, VT, Custom);
429    setOperationAction(ISD::SUBC, VT, Custom);
430    setOperationAction(ISD::SUBE, VT, Custom);
431  }
432
433  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
434  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
435  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
436  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
437  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
438  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
439  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
441  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
442  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
443  if (Subtarget->is64Bit())
444    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
445  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
446  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
447  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
448  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
449  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
450  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
451  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
452  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
453
454  // Promote the i8 variants and force them on up to i32 which has a shorter
455  // encoding.
456  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
457  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
458  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
459  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
460  if (Subtarget->hasBMI()) {
461    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
462    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
463    if (Subtarget->is64Bit())
464      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
465  } else {
466    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
467    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
468    if (Subtarget->is64Bit())
469      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
470  }
471
472  if (Subtarget->hasLZCNT()) {
473    // When promoting the i8 variants, force them to i32 for a shorter
474    // encoding.
475    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
476    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
477    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
478    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
479    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
480    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
481    if (Subtarget->is64Bit())
482      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
483  } else {
484    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
485    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
486    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
487    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
488    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
489    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
490    if (Subtarget->is64Bit()) {
491      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
492      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
493    }
494  }
495
496  if (Subtarget->hasPOPCNT()) {
497    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
498  } else {
499    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
500    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
501    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
502    if (Subtarget->is64Bit())
503      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
504  }
505
506  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
507  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
508
509  // These should be promoted to a larger select which is supported.
510  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
511  // X86 wants to expand cmov itself.
512  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
513  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
514  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
515  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
516  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
517  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
518  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
519  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
520  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
521  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
522  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
523  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
524  if (Subtarget->is64Bit()) {
525    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
526    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
527  }
528  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
529  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
530  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
531  // support continuation, user-level threading, and etc.. As a result, no
532  // other SjLj exception interfaces are implemented and please don't build
533  // your own exception handling based on them.
534  // LLVM/Clang supports zero-cost DWARF exception handling.
535  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
536  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
537
538  // Darwin ABI issue.
539  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
540  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
541  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
542  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
543  if (Subtarget->is64Bit())
544    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
545  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
546  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
549    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
550    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
551    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
552    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
553  }
554  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
555  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
556  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
557  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
558  if (Subtarget->is64Bit()) {
559    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
560    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
561    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
562  }
563
564  if (Subtarget->hasSSE1())
565    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
566
567  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
568
569  // Expand certain atomics
570  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
571    MVT VT = IntVTs[i];
572    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
573    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
574    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
575  }
576
577  if (!Subtarget->is64Bit()) {
578    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
580    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
581    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
582    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
584    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
589    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
590  }
591
592  if (Subtarget->hasCmpxchg16b()) {
593    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
594  }
595
596  // FIXME - use subtarget debug flags
597  if (!Subtarget->isTargetDarwin() &&
598      !Subtarget->isTargetELF() &&
599      !Subtarget->isTargetCygMing()) {
600    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
601  }
602
603  if (Subtarget->is64Bit()) {
604    setExceptionPointerRegister(X86::RAX);
605    setExceptionSelectorRegister(X86::RDX);
606  } else {
607    setExceptionPointerRegister(X86::EAX);
608    setExceptionSelectorRegister(X86::EDX);
609  }
610  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
611  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
612
613  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
614  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
615
616  setOperationAction(ISD::TRAP, MVT::Other, Legal);
617  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
618
619  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
620  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
621  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
622  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
623    // TargetInfo::X86_64ABIBuiltinVaList
624    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
625    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
626  } else {
627    // TargetInfo::CharPtrBuiltinVaList
628    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
629    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
630  }
631
632  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
633  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
634
635  if (Subtarget->isOSWindows() && !Subtarget->isTargetEnvMacho())
636    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
637                       MVT::i64 : MVT::i32, Custom);
638  else if (TM.Options.EnableSegmentedStacks)
639    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
640                       MVT::i64 : MVT::i32, Custom);
641  else
642    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
643                       MVT::i64 : MVT::i32, Expand);
644
645  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
646    // f32 and f64 use SSE.
647    // Set up the FP register classes.
648    addRegisterClass(MVT::f32, &X86::FR32RegClass);
649    addRegisterClass(MVT::f64, &X86::FR64RegClass);
650
651    // Use ANDPD to simulate FABS.
652    setOperationAction(ISD::FABS , MVT::f64, Custom);
653    setOperationAction(ISD::FABS , MVT::f32, Custom);
654
655    // Use XORP to simulate FNEG.
656    setOperationAction(ISD::FNEG , MVT::f64, Custom);
657    setOperationAction(ISD::FNEG , MVT::f32, Custom);
658
659    // Use ANDPD and ORPD to simulate FCOPYSIGN.
660    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
662
663    // Lower this to FGETSIGNx86 plus an AND.
664    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
665    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
666
667    // We don't support sin/cos/fmod
668    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
669    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
670    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
671    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
672    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
673    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
674
675    // Expand FP immediates into loads from the stack, except for the special
676    // cases we handle.
677    addLegalFPImmediate(APFloat(+0.0)); // xorpd
678    addLegalFPImmediate(APFloat(+0.0f)); // xorps
679  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
680    // Use SSE for f32, x87 for f64.
681    // Set up the FP register classes.
682    addRegisterClass(MVT::f32, &X86::FR32RegClass);
683    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
684
685    // Use ANDPS to simulate FABS.
686    setOperationAction(ISD::FABS , MVT::f32, Custom);
687
688    // Use XORP to simulate FNEG.
689    setOperationAction(ISD::FNEG , MVT::f32, Custom);
690
691    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
692
693    // Use ANDPS and ORPS to simulate FCOPYSIGN.
694    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
695    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
696
697    // We don't support sin/cos/fmod
698    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
699    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
700    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
701
702    // Special cases we handle for FP constants.
703    addLegalFPImmediate(APFloat(+0.0f)); // xorps
704    addLegalFPImmediate(APFloat(+0.0)); // FLD0
705    addLegalFPImmediate(APFloat(+1.0)); // FLD1
706    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
707    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
708
709    if (!TM.Options.UnsafeFPMath) {
710      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
711      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
712      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
713    }
714  } else if (!TM.Options.UseSoftFloat) {
715    // f32 and f64 in x87.
716    // Set up the FP register classes.
717    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
718    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
719
720    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
721    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
723    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
724
725    if (!TM.Options.UnsafeFPMath) {
726      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
727      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
729      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
731      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
732    }
733    addLegalFPImmediate(APFloat(+0.0)); // FLD0
734    addLegalFPImmediate(APFloat(+1.0)); // FLD1
735    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
736    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
737    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
738    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
739    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
740    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
741  }
742
743  // We don't support FMA.
744  setOperationAction(ISD::FMA, MVT::f64, Expand);
745  setOperationAction(ISD::FMA, MVT::f32, Expand);
746
747  // Long double always uses X87.
748  if (!TM.Options.UseSoftFloat) {
749    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
750    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
751    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
752    {
753      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
754      addLegalFPImmediate(TmpFlt);  // FLD0
755      TmpFlt.changeSign();
756      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
757
758      bool ignored;
759      APFloat TmpFlt2(+1.0);
760      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
761                      &ignored);
762      addLegalFPImmediate(TmpFlt2);  // FLD1
763      TmpFlt2.changeSign();
764      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
765    }
766
767    if (!TM.Options.UnsafeFPMath) {
768      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
769      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
770      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
771    }
772
773    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
774    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
775    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
776    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
777    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
778    setOperationAction(ISD::FMA, MVT::f80, Expand);
779  }
780
781  // Always use a library call for pow.
782  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
784  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
785
786  setOperationAction(ISD::FLOG, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
788  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP, MVT::f80, Expand);
790  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
791
792  // First set operation action for all vector types to either promote
793  // (for widening) or expand (for scalarization). Then we will selectively
794  // turn on ones that can be effectively codegen'd.
795  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
796           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
797    MVT VT = (MVT::SimpleValueType)i;
798    setOperationAction(ISD::ADD , VT, Expand);
799    setOperationAction(ISD::SUB , VT, Expand);
800    setOperationAction(ISD::FADD, VT, Expand);
801    setOperationAction(ISD::FNEG, VT, Expand);
802    setOperationAction(ISD::FSUB, VT, Expand);
803    setOperationAction(ISD::MUL , VT, Expand);
804    setOperationAction(ISD::FMUL, VT, Expand);
805    setOperationAction(ISD::SDIV, VT, Expand);
806    setOperationAction(ISD::UDIV, VT, Expand);
807    setOperationAction(ISD::FDIV, VT, Expand);
808    setOperationAction(ISD::SREM, VT, Expand);
809    setOperationAction(ISD::UREM, VT, Expand);
810    setOperationAction(ISD::LOAD, VT, Expand);
811    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
812    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
813    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
814    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
816    setOperationAction(ISD::FABS, VT, Expand);
817    setOperationAction(ISD::FSIN, VT, Expand);
818    setOperationAction(ISD::FSINCOS, VT, Expand);
819    setOperationAction(ISD::FCOS, VT, Expand);
820    setOperationAction(ISD::FSINCOS, VT, Expand);
821    setOperationAction(ISD::FREM, VT, Expand);
822    setOperationAction(ISD::FMA,  VT, Expand);
823    setOperationAction(ISD::FPOWI, VT, Expand);
824    setOperationAction(ISD::FSQRT, VT, Expand);
825    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
826    setOperationAction(ISD::FFLOOR, VT, Expand);
827    setOperationAction(ISD::FCEIL, VT, Expand);
828    setOperationAction(ISD::FTRUNC, VT, Expand);
829    setOperationAction(ISD::FRINT, VT, Expand);
830    setOperationAction(ISD::FNEARBYINT, VT, Expand);
831    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
832    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
833    setOperationAction(ISD::SDIVREM, VT, Expand);
834    setOperationAction(ISD::UDIVREM, VT, Expand);
835    setOperationAction(ISD::FPOW, VT, Expand);
836    setOperationAction(ISD::CTPOP, VT, Expand);
837    setOperationAction(ISD::CTTZ, VT, Expand);
838    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
839    setOperationAction(ISD::CTLZ, VT, Expand);
840    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
841    setOperationAction(ISD::SHL, VT, Expand);
842    setOperationAction(ISD::SRA, VT, Expand);
843    setOperationAction(ISD::SRL, VT, Expand);
844    setOperationAction(ISD::ROTL, VT, Expand);
845    setOperationAction(ISD::ROTR, VT, Expand);
846    setOperationAction(ISD::BSWAP, VT, Expand);
847    setOperationAction(ISD::SETCC, VT, Expand);
848    setOperationAction(ISD::FLOG, VT, Expand);
849    setOperationAction(ISD::FLOG2, VT, Expand);
850    setOperationAction(ISD::FLOG10, VT, Expand);
851    setOperationAction(ISD::FEXP, VT, Expand);
852    setOperationAction(ISD::FEXP2, VT, Expand);
853    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
854    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
855    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
856    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
857    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
858    setOperationAction(ISD::TRUNCATE, VT, Expand);
859    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
860    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
861    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
862    setOperationAction(ISD::VSELECT, VT, Expand);
863    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
864             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
865      setTruncStoreAction(VT,
866                          (MVT::SimpleValueType)InnerVT, Expand);
867    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
868    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
869    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
870  }
871
872  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
873  // with -msoft-float, disable use of MMX as well.
874  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
875    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
876    // No operations on x86mmx supported, everything uses intrinsics.
877  }
878
879  // MMX-sized vectors (other than x86mmx) are expected to be expanded
880  // into smaller operations.
881  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
882  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
883  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
884  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
885  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
886  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
887  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
888  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
889  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
890  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
891  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
892  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
893  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
894  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
895  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
896  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
897  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
900  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
901  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
902  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
903  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
904  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
905  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
906  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
909  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
910
911  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
912    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
913
914    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
915    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
918    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
919    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
920    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
921    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
922    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
923    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
925    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
926  }
927
928  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
929    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
930
931    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
932    // registers cannot be used even for integer operations.
933    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
934    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
935    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
936    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
937
938    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
939    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
940    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
941    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
942    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
943    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
944    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
945    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
946    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
947    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
948    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
949    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
950    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
951    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
952    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
953    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
954    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
955    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
956
957    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
958    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
959    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
960    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
961
962    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
963    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
969    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
970      MVT VT = (MVT::SimpleValueType)i;
971      // Do not attempt to custom lower non-power-of-2 vectors
972      if (!isPowerOf2_32(VT.getVectorNumElements()))
973        continue;
974      // Do not attempt to custom lower non-128-bit vectors
975      if (!VT.is128BitVector())
976        continue;
977      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
978      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
980    }
981
982    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
983    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
984    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
985    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
986    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
987    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
988
989    if (Subtarget->is64Bit()) {
990      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
991      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
992    }
993
994    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
995    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
996      MVT VT = (MVT::SimpleValueType)i;
997
998      // Do not attempt to promote non-128-bit vectors
999      if (!VT.is128BitVector())
1000        continue;
1001
1002      setOperationAction(ISD::AND,    VT, Promote);
1003      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1004      setOperationAction(ISD::OR,     VT, Promote);
1005      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1006      setOperationAction(ISD::XOR,    VT, Promote);
1007      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1008      setOperationAction(ISD::LOAD,   VT, Promote);
1009      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1010      setOperationAction(ISD::SELECT, VT, Promote);
1011      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1012    }
1013
1014    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1015
1016    // Custom lower v2i64 and v2f64 selects.
1017    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1019    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1020    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1021
1022    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1023    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1024
1025    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1026    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1027    // As there is no 64-bit GPR available, we need build a special custom
1028    // sequence to convert from v2i32 to v2f32.
1029    if (!Subtarget->is64Bit())
1030      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1031
1032    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1033    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1034
1035    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1036  }
1037
1038  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1039    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1040    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1041    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1042    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1043    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1044    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1045    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1046    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1047    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1048    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1049
1050    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1051    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1052    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1053    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1054    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1055    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1056    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1057    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1058    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1059    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1060
1061    // FIXME: Do we need to handle scalar-to-vector here?
1062    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1063
1064    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1065    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1066    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1067    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1068    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1069
1070    // i8 and i16 vectors are custom , because the source register and source
1071    // source memory operand types are not the same width.  f32 vectors are
1072    // custom since the immediate controlling the insert encodes additional
1073    // information.
1074    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1075    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1076    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1077    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1078
1079    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1080    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1081    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1082    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1083
1084    // FIXME: these should be Legal but thats only for the case where
1085    // the index is constant.  For now custom expand to deal with that.
1086    if (Subtarget->is64Bit()) {
1087      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1088      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1089    }
1090  }
1091
1092  if (Subtarget->hasSSE2()) {
1093    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1094    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1095
1096    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1097    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1098
1099    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1100    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1101
1102    // In the customized shift lowering, the legal cases in AVX2 will be
1103    // recognized.
1104    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1105    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1106
1107    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1108    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1109
1110    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1111
1112    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1113    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1114  }
1115
1116  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1117    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1118    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1119    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1120    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1121    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1122    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1123
1124    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1125    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1126    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1127
1128    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1129    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1130    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1131    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1132    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1133    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1134    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1135    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1136    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1137    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1138    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1139    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1140
1141    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1142    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1143    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1144    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1145    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1146    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1147    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1148    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1149    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1150    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1151    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1152    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1153
1154    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1155
1156    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1157    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1158    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1159    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1160
1161    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1162    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1163
1164    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1165
1166    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1167    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1168
1169    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1170    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1171
1172    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1173    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1174
1175    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1176
1177    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1178    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1179    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1180    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1181
1182    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1183    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1184    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1185
1186    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1187    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1188    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1189    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1190
1191    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1192    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1193    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1194    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1195    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1196    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1197    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1198    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1199    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1200    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1201    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1202    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1203
1204    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1205      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1206      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1207      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1208      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1209      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1210      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1211    }
1212
1213    if (Subtarget->hasInt256()) {
1214      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1215      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1216      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1217      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1218
1219      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1220      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1221      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1222      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1223
1224      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1225      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1226      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1227      // Don't lower v32i8 because there is no 128-bit byte mul
1228
1229      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1230
1231      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1232    } else {
1233      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1234      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1235      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1236      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1237
1238      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1239      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1240      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1241      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1242
1243      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1244      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1245      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1246      // Don't lower v32i8 because there is no 128-bit byte mul
1247    }
1248
1249    // In the customized shift lowering, the legal cases in AVX2 will be
1250    // recognized.
1251    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1252    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1253
1254    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1255    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1256
1257    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1258
1259    // Custom lower several nodes for 256-bit types.
1260    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1261             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1262      MVT VT = (MVT::SimpleValueType)i;
1263
1264      // Extract subvector is special because the value type
1265      // (result) is 128-bit but the source is 256-bit wide.
1266      if (VT.is128BitVector())
1267        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1268
1269      // Do not attempt to custom lower other non-256-bit vectors
1270      if (!VT.is256BitVector())
1271        continue;
1272
1273      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1274      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1275      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1276      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1277      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1278      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1279      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1280    }
1281
1282    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1283    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1284      MVT VT = (MVT::SimpleValueType)i;
1285
1286      // Do not attempt to promote non-256-bit vectors
1287      if (!VT.is256BitVector())
1288        continue;
1289
1290      setOperationAction(ISD::AND,    VT, Promote);
1291      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1292      setOperationAction(ISD::OR,     VT, Promote);
1293      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1294      setOperationAction(ISD::XOR,    VT, Promote);
1295      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1296      setOperationAction(ISD::LOAD,   VT, Promote);
1297      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1298      setOperationAction(ISD::SELECT, VT, Promote);
1299      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1300    }
1301  }
1302
1303  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1304    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1305    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1306    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1307    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1308
1309    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1310    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1311
1312    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1313    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1314    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1315    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1316    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1317    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1318
1319    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1320    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1321    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1322    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1323    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1324    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1325
1326    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1327    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1328    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1329    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1330    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1331    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1332    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1333    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1334    setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
1335
1336    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1337    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1338    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1339    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1340    if (Subtarget->is64Bit()) {
1341      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1342      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1343      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1344      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1345    }
1346    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1347    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1348    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1349    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1350    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1351    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1352    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1353    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1354
1355    setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
1356    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1357    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1358    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1359    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1360    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1361    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1362    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1363    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1364    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1365    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1366    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1367
1368    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1369    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1370    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1371    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1372    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1373
1374    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1375    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1376
1377    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1378
1379    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1380    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1381    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1382    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1383    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1384
1385    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1386    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1387
1388    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1389    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1390
1391    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1392
1393    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1394    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1395
1396    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1397    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1398
1399    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1400    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1401
1402    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1403    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1404    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1405    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1406    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1407    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1408
1409    // Custom lower several nodes.
1410    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1411             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1412      MVT VT = (MVT::SimpleValueType)i;
1413
1414      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1415      // Extract subvector is special because the value type
1416      // (result) is 256/128-bit but the source is 512-bit wide.
1417      if (VT.is128BitVector() || VT.is256BitVector())
1418        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1419
1420      if (VT.getVectorElementType() == MVT::i1)
1421        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1422
1423      // Do not attempt to custom lower other non-512-bit vectors
1424      if (!VT.is512BitVector())
1425        continue;
1426
1427      if ( EltSize >= 32) {
1428        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1429        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1430        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1431        setOperationAction(ISD::VSELECT,             VT, Legal);
1432        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1433        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1434        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1435      }
1436    }
1437    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1438      MVT VT = (MVT::SimpleValueType)i;
1439
1440      // Do not attempt to promote non-256-bit vectors
1441      if (!VT.is512BitVector())
1442        continue;
1443
1444      setOperationAction(ISD::SELECT, VT, Promote);
1445      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1446    }
1447  }// has  AVX-512
1448
1449  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1450  // of this type with custom code.
1451  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1452           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1453    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1454                       Custom);
1455  }
1456
1457  // We want to custom lower some of our intrinsics.
1458  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1459  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1460  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1461
1462  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1463  // handle type legalization for these operations here.
1464  //
1465  // FIXME: We really should do custom legalization for addition and
1466  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1467  // than generic legalization for 64-bit multiplication-with-overflow, though.
1468  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1469    // Add/Sub/Mul with overflow operations are custom lowered.
1470    MVT VT = IntVTs[i];
1471    setOperationAction(ISD::SADDO, VT, Custom);
1472    setOperationAction(ISD::UADDO, VT, Custom);
1473    setOperationAction(ISD::SSUBO, VT, Custom);
1474    setOperationAction(ISD::USUBO, VT, Custom);
1475    setOperationAction(ISD::SMULO, VT, Custom);
1476    setOperationAction(ISD::UMULO, VT, Custom);
1477  }
1478
1479  // There are no 8-bit 3-address imul/mul instructions
1480  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1481  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1482
1483  if (!Subtarget->is64Bit()) {
1484    // These libcalls are not available in 32-bit.
1485    setLibcallName(RTLIB::SHL_I128, 0);
1486    setLibcallName(RTLIB::SRL_I128, 0);
1487    setLibcallName(RTLIB::SRA_I128, 0);
1488  }
1489
1490  // Combine sin / cos into one node or libcall if possible.
1491  if (Subtarget->hasSinCos()) {
1492    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1493    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1494    if (Subtarget->isTargetDarwin()) {
1495      // For MacOSX, we don't want to the normal expansion of a libcall to
1496      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1497      // traffic.
1498      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1499      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1500    }
1501  }
1502
1503  // We have target-specific dag combine patterns for the following nodes:
1504  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1505  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1506  setTargetDAGCombine(ISD::VSELECT);
1507  setTargetDAGCombine(ISD::SELECT);
1508  setTargetDAGCombine(ISD::SHL);
1509  setTargetDAGCombine(ISD::SRA);
1510  setTargetDAGCombine(ISD::SRL);
1511  setTargetDAGCombine(ISD::OR);
1512  setTargetDAGCombine(ISD::AND);
1513  setTargetDAGCombine(ISD::ADD);
1514  setTargetDAGCombine(ISD::FADD);
1515  setTargetDAGCombine(ISD::FSUB);
1516  setTargetDAGCombine(ISD::FMA);
1517  setTargetDAGCombine(ISD::SUB);
1518  setTargetDAGCombine(ISD::LOAD);
1519  setTargetDAGCombine(ISD::STORE);
1520  setTargetDAGCombine(ISD::ZERO_EXTEND);
1521  setTargetDAGCombine(ISD::ANY_EXTEND);
1522  setTargetDAGCombine(ISD::SIGN_EXTEND);
1523  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1524  setTargetDAGCombine(ISD::TRUNCATE);
1525  setTargetDAGCombine(ISD::SINT_TO_FP);
1526  setTargetDAGCombine(ISD::SETCC);
1527  if (Subtarget->is64Bit())
1528    setTargetDAGCombine(ISD::MUL);
1529  setTargetDAGCombine(ISD::XOR);
1530
1531  computeRegisterProperties();
1532
1533  // On Darwin, -Os means optimize for size without hurting performance,
1534  // do not reduce the limit.
1535  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1536  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1537  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1538  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1539  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1540  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1541  setPrefLoopAlignment(4); // 2^4 bytes.
1542
1543  // Predictable cmov don't hurt on atom because it's in-order.
1544  PredictableSelectIsExpensive = !Subtarget->isAtom();
1545
1546  setPrefFunctionAlignment(4); // 2^4 bytes.
1547}
1548
1549EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1550  if (!VT.isVector())
1551    return MVT::i8;
1552
1553  const TargetMachine &TM = getTargetMachine();
1554  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512())
1555    switch(VT.getVectorNumElements()) {
1556    case  8: return MVT::v8i1;
1557    case 16: return MVT::v16i1;
1558    }
1559
1560  return VT.changeVectorElementTypeToInteger();
1561}
1562
1563/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1564/// the desired ByVal argument alignment.
1565static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1566  if (MaxAlign == 16)
1567    return;
1568  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1569    if (VTy->getBitWidth() == 128)
1570      MaxAlign = 16;
1571  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1572    unsigned EltAlign = 0;
1573    getMaxByValAlign(ATy->getElementType(), EltAlign);
1574    if (EltAlign > MaxAlign)
1575      MaxAlign = EltAlign;
1576  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1577    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1578      unsigned EltAlign = 0;
1579      getMaxByValAlign(STy->getElementType(i), EltAlign);
1580      if (EltAlign > MaxAlign)
1581        MaxAlign = EltAlign;
1582      if (MaxAlign == 16)
1583        break;
1584    }
1585  }
1586}
1587
1588/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1589/// function arguments in the caller parameter area. For X86, aggregates
1590/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1591/// are at 4-byte boundaries.
1592unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1593  if (Subtarget->is64Bit()) {
1594    // Max of 8 and alignment of type.
1595    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1596    if (TyAlign > 8)
1597      return TyAlign;
1598    return 8;
1599  }
1600
1601  unsigned Align = 4;
1602  if (Subtarget->hasSSE1())
1603    getMaxByValAlign(Ty, Align);
1604  return Align;
1605}
1606
1607/// getOptimalMemOpType - Returns the target specific optimal type for load
1608/// and store operations as a result of memset, memcpy, and memmove
1609/// lowering. If DstAlign is zero that means it's safe to destination
1610/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1611/// means there isn't a need to check it against alignment requirement,
1612/// probably because the source does not need to be loaded. If 'IsMemset' is
1613/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1614/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1615/// source is constant so it does not need to be loaded.
1616/// It returns EVT::Other if the type should be determined using generic
1617/// target-independent logic.
1618EVT
1619X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1620                                       unsigned DstAlign, unsigned SrcAlign,
1621                                       bool IsMemset, bool ZeroMemset,
1622                                       bool MemcpyStrSrc,
1623                                       MachineFunction &MF) const {
1624  const Function *F = MF.getFunction();
1625  if ((!IsMemset || ZeroMemset) &&
1626      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1627                                       Attribute::NoImplicitFloat)) {
1628    if (Size >= 16 &&
1629        (Subtarget->isUnalignedMemAccessFast() ||
1630         ((DstAlign == 0 || DstAlign >= 16) &&
1631          (SrcAlign == 0 || SrcAlign >= 16)))) {
1632      if (Size >= 32) {
1633        if (Subtarget->hasInt256())
1634          return MVT::v8i32;
1635        if (Subtarget->hasFp256())
1636          return MVT::v8f32;
1637      }
1638      if (Subtarget->hasSSE2())
1639        return MVT::v4i32;
1640      if (Subtarget->hasSSE1())
1641        return MVT::v4f32;
1642    } else if (!MemcpyStrSrc && Size >= 8 &&
1643               !Subtarget->is64Bit() &&
1644               Subtarget->hasSSE2()) {
1645      // Do not use f64 to lower memcpy if source is string constant. It's
1646      // better to use i32 to avoid the loads.
1647      return MVT::f64;
1648    }
1649  }
1650  if (Subtarget->is64Bit() && Size >= 8)
1651    return MVT::i64;
1652  return MVT::i32;
1653}
1654
1655bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1656  if (VT == MVT::f32)
1657    return X86ScalarSSEf32;
1658  else if (VT == MVT::f64)
1659    return X86ScalarSSEf64;
1660  return true;
1661}
1662
1663bool
1664X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1665  if (Fast)
1666    *Fast = Subtarget->isUnalignedMemAccessFast();
1667  return true;
1668}
1669
1670/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1671/// current function.  The returned value is a member of the
1672/// MachineJumpTableInfo::JTEntryKind enum.
1673unsigned X86TargetLowering::getJumpTableEncoding() const {
1674  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1675  // symbol.
1676  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1677      Subtarget->isPICStyleGOT())
1678    return MachineJumpTableInfo::EK_Custom32;
1679
1680  // Otherwise, use the normal jump table encoding heuristics.
1681  return TargetLowering::getJumpTableEncoding();
1682}
1683
1684const MCExpr *
1685X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1686                                             const MachineBasicBlock *MBB,
1687                                             unsigned uid,MCContext &Ctx) const{
1688  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1689         Subtarget->isPICStyleGOT());
1690  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1691  // entries.
1692  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1693                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1694}
1695
1696/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1697/// jumptable.
1698SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1699                                                    SelectionDAG &DAG) const {
1700  if (!Subtarget->is64Bit())
1701    // This doesn't have SDLoc associated with it, but is not really the
1702    // same as a Register.
1703    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1704  return Table;
1705}
1706
1707/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1708/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1709/// MCExpr.
1710const MCExpr *X86TargetLowering::
1711getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1712                             MCContext &Ctx) const {
1713  // X86-64 uses RIP relative addressing based on the jump table label.
1714  if (Subtarget->isPICStyleRIPRel())
1715    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1716
1717  // Otherwise, the reference is relative to the PIC base.
1718  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1719}
1720
1721// FIXME: Why this routine is here? Move to RegInfo!
1722std::pair<const TargetRegisterClass*, uint8_t>
1723X86TargetLowering::findRepresentativeClass(MVT VT) const{
1724  const TargetRegisterClass *RRC = 0;
1725  uint8_t Cost = 1;
1726  switch (VT.SimpleTy) {
1727  default:
1728    return TargetLowering::findRepresentativeClass(VT);
1729  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1730    RRC = Subtarget->is64Bit() ?
1731      (const TargetRegisterClass*)&X86::GR64RegClass :
1732      (const TargetRegisterClass*)&X86::GR32RegClass;
1733    break;
1734  case MVT::x86mmx:
1735    RRC = &X86::VR64RegClass;
1736    break;
1737  case MVT::f32: case MVT::f64:
1738  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1739  case MVT::v4f32: case MVT::v2f64:
1740  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1741  case MVT::v4f64:
1742    RRC = &X86::VR128RegClass;
1743    break;
1744  }
1745  return std::make_pair(RRC, Cost);
1746}
1747
1748bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1749                                               unsigned &Offset) const {
1750  if (!Subtarget->isTargetLinux())
1751    return false;
1752
1753  if (Subtarget->is64Bit()) {
1754    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1755    Offset = 0x28;
1756    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1757      AddressSpace = 256;
1758    else
1759      AddressSpace = 257;
1760  } else {
1761    // %gs:0x14 on i386
1762    Offset = 0x14;
1763    AddressSpace = 256;
1764  }
1765  return true;
1766}
1767
1768bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1769                                            unsigned DestAS) const {
1770  assert(SrcAS != DestAS && "Expected different address spaces!");
1771
1772  return SrcAS < 256 && DestAS < 256;
1773}
1774
1775//===----------------------------------------------------------------------===//
1776//               Return Value Calling Convention Implementation
1777//===----------------------------------------------------------------------===//
1778
1779#include "X86GenCallingConv.inc"
1780
1781bool
1782X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1783                                  MachineFunction &MF, bool isVarArg,
1784                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1785                        LLVMContext &Context) const {
1786  SmallVector<CCValAssign, 16> RVLocs;
1787  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1788                 RVLocs, Context);
1789  return CCInfo.CheckReturn(Outs, RetCC_X86);
1790}
1791
1792const uint16_t *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1793  static const uint16_t ScratchRegs[] = { X86::R11, 0 };
1794  return ScratchRegs;
1795}
1796
1797SDValue
1798X86TargetLowering::LowerReturn(SDValue Chain,
1799                               CallingConv::ID CallConv, bool isVarArg,
1800                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1801                               const SmallVectorImpl<SDValue> &OutVals,
1802                               SDLoc dl, SelectionDAG &DAG) const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  SmallVector<CCValAssign, 16> RVLocs;
1807  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1808                 RVLocs, *DAG.getContext());
1809  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1810
1811  SDValue Flag;
1812  SmallVector<SDValue, 6> RetOps;
1813  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1814  // Operand #1 = Bytes To Pop
1815  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1816                   MVT::i16));
1817
1818  // Copy the result values into the output registers.
1819  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1820    CCValAssign &VA = RVLocs[i];
1821    assert(VA.isRegLoc() && "Can only return in registers!");
1822    SDValue ValToCopy = OutVals[i];
1823    EVT ValVT = ValToCopy.getValueType();
1824
1825    // Promote values to the appropriate types
1826    if (VA.getLocInfo() == CCValAssign::SExt)
1827      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1828    else if (VA.getLocInfo() == CCValAssign::ZExt)
1829      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1830    else if (VA.getLocInfo() == CCValAssign::AExt)
1831      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1832    else if (VA.getLocInfo() == CCValAssign::BCvt)
1833      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1834
1835    // If this is x86-64, and we disabled SSE, we can't return FP values,
1836    // or SSE or MMX vectors.
1837    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1838         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1839          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1840      report_fatal_error("SSE register return with SSE disabled");
1841    }
1842    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1843    // llvm-gcc has never done it right and no one has noticed, so this
1844    // should be OK for now.
1845    if (ValVT == MVT::f64 &&
1846        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1847      report_fatal_error("SSE2 register return with SSE2 disabled");
1848
1849    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1850    // the RET instruction and handled by the FP Stackifier.
1851    if (VA.getLocReg() == X86::ST0 ||
1852        VA.getLocReg() == X86::ST1) {
1853      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1854      // change the value to the FP stack register class.
1855      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1856        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1857      RetOps.push_back(ValToCopy);
1858      // Don't emit a copytoreg.
1859      continue;
1860    }
1861
1862    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1863    // which is returned in RAX / RDX.
1864    if (Subtarget->is64Bit()) {
1865      if (ValVT == MVT::x86mmx) {
1866        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1867          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1868          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1869                                  ValToCopy);
1870          // If we don't have SSE2 available, convert to v4f32 so the generated
1871          // register is legal.
1872          if (!Subtarget->hasSSE2())
1873            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1874        }
1875      }
1876    }
1877
1878    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1879    Flag = Chain.getValue(1);
1880    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1881  }
1882
1883  // The x86-64 ABIs require that for returning structs by value we copy
1884  // the sret argument into %rax/%eax (depending on ABI) for the return.
1885  // Win32 requires us to put the sret argument to %eax as well.
1886  // We saved the argument into a virtual register in the entry block,
1887  // so now we copy the value out and into %rax/%eax.
1888  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1889      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1890    MachineFunction &MF = DAG.getMachineFunction();
1891    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1892    unsigned Reg = FuncInfo->getSRetReturnReg();
1893    assert(Reg &&
1894           "SRetReturnReg should have been set in LowerFormalArguments().");
1895    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1896
1897    unsigned RetValReg
1898        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1899          X86::RAX : X86::EAX;
1900    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1901    Flag = Chain.getValue(1);
1902
1903    // RAX/EAX now acts like a return value.
1904    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1905  }
1906
1907  RetOps[0] = Chain;  // Update chain.
1908
1909  // Add the flag if we have it.
1910  if (Flag.getNode())
1911    RetOps.push_back(Flag);
1912
1913  return DAG.getNode(X86ISD::RET_FLAG, dl,
1914                     MVT::Other, &RetOps[0], RetOps.size());
1915}
1916
1917bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1918  if (N->getNumValues() != 1)
1919    return false;
1920  if (!N->hasNUsesOfValue(1, 0))
1921    return false;
1922
1923  SDValue TCChain = Chain;
1924  SDNode *Copy = *N->use_begin();
1925  if (Copy->getOpcode() == ISD::CopyToReg) {
1926    // If the copy has a glue operand, we conservatively assume it isn't safe to
1927    // perform a tail call.
1928    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1929      return false;
1930    TCChain = Copy->getOperand(0);
1931  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1932    return false;
1933
1934  bool HasRet = false;
1935  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1936       UI != UE; ++UI) {
1937    if (UI->getOpcode() != X86ISD::RET_FLAG)
1938      return false;
1939    HasRet = true;
1940  }
1941
1942  if (!HasRet)
1943    return false;
1944
1945  Chain = TCChain;
1946  return true;
1947}
1948
1949MVT
1950X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1951                                            ISD::NodeType ExtendKind) const {
1952  MVT ReturnMVT;
1953  // TODO: Is this also valid on 32-bit?
1954  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1955    ReturnMVT = MVT::i8;
1956  else
1957    ReturnMVT = MVT::i32;
1958
1959  MVT MinVT = getRegisterType(ReturnMVT);
1960  return VT.bitsLT(MinVT) ? MinVT : VT;
1961}
1962
1963/// LowerCallResult - Lower the result values of a call into the
1964/// appropriate copies out of appropriate physical registers.
1965///
1966SDValue
1967X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1968                                   CallingConv::ID CallConv, bool isVarArg,
1969                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1970                                   SDLoc dl, SelectionDAG &DAG,
1971                                   SmallVectorImpl<SDValue> &InVals) const {
1972
1973  // Assign locations to each value returned by this call.
1974  SmallVector<CCValAssign, 16> RVLocs;
1975  bool Is64Bit = Subtarget->is64Bit();
1976  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1977                 getTargetMachine(), RVLocs, *DAG.getContext());
1978  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1979
1980  // Copy all of the result registers out of their specified physreg.
1981  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1982    CCValAssign &VA = RVLocs[i];
1983    EVT CopyVT = VA.getValVT();
1984
1985    // If this is x86-64, and we disabled SSE, we can't return FP values
1986    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1987        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1988      report_fatal_error("SSE register return with SSE disabled");
1989    }
1990
1991    SDValue Val;
1992
1993    // If this is a call to a function that returns an fp value on the floating
1994    // point stack, we must guarantee the value is popped from the stack, so
1995    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1996    // if the return value is not used. We use the FpPOP_RETVAL instruction
1997    // instead.
1998    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1999      // If we prefer to use the value in xmm registers, copy it out as f80 and
2000      // use a truncate to move it from fp stack reg to xmm reg.
2001      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
2002      SDValue Ops[] = { Chain, InFlag };
2003      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
2004                                         MVT::Other, MVT::Glue, Ops), 1);
2005      Val = Chain.getValue(0);
2006
2007      // Round the f80 to the right size, which also moves it to the appropriate
2008      // xmm register.
2009      if (CopyVT != VA.getValVT())
2010        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2011                          // This truncation won't change the value.
2012                          DAG.getIntPtrConstant(1));
2013    } else {
2014      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2015                                 CopyVT, InFlag).getValue(1);
2016      Val = Chain.getValue(0);
2017    }
2018    InFlag = Chain.getValue(2);
2019    InVals.push_back(Val);
2020  }
2021
2022  return Chain;
2023}
2024
2025//===----------------------------------------------------------------------===//
2026//                C & StdCall & Fast Calling Convention implementation
2027//===----------------------------------------------------------------------===//
2028//  StdCall calling convention seems to be standard for many Windows' API
2029//  routines and around. It differs from C calling convention just a little:
2030//  callee should clean up the stack, not caller. Symbols should be also
2031//  decorated in some fancy way :) It doesn't support any vector arguments.
2032//  For info on fast calling convention see Fast Calling Convention (tail call)
2033//  implementation LowerX86_32FastCCCallTo.
2034
2035/// CallIsStructReturn - Determines whether a call uses struct return
2036/// semantics.
2037enum StructReturnType {
2038  NotStructReturn,
2039  RegStructReturn,
2040  StackStructReturn
2041};
2042static StructReturnType
2043callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2044  if (Outs.empty())
2045    return NotStructReturn;
2046
2047  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2048  if (!Flags.isSRet())
2049    return NotStructReturn;
2050  if (Flags.isInReg())
2051    return RegStructReturn;
2052  return StackStructReturn;
2053}
2054
2055/// ArgsAreStructReturn - Determines whether a function uses struct
2056/// return semantics.
2057static StructReturnType
2058argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2059  if (Ins.empty())
2060    return NotStructReturn;
2061
2062  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2063  if (!Flags.isSRet())
2064    return NotStructReturn;
2065  if (Flags.isInReg())
2066    return RegStructReturn;
2067  return StackStructReturn;
2068}
2069
2070/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2071/// by "Src" to address "Dst" with size and alignment information specified by
2072/// the specific parameter attribute. The copy will be passed as a byval
2073/// function parameter.
2074static SDValue
2075CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2076                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2077                          SDLoc dl) {
2078  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2079
2080  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2081                       /*isVolatile*/false, /*AlwaysInline=*/true,
2082                       MachinePointerInfo(), MachinePointerInfo());
2083}
2084
2085/// IsTailCallConvention - Return true if the calling convention is one that
2086/// supports tail call optimization.
2087static bool IsTailCallConvention(CallingConv::ID CC) {
2088  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2089          CC == CallingConv::HiPE);
2090}
2091
2092/// \brief Return true if the calling convention is a C calling convention.
2093static bool IsCCallConvention(CallingConv::ID CC) {
2094  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2095          CC == CallingConv::X86_64_SysV);
2096}
2097
2098bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2099  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2100    return false;
2101
2102  CallSite CS(CI);
2103  CallingConv::ID CalleeCC = CS.getCallingConv();
2104  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2105    return false;
2106
2107  return true;
2108}
2109
2110/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2111/// a tailcall target by changing its ABI.
2112static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2113                                   bool GuaranteedTailCallOpt) {
2114  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2115}
2116
2117SDValue
2118X86TargetLowering::LowerMemArgument(SDValue Chain,
2119                                    CallingConv::ID CallConv,
2120                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2121                                    SDLoc dl, SelectionDAG &DAG,
2122                                    const CCValAssign &VA,
2123                                    MachineFrameInfo *MFI,
2124                                    unsigned i) const {
2125  // Create the nodes corresponding to a load from this parameter slot.
2126  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2127  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2128                              getTargetMachine().Options.GuaranteedTailCallOpt);
2129  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2130  EVT ValVT;
2131
2132  // If value is passed by pointer we have address passed instead of the value
2133  // itself.
2134  if (VA.getLocInfo() == CCValAssign::Indirect)
2135    ValVT = VA.getLocVT();
2136  else
2137    ValVT = VA.getValVT();
2138
2139  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2140  // changed with more analysis.
2141  // In case of tail call optimization mark all arguments mutable. Since they
2142  // could be overwritten by lowering of arguments in case of a tail call.
2143  if (Flags.isByVal()) {
2144    unsigned Bytes = Flags.getByValSize();
2145    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2146    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2147    return DAG.getFrameIndex(FI, getPointerTy());
2148  } else {
2149    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2150                                    VA.getLocMemOffset(), isImmutable);
2151    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2152    return DAG.getLoad(ValVT, dl, Chain, FIN,
2153                       MachinePointerInfo::getFixedStack(FI),
2154                       false, false, false, 0);
2155  }
2156}
2157
2158SDValue
2159X86TargetLowering::LowerFormalArguments(SDValue Chain,
2160                                        CallingConv::ID CallConv,
2161                                        bool isVarArg,
2162                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2163                                        SDLoc dl,
2164                                        SelectionDAG &DAG,
2165                                        SmallVectorImpl<SDValue> &InVals)
2166                                          const {
2167  MachineFunction &MF = DAG.getMachineFunction();
2168  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2169
2170  const Function* Fn = MF.getFunction();
2171  if (Fn->hasExternalLinkage() &&
2172      Subtarget->isTargetCygMing() &&
2173      Fn->getName() == "main")
2174    FuncInfo->setForceFramePointer(true);
2175
2176  MachineFrameInfo *MFI = MF.getFrameInfo();
2177  bool Is64Bit = Subtarget->is64Bit();
2178  bool IsWindows = Subtarget->isTargetWindows();
2179  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2180
2181  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2182         "Var args not supported with calling convention fastcc, ghc or hipe");
2183
2184  // Assign locations to all of the incoming arguments.
2185  SmallVector<CCValAssign, 16> ArgLocs;
2186  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2187                 ArgLocs, *DAG.getContext());
2188
2189  // Allocate shadow area for Win64
2190  if (IsWin64)
2191    CCInfo.AllocateStack(32, 8);
2192
2193  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2194
2195  unsigned LastVal = ~0U;
2196  SDValue ArgValue;
2197  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2198    CCValAssign &VA = ArgLocs[i];
2199    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2200    // places.
2201    assert(VA.getValNo() != LastVal &&
2202           "Don't support value assigned to multiple locs yet");
2203    (void)LastVal;
2204    LastVal = VA.getValNo();
2205
2206    if (VA.isRegLoc()) {
2207      EVT RegVT = VA.getLocVT();
2208      const TargetRegisterClass *RC;
2209      if (RegVT == MVT::i32)
2210        RC = &X86::GR32RegClass;
2211      else if (Is64Bit && RegVT == MVT::i64)
2212        RC = &X86::GR64RegClass;
2213      else if (RegVT == MVT::f32)
2214        RC = &X86::FR32RegClass;
2215      else if (RegVT == MVT::f64)
2216        RC = &X86::FR64RegClass;
2217      else if (RegVT.is512BitVector())
2218        RC = &X86::VR512RegClass;
2219      else if (RegVT.is256BitVector())
2220        RC = &X86::VR256RegClass;
2221      else if (RegVT.is128BitVector())
2222        RC = &X86::VR128RegClass;
2223      else if (RegVT == MVT::x86mmx)
2224        RC = &X86::VR64RegClass;
2225      else if (RegVT == MVT::v8i1)
2226        RC = &X86::VK8RegClass;
2227      else if (RegVT == MVT::v16i1)
2228        RC = &X86::VK16RegClass;
2229      else
2230        llvm_unreachable("Unknown argument type!");
2231
2232      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2233      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2234
2235      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2236      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2237      // right size.
2238      if (VA.getLocInfo() == CCValAssign::SExt)
2239        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2240                               DAG.getValueType(VA.getValVT()));
2241      else if (VA.getLocInfo() == CCValAssign::ZExt)
2242        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2243                               DAG.getValueType(VA.getValVT()));
2244      else if (VA.getLocInfo() == CCValAssign::BCvt)
2245        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2246
2247      if (VA.isExtInLoc()) {
2248        // Handle MMX values passed in XMM regs.
2249        if (RegVT.isVector())
2250          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2251        else
2252          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2253      }
2254    } else {
2255      assert(VA.isMemLoc());
2256      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2257    }
2258
2259    // If value is passed via pointer - do a load.
2260    if (VA.getLocInfo() == CCValAssign::Indirect)
2261      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2262                             MachinePointerInfo(), false, false, false, 0);
2263
2264    InVals.push_back(ArgValue);
2265  }
2266
2267  // The x86-64 ABIs require that for returning structs by value we copy
2268  // the sret argument into %rax/%eax (depending on ABI) for the return.
2269  // Win32 requires us to put the sret argument to %eax as well.
2270  // Save the argument into a virtual register so that we can access it
2271  // from the return points.
2272  if (MF.getFunction()->hasStructRetAttr() &&
2273      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2274    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2275    unsigned Reg = FuncInfo->getSRetReturnReg();
2276    if (!Reg) {
2277      MVT PtrTy = getPointerTy();
2278      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2279      FuncInfo->setSRetReturnReg(Reg);
2280    }
2281    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2283  }
2284
2285  unsigned StackSize = CCInfo.getNextStackOffset();
2286  // Align stack specially for tail calls.
2287  if (FuncIsMadeTailCallSafe(CallConv,
2288                             MF.getTarget().Options.GuaranteedTailCallOpt))
2289    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2290
2291  // If the function takes variable number of arguments, make a frame index for
2292  // the start of the first vararg value... for expansion of llvm.va_start.
2293  if (isVarArg) {
2294    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2295                    CallConv != CallingConv::X86_ThisCall)) {
2296      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2297    }
2298    if (Is64Bit) {
2299      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2300
2301      // FIXME: We should really autogenerate these arrays
2302      static const uint16_t GPR64ArgRegsWin64[] = {
2303        X86::RCX, X86::RDX, X86::R8,  X86::R9
2304      };
2305      static const uint16_t GPR64ArgRegs64Bit[] = {
2306        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2307      };
2308      static const uint16_t XMMArgRegs64Bit[] = {
2309        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2310        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2311      };
2312      const uint16_t *GPR64ArgRegs;
2313      unsigned NumXMMRegs = 0;
2314
2315      if (IsWin64) {
2316        // The XMM registers which might contain var arg parameters are shadowed
2317        // in their paired GPR.  So we only need to save the GPR to their home
2318        // slots.
2319        TotalNumIntRegs = 4;
2320        GPR64ArgRegs = GPR64ArgRegsWin64;
2321      } else {
2322        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2323        GPR64ArgRegs = GPR64ArgRegs64Bit;
2324
2325        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2326                                                TotalNumXMMRegs);
2327      }
2328      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2329                                                       TotalNumIntRegs);
2330
2331      bool NoImplicitFloatOps = Fn->getAttributes().
2332        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2333      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2334             "SSE register cannot be used when SSE is disabled!");
2335      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2336               NoImplicitFloatOps) &&
2337             "SSE register cannot be used when SSE is disabled!");
2338      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2339          !Subtarget->hasSSE1())
2340        // Kernel mode asks for SSE to be disabled, so don't push them
2341        // on the stack.
2342        TotalNumXMMRegs = 0;
2343
2344      if (IsWin64) {
2345        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2346        // Get to the caller-allocated home save location.  Add 8 to account
2347        // for the return address.
2348        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2349        FuncInfo->setRegSaveFrameIndex(
2350          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2351        // Fixup to set vararg frame on shadow area (4 x i64).
2352        if (NumIntRegs < 4)
2353          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2354      } else {
2355        // For X86-64, if there are vararg parameters that are passed via
2356        // registers, then we must store them to their spots on the stack so
2357        // they may be loaded by deferencing the result of va_next.
2358        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2359        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2360        FuncInfo->setRegSaveFrameIndex(
2361          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2362                               false));
2363      }
2364
2365      // Store the integer parameter registers.
2366      SmallVector<SDValue, 8> MemOps;
2367      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2368                                        getPointerTy());
2369      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2370      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2371        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2372                                  DAG.getIntPtrConstant(Offset));
2373        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2374                                     &X86::GR64RegClass);
2375        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2376        SDValue Store =
2377          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2378                       MachinePointerInfo::getFixedStack(
2379                         FuncInfo->getRegSaveFrameIndex(), Offset),
2380                       false, false, 0);
2381        MemOps.push_back(Store);
2382        Offset += 8;
2383      }
2384
2385      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2386        // Now store the XMM (fp + vector) parameter registers.
2387        SmallVector<SDValue, 11> SaveXMMOps;
2388        SaveXMMOps.push_back(Chain);
2389
2390        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2391        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2392        SaveXMMOps.push_back(ALVal);
2393
2394        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2395                               FuncInfo->getRegSaveFrameIndex()));
2396        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2397                               FuncInfo->getVarArgsFPOffset()));
2398
2399        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2400          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2401                                       &X86::VR128RegClass);
2402          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2403          SaveXMMOps.push_back(Val);
2404        }
2405        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2406                                     MVT::Other,
2407                                     &SaveXMMOps[0], SaveXMMOps.size()));
2408      }
2409
2410      if (!MemOps.empty())
2411        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2412                            &MemOps[0], MemOps.size());
2413    }
2414  }
2415
2416  // Some CCs need callee pop.
2417  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2418                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2419    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2420  } else {
2421    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2422    // If this is an sret function, the return should pop the hidden pointer.
2423    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2424        argsAreStructReturn(Ins) == StackStructReturn)
2425      FuncInfo->setBytesToPopOnReturn(4);
2426  }
2427
2428  if (!Is64Bit) {
2429    // RegSaveFrameIndex is X86-64 only.
2430    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2431    if (CallConv == CallingConv::X86_FastCall ||
2432        CallConv == CallingConv::X86_ThisCall)
2433      // fastcc functions can't have varargs.
2434      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2435  }
2436
2437  FuncInfo->setArgumentStackSize(StackSize);
2438
2439  return Chain;
2440}
2441
2442SDValue
2443X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2444                                    SDValue StackPtr, SDValue Arg,
2445                                    SDLoc dl, SelectionDAG &DAG,
2446                                    const CCValAssign &VA,
2447                                    ISD::ArgFlagsTy Flags) const {
2448  unsigned LocMemOffset = VA.getLocMemOffset();
2449  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2450  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2451  if (Flags.isByVal())
2452    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2453
2454  return DAG.getStore(Chain, dl, Arg, PtrOff,
2455                      MachinePointerInfo::getStack(LocMemOffset),
2456                      false, false, 0);
2457}
2458
2459/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2460/// optimization is performed and it is required.
2461SDValue
2462X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2463                                           SDValue &OutRetAddr, SDValue Chain,
2464                                           bool IsTailCall, bool Is64Bit,
2465                                           int FPDiff, SDLoc dl) const {
2466  // Adjust the Return address stack slot.
2467  EVT VT = getPointerTy();
2468  OutRetAddr = getReturnAddressFrameIndex(DAG);
2469
2470  // Load the "old" Return address.
2471  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2472                           false, false, false, 0);
2473  return SDValue(OutRetAddr.getNode(), 1);
2474}
2475
2476/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2477/// optimization is performed and it is required (FPDiff!=0).
2478static SDValue
2479EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2480                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2481                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2482  // Store the return address to the appropriate stack slot.
2483  if (!FPDiff) return Chain;
2484  // Calculate the new stack slot for the return address.
2485  int NewReturnAddrFI =
2486    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2487                                         false);
2488  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2489  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2490                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2491                       false, false, 0);
2492  return Chain;
2493}
2494
2495SDValue
2496X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2497                             SmallVectorImpl<SDValue> &InVals) const {
2498  SelectionDAG &DAG                     = CLI.DAG;
2499  SDLoc &dl                             = CLI.DL;
2500  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2501  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2502  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2503  SDValue Chain                         = CLI.Chain;
2504  SDValue Callee                        = CLI.Callee;
2505  CallingConv::ID CallConv              = CLI.CallConv;
2506  bool &isTailCall                      = CLI.IsTailCall;
2507  bool isVarArg                         = CLI.IsVarArg;
2508
2509  MachineFunction &MF = DAG.getMachineFunction();
2510  bool Is64Bit        = Subtarget->is64Bit();
2511  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2512  bool IsWindows      = Subtarget->isTargetWindows();
2513  StructReturnType SR = callIsStructReturn(Outs);
2514  bool IsSibcall      = false;
2515
2516  if (MF.getTarget().Options.DisableTailCalls)
2517    isTailCall = false;
2518
2519  if (isTailCall) {
2520    // Check if it's really possible to do a tail call.
2521    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2522                    isVarArg, SR != NotStructReturn,
2523                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2524                    Outs, OutVals, Ins, DAG);
2525
2526    // Sibcalls are automatically detected tailcalls which do not require
2527    // ABI changes.
2528    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2529      IsSibcall = true;
2530
2531    if (isTailCall)
2532      ++NumTailCalls;
2533  }
2534
2535  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2536         "Var args not supported with calling convention fastcc, ghc or hipe");
2537
2538  // Analyze operands of the call, assigning locations to each operand.
2539  SmallVector<CCValAssign, 16> ArgLocs;
2540  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2541                 ArgLocs, *DAG.getContext());
2542
2543  // Allocate shadow area for Win64
2544  if (IsWin64)
2545    CCInfo.AllocateStack(32, 8);
2546
2547  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2548
2549  // Get a count of how many bytes are to be pushed on the stack.
2550  unsigned NumBytes = CCInfo.getNextStackOffset();
2551  if (IsSibcall)
2552    // This is a sibcall. The memory operands are available in caller's
2553    // own caller's stack.
2554    NumBytes = 0;
2555  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2556           IsTailCallConvention(CallConv))
2557    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2558
2559  int FPDiff = 0;
2560  if (isTailCall && !IsSibcall) {
2561    // Lower arguments at fp - stackoffset + fpdiff.
2562    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2563    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2564
2565    FPDiff = NumBytesCallerPushed - NumBytes;
2566
2567    // Set the delta of movement of the returnaddr stackslot.
2568    // But only set if delta is greater than previous delta.
2569    if (FPDiff < X86Info->getTCReturnAddrDelta())
2570      X86Info->setTCReturnAddrDelta(FPDiff);
2571  }
2572
2573  if (!IsSibcall)
2574    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2575                                 dl);
2576
2577  SDValue RetAddrFrIdx;
2578  // Load return address for tail calls.
2579  if (isTailCall && FPDiff)
2580    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2581                                    Is64Bit, FPDiff, dl);
2582
2583  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2584  SmallVector<SDValue, 8> MemOpChains;
2585  SDValue StackPtr;
2586
2587  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2588  // of tail call optimization arguments are handle later.
2589  const X86RegisterInfo *RegInfo =
2590    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592    CCValAssign &VA = ArgLocs[i];
2593    EVT RegVT = VA.getLocVT();
2594    SDValue Arg = OutVals[i];
2595    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2596    bool isByVal = Flags.isByVal();
2597
2598    // Promote the value if needed.
2599    switch (VA.getLocInfo()) {
2600    default: llvm_unreachable("Unknown loc info!");
2601    case CCValAssign::Full: break;
2602    case CCValAssign::SExt:
2603      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2604      break;
2605    case CCValAssign::ZExt:
2606      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2607      break;
2608    case CCValAssign::AExt:
2609      if (RegVT.is128BitVector()) {
2610        // Special case: passing MMX values in XMM registers.
2611        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2612        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2613        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2614      } else
2615        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2616      break;
2617    case CCValAssign::BCvt:
2618      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2619      break;
2620    case CCValAssign::Indirect: {
2621      // Store the argument.
2622      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2623      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2624      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2625                           MachinePointerInfo::getFixedStack(FI),
2626                           false, false, 0);
2627      Arg = SpillSlot;
2628      break;
2629    }
2630    }
2631
2632    if (VA.isRegLoc()) {
2633      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2634      if (isVarArg && IsWin64) {
2635        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2636        // shadow reg if callee is a varargs function.
2637        unsigned ShadowReg = 0;
2638        switch (VA.getLocReg()) {
2639        case X86::XMM0: ShadowReg = X86::RCX; break;
2640        case X86::XMM1: ShadowReg = X86::RDX; break;
2641        case X86::XMM2: ShadowReg = X86::R8; break;
2642        case X86::XMM3: ShadowReg = X86::R9; break;
2643        }
2644        if (ShadowReg)
2645          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2646      }
2647    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2648      assert(VA.isMemLoc());
2649      if (StackPtr.getNode() == 0)
2650        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2651                                      getPointerTy());
2652      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2653                                             dl, DAG, VA, Flags));
2654    }
2655  }
2656
2657  if (!MemOpChains.empty())
2658    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2659                        &MemOpChains[0], MemOpChains.size());
2660
2661  if (Subtarget->isPICStyleGOT()) {
2662    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2663    // GOT pointer.
2664    if (!isTailCall) {
2665      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2666               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2667    } else {
2668      // If we are tail calling and generating PIC/GOT style code load the
2669      // address of the callee into ECX. The value in ecx is used as target of
2670      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2671      // for tail calls on PIC/GOT architectures. Normally we would just put the
2672      // address of GOT into ebx and then call target@PLT. But for tail calls
2673      // ebx would be restored (since ebx is callee saved) before jumping to the
2674      // target@PLT.
2675
2676      // Note: The actual moving to ECX is done further down.
2677      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2678      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2679          !G->getGlobal()->hasProtectedVisibility())
2680        Callee = LowerGlobalAddress(Callee, DAG);
2681      else if (isa<ExternalSymbolSDNode>(Callee))
2682        Callee = LowerExternalSymbol(Callee, DAG);
2683    }
2684  }
2685
2686  if (Is64Bit && isVarArg && !IsWin64) {
2687    // From AMD64 ABI document:
2688    // For calls that may call functions that use varargs or stdargs
2689    // (prototype-less calls or calls to functions containing ellipsis (...) in
2690    // the declaration) %al is used as hidden argument to specify the number
2691    // of SSE registers used. The contents of %al do not need to match exactly
2692    // the number of registers, but must be an ubound on the number of SSE
2693    // registers used and is in the range 0 - 8 inclusive.
2694
2695    // Count the number of XMM registers allocated.
2696    static const uint16_t XMMArgRegs[] = {
2697      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2698      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2699    };
2700    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2701    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2702           && "SSE registers cannot be used when SSE is disabled");
2703
2704    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2705                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2706  }
2707
2708  // For tail calls lower the arguments to the 'real' stack slot.
2709  if (isTailCall) {
2710    // Force all the incoming stack arguments to be loaded from the stack
2711    // before any new outgoing arguments are stored to the stack, because the
2712    // outgoing stack slots may alias the incoming argument stack slots, and
2713    // the alias isn't otherwise explicit. This is slightly more conservative
2714    // than necessary, because it means that each store effectively depends
2715    // on every argument instead of just those arguments it would clobber.
2716    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2717
2718    SmallVector<SDValue, 8> MemOpChains2;
2719    SDValue FIN;
2720    int FI = 0;
2721    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2722      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2723        CCValAssign &VA = ArgLocs[i];
2724        if (VA.isRegLoc())
2725          continue;
2726        assert(VA.isMemLoc());
2727        SDValue Arg = OutVals[i];
2728        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2729        // Create frame index.
2730        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2731        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2732        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2733        FIN = DAG.getFrameIndex(FI, getPointerTy());
2734
2735        if (Flags.isByVal()) {
2736          // Copy relative to framepointer.
2737          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2738          if (StackPtr.getNode() == 0)
2739            StackPtr = DAG.getCopyFromReg(Chain, dl,
2740                                          RegInfo->getStackRegister(),
2741                                          getPointerTy());
2742          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2743
2744          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2745                                                           ArgChain,
2746                                                           Flags, DAG, dl));
2747        } else {
2748          // Store relative to framepointer.
2749          MemOpChains2.push_back(
2750            DAG.getStore(ArgChain, dl, Arg, FIN,
2751                         MachinePointerInfo::getFixedStack(FI),
2752                         false, false, 0));
2753        }
2754      }
2755    }
2756
2757    if (!MemOpChains2.empty())
2758      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2759                          &MemOpChains2[0], MemOpChains2.size());
2760
2761    // Store the return address to the appropriate stack slot.
2762    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2763                                     getPointerTy(), RegInfo->getSlotSize(),
2764                                     FPDiff, dl);
2765  }
2766
2767  // Build a sequence of copy-to-reg nodes chained together with token chain
2768  // and flag operands which copy the outgoing args into registers.
2769  SDValue InFlag;
2770  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2771    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2772                             RegsToPass[i].second, InFlag);
2773    InFlag = Chain.getValue(1);
2774  }
2775
2776  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2777    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2778    // In the 64-bit large code model, we have to make all calls
2779    // through a register, since the call instruction's 32-bit
2780    // pc-relative offset may not be large enough to hold the whole
2781    // address.
2782  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2783    // If the callee is a GlobalAddress node (quite common, every direct call
2784    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2785    // it.
2786
2787    // We should use extra load for direct calls to dllimported functions in
2788    // non-JIT mode.
2789    const GlobalValue *GV = G->getGlobal();
2790    if (!GV->hasDLLImportLinkage()) {
2791      unsigned char OpFlags = 0;
2792      bool ExtraLoad = false;
2793      unsigned WrapperKind = ISD::DELETED_NODE;
2794
2795      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2796      // external symbols most go through the PLT in PIC mode.  If the symbol
2797      // has hidden or protected visibility, or if it is static or local, then
2798      // we don't need to use the PLT - we can directly call it.
2799      if (Subtarget->isTargetELF() &&
2800          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2801          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2802        OpFlags = X86II::MO_PLT;
2803      } else if (Subtarget->isPICStyleStubAny() &&
2804                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2805                 (!Subtarget->getTargetTriple().isMacOSX() ||
2806                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2807        // PC-relative references to external symbols should go through $stub,
2808        // unless we're building with the leopard linker or later, which
2809        // automatically synthesizes these stubs.
2810        OpFlags = X86II::MO_DARWIN_STUB;
2811      } else if (Subtarget->isPICStyleRIPRel() &&
2812                 isa<Function>(GV) &&
2813                 cast<Function>(GV)->getAttributes().
2814                   hasAttribute(AttributeSet::FunctionIndex,
2815                                Attribute::NonLazyBind)) {
2816        // If the function is marked as non-lazy, generate an indirect call
2817        // which loads from the GOT directly. This avoids runtime overhead
2818        // at the cost of eager binding (and one extra byte of encoding).
2819        OpFlags = X86II::MO_GOTPCREL;
2820        WrapperKind = X86ISD::WrapperRIP;
2821        ExtraLoad = true;
2822      }
2823
2824      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2825                                          G->getOffset(), OpFlags);
2826
2827      // Add a wrapper if needed.
2828      if (WrapperKind != ISD::DELETED_NODE)
2829        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2830      // Add extra indirection if needed.
2831      if (ExtraLoad)
2832        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2833                             MachinePointerInfo::getGOT(),
2834                             false, false, false, 0);
2835    }
2836  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2837    unsigned char OpFlags = 0;
2838
2839    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2840    // external symbols should go through the PLT.
2841    if (Subtarget->isTargetELF() &&
2842        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2843      OpFlags = X86II::MO_PLT;
2844    } else if (Subtarget->isPICStyleStubAny() &&
2845               (!Subtarget->getTargetTriple().isMacOSX() ||
2846                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2847      // PC-relative references to external symbols should go through $stub,
2848      // unless we're building with the leopard linker or later, which
2849      // automatically synthesizes these stubs.
2850      OpFlags = X86II::MO_DARWIN_STUB;
2851    }
2852
2853    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2854                                         OpFlags);
2855  }
2856
2857  // Returns a chain & a flag for retval copy to use.
2858  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2859  SmallVector<SDValue, 8> Ops;
2860
2861  if (!IsSibcall && isTailCall) {
2862    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2863                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2864    InFlag = Chain.getValue(1);
2865  }
2866
2867  Ops.push_back(Chain);
2868  Ops.push_back(Callee);
2869
2870  if (isTailCall)
2871    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2872
2873  // Add argument registers to the end of the list so that they are known live
2874  // into the call.
2875  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2876    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2877                                  RegsToPass[i].second.getValueType()));
2878
2879  // Add a register mask operand representing the call-preserved registers.
2880  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2881  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2882  assert(Mask && "Missing call preserved mask for calling convention");
2883  Ops.push_back(DAG.getRegisterMask(Mask));
2884
2885  if (InFlag.getNode())
2886    Ops.push_back(InFlag);
2887
2888  if (isTailCall) {
2889    // We used to do:
2890    //// If this is the first return lowered for this function, add the regs
2891    //// to the liveout set for the function.
2892    // This isn't right, although it's probably harmless on x86; liveouts
2893    // should be computed from returns not tail calls.  Consider a void
2894    // function making a tail call to a function returning int.
2895    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2896  }
2897
2898  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2899  InFlag = Chain.getValue(1);
2900
2901  // Create the CALLSEQ_END node.
2902  unsigned NumBytesForCalleeToPush;
2903  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2904                       getTargetMachine().Options.GuaranteedTailCallOpt))
2905    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2906  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2907           SR == StackStructReturn)
2908    // If this is a call to a struct-return function, the callee
2909    // pops the hidden struct pointer, so we have to push it back.
2910    // This is common for Darwin/X86, Linux & Mingw32 targets.
2911    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2912    NumBytesForCalleeToPush = 4;
2913  else
2914    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2915
2916  // Returns a flag for retval copy to use.
2917  if (!IsSibcall) {
2918    Chain = DAG.getCALLSEQ_END(Chain,
2919                               DAG.getIntPtrConstant(NumBytes, true),
2920                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2921                                                     true),
2922                               InFlag, dl);
2923    InFlag = Chain.getValue(1);
2924  }
2925
2926  // Handle result values, copying them out of physregs into vregs that we
2927  // return.
2928  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2929                         Ins, dl, DAG, InVals);
2930}
2931
2932//===----------------------------------------------------------------------===//
2933//                Fast Calling Convention (tail call) implementation
2934//===----------------------------------------------------------------------===//
2935
2936//  Like std call, callee cleans arguments, convention except that ECX is
2937//  reserved for storing the tail called function address. Only 2 registers are
2938//  free for argument passing (inreg). Tail call optimization is performed
2939//  provided:
2940//                * tailcallopt is enabled
2941//                * caller/callee are fastcc
2942//  On X86_64 architecture with GOT-style position independent code only local
2943//  (within module) calls are supported at the moment.
2944//  To keep the stack aligned according to platform abi the function
2945//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2946//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2947//  If a tail called function callee has more arguments than the caller the
2948//  caller needs to make sure that there is room to move the RETADDR to. This is
2949//  achieved by reserving an area the size of the argument delta right after the
2950//  original REtADDR, but before the saved framepointer or the spilled registers
2951//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2952//  stack layout:
2953//    arg1
2954//    arg2
2955//    RETADDR
2956//    [ new RETADDR
2957//      move area ]
2958//    (possible EBP)
2959//    ESI
2960//    EDI
2961//    local1 ..
2962
2963/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2964/// for a 16 byte align requirement.
2965unsigned
2966X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2967                                               SelectionDAG& DAG) const {
2968  MachineFunction &MF = DAG.getMachineFunction();
2969  const TargetMachine &TM = MF.getTarget();
2970  const X86RegisterInfo *RegInfo =
2971    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2972  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2973  unsigned StackAlignment = TFI.getStackAlignment();
2974  uint64_t AlignMask = StackAlignment - 1;
2975  int64_t Offset = StackSize;
2976  unsigned SlotSize = RegInfo->getSlotSize();
2977  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2978    // Number smaller than 12 so just add the difference.
2979    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2980  } else {
2981    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2982    Offset = ((~AlignMask) & Offset) + StackAlignment +
2983      (StackAlignment-SlotSize);
2984  }
2985  return Offset;
2986}
2987
2988/// MatchingStackOffset - Return true if the given stack call argument is
2989/// already available in the same position (relatively) of the caller's
2990/// incoming argument stack.
2991static
2992bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2993                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2994                         const X86InstrInfo *TII) {
2995  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2996  int FI = INT_MAX;
2997  if (Arg.getOpcode() == ISD::CopyFromReg) {
2998    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2999    if (!TargetRegisterInfo::isVirtualRegister(VR))
3000      return false;
3001    MachineInstr *Def = MRI->getVRegDef(VR);
3002    if (!Def)
3003      return false;
3004    if (!Flags.isByVal()) {
3005      if (!TII->isLoadFromStackSlot(Def, FI))
3006        return false;
3007    } else {
3008      unsigned Opcode = Def->getOpcode();
3009      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3010          Def->getOperand(1).isFI()) {
3011        FI = Def->getOperand(1).getIndex();
3012        Bytes = Flags.getByValSize();
3013      } else
3014        return false;
3015    }
3016  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3017    if (Flags.isByVal())
3018      // ByVal argument is passed in as a pointer but it's now being
3019      // dereferenced. e.g.
3020      // define @foo(%struct.X* %A) {
3021      //   tail call @bar(%struct.X* byval %A)
3022      // }
3023      return false;
3024    SDValue Ptr = Ld->getBasePtr();
3025    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3026    if (!FINode)
3027      return false;
3028    FI = FINode->getIndex();
3029  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3030    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3031    FI = FINode->getIndex();
3032    Bytes = Flags.getByValSize();
3033  } else
3034    return false;
3035
3036  assert(FI != INT_MAX);
3037  if (!MFI->isFixedObjectIndex(FI))
3038    return false;
3039  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3040}
3041
3042/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3043/// for tail call optimization. Targets which want to do tail call
3044/// optimization should implement this function.
3045bool
3046X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3047                                                     CallingConv::ID CalleeCC,
3048                                                     bool isVarArg,
3049                                                     bool isCalleeStructRet,
3050                                                     bool isCallerStructRet,
3051                                                     Type *RetTy,
3052                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3053                                    const SmallVectorImpl<SDValue> &OutVals,
3054                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3055                                                     SelectionDAG &DAG) const {
3056  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3057    return false;
3058
3059  // If -tailcallopt is specified, make fastcc functions tail-callable.
3060  const MachineFunction &MF = DAG.getMachineFunction();
3061  const Function *CallerF = MF.getFunction();
3062
3063  // If the function return type is x86_fp80 and the callee return type is not,
3064  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3065  // perform a tailcall optimization here.
3066  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3067    return false;
3068
3069  CallingConv::ID CallerCC = CallerF->getCallingConv();
3070  bool CCMatch = CallerCC == CalleeCC;
3071  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3072  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3073
3074  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3075    if (IsTailCallConvention(CalleeCC) && CCMatch)
3076      return true;
3077    return false;
3078  }
3079
3080  // Look for obvious safe cases to perform tail call optimization that do not
3081  // require ABI changes. This is what gcc calls sibcall.
3082
3083  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3084  // emit a special epilogue.
3085  const X86RegisterInfo *RegInfo =
3086    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3087  if (RegInfo->needsStackRealignment(MF))
3088    return false;
3089
3090  // Also avoid sibcall optimization if either caller or callee uses struct
3091  // return semantics.
3092  if (isCalleeStructRet || isCallerStructRet)
3093    return false;
3094
3095  // An stdcall caller is expected to clean up its arguments; the callee
3096  // isn't going to do that.
3097  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
3098    return false;
3099
3100  // Do not sibcall optimize vararg calls unless all arguments are passed via
3101  // registers.
3102  if (isVarArg && !Outs.empty()) {
3103
3104    // Optimizing for varargs on Win64 is unlikely to be safe without
3105    // additional testing.
3106    if (IsCalleeWin64 || IsCallerWin64)
3107      return false;
3108
3109    SmallVector<CCValAssign, 16> ArgLocs;
3110    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3111                   getTargetMachine(), ArgLocs, *DAG.getContext());
3112
3113    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3114    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3115      if (!ArgLocs[i].isRegLoc())
3116        return false;
3117  }
3118
3119  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3120  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3121  // this into a sibcall.
3122  bool Unused = false;
3123  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3124    if (!Ins[i].Used) {
3125      Unused = true;
3126      break;
3127    }
3128  }
3129  if (Unused) {
3130    SmallVector<CCValAssign, 16> RVLocs;
3131    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3132                   getTargetMachine(), RVLocs, *DAG.getContext());
3133    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3134    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3135      CCValAssign &VA = RVLocs[i];
3136      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3137        return false;
3138    }
3139  }
3140
3141  // If the calling conventions do not match, then we'd better make sure the
3142  // results are returned in the same way as what the caller expects.
3143  if (!CCMatch) {
3144    SmallVector<CCValAssign, 16> RVLocs1;
3145    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3146                    getTargetMachine(), RVLocs1, *DAG.getContext());
3147    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3148
3149    SmallVector<CCValAssign, 16> RVLocs2;
3150    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3151                    getTargetMachine(), RVLocs2, *DAG.getContext());
3152    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3153
3154    if (RVLocs1.size() != RVLocs2.size())
3155      return false;
3156    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3157      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3158        return false;
3159      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3160        return false;
3161      if (RVLocs1[i].isRegLoc()) {
3162        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3163          return false;
3164      } else {
3165        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3166          return false;
3167      }
3168    }
3169  }
3170
3171  // If the callee takes no arguments then go on to check the results of the
3172  // call.
3173  if (!Outs.empty()) {
3174    // Check if stack adjustment is needed. For now, do not do this if any
3175    // argument is passed on the stack.
3176    SmallVector<CCValAssign, 16> ArgLocs;
3177    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3178                   getTargetMachine(), ArgLocs, *DAG.getContext());
3179
3180    // Allocate shadow area for Win64
3181    if (IsCalleeWin64)
3182      CCInfo.AllocateStack(32, 8);
3183
3184    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3185    if (CCInfo.getNextStackOffset()) {
3186      MachineFunction &MF = DAG.getMachineFunction();
3187      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3188        return false;
3189
3190      // Check if the arguments are already laid out in the right way as
3191      // the caller's fixed stack objects.
3192      MachineFrameInfo *MFI = MF.getFrameInfo();
3193      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3194      const X86InstrInfo *TII =
3195        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3196      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3197        CCValAssign &VA = ArgLocs[i];
3198        SDValue Arg = OutVals[i];
3199        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3200        if (VA.getLocInfo() == CCValAssign::Indirect)
3201          return false;
3202        if (!VA.isRegLoc()) {
3203          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3204                                   MFI, MRI, TII))
3205            return false;
3206        }
3207      }
3208    }
3209
3210    // If the tailcall address may be in a register, then make sure it's
3211    // possible to register allocate for it. In 32-bit, the call address can
3212    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3213    // callee-saved registers are restored. These happen to be the same
3214    // registers used to pass 'inreg' arguments so watch out for those.
3215    if (!Subtarget->is64Bit() &&
3216        ((!isa<GlobalAddressSDNode>(Callee) &&
3217          !isa<ExternalSymbolSDNode>(Callee)) ||
3218         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3219      unsigned NumInRegs = 0;
3220      // In PIC we need an extra register to formulate the address computation
3221      // for the callee.
3222      unsigned MaxInRegs =
3223          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3224
3225      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3226        CCValAssign &VA = ArgLocs[i];
3227        if (!VA.isRegLoc())
3228          continue;
3229        unsigned Reg = VA.getLocReg();
3230        switch (Reg) {
3231        default: break;
3232        case X86::EAX: case X86::EDX: case X86::ECX:
3233          if (++NumInRegs == MaxInRegs)
3234            return false;
3235          break;
3236        }
3237      }
3238    }
3239  }
3240
3241  return true;
3242}
3243
3244FastISel *
3245X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3246                                  const TargetLibraryInfo *libInfo) const {
3247  return X86::createFastISel(funcInfo, libInfo);
3248}
3249
3250//===----------------------------------------------------------------------===//
3251//                           Other Lowering Hooks
3252//===----------------------------------------------------------------------===//
3253
3254static bool MayFoldLoad(SDValue Op) {
3255  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3256}
3257
3258static bool MayFoldIntoStore(SDValue Op) {
3259  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3260}
3261
3262static bool isTargetShuffle(unsigned Opcode) {
3263  switch(Opcode) {
3264  default: return false;
3265  case X86ISD::PSHUFD:
3266  case X86ISD::PSHUFHW:
3267  case X86ISD::PSHUFLW:
3268  case X86ISD::SHUFP:
3269  case X86ISD::PALIGNR:
3270  case X86ISD::MOVLHPS:
3271  case X86ISD::MOVLHPD:
3272  case X86ISD::MOVHLPS:
3273  case X86ISD::MOVLPS:
3274  case X86ISD::MOVLPD:
3275  case X86ISD::MOVSHDUP:
3276  case X86ISD::MOVSLDUP:
3277  case X86ISD::MOVDDUP:
3278  case X86ISD::MOVSS:
3279  case X86ISD::MOVSD:
3280  case X86ISD::UNPCKL:
3281  case X86ISD::UNPCKH:
3282  case X86ISD::VPERMILP:
3283  case X86ISD::VPERM2X128:
3284  case X86ISD::VPERMI:
3285    return true;
3286  }
3287}
3288
3289static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3290                                    SDValue V1, SelectionDAG &DAG) {
3291  switch(Opc) {
3292  default: llvm_unreachable("Unknown x86 shuffle node");
3293  case X86ISD::MOVSHDUP:
3294  case X86ISD::MOVSLDUP:
3295  case X86ISD::MOVDDUP:
3296    return DAG.getNode(Opc, dl, VT, V1);
3297  }
3298}
3299
3300static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3301                                    SDValue V1, unsigned TargetMask,
3302                                    SelectionDAG &DAG) {
3303  switch(Opc) {
3304  default: llvm_unreachable("Unknown x86 shuffle node");
3305  case X86ISD::PSHUFD:
3306  case X86ISD::PSHUFHW:
3307  case X86ISD::PSHUFLW:
3308  case X86ISD::VPERMILP:
3309  case X86ISD::VPERMI:
3310    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3311  }
3312}
3313
3314static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3315                                    SDValue V1, SDValue V2, unsigned TargetMask,
3316                                    SelectionDAG &DAG) {
3317  switch(Opc) {
3318  default: llvm_unreachable("Unknown x86 shuffle node");
3319  case X86ISD::PALIGNR:
3320  case X86ISD::SHUFP:
3321  case X86ISD::VPERM2X128:
3322    return DAG.getNode(Opc, dl, VT, V1, V2,
3323                       DAG.getConstant(TargetMask, MVT::i8));
3324  }
3325}
3326
3327static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3328                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3329  switch(Opc) {
3330  default: llvm_unreachable("Unknown x86 shuffle node");
3331  case X86ISD::MOVLHPS:
3332  case X86ISD::MOVLHPD:
3333  case X86ISD::MOVHLPS:
3334  case X86ISD::MOVLPS:
3335  case X86ISD::MOVLPD:
3336  case X86ISD::MOVSS:
3337  case X86ISD::MOVSD:
3338  case X86ISD::UNPCKL:
3339  case X86ISD::UNPCKH:
3340    return DAG.getNode(Opc, dl, VT, V1, V2);
3341  }
3342}
3343
3344SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3345  MachineFunction &MF = DAG.getMachineFunction();
3346  const X86RegisterInfo *RegInfo =
3347    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3348  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3349  int ReturnAddrIndex = FuncInfo->getRAIndex();
3350
3351  if (ReturnAddrIndex == 0) {
3352    // Set up a frame object for the return address.
3353    unsigned SlotSize = RegInfo->getSlotSize();
3354    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3355                                                           -(int64_t)SlotSize,
3356                                                           false);
3357    FuncInfo->setRAIndex(ReturnAddrIndex);
3358  }
3359
3360  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3361}
3362
3363bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3364                                       bool hasSymbolicDisplacement) {
3365  // Offset should fit into 32 bit immediate field.
3366  if (!isInt<32>(Offset))
3367    return false;
3368
3369  // If we don't have a symbolic displacement - we don't have any extra
3370  // restrictions.
3371  if (!hasSymbolicDisplacement)
3372    return true;
3373
3374  // FIXME: Some tweaks might be needed for medium code model.
3375  if (M != CodeModel::Small && M != CodeModel::Kernel)
3376    return false;
3377
3378  // For small code model we assume that latest object is 16MB before end of 31
3379  // bits boundary. We may also accept pretty large negative constants knowing
3380  // that all objects are in the positive half of address space.
3381  if (M == CodeModel::Small && Offset < 16*1024*1024)
3382    return true;
3383
3384  // For kernel code model we know that all object resist in the negative half
3385  // of 32bits address space. We may not accept negative offsets, since they may
3386  // be just off and we may accept pretty large positive ones.
3387  if (M == CodeModel::Kernel && Offset > 0)
3388    return true;
3389
3390  return false;
3391}
3392
3393/// isCalleePop - Determines whether the callee is required to pop its
3394/// own arguments. Callee pop is necessary to support tail calls.
3395bool X86::isCalleePop(CallingConv::ID CallingConv,
3396                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3397  if (IsVarArg)
3398    return false;
3399
3400  switch (CallingConv) {
3401  default:
3402    return false;
3403  case CallingConv::X86_StdCall:
3404    return !is64Bit;
3405  case CallingConv::X86_FastCall:
3406    return !is64Bit;
3407  case CallingConv::X86_ThisCall:
3408    return !is64Bit;
3409  case CallingConv::Fast:
3410    return TailCallOpt;
3411  case CallingConv::GHC:
3412    return TailCallOpt;
3413  case CallingConv::HiPE:
3414    return TailCallOpt;
3415  }
3416}
3417
3418/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3419/// specific condition code, returning the condition code and the LHS/RHS of the
3420/// comparison to make.
3421static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3422                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3423  if (!isFP) {
3424    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3425      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3426        // X > -1   -> X == 0, jump !sign.
3427        RHS = DAG.getConstant(0, RHS.getValueType());
3428        return X86::COND_NS;
3429      }
3430      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3431        // X < 0   -> X == 0, jump on sign.
3432        return X86::COND_S;
3433      }
3434      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3435        // X < 1   -> X <= 0
3436        RHS = DAG.getConstant(0, RHS.getValueType());
3437        return X86::COND_LE;
3438      }
3439    }
3440
3441    switch (SetCCOpcode) {
3442    default: llvm_unreachable("Invalid integer condition!");
3443    case ISD::SETEQ:  return X86::COND_E;
3444    case ISD::SETGT:  return X86::COND_G;
3445    case ISD::SETGE:  return X86::COND_GE;
3446    case ISD::SETLT:  return X86::COND_L;
3447    case ISD::SETLE:  return X86::COND_LE;
3448    case ISD::SETNE:  return X86::COND_NE;
3449    case ISD::SETULT: return X86::COND_B;
3450    case ISD::SETUGT: return X86::COND_A;
3451    case ISD::SETULE: return X86::COND_BE;
3452    case ISD::SETUGE: return X86::COND_AE;
3453    }
3454  }
3455
3456  // First determine if it is required or is profitable to flip the operands.
3457
3458  // If LHS is a foldable load, but RHS is not, flip the condition.
3459  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3460      !ISD::isNON_EXTLoad(RHS.getNode())) {
3461    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3462    std::swap(LHS, RHS);
3463  }
3464
3465  switch (SetCCOpcode) {
3466  default: break;
3467  case ISD::SETOLT:
3468  case ISD::SETOLE:
3469  case ISD::SETUGT:
3470  case ISD::SETUGE:
3471    std::swap(LHS, RHS);
3472    break;
3473  }
3474
3475  // On a floating point condition, the flags are set as follows:
3476  // ZF  PF  CF   op
3477  //  0 | 0 | 0 | X > Y
3478  //  0 | 0 | 1 | X < Y
3479  //  1 | 0 | 0 | X == Y
3480  //  1 | 1 | 1 | unordered
3481  switch (SetCCOpcode) {
3482  default: llvm_unreachable("Condcode should be pre-legalized away");
3483  case ISD::SETUEQ:
3484  case ISD::SETEQ:   return X86::COND_E;
3485  case ISD::SETOLT:              // flipped
3486  case ISD::SETOGT:
3487  case ISD::SETGT:   return X86::COND_A;
3488  case ISD::SETOLE:              // flipped
3489  case ISD::SETOGE:
3490  case ISD::SETGE:   return X86::COND_AE;
3491  case ISD::SETUGT:              // flipped
3492  case ISD::SETULT:
3493  case ISD::SETLT:   return X86::COND_B;
3494  case ISD::SETUGE:              // flipped
3495  case ISD::SETULE:
3496  case ISD::SETLE:   return X86::COND_BE;
3497  case ISD::SETONE:
3498  case ISD::SETNE:   return X86::COND_NE;
3499  case ISD::SETUO:   return X86::COND_P;
3500  case ISD::SETO:    return X86::COND_NP;
3501  case ISD::SETOEQ:
3502  case ISD::SETUNE:  return X86::COND_INVALID;
3503  }
3504}
3505
3506/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3507/// code. Current x86 isa includes the following FP cmov instructions:
3508/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3509static bool hasFPCMov(unsigned X86CC) {
3510  switch (X86CC) {
3511  default:
3512    return false;
3513  case X86::COND_B:
3514  case X86::COND_BE:
3515  case X86::COND_E:
3516  case X86::COND_P:
3517  case X86::COND_A:
3518  case X86::COND_AE:
3519  case X86::COND_NE:
3520  case X86::COND_NP:
3521    return true;
3522  }
3523}
3524
3525/// isFPImmLegal - Returns true if the target can instruction select the
3526/// specified FP immediate natively. If false, the legalizer will
3527/// materialize the FP immediate as a load from a constant pool.
3528bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3529  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3530    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3531      return true;
3532  }
3533  return false;
3534}
3535
3536/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3537/// the specified range (L, H].
3538static bool isUndefOrInRange(int Val, int Low, int Hi) {
3539  return (Val < 0) || (Val >= Low && Val < Hi);
3540}
3541
3542/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3543/// specified value.
3544static bool isUndefOrEqual(int Val, int CmpVal) {
3545  return (Val < 0 || Val == CmpVal);
3546}
3547
3548/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3549/// from position Pos and ending in Pos+Size, falls within the specified
3550/// sequential range (L, L+Pos]. or is undef.
3551static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3552                                       unsigned Pos, unsigned Size, int Low) {
3553  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3554    if (!isUndefOrEqual(Mask[i], Low))
3555      return false;
3556  return true;
3557}
3558
3559/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3560/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3561/// the second operand.
3562static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3563  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3564    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3565  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3566    return (Mask[0] < 2 && Mask[1] < 2);
3567  return false;
3568}
3569
3570/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3571/// is suitable for input to PSHUFHW.
3572static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3573  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3574    return false;
3575
3576  // Lower quadword copied in order or undef.
3577  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3578    return false;
3579
3580  // Upper quadword shuffled.
3581  for (unsigned i = 4; i != 8; ++i)
3582    if (!isUndefOrInRange(Mask[i], 4, 8))
3583      return false;
3584
3585  if (VT == MVT::v16i16) {
3586    // Lower quadword copied in order or undef.
3587    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3588      return false;
3589
3590    // Upper quadword shuffled.
3591    for (unsigned i = 12; i != 16; ++i)
3592      if (!isUndefOrInRange(Mask[i], 12, 16))
3593        return false;
3594  }
3595
3596  return true;
3597}
3598
3599/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3600/// is suitable for input to PSHUFLW.
3601static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3602  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3603    return false;
3604
3605  // Upper quadword copied in order.
3606  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3607    return false;
3608
3609  // Lower quadword shuffled.
3610  for (unsigned i = 0; i != 4; ++i)
3611    if (!isUndefOrInRange(Mask[i], 0, 4))
3612      return false;
3613
3614  if (VT == MVT::v16i16) {
3615    // Upper quadword copied in order.
3616    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3617      return false;
3618
3619    // Lower quadword shuffled.
3620    for (unsigned i = 8; i != 12; ++i)
3621      if (!isUndefOrInRange(Mask[i], 8, 12))
3622        return false;
3623  }
3624
3625  return true;
3626}
3627
3628/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3629/// is suitable for input to PALIGNR.
3630static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3631                          const X86Subtarget *Subtarget) {
3632  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3633      (VT.is256BitVector() && !Subtarget->hasInt256()))
3634    return false;
3635
3636  unsigned NumElts = VT.getVectorNumElements();
3637  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3638  unsigned NumLaneElts = NumElts/NumLanes;
3639
3640  // Do not handle 64-bit element shuffles with palignr.
3641  if (NumLaneElts == 2)
3642    return false;
3643
3644  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3645    unsigned i;
3646    for (i = 0; i != NumLaneElts; ++i) {
3647      if (Mask[i+l] >= 0)
3648        break;
3649    }
3650
3651    // Lane is all undef, go to next lane
3652    if (i == NumLaneElts)
3653      continue;
3654
3655    int Start = Mask[i+l];
3656
3657    // Make sure its in this lane in one of the sources
3658    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3659        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3660      return false;
3661
3662    // If not lane 0, then we must match lane 0
3663    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3664      return false;
3665
3666    // Correct second source to be contiguous with first source
3667    if (Start >= (int)NumElts)
3668      Start -= NumElts - NumLaneElts;
3669
3670    // Make sure we're shifting in the right direction.
3671    if (Start <= (int)(i+l))
3672      return false;
3673
3674    Start -= i;
3675
3676    // Check the rest of the elements to see if they are consecutive.
3677    for (++i; i != NumLaneElts; ++i) {
3678      int Idx = Mask[i+l];
3679
3680      // Make sure its in this lane
3681      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3682          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3683        return false;
3684
3685      // If not lane 0, then we must match lane 0
3686      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3687        return false;
3688
3689      if (Idx >= (int)NumElts)
3690        Idx -= NumElts - NumLaneElts;
3691
3692      if (!isUndefOrEqual(Idx, Start+i))
3693        return false;
3694
3695    }
3696  }
3697
3698  return true;
3699}
3700
3701/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3702/// the two vector operands have swapped position.
3703static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3704                                     unsigned NumElems) {
3705  for (unsigned i = 0; i != NumElems; ++i) {
3706    int idx = Mask[i];
3707    if (idx < 0)
3708      continue;
3709    else if (idx < (int)NumElems)
3710      Mask[i] = idx + NumElems;
3711    else
3712      Mask[i] = idx - NumElems;
3713  }
3714}
3715
3716/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3717/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3718/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3719/// reverse of what x86 shuffles want.
3720static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3721
3722  unsigned NumElems = VT.getVectorNumElements();
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned NumLaneElems = NumElems/NumLanes;
3725
3726  if (NumLaneElems != 2 && NumLaneElems != 4)
3727    return false;
3728
3729  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3730  bool symetricMaskRequired =
3731    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3732
3733  // VSHUFPSY divides the resulting vector into 4 chunks.
3734  // The sources are also splitted into 4 chunks, and each destination
3735  // chunk must come from a different source chunk.
3736  //
3737  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3738  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3739  //
3740  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3741  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3742  //
3743  // VSHUFPDY divides the resulting vector into 4 chunks.
3744  // The sources are also splitted into 4 chunks, and each destination
3745  // chunk must come from a different source chunk.
3746  //
3747  //  SRC1 =>      X3       X2       X1       X0
3748  //  SRC2 =>      Y3       Y2       Y1       Y0
3749  //
3750  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3751  //
3752  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3753  unsigned HalfLaneElems = NumLaneElems/2;
3754  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3755    for (unsigned i = 0; i != NumLaneElems; ++i) {
3756      int Idx = Mask[i+l];
3757      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3758      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3759        return false;
3760      // For VSHUFPSY, the mask of the second half must be the same as the
3761      // first but with the appropriate offsets. This works in the same way as
3762      // VPERMILPS works with masks.
3763      if (!symetricMaskRequired || Idx < 0)
3764        continue;
3765      if (MaskVal[i] < 0) {
3766        MaskVal[i] = Idx - l;
3767        continue;
3768      }
3769      if ((signed)(Idx - l) != MaskVal[i])
3770        return false;
3771    }
3772  }
3773
3774  return true;
3775}
3776
3777/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3778/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3779static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3780  if (!VT.is128BitVector())
3781    return false;
3782
3783  unsigned NumElems = VT.getVectorNumElements();
3784
3785  if (NumElems != 4)
3786    return false;
3787
3788  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3789  return isUndefOrEqual(Mask[0], 6) &&
3790         isUndefOrEqual(Mask[1], 7) &&
3791         isUndefOrEqual(Mask[2], 2) &&
3792         isUndefOrEqual(Mask[3], 3);
3793}
3794
3795/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3796/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3797/// <2, 3, 2, 3>
3798static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3799  if (!VT.is128BitVector())
3800    return false;
3801
3802  unsigned NumElems = VT.getVectorNumElements();
3803
3804  if (NumElems != 4)
3805    return false;
3806
3807  return isUndefOrEqual(Mask[0], 2) &&
3808         isUndefOrEqual(Mask[1], 3) &&
3809         isUndefOrEqual(Mask[2], 2) &&
3810         isUndefOrEqual(Mask[3], 3);
3811}
3812
3813/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3814/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3815static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3816  if (!VT.is128BitVector())
3817    return false;
3818
3819  unsigned NumElems = VT.getVectorNumElements();
3820
3821  if (NumElems != 2 && NumElems != 4)
3822    return false;
3823
3824  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3825    if (!isUndefOrEqual(Mask[i], i + NumElems))
3826      return false;
3827
3828  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3829    if (!isUndefOrEqual(Mask[i], i))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3837static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3838  if (!VT.is128BitVector())
3839    return false;
3840
3841  unsigned NumElems = VT.getVectorNumElements();
3842
3843  if (NumElems != 2 && NumElems != 4)
3844    return false;
3845
3846  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3847    if (!isUndefOrEqual(Mask[i], i))
3848      return false;
3849
3850  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3851    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3852      return false;
3853
3854  return true;
3855}
3856
3857//
3858// Some special combinations that can be optimized.
3859//
3860static
3861SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3862                               SelectionDAG &DAG) {
3863  MVT VT = SVOp->getSimpleValueType(0);
3864  SDLoc dl(SVOp);
3865
3866  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3867    return SDValue();
3868
3869  ArrayRef<int> Mask = SVOp->getMask();
3870
3871  // These are the special masks that may be optimized.
3872  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3873  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3874  bool MatchEvenMask = true;
3875  bool MatchOddMask  = true;
3876  for (int i=0; i<8; ++i) {
3877    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3878      MatchEvenMask = false;
3879    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3880      MatchOddMask = false;
3881  }
3882
3883  if (!MatchEvenMask && !MatchOddMask)
3884    return SDValue();
3885
3886  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3887
3888  SDValue Op0 = SVOp->getOperand(0);
3889  SDValue Op1 = SVOp->getOperand(1);
3890
3891  if (MatchEvenMask) {
3892    // Shift the second operand right to 32 bits.
3893    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3894    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3895  } else {
3896    // Shift the first operand left to 32 bits.
3897    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3898    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3899  }
3900  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3901  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3902}
3903
3904/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3905/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3906static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
3907                         bool HasInt256, bool V2IsSplat = false) {
3908
3909  assert(VT.getSizeInBits() >= 128 &&
3910         "Unsupported vector type for unpckl");
3911
3912  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3913  unsigned NumLanes;
3914  unsigned NumOf256BitLanes;
3915  unsigned NumElts = VT.getVectorNumElements();
3916  if (VT.is256BitVector()) {
3917    if (NumElts != 4 && NumElts != 8 &&
3918        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3919    return false;
3920    NumLanes = 2;
3921    NumOf256BitLanes = 1;
3922  } else if (VT.is512BitVector()) {
3923    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3924           "Unsupported vector type for unpckh");
3925    NumLanes = 2;
3926    NumOf256BitLanes = 2;
3927  } else {
3928    NumLanes = 1;
3929    NumOf256BitLanes = 1;
3930  }
3931
3932  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3933  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3934
3935  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3936    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3937      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3938        int BitI  = Mask[l256*NumEltsInStride+l+i];
3939        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3940        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3941          return false;
3942        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3943          return false;
3944        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3945          return false;
3946      }
3947    }
3948  }
3949  return true;
3950}
3951
3952/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3953/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3954static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
3955                         bool HasInt256, bool V2IsSplat = false) {
3956  assert(VT.getSizeInBits() >= 128 &&
3957         "Unsupported vector type for unpckh");
3958
3959  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3960  unsigned NumLanes;
3961  unsigned NumOf256BitLanes;
3962  unsigned NumElts = VT.getVectorNumElements();
3963  if (VT.is256BitVector()) {
3964    if (NumElts != 4 && NumElts != 8 &&
3965        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3966    return false;
3967    NumLanes = 2;
3968    NumOf256BitLanes = 1;
3969  } else if (VT.is512BitVector()) {
3970    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3971           "Unsupported vector type for unpckh");
3972    NumLanes = 2;
3973    NumOf256BitLanes = 2;
3974  } else {
3975    NumLanes = 1;
3976    NumOf256BitLanes = 1;
3977  }
3978
3979  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3980  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3981
3982  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3983    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3984      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
3985        int BitI  = Mask[l256*NumEltsInStride+l+i];
3986        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3987        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3988          return false;
3989        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3990          return false;
3991        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3992          return false;
3993      }
3994    }
3995  }
3996  return true;
3997}
3998
3999/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4000/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4001/// <0, 0, 1, 1>
4002static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4003  unsigned NumElts = VT.getVectorNumElements();
4004  bool Is256BitVec = VT.is256BitVector();
4005
4006  if (VT.is512BitVector())
4007    return false;
4008  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4009         "Unsupported vector type for unpckh");
4010
4011  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4012      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4013    return false;
4014
4015  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4016  // FIXME: Need a better way to get rid of this, there's no latency difference
4017  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4018  // the former later. We should also remove the "_undef" special mask.
4019  if (NumElts == 4 && Is256BitVec)
4020    return false;
4021
4022  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4023  // independently on 128-bit lanes.
4024  unsigned NumLanes = VT.getSizeInBits()/128;
4025  unsigned NumLaneElts = NumElts/NumLanes;
4026
4027  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4028    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4029      int BitI  = Mask[l+i];
4030      int BitI1 = Mask[l+i+1];
4031
4032      if (!isUndefOrEqual(BitI, j))
4033        return false;
4034      if (!isUndefOrEqual(BitI1, j))
4035        return false;
4036    }
4037  }
4038
4039  return true;
4040}
4041
4042/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4043/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4044/// <2, 2, 3, 3>
4045static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4046  unsigned NumElts = VT.getVectorNumElements();
4047
4048  if (VT.is512BitVector())
4049    return false;
4050
4051  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4052         "Unsupported vector type for unpckh");
4053
4054  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4055      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4056    return false;
4057
4058  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4059  // independently on 128-bit lanes.
4060  unsigned NumLanes = VT.getSizeInBits()/128;
4061  unsigned NumLaneElts = NumElts/NumLanes;
4062
4063  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4064    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4065      int BitI  = Mask[l+i];
4066      int BitI1 = Mask[l+i+1];
4067      if (!isUndefOrEqual(BitI, j))
4068        return false;
4069      if (!isUndefOrEqual(BitI1, j))
4070        return false;
4071    }
4072  }
4073  return true;
4074}
4075
4076/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4077/// specifies a shuffle of elements that is suitable for input to MOVSS,
4078/// MOVSD, and MOVD, i.e. setting the lowest element.
4079static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4080  if (VT.getVectorElementType().getSizeInBits() < 32)
4081    return false;
4082  if (!VT.is128BitVector())
4083    return false;
4084
4085  unsigned NumElts = VT.getVectorNumElements();
4086
4087  if (!isUndefOrEqual(Mask[0], NumElts))
4088    return false;
4089
4090  for (unsigned i = 1; i != NumElts; ++i)
4091    if (!isUndefOrEqual(Mask[i], i))
4092      return false;
4093
4094  return true;
4095}
4096
4097/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4098/// as permutations between 128-bit chunks or halves. As an example: this
4099/// shuffle bellow:
4100///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4101/// The first half comes from the second half of V1 and the second half from the
4102/// the second half of V2.
4103static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4104  if (!HasFp256 || !VT.is256BitVector())
4105    return false;
4106
4107  // The shuffle result is divided into half A and half B. In total the two
4108  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4109  // B must come from C, D, E or F.
4110  unsigned HalfSize = VT.getVectorNumElements()/2;
4111  bool MatchA = false, MatchB = false;
4112
4113  // Check if A comes from one of C, D, E, F.
4114  for (unsigned Half = 0; Half != 4; ++Half) {
4115    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4116      MatchA = true;
4117      break;
4118    }
4119  }
4120
4121  // Check if B comes from one of C, D, E, F.
4122  for (unsigned Half = 0; Half != 4; ++Half) {
4123    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4124      MatchB = true;
4125      break;
4126    }
4127  }
4128
4129  return MatchA && MatchB;
4130}
4131
4132/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4133/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4134static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4135  MVT VT = SVOp->getSimpleValueType(0);
4136
4137  unsigned HalfSize = VT.getVectorNumElements()/2;
4138
4139  unsigned FstHalf = 0, SndHalf = 0;
4140  for (unsigned i = 0; i < HalfSize; ++i) {
4141    if (SVOp->getMaskElt(i) > 0) {
4142      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4143      break;
4144    }
4145  }
4146  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4147    if (SVOp->getMaskElt(i) > 0) {
4148      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4149      break;
4150    }
4151  }
4152
4153  return (FstHalf | (SndHalf << 4));
4154}
4155
4156// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4157static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4158  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4159  if (EltSize < 32)
4160    return false;
4161
4162  unsigned NumElts = VT.getVectorNumElements();
4163  Imm8 = 0;
4164  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4165    for (unsigned i = 0; i != NumElts; ++i) {
4166      if (Mask[i] < 0)
4167        continue;
4168      Imm8 |= Mask[i] << (i*2);
4169    }
4170    return true;
4171  }
4172
4173  unsigned LaneSize = 4;
4174  SmallVector<int, 4> MaskVal(LaneSize, -1);
4175
4176  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4177    for (unsigned i = 0; i != LaneSize; ++i) {
4178      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4179        return false;
4180      if (Mask[i+l] < 0)
4181        continue;
4182      if (MaskVal[i] < 0) {
4183        MaskVal[i] = Mask[i+l] - l;
4184        Imm8 |= MaskVal[i] << (i*2);
4185        continue;
4186      }
4187      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4188        return false;
4189    }
4190  }
4191  return true;
4192}
4193
4194/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4195/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4196/// Note that VPERMIL mask matching is different depending whether theunderlying
4197/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4198/// to the same elements of the low, but to the higher half of the source.
4199/// In VPERMILPD the two lanes could be shuffled independently of each other
4200/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4201static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4202  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4203  if (VT.getSizeInBits() < 256 || EltSize < 32)
4204    return false;
4205  bool symetricMaskRequired = (EltSize == 32);
4206  unsigned NumElts = VT.getVectorNumElements();
4207
4208  unsigned NumLanes = VT.getSizeInBits()/128;
4209  unsigned LaneSize = NumElts/NumLanes;
4210  // 2 or 4 elements in one lane
4211
4212  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4213  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4214    for (unsigned i = 0; i != LaneSize; ++i) {
4215      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4216        return false;
4217      if (symetricMaskRequired) {
4218        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4219          ExpectedMaskVal[i] = Mask[i+l] - l;
4220          continue;
4221        }
4222        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4223          return false;
4224      }
4225    }
4226  }
4227  return true;
4228}
4229
4230/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4231/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4232/// element of vector 2 and the other elements to come from vector 1 in order.
4233static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4234                               bool V2IsSplat = false, bool V2IsUndef = false) {
4235  if (!VT.is128BitVector())
4236    return false;
4237
4238  unsigned NumOps = VT.getVectorNumElements();
4239  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4240    return false;
4241
4242  if (!isUndefOrEqual(Mask[0], 0))
4243    return false;
4244
4245  for (unsigned i = 1; i != NumOps; ++i)
4246    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4247          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4248          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4249      return false;
4250
4251  return true;
4252}
4253
4254/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4255/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4256/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4257static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4258                           const X86Subtarget *Subtarget) {
4259  if (!Subtarget->hasSSE3())
4260    return false;
4261
4262  unsigned NumElems = VT.getVectorNumElements();
4263
4264  if ((VT.is128BitVector() && NumElems != 4) ||
4265      (VT.is256BitVector() && NumElems != 8) ||
4266      (VT.is512BitVector() && NumElems != 16))
4267    return false;
4268
4269  // "i+1" is the value the indexed mask element must have
4270  for (unsigned i = 0; i != NumElems; i += 2)
4271    if (!isUndefOrEqual(Mask[i], i+1) ||
4272        !isUndefOrEqual(Mask[i+1], i+1))
4273      return false;
4274
4275  return true;
4276}
4277
4278/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4279/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4280/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4281static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4282                           const X86Subtarget *Subtarget) {
4283  if (!Subtarget->hasSSE3())
4284    return false;
4285
4286  unsigned NumElems = VT.getVectorNumElements();
4287
4288  if ((VT.is128BitVector() && NumElems != 4) ||
4289      (VT.is256BitVector() && NumElems != 8) ||
4290      (VT.is512BitVector() && NumElems != 16))
4291    return false;
4292
4293  // "i" is the value the indexed mask element must have
4294  for (unsigned i = 0; i != NumElems; i += 2)
4295    if (!isUndefOrEqual(Mask[i], i) ||
4296        !isUndefOrEqual(Mask[i+1], i))
4297      return false;
4298
4299  return true;
4300}
4301
4302/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4303/// specifies a shuffle of elements that is suitable for input to 256-bit
4304/// version of MOVDDUP.
4305static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4306  if (!HasFp256 || !VT.is256BitVector())
4307    return false;
4308
4309  unsigned NumElts = VT.getVectorNumElements();
4310  if (NumElts != 4)
4311    return false;
4312
4313  for (unsigned i = 0; i != NumElts/2; ++i)
4314    if (!isUndefOrEqual(Mask[i], 0))
4315      return false;
4316  for (unsigned i = NumElts/2; i != NumElts; ++i)
4317    if (!isUndefOrEqual(Mask[i], NumElts/2))
4318      return false;
4319  return true;
4320}
4321
4322/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4323/// specifies a shuffle of elements that is suitable for input to 128-bit
4324/// version of MOVDDUP.
4325static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4326  if (!VT.is128BitVector())
4327    return false;
4328
4329  unsigned e = VT.getVectorNumElements() / 2;
4330  for (unsigned i = 0; i != e; ++i)
4331    if (!isUndefOrEqual(Mask[i], i))
4332      return false;
4333  for (unsigned i = 0; i != e; ++i)
4334    if (!isUndefOrEqual(Mask[e+i], i))
4335      return false;
4336  return true;
4337}
4338
4339/// isVEXTRACTIndex - Return true if the specified
4340/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4341/// suitable for instruction that extract 128 or 256 bit vectors
4342static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4343  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4344  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4345    return false;
4346
4347  // The index should be aligned on a vecWidth-bit boundary.
4348  uint64_t Index =
4349    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4350
4351  MVT VT = N->getSimpleValueType(0);
4352  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4353  bool Result = (Index * ElSize) % vecWidth == 0;
4354
4355  return Result;
4356}
4357
4358/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4359/// operand specifies a subvector insert that is suitable for input to
4360/// insertion of 128 or 256-bit subvectors
4361static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4362  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4363  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4364    return false;
4365  // The index should be aligned on a vecWidth-bit boundary.
4366  uint64_t Index =
4367    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4368
4369  MVT VT = N->getSimpleValueType(0);
4370  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4371  bool Result = (Index * ElSize) % vecWidth == 0;
4372
4373  return Result;
4374}
4375
4376bool X86::isVINSERT128Index(SDNode *N) {
4377  return isVINSERTIndex(N, 128);
4378}
4379
4380bool X86::isVINSERT256Index(SDNode *N) {
4381  return isVINSERTIndex(N, 256);
4382}
4383
4384bool X86::isVEXTRACT128Index(SDNode *N) {
4385  return isVEXTRACTIndex(N, 128);
4386}
4387
4388bool X86::isVEXTRACT256Index(SDNode *N) {
4389  return isVEXTRACTIndex(N, 256);
4390}
4391
4392/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4393/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4394/// Handles 128-bit and 256-bit.
4395static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4396  MVT VT = N->getSimpleValueType(0);
4397
4398  assert((VT.getSizeInBits() >= 128) &&
4399         "Unsupported vector type for PSHUF/SHUFP");
4400
4401  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4402  // independently on 128-bit lanes.
4403  unsigned NumElts = VT.getVectorNumElements();
4404  unsigned NumLanes = VT.getSizeInBits()/128;
4405  unsigned NumLaneElts = NumElts/NumLanes;
4406
4407  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4408         "Only supports 2, 4 or 8 elements per lane");
4409
4410  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4411  unsigned Mask = 0;
4412  for (unsigned i = 0; i != NumElts; ++i) {
4413    int Elt = N->getMaskElt(i);
4414    if (Elt < 0) continue;
4415    Elt &= NumLaneElts - 1;
4416    unsigned ShAmt = (i << Shift) % 8;
4417    Mask |= Elt << ShAmt;
4418  }
4419
4420  return Mask;
4421}
4422
4423/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4424/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4425static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4426  MVT VT = N->getSimpleValueType(0);
4427
4428  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4429         "Unsupported vector type for PSHUFHW");
4430
4431  unsigned NumElts = VT.getVectorNumElements();
4432
4433  unsigned Mask = 0;
4434  for (unsigned l = 0; l != NumElts; l += 8) {
4435    // 8 nodes per lane, but we only care about the last 4.
4436    for (unsigned i = 0; i < 4; ++i) {
4437      int Elt = N->getMaskElt(l+i+4);
4438      if (Elt < 0) continue;
4439      Elt &= 0x3; // only 2-bits.
4440      Mask |= Elt << (i * 2);
4441    }
4442  }
4443
4444  return Mask;
4445}
4446
4447/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4448/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4449static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4450  MVT VT = N->getSimpleValueType(0);
4451
4452  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4453         "Unsupported vector type for PSHUFHW");
4454
4455  unsigned NumElts = VT.getVectorNumElements();
4456
4457  unsigned Mask = 0;
4458  for (unsigned l = 0; l != NumElts; l += 8) {
4459    // 8 nodes per lane, but we only care about the first 4.
4460    for (unsigned i = 0; i < 4; ++i) {
4461      int Elt = N->getMaskElt(l+i);
4462      if (Elt < 0) continue;
4463      Elt &= 0x3; // only 2-bits
4464      Mask |= Elt << (i * 2);
4465    }
4466  }
4467
4468  return Mask;
4469}
4470
4471/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4472/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4473static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4474  MVT VT = SVOp->getSimpleValueType(0);
4475  unsigned EltSize = VT.is512BitVector() ? 1 :
4476    VT.getVectorElementType().getSizeInBits() >> 3;
4477
4478  unsigned NumElts = VT.getVectorNumElements();
4479  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4480  unsigned NumLaneElts = NumElts/NumLanes;
4481
4482  int Val = 0;
4483  unsigned i;
4484  for (i = 0; i != NumElts; ++i) {
4485    Val = SVOp->getMaskElt(i);
4486    if (Val >= 0)
4487      break;
4488  }
4489  if (Val >= (int)NumElts)
4490    Val -= NumElts - NumLaneElts;
4491
4492  assert(Val - i > 0 && "PALIGNR imm should be positive");
4493  return (Val - i) * EltSize;
4494}
4495
4496static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4497  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4498  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4499    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4500
4501  uint64_t Index =
4502    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4503
4504  MVT VecVT = N->getOperand(0).getSimpleValueType();
4505  MVT ElVT = VecVT.getVectorElementType();
4506
4507  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4508  return Index / NumElemsPerChunk;
4509}
4510
4511static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4512  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4513  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4514    llvm_unreachable("Illegal insert subvector for VINSERT");
4515
4516  uint64_t Index =
4517    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4518
4519  MVT VecVT = N->getSimpleValueType(0);
4520  MVT ElVT = VecVT.getVectorElementType();
4521
4522  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4523  return Index / NumElemsPerChunk;
4524}
4525
4526/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4527/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4528/// and VINSERTI128 instructions.
4529unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4530  return getExtractVEXTRACTImmediate(N, 128);
4531}
4532
4533/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4534/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4535/// and VINSERTI64x4 instructions.
4536unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4537  return getExtractVEXTRACTImmediate(N, 256);
4538}
4539
4540/// getInsertVINSERT128Immediate - Return the appropriate immediate
4541/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4542/// and VINSERTI128 instructions.
4543unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4544  return getInsertVINSERTImmediate(N, 128);
4545}
4546
4547/// getInsertVINSERT256Immediate - Return the appropriate immediate
4548/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4549/// and VINSERTI64x4 instructions.
4550unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4551  return getInsertVINSERTImmediate(N, 256);
4552}
4553
4554/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4555/// constant +0.0.
4556bool X86::isZeroNode(SDValue Elt) {
4557  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4558    return CN->isNullValue();
4559  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4560    return CFP->getValueAPF().isPosZero();
4561  return false;
4562}
4563
4564/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4565/// their permute mask.
4566static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4567                                    SelectionDAG &DAG) {
4568  MVT VT = SVOp->getSimpleValueType(0);
4569  unsigned NumElems = VT.getVectorNumElements();
4570  SmallVector<int, 8> MaskVec;
4571
4572  for (unsigned i = 0; i != NumElems; ++i) {
4573    int Idx = SVOp->getMaskElt(i);
4574    if (Idx >= 0) {
4575      if (Idx < (int)NumElems)
4576        Idx += NumElems;
4577      else
4578        Idx -= NumElems;
4579    }
4580    MaskVec.push_back(Idx);
4581  }
4582  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4583                              SVOp->getOperand(0), &MaskVec[0]);
4584}
4585
4586/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4587/// match movhlps. The lower half elements should come from upper half of
4588/// V1 (and in order), and the upper half elements should come from the upper
4589/// half of V2 (and in order).
4590static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4591  if (!VT.is128BitVector())
4592    return false;
4593  if (VT.getVectorNumElements() != 4)
4594    return false;
4595  for (unsigned i = 0, e = 2; i != e; ++i)
4596    if (!isUndefOrEqual(Mask[i], i+2))
4597      return false;
4598  for (unsigned i = 2; i != 4; ++i)
4599    if (!isUndefOrEqual(Mask[i], i+4))
4600      return false;
4601  return true;
4602}
4603
4604/// isScalarLoadToVector - Returns true if the node is a scalar load that
4605/// is promoted to a vector. It also returns the LoadSDNode by reference if
4606/// required.
4607static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4608  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4609    return false;
4610  N = N->getOperand(0).getNode();
4611  if (!ISD::isNON_EXTLoad(N))
4612    return false;
4613  if (LD)
4614    *LD = cast<LoadSDNode>(N);
4615  return true;
4616}
4617
4618// Test whether the given value is a vector value which will be legalized
4619// into a load.
4620static bool WillBeConstantPoolLoad(SDNode *N) {
4621  if (N->getOpcode() != ISD::BUILD_VECTOR)
4622    return false;
4623
4624  // Check for any non-constant elements.
4625  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4626    switch (N->getOperand(i).getNode()->getOpcode()) {
4627    case ISD::UNDEF:
4628    case ISD::ConstantFP:
4629    case ISD::Constant:
4630      break;
4631    default:
4632      return false;
4633    }
4634
4635  // Vectors of all-zeros and all-ones are materialized with special
4636  // instructions rather than being loaded.
4637  return !ISD::isBuildVectorAllZeros(N) &&
4638         !ISD::isBuildVectorAllOnes(N);
4639}
4640
4641/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4642/// match movlp{s|d}. The lower half elements should come from lower half of
4643/// V1 (and in order), and the upper half elements should come from the upper
4644/// half of V2 (and in order). And since V1 will become the source of the
4645/// MOVLP, it must be either a vector load or a scalar load to vector.
4646static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4647                               ArrayRef<int> Mask, MVT VT) {
4648  if (!VT.is128BitVector())
4649    return false;
4650
4651  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4652    return false;
4653  // Is V2 is a vector load, don't do this transformation. We will try to use
4654  // load folding shufps op.
4655  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4656    return false;
4657
4658  unsigned NumElems = VT.getVectorNumElements();
4659
4660  if (NumElems != 2 && NumElems != 4)
4661    return false;
4662  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4663    if (!isUndefOrEqual(Mask[i], i))
4664      return false;
4665  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4666    if (!isUndefOrEqual(Mask[i], i+NumElems))
4667      return false;
4668  return true;
4669}
4670
4671/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4672/// all the same.
4673static bool isSplatVector(SDNode *N) {
4674  if (N->getOpcode() != ISD::BUILD_VECTOR)
4675    return false;
4676
4677  SDValue SplatValue = N->getOperand(0);
4678  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4679    if (N->getOperand(i) != SplatValue)
4680      return false;
4681  return true;
4682}
4683
4684/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4685/// to an zero vector.
4686/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4687static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4688  SDValue V1 = N->getOperand(0);
4689  SDValue V2 = N->getOperand(1);
4690  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4691  for (unsigned i = 0; i != NumElems; ++i) {
4692    int Idx = N->getMaskElt(i);
4693    if (Idx >= (int)NumElems) {
4694      unsigned Opc = V2.getOpcode();
4695      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4696        continue;
4697      if (Opc != ISD::BUILD_VECTOR ||
4698          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4699        return false;
4700    } else if (Idx >= 0) {
4701      unsigned Opc = V1.getOpcode();
4702      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4703        continue;
4704      if (Opc != ISD::BUILD_VECTOR ||
4705          !X86::isZeroNode(V1.getOperand(Idx)))
4706        return false;
4707    }
4708  }
4709  return true;
4710}
4711
4712/// getZeroVector - Returns a vector of specified type with all zero elements.
4713///
4714static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4715                             SelectionDAG &DAG, SDLoc dl) {
4716  assert(VT.isVector() && "Expected a vector type");
4717
4718  // Always build SSE zero vectors as <4 x i32> bitcasted
4719  // to their dest type. This ensures they get CSE'd.
4720  SDValue Vec;
4721  if (VT.is128BitVector()) {  // SSE
4722    if (Subtarget->hasSSE2()) {  // SSE2
4723      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4724      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4725    } else { // SSE1
4726      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4727      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4728    }
4729  } else if (VT.is256BitVector()) { // AVX
4730    if (Subtarget->hasInt256()) { // AVX2
4731      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4732      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4733      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4734                        array_lengthof(Ops));
4735    } else {
4736      // 256-bit logic and arithmetic instructions in AVX are all
4737      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4738      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4739      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4740      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4741                        array_lengthof(Ops));
4742    }
4743  } else if (VT.is512BitVector()) { // AVX-512
4744      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4745      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4746                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4747      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
4748  } else
4749    llvm_unreachable("Unexpected vector type");
4750
4751  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4752}
4753
4754/// getOnesVector - Returns a vector of specified type with all bits set.
4755/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4756/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4757/// Then bitcast to their original type, ensuring they get CSE'd.
4758static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4759                             SDLoc dl) {
4760  assert(VT.isVector() && "Expected a vector type");
4761
4762  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4763  SDValue Vec;
4764  if (VT.is256BitVector()) {
4765    if (HasInt256) { // AVX2
4766      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4767      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4768                        array_lengthof(Ops));
4769    } else { // AVX
4770      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4771      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4772    }
4773  } else if (VT.is128BitVector()) {
4774    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4775  } else
4776    llvm_unreachable("Unexpected vector type");
4777
4778  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4779}
4780
4781/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4782/// that point to V2 points to its first element.
4783static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4784  for (unsigned i = 0; i != NumElems; ++i) {
4785    if (Mask[i] > (int)NumElems) {
4786      Mask[i] = NumElems;
4787    }
4788  }
4789}
4790
4791/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4792/// operation of specified width.
4793static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4794                       SDValue V2) {
4795  unsigned NumElems = VT.getVectorNumElements();
4796  SmallVector<int, 8> Mask;
4797  Mask.push_back(NumElems);
4798  for (unsigned i = 1; i != NumElems; ++i)
4799    Mask.push_back(i);
4800  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4801}
4802
4803/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4804static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4805                          SDValue V2) {
4806  unsigned NumElems = VT.getVectorNumElements();
4807  SmallVector<int, 8> Mask;
4808  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4809    Mask.push_back(i);
4810    Mask.push_back(i + NumElems);
4811  }
4812  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4813}
4814
4815/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4816static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4817                          SDValue V2) {
4818  unsigned NumElems = VT.getVectorNumElements();
4819  SmallVector<int, 8> Mask;
4820  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4821    Mask.push_back(i + Half);
4822    Mask.push_back(i + NumElems + Half);
4823  }
4824  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4825}
4826
4827// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4828// a generic shuffle instruction because the target has no such instructions.
4829// Generate shuffles which repeat i16 and i8 several times until they can be
4830// represented by v4f32 and then be manipulated by target suported shuffles.
4831static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4832  MVT VT = V.getSimpleValueType();
4833  int NumElems = VT.getVectorNumElements();
4834  SDLoc dl(V);
4835
4836  while (NumElems > 4) {
4837    if (EltNo < NumElems/2) {
4838      V = getUnpackl(DAG, dl, VT, V, V);
4839    } else {
4840      V = getUnpackh(DAG, dl, VT, V, V);
4841      EltNo -= NumElems/2;
4842    }
4843    NumElems >>= 1;
4844  }
4845  return V;
4846}
4847
4848/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4849static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4850  MVT VT = V.getSimpleValueType();
4851  SDLoc dl(V);
4852
4853  if (VT.is128BitVector()) {
4854    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4855    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4856    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4857                             &SplatMask[0]);
4858  } else if (VT.is256BitVector()) {
4859    // To use VPERMILPS to splat scalars, the second half of indicies must
4860    // refer to the higher part, which is a duplication of the lower one,
4861    // because VPERMILPS can only handle in-lane permutations.
4862    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4863                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4864
4865    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4866    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4867                             &SplatMask[0]);
4868  } else
4869    llvm_unreachable("Vector size not supported");
4870
4871  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4872}
4873
4874/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4875static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4876  MVT SrcVT = SV->getSimpleValueType(0);
4877  SDValue V1 = SV->getOperand(0);
4878  SDLoc dl(SV);
4879
4880  int EltNo = SV->getSplatIndex();
4881  int NumElems = SrcVT.getVectorNumElements();
4882  bool Is256BitVec = SrcVT.is256BitVector();
4883
4884  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4885         "Unknown how to promote splat for type");
4886
4887  // Extract the 128-bit part containing the splat element and update
4888  // the splat element index when it refers to the higher register.
4889  if (Is256BitVec) {
4890    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4891    if (EltNo >= NumElems/2)
4892      EltNo -= NumElems/2;
4893  }
4894
4895  // All i16 and i8 vector types can't be used directly by a generic shuffle
4896  // instruction because the target has no such instruction. Generate shuffles
4897  // which repeat i16 and i8 several times until they fit in i32, and then can
4898  // be manipulated by target suported shuffles.
4899  MVT EltVT = SrcVT.getVectorElementType();
4900  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4901    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4902
4903  // Recreate the 256-bit vector and place the same 128-bit vector
4904  // into the low and high part. This is necessary because we want
4905  // to use VPERM* to shuffle the vectors
4906  if (Is256BitVec) {
4907    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4908  }
4909
4910  return getLegalSplat(DAG, V1, EltNo);
4911}
4912
4913/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4914/// vector of zero or undef vector.  This produces a shuffle where the low
4915/// element of V2 is swizzled into the zero/undef vector, landing at element
4916/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4917static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4918                                           bool IsZero,
4919                                           const X86Subtarget *Subtarget,
4920                                           SelectionDAG &DAG) {
4921  MVT VT = V2.getSimpleValueType();
4922  SDValue V1 = IsZero
4923    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4924  unsigned NumElems = VT.getVectorNumElements();
4925  SmallVector<int, 16> MaskVec;
4926  for (unsigned i = 0; i != NumElems; ++i)
4927    // If this is the insertion idx, put the low elt of V2 here.
4928    MaskVec.push_back(i == Idx ? NumElems : i);
4929  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4930}
4931
4932/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4933/// target specific opcode. Returns true if the Mask could be calculated.
4934/// Sets IsUnary to true if only uses one source.
4935static bool getTargetShuffleMask(SDNode *N, MVT VT,
4936                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4937  unsigned NumElems = VT.getVectorNumElements();
4938  SDValue ImmN;
4939
4940  IsUnary = false;
4941  switch(N->getOpcode()) {
4942  case X86ISD::SHUFP:
4943    ImmN = N->getOperand(N->getNumOperands()-1);
4944    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4945    break;
4946  case X86ISD::UNPCKH:
4947    DecodeUNPCKHMask(VT, Mask);
4948    break;
4949  case X86ISD::UNPCKL:
4950    DecodeUNPCKLMask(VT, Mask);
4951    break;
4952  case X86ISD::MOVHLPS:
4953    DecodeMOVHLPSMask(NumElems, Mask);
4954    break;
4955  case X86ISD::MOVLHPS:
4956    DecodeMOVLHPSMask(NumElems, Mask);
4957    break;
4958  case X86ISD::PALIGNR:
4959    ImmN = N->getOperand(N->getNumOperands()-1);
4960    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4961    break;
4962  case X86ISD::PSHUFD:
4963  case X86ISD::VPERMILP:
4964    ImmN = N->getOperand(N->getNumOperands()-1);
4965    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4966    IsUnary = true;
4967    break;
4968  case X86ISD::PSHUFHW:
4969    ImmN = N->getOperand(N->getNumOperands()-1);
4970    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4971    IsUnary = true;
4972    break;
4973  case X86ISD::PSHUFLW:
4974    ImmN = N->getOperand(N->getNumOperands()-1);
4975    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4976    IsUnary = true;
4977    break;
4978  case X86ISD::VPERMI:
4979    ImmN = N->getOperand(N->getNumOperands()-1);
4980    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4981    IsUnary = true;
4982    break;
4983  case X86ISD::MOVSS:
4984  case X86ISD::MOVSD: {
4985    // The index 0 always comes from the first element of the second source,
4986    // this is why MOVSS and MOVSD are used in the first place. The other
4987    // elements come from the other positions of the first source vector
4988    Mask.push_back(NumElems);
4989    for (unsigned i = 1; i != NumElems; ++i) {
4990      Mask.push_back(i);
4991    }
4992    break;
4993  }
4994  case X86ISD::VPERM2X128:
4995    ImmN = N->getOperand(N->getNumOperands()-1);
4996    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4997    if (Mask.empty()) return false;
4998    break;
4999  case X86ISD::MOVDDUP:
5000  case X86ISD::MOVLHPD:
5001  case X86ISD::MOVLPD:
5002  case X86ISD::MOVLPS:
5003  case X86ISD::MOVSHDUP:
5004  case X86ISD::MOVSLDUP:
5005    // Not yet implemented
5006    return false;
5007  default: llvm_unreachable("unknown target shuffle node");
5008  }
5009
5010  return true;
5011}
5012
5013/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5014/// element of the result of the vector shuffle.
5015static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5016                                   unsigned Depth) {
5017  if (Depth == 6)
5018    return SDValue();  // Limit search depth.
5019
5020  SDValue V = SDValue(N, 0);
5021  EVT VT = V.getValueType();
5022  unsigned Opcode = V.getOpcode();
5023
5024  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5025  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5026    int Elt = SV->getMaskElt(Index);
5027
5028    if (Elt < 0)
5029      return DAG.getUNDEF(VT.getVectorElementType());
5030
5031    unsigned NumElems = VT.getVectorNumElements();
5032    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5033                                         : SV->getOperand(1);
5034    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5035  }
5036
5037  // Recurse into target specific vector shuffles to find scalars.
5038  if (isTargetShuffle(Opcode)) {
5039    MVT ShufVT = V.getSimpleValueType();
5040    unsigned NumElems = ShufVT.getVectorNumElements();
5041    SmallVector<int, 16> ShuffleMask;
5042    bool IsUnary;
5043
5044    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5045      return SDValue();
5046
5047    int Elt = ShuffleMask[Index];
5048    if (Elt < 0)
5049      return DAG.getUNDEF(ShufVT.getVectorElementType());
5050
5051    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5052                                         : N->getOperand(1);
5053    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5054                               Depth+1);
5055  }
5056
5057  // Actual nodes that may contain scalar elements
5058  if (Opcode == ISD::BITCAST) {
5059    V = V.getOperand(0);
5060    EVT SrcVT = V.getValueType();
5061    unsigned NumElems = VT.getVectorNumElements();
5062
5063    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5064      return SDValue();
5065  }
5066
5067  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5068    return (Index == 0) ? V.getOperand(0)
5069                        : DAG.getUNDEF(VT.getVectorElementType());
5070
5071  if (V.getOpcode() == ISD::BUILD_VECTOR)
5072    return V.getOperand(Index);
5073
5074  return SDValue();
5075}
5076
5077/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5078/// shuffle operation which come from a consecutively from a zero. The
5079/// search can start in two different directions, from left or right.
5080/// We count undefs as zeros until PreferredNum is reached.
5081static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5082                                         unsigned NumElems, bool ZerosFromLeft,
5083                                         SelectionDAG &DAG,
5084                                         unsigned PreferredNum = -1U) {
5085  unsigned NumZeros = 0;
5086  for (unsigned i = 0; i != NumElems; ++i) {
5087    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5088    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5089    if (!Elt.getNode())
5090      break;
5091
5092    if (X86::isZeroNode(Elt))
5093      ++NumZeros;
5094    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5095      NumZeros = std::min(NumZeros + 1, PreferredNum);
5096    else
5097      break;
5098  }
5099
5100  return NumZeros;
5101}
5102
5103/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5104/// correspond consecutively to elements from one of the vector operands,
5105/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5106static
5107bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5108                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5109                              unsigned NumElems, unsigned &OpNum) {
5110  bool SeenV1 = false;
5111  bool SeenV2 = false;
5112
5113  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5114    int Idx = SVOp->getMaskElt(i);
5115    // Ignore undef indicies
5116    if (Idx < 0)
5117      continue;
5118
5119    if (Idx < (int)NumElems)
5120      SeenV1 = true;
5121    else
5122      SeenV2 = true;
5123
5124    // Only accept consecutive elements from the same vector
5125    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5126      return false;
5127  }
5128
5129  OpNum = SeenV1 ? 0 : 1;
5130  return true;
5131}
5132
5133/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5134/// logical left shift of a vector.
5135static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5136                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5137  unsigned NumElems =
5138    SVOp->getSimpleValueType(0).getVectorNumElements();
5139  unsigned NumZeros = getNumOfConsecutiveZeros(
5140      SVOp, NumElems, false /* check zeros from right */, DAG,
5141      SVOp->getMaskElt(0));
5142  unsigned OpSrc;
5143
5144  if (!NumZeros)
5145    return false;
5146
5147  // Considering the elements in the mask that are not consecutive zeros,
5148  // check if they consecutively come from only one of the source vectors.
5149  //
5150  //               V1 = {X, A, B, C}     0
5151  //                         \  \  \    /
5152  //   vector_shuffle V1, V2 <1, 2, 3, X>
5153  //
5154  if (!isShuffleMaskConsecutive(SVOp,
5155            0,                   // Mask Start Index
5156            NumElems-NumZeros,   // Mask End Index(exclusive)
5157            NumZeros,            // Where to start looking in the src vector
5158            NumElems,            // Number of elements in vector
5159            OpSrc))              // Which source operand ?
5160    return false;
5161
5162  isLeft = false;
5163  ShAmt = NumZeros;
5164  ShVal = SVOp->getOperand(OpSrc);
5165  return true;
5166}
5167
5168/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5169/// logical left shift of a vector.
5170static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5171                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5172  unsigned NumElems =
5173    SVOp->getSimpleValueType(0).getVectorNumElements();
5174  unsigned NumZeros = getNumOfConsecutiveZeros(
5175      SVOp, NumElems, true /* check zeros from left */, DAG,
5176      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5177  unsigned OpSrc;
5178
5179  if (!NumZeros)
5180    return false;
5181
5182  // Considering the elements in the mask that are not consecutive zeros,
5183  // check if they consecutively come from only one of the source vectors.
5184  //
5185  //                           0    { A, B, X, X } = V2
5186  //                          / \    /  /
5187  //   vector_shuffle V1, V2 <X, X, 4, 5>
5188  //
5189  if (!isShuffleMaskConsecutive(SVOp,
5190            NumZeros,     // Mask Start Index
5191            NumElems,     // Mask End Index(exclusive)
5192            0,            // Where to start looking in the src vector
5193            NumElems,     // Number of elements in vector
5194            OpSrc))       // Which source operand ?
5195    return false;
5196
5197  isLeft = true;
5198  ShAmt = NumZeros;
5199  ShVal = SVOp->getOperand(OpSrc);
5200  return true;
5201}
5202
5203/// isVectorShift - Returns true if the shuffle can be implemented as a
5204/// logical left or right shift of a vector.
5205static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5206                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5207  // Although the logic below support any bitwidth size, there are no
5208  // shift instructions which handle more than 128-bit vectors.
5209  if (!SVOp->getSimpleValueType(0).is128BitVector())
5210    return false;
5211
5212  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5213      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5214    return true;
5215
5216  return false;
5217}
5218
5219/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5220///
5221static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5222                                       unsigned NumNonZero, unsigned NumZero,
5223                                       SelectionDAG &DAG,
5224                                       const X86Subtarget* Subtarget,
5225                                       const TargetLowering &TLI) {
5226  if (NumNonZero > 8)
5227    return SDValue();
5228
5229  SDLoc dl(Op);
5230  SDValue V(0, 0);
5231  bool First = true;
5232  for (unsigned i = 0; i < 16; ++i) {
5233    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5234    if (ThisIsNonZero && First) {
5235      if (NumZero)
5236        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5237      else
5238        V = DAG.getUNDEF(MVT::v8i16);
5239      First = false;
5240    }
5241
5242    if ((i & 1) != 0) {
5243      SDValue ThisElt(0, 0), LastElt(0, 0);
5244      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5245      if (LastIsNonZero) {
5246        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5247                              MVT::i16, Op.getOperand(i-1));
5248      }
5249      if (ThisIsNonZero) {
5250        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5251        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5252                              ThisElt, DAG.getConstant(8, MVT::i8));
5253        if (LastIsNonZero)
5254          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5255      } else
5256        ThisElt = LastElt;
5257
5258      if (ThisElt.getNode())
5259        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5260                        DAG.getIntPtrConstant(i/2));
5261    }
5262  }
5263
5264  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5265}
5266
5267/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5268///
5269static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5270                                     unsigned NumNonZero, unsigned NumZero,
5271                                     SelectionDAG &DAG,
5272                                     const X86Subtarget* Subtarget,
5273                                     const TargetLowering &TLI) {
5274  if (NumNonZero > 4)
5275    return SDValue();
5276
5277  SDLoc dl(Op);
5278  SDValue V(0, 0);
5279  bool First = true;
5280  for (unsigned i = 0; i < 8; ++i) {
5281    bool isNonZero = (NonZeros & (1 << i)) != 0;
5282    if (isNonZero) {
5283      if (First) {
5284        if (NumZero)
5285          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5286        else
5287          V = DAG.getUNDEF(MVT::v8i16);
5288        First = false;
5289      }
5290      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5291                      MVT::v8i16, V, Op.getOperand(i),
5292                      DAG.getIntPtrConstant(i));
5293    }
5294  }
5295
5296  return V;
5297}
5298
5299/// getVShift - Return a vector logical shift node.
5300///
5301static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5302                         unsigned NumBits, SelectionDAG &DAG,
5303                         const TargetLowering &TLI, SDLoc dl) {
5304  assert(VT.is128BitVector() && "Unknown type for VShift");
5305  EVT ShVT = MVT::v2i64;
5306  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5307  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5308  return DAG.getNode(ISD::BITCAST, dl, VT,
5309                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5310                             DAG.getConstant(NumBits,
5311                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5312}
5313
5314static SDValue
5315LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5316
5317  // Check if the scalar load can be widened into a vector load. And if
5318  // the address is "base + cst" see if the cst can be "absorbed" into
5319  // the shuffle mask.
5320  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5321    SDValue Ptr = LD->getBasePtr();
5322    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5323      return SDValue();
5324    EVT PVT = LD->getValueType(0);
5325    if (PVT != MVT::i32 && PVT != MVT::f32)
5326      return SDValue();
5327
5328    int FI = -1;
5329    int64_t Offset = 0;
5330    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5331      FI = FINode->getIndex();
5332      Offset = 0;
5333    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5334               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5335      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5336      Offset = Ptr.getConstantOperandVal(1);
5337      Ptr = Ptr.getOperand(0);
5338    } else {
5339      return SDValue();
5340    }
5341
5342    // FIXME: 256-bit vector instructions don't require a strict alignment,
5343    // improve this code to support it better.
5344    unsigned RequiredAlign = VT.getSizeInBits()/8;
5345    SDValue Chain = LD->getChain();
5346    // Make sure the stack object alignment is at least 16 or 32.
5347    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5348    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5349      if (MFI->isFixedObjectIndex(FI)) {
5350        // Can't change the alignment. FIXME: It's possible to compute
5351        // the exact stack offset and reference FI + adjust offset instead.
5352        // If someone *really* cares about this. That's the way to implement it.
5353        return SDValue();
5354      } else {
5355        MFI->setObjectAlignment(FI, RequiredAlign);
5356      }
5357    }
5358
5359    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5360    // Ptr + (Offset & ~15).
5361    if (Offset < 0)
5362      return SDValue();
5363    if ((Offset % RequiredAlign) & 3)
5364      return SDValue();
5365    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5366    if (StartOffset)
5367      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5368                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5369
5370    int EltNo = (Offset - StartOffset) >> 2;
5371    unsigned NumElems = VT.getVectorNumElements();
5372
5373    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5374    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5375                             LD->getPointerInfo().getWithOffset(StartOffset),
5376                             false, false, false, 0);
5377
5378    SmallVector<int, 8> Mask;
5379    for (unsigned i = 0; i != NumElems; ++i)
5380      Mask.push_back(EltNo);
5381
5382    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5383  }
5384
5385  return SDValue();
5386}
5387
5388/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5389/// vector of type 'VT', see if the elements can be replaced by a single large
5390/// load which has the same value as a build_vector whose operands are 'elts'.
5391///
5392/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5393///
5394/// FIXME: we'd also like to handle the case where the last elements are zero
5395/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5396/// There's even a handy isZeroNode for that purpose.
5397static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5398                                        SDLoc &DL, SelectionDAG &DAG) {
5399  EVT EltVT = VT.getVectorElementType();
5400  unsigned NumElems = Elts.size();
5401
5402  LoadSDNode *LDBase = NULL;
5403  unsigned LastLoadedElt = -1U;
5404
5405  // For each element in the initializer, see if we've found a load or an undef.
5406  // If we don't find an initial load element, or later load elements are
5407  // non-consecutive, bail out.
5408  for (unsigned i = 0; i < NumElems; ++i) {
5409    SDValue Elt = Elts[i];
5410
5411    if (!Elt.getNode() ||
5412        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5413      return SDValue();
5414    if (!LDBase) {
5415      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5416        return SDValue();
5417      LDBase = cast<LoadSDNode>(Elt.getNode());
5418      LastLoadedElt = i;
5419      continue;
5420    }
5421    if (Elt.getOpcode() == ISD::UNDEF)
5422      continue;
5423
5424    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5425    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5426      return SDValue();
5427    LastLoadedElt = i;
5428  }
5429
5430  // If we have found an entire vector of loads and undefs, then return a large
5431  // load of the entire vector width starting at the base pointer.  If we found
5432  // consecutive loads for the low half, generate a vzext_load node.
5433  if (LastLoadedElt == NumElems - 1) {
5434    SDValue NewLd = SDValue();
5435    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5436      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5437                          LDBase->getPointerInfo(),
5438                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5439                          LDBase->isInvariant(), 0);
5440    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5441                        LDBase->getPointerInfo(),
5442                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5443                        LDBase->isInvariant(), LDBase->getAlignment());
5444
5445    if (LDBase->hasAnyUseOfValue(1)) {
5446      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5447                                     SDValue(LDBase, 1),
5448                                     SDValue(NewLd.getNode(), 1));
5449      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5450      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5451                             SDValue(NewLd.getNode(), 1));
5452    }
5453
5454    return NewLd;
5455  }
5456  if (NumElems == 4 && LastLoadedElt == 1 &&
5457      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5458    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5459    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5460    SDValue ResNode =
5461        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5462                                array_lengthof(Ops), MVT::i64,
5463                                LDBase->getPointerInfo(),
5464                                LDBase->getAlignment(),
5465                                false/*isVolatile*/, true/*ReadMem*/,
5466                                false/*WriteMem*/);
5467
5468    // Make sure the newly-created LOAD is in the same position as LDBase in
5469    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5470    // update uses of LDBase's output chain to use the TokenFactor.
5471    if (LDBase->hasAnyUseOfValue(1)) {
5472      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5473                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5474      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5475      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5476                             SDValue(ResNode.getNode(), 1));
5477    }
5478
5479    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5480  }
5481  return SDValue();
5482}
5483
5484/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5485/// to generate a splat value for the following cases:
5486/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5487/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5488/// a scalar load, or a constant.
5489/// The VBROADCAST node is returned when a pattern is found,
5490/// or SDValue() otherwise.
5491static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5492                                    SelectionDAG &DAG) {
5493  if (!Subtarget->hasFp256())
5494    return SDValue();
5495
5496  MVT VT = Op.getSimpleValueType();
5497  SDLoc dl(Op);
5498
5499  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5500         "Unsupported vector type for broadcast.");
5501
5502  SDValue Ld;
5503  bool ConstSplatVal;
5504
5505  switch (Op.getOpcode()) {
5506    default:
5507      // Unknown pattern found.
5508      return SDValue();
5509
5510    case ISD::BUILD_VECTOR: {
5511      // The BUILD_VECTOR node must be a splat.
5512      if (!isSplatVector(Op.getNode()))
5513        return SDValue();
5514
5515      Ld = Op.getOperand(0);
5516      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5517                     Ld.getOpcode() == ISD::ConstantFP);
5518
5519      // The suspected load node has several users. Make sure that all
5520      // of its users are from the BUILD_VECTOR node.
5521      // Constants may have multiple users.
5522      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5523        return SDValue();
5524      break;
5525    }
5526
5527    case ISD::VECTOR_SHUFFLE: {
5528      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5529
5530      // Shuffles must have a splat mask where the first element is
5531      // broadcasted.
5532      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5533        return SDValue();
5534
5535      SDValue Sc = Op.getOperand(0);
5536      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5537          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5538
5539        if (!Subtarget->hasInt256())
5540          return SDValue();
5541
5542        // Use the register form of the broadcast instruction available on AVX2.
5543        if (VT.getSizeInBits() >= 256)
5544          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5545        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5546      }
5547
5548      Ld = Sc.getOperand(0);
5549      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5550                       Ld.getOpcode() == ISD::ConstantFP);
5551
5552      // The scalar_to_vector node and the suspected
5553      // load node must have exactly one user.
5554      // Constants may have multiple users.
5555
5556      // AVX-512 has register version of the broadcast
5557      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5558        Ld.getValueType().getSizeInBits() >= 32;
5559      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5560          !hasRegVer))
5561        return SDValue();
5562      break;
5563    }
5564  }
5565
5566  bool IsGE256 = (VT.getSizeInBits() >= 256);
5567
5568  // Handle the broadcasting a single constant scalar from the constant pool
5569  // into a vector. On Sandybridge it is still better to load a constant vector
5570  // from the constant pool and not to broadcast it from a scalar.
5571  if (ConstSplatVal && Subtarget->hasInt256()) {
5572    EVT CVT = Ld.getValueType();
5573    assert(!CVT.isVector() && "Must not broadcast a vector type");
5574    unsigned ScalarSize = CVT.getSizeInBits();
5575
5576    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5577      const Constant *C = 0;
5578      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5579        C = CI->getConstantIntValue();
5580      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5581        C = CF->getConstantFPValue();
5582
5583      assert(C && "Invalid constant type");
5584
5585      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5586      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5587      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5588      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5589                       MachinePointerInfo::getConstantPool(),
5590                       false, false, false, Alignment);
5591
5592      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5593    }
5594  }
5595
5596  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5597  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5598
5599  // Handle AVX2 in-register broadcasts.
5600  if (!IsLoad && Subtarget->hasInt256() &&
5601      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5602    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5603
5604  // The scalar source must be a normal load.
5605  if (!IsLoad)
5606    return SDValue();
5607
5608  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5609    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5610
5611  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5612  // double since there is no vbroadcastsd xmm
5613  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5614    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5615      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5616  }
5617
5618  // Unsupported broadcast.
5619  return SDValue();
5620}
5621
5622static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5623  MVT VT = Op.getSimpleValueType();
5624
5625  // Skip if insert_vec_elt is not supported.
5626  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5627  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5628    return SDValue();
5629
5630  SDLoc DL(Op);
5631  unsigned NumElems = Op.getNumOperands();
5632
5633  SDValue VecIn1;
5634  SDValue VecIn2;
5635  SmallVector<unsigned, 4> InsertIndices;
5636  SmallVector<int, 8> Mask(NumElems, -1);
5637
5638  for (unsigned i = 0; i != NumElems; ++i) {
5639    unsigned Opc = Op.getOperand(i).getOpcode();
5640
5641    if (Opc == ISD::UNDEF)
5642      continue;
5643
5644    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5645      // Quit if more than 1 elements need inserting.
5646      if (InsertIndices.size() > 1)
5647        return SDValue();
5648
5649      InsertIndices.push_back(i);
5650      continue;
5651    }
5652
5653    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5654    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5655
5656    // Quit if extracted from vector of different type.
5657    if (ExtractedFromVec.getValueType() != VT)
5658      return SDValue();
5659
5660    // Quit if non-constant index.
5661    if (!isa<ConstantSDNode>(ExtIdx))
5662      return SDValue();
5663
5664    if (VecIn1.getNode() == 0)
5665      VecIn1 = ExtractedFromVec;
5666    else if (VecIn1 != ExtractedFromVec) {
5667      if (VecIn2.getNode() == 0)
5668        VecIn2 = ExtractedFromVec;
5669      else if (VecIn2 != ExtractedFromVec)
5670        // Quit if more than 2 vectors to shuffle
5671        return SDValue();
5672    }
5673
5674    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5675
5676    if (ExtractedFromVec == VecIn1)
5677      Mask[i] = Idx;
5678    else if (ExtractedFromVec == VecIn2)
5679      Mask[i] = Idx + NumElems;
5680  }
5681
5682  if (VecIn1.getNode() == 0)
5683    return SDValue();
5684
5685  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5686  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5687  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5688    unsigned Idx = InsertIndices[i];
5689    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5690                     DAG.getIntPtrConstant(Idx));
5691  }
5692
5693  return NV;
5694}
5695
5696// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5697SDValue
5698X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5699
5700  MVT VT = Op.getSimpleValueType();
5701  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5702         "Unexpected type in LowerBUILD_VECTORvXi1!");
5703
5704  SDLoc dl(Op);
5705  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5706    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5707    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5708                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5709    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5710                       Ops, VT.getVectorNumElements());
5711  }
5712
5713  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5714    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5715    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5716                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5717    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5718                       Ops, VT.getVectorNumElements());
5719  }
5720
5721  bool AllContants = true;
5722  uint64_t Immediate = 0;
5723  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5724    SDValue In = Op.getOperand(idx);
5725    if (In.getOpcode() == ISD::UNDEF)
5726      continue;
5727    if (!isa<ConstantSDNode>(In)) {
5728      AllContants = false;
5729      break;
5730    }
5731    if (cast<ConstantSDNode>(In)->getZExtValue())
5732      Immediate |= (1ULL << idx);
5733  }
5734
5735  if (AllContants) {
5736    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5737      DAG.getConstant(Immediate, MVT::i16));
5738    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5739                       DAG.getIntPtrConstant(0));
5740  }
5741
5742  // Splat vector (with undefs)
5743  SDValue In = Op.getOperand(0);
5744  for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
5745    if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
5746      llvm_unreachable("Unsupported predicate operation");
5747  }
5748
5749  SDValue EFLAGS, X86CC;
5750  if (In.getOpcode() == ISD::SETCC) {
5751    SDValue Op0 = In.getOperand(0);
5752    SDValue Op1 = In.getOperand(1);
5753    ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
5754    bool isFP = Op1.getValueType().isFloatingPoint();
5755    unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5756
5757    assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
5758
5759    X86CC = DAG.getConstant(X86CCVal, MVT::i8);
5760    EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
5761    EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
5762  } else if (In.getOpcode() == X86ISD::SETCC) {
5763    X86CC = In.getOperand(0);
5764    EFLAGS = In.getOperand(1);
5765  } else {
5766    // The algorithm:
5767    //   Bit1 = In & 0x1
5768    //   if (Bit1 != 0)
5769    //     ZF = 0
5770    //   else
5771    //     ZF = 1
5772    //   if (ZF == 0)
5773    //     res = allOnes ### CMOVNE -1, %res
5774    //   else
5775    //     res = allZero
5776    MVT InVT = In.getSimpleValueType();
5777    SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
5778    EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
5779    X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5780  }
5781
5782  if (VT == MVT::v16i1) {
5783    SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
5784    SDValue Cst0 = DAG.getConstant(0, MVT::i16);
5785    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
5786          Cst0, Cst1, X86CC, EFLAGS);
5787    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5788  }
5789
5790  if (VT == MVT::v8i1) {
5791    SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
5792    SDValue Cst0 = DAG.getConstant(0, MVT::i32);
5793    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
5794          Cst0, Cst1, X86CC, EFLAGS);
5795    CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
5796    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5797  }
5798  llvm_unreachable("Unsupported predicate operation");
5799}
5800
5801SDValue
5802X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5803  SDLoc dl(Op);
5804
5805  MVT VT = Op.getSimpleValueType();
5806  MVT ExtVT = VT.getVectorElementType();
5807  unsigned NumElems = Op.getNumOperands();
5808
5809  // Generate vectors for predicate vectors.
5810  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5811    return LowerBUILD_VECTORvXi1(Op, DAG);
5812
5813  // Vectors containing all zeros can be matched by pxor and xorps later
5814  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5815    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5816    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5817    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5818      return Op;
5819
5820    return getZeroVector(VT, Subtarget, DAG, dl);
5821  }
5822
5823  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5824  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5825  // vpcmpeqd on 256-bit vectors.
5826  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5827    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5828      return Op;
5829
5830    if (!VT.is512BitVector())
5831      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5832  }
5833
5834  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
5835  if (Broadcast.getNode())
5836    return Broadcast;
5837
5838  unsigned EVTBits = ExtVT.getSizeInBits();
5839
5840  unsigned NumZero  = 0;
5841  unsigned NumNonZero = 0;
5842  unsigned NonZeros = 0;
5843  bool IsAllConstants = true;
5844  SmallSet<SDValue, 8> Values;
5845  for (unsigned i = 0; i < NumElems; ++i) {
5846    SDValue Elt = Op.getOperand(i);
5847    if (Elt.getOpcode() == ISD::UNDEF)
5848      continue;
5849    Values.insert(Elt);
5850    if (Elt.getOpcode() != ISD::Constant &&
5851        Elt.getOpcode() != ISD::ConstantFP)
5852      IsAllConstants = false;
5853    if (X86::isZeroNode(Elt))
5854      NumZero++;
5855    else {
5856      NonZeros |= (1 << i);
5857      NumNonZero++;
5858    }
5859  }
5860
5861  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5862  if (NumNonZero == 0)
5863    return DAG.getUNDEF(VT);
5864
5865  // Special case for single non-zero, non-undef, element.
5866  if (NumNonZero == 1) {
5867    unsigned Idx = countTrailingZeros(NonZeros);
5868    SDValue Item = Op.getOperand(Idx);
5869
5870    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5871    // the value are obviously zero, truncate the value to i32 and do the
5872    // insertion that way.  Only do this if the value is non-constant or if the
5873    // value is a constant being inserted into element 0.  It is cheaper to do
5874    // a constant pool load than it is to do a movd + shuffle.
5875    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5876        (!IsAllConstants || Idx == 0)) {
5877      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5878        // Handle SSE only.
5879        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5880        EVT VecVT = MVT::v4i32;
5881        unsigned VecElts = 4;
5882
5883        // Truncate the value (which may itself be a constant) to i32, and
5884        // convert it to a vector with movd (S2V+shuffle to zero extend).
5885        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5886        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5887        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5888
5889        // Now we have our 32-bit value zero extended in the low element of
5890        // a vector.  If Idx != 0, swizzle it into place.
5891        if (Idx != 0) {
5892          SmallVector<int, 4> Mask;
5893          Mask.push_back(Idx);
5894          for (unsigned i = 1; i != VecElts; ++i)
5895            Mask.push_back(i);
5896          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5897                                      &Mask[0]);
5898        }
5899        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5900      }
5901    }
5902
5903    // If we have a constant or non-constant insertion into the low element of
5904    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5905    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5906    // depending on what the source datatype is.
5907    if (Idx == 0) {
5908      if (NumZero == 0)
5909        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5910
5911      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5912          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5913        if (VT.is256BitVector() || VT.is512BitVector()) {
5914          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5915          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5916                             Item, DAG.getIntPtrConstant(0));
5917        }
5918        assert(VT.is128BitVector() && "Expected an SSE value type!");
5919        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5920        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5921        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5922      }
5923
5924      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5925        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5926        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5927        if (VT.is256BitVector()) {
5928          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5929          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5930        } else {
5931          assert(VT.is128BitVector() && "Expected an SSE value type!");
5932          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5933        }
5934        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5935      }
5936    }
5937
5938    // Is it a vector logical left shift?
5939    if (NumElems == 2 && Idx == 1 &&
5940        X86::isZeroNode(Op.getOperand(0)) &&
5941        !X86::isZeroNode(Op.getOperand(1))) {
5942      unsigned NumBits = VT.getSizeInBits();
5943      return getVShift(true, VT,
5944                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5945                                   VT, Op.getOperand(1)),
5946                       NumBits/2, DAG, *this, dl);
5947    }
5948
5949    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5950      return SDValue();
5951
5952    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5953    // is a non-constant being inserted into an element other than the low one,
5954    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5955    // movd/movss) to move this into the low element, then shuffle it into
5956    // place.
5957    if (EVTBits == 32) {
5958      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5959
5960      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5961      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5962      SmallVector<int, 8> MaskVec;
5963      for (unsigned i = 0; i != NumElems; ++i)
5964        MaskVec.push_back(i == Idx ? 0 : 1);
5965      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5966    }
5967  }
5968
5969  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5970  if (Values.size() == 1) {
5971    if (EVTBits == 32) {
5972      // Instead of a shuffle like this:
5973      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5974      // Check if it's possible to issue this instead.
5975      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5976      unsigned Idx = countTrailingZeros(NonZeros);
5977      SDValue Item = Op.getOperand(Idx);
5978      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5979        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5980    }
5981    return SDValue();
5982  }
5983
5984  // A vector full of immediates; various special cases are already
5985  // handled, so this is best done with a single constant-pool load.
5986  if (IsAllConstants)
5987    return SDValue();
5988
5989  // For AVX-length vectors, build the individual 128-bit pieces and use
5990  // shuffles to put them in place.
5991  if (VT.is256BitVector()) {
5992    SmallVector<SDValue, 32> V;
5993    for (unsigned i = 0; i != NumElems; ++i)
5994      V.push_back(Op.getOperand(i));
5995
5996    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5997
5998    // Build both the lower and upper subvector.
5999    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
6000    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
6001                                NumElems/2);
6002
6003    // Recreate the wider vector with the lower and upper part.
6004    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6005  }
6006
6007  // Let legalizer expand 2-wide build_vectors.
6008  if (EVTBits == 64) {
6009    if (NumNonZero == 1) {
6010      // One half is zero or undef.
6011      unsigned Idx = countTrailingZeros(NonZeros);
6012      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6013                                 Op.getOperand(Idx));
6014      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6015    }
6016    return SDValue();
6017  }
6018
6019  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6020  if (EVTBits == 8 && NumElems == 16) {
6021    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6022                                        Subtarget, *this);
6023    if (V.getNode()) return V;
6024  }
6025
6026  if (EVTBits == 16 && NumElems == 8) {
6027    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6028                                      Subtarget, *this);
6029    if (V.getNode()) return V;
6030  }
6031
6032  // If element VT is == 32 bits, turn it into a number of shuffles.
6033  SmallVector<SDValue, 8> V(NumElems);
6034  if (NumElems == 4 && NumZero > 0) {
6035    for (unsigned i = 0; i < 4; ++i) {
6036      bool isZero = !(NonZeros & (1 << i));
6037      if (isZero)
6038        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6039      else
6040        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6041    }
6042
6043    for (unsigned i = 0; i < 2; ++i) {
6044      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6045        default: break;
6046        case 0:
6047          V[i] = V[i*2];  // Must be a zero vector.
6048          break;
6049        case 1:
6050          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6051          break;
6052        case 2:
6053          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6054          break;
6055        case 3:
6056          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6057          break;
6058      }
6059    }
6060
6061    bool Reverse1 = (NonZeros & 0x3) == 2;
6062    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6063    int MaskVec[] = {
6064      Reverse1 ? 1 : 0,
6065      Reverse1 ? 0 : 1,
6066      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6067      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6068    };
6069    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6070  }
6071
6072  if (Values.size() > 1 && VT.is128BitVector()) {
6073    // Check for a build vector of consecutive loads.
6074    for (unsigned i = 0; i < NumElems; ++i)
6075      V[i] = Op.getOperand(i);
6076
6077    // Check for elements which are consecutive loads.
6078    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
6079    if (LD.getNode())
6080      return LD;
6081
6082    // Check for a build vector from mostly shuffle plus few inserting.
6083    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6084    if (Sh.getNode())
6085      return Sh;
6086
6087    // For SSE 4.1, use insertps to put the high elements into the low element.
6088    if (getSubtarget()->hasSSE41()) {
6089      SDValue Result;
6090      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6091        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6092      else
6093        Result = DAG.getUNDEF(VT);
6094
6095      for (unsigned i = 1; i < NumElems; ++i) {
6096        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6097        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6098                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6099      }
6100      return Result;
6101    }
6102
6103    // Otherwise, expand into a number of unpckl*, start by extending each of
6104    // our (non-undef) elements to the full vector width with the element in the
6105    // bottom slot of the vector (which generates no code for SSE).
6106    for (unsigned i = 0; i < NumElems; ++i) {
6107      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6108        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6109      else
6110        V[i] = DAG.getUNDEF(VT);
6111    }
6112
6113    // Next, we iteratively mix elements, e.g. for v4f32:
6114    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6115    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6116    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6117    unsigned EltStride = NumElems >> 1;
6118    while (EltStride != 0) {
6119      for (unsigned i = 0; i < EltStride; ++i) {
6120        // If V[i+EltStride] is undef and this is the first round of mixing,
6121        // then it is safe to just drop this shuffle: V[i] is already in the
6122        // right place, the one element (since it's the first round) being
6123        // inserted as undef can be dropped.  This isn't safe for successive
6124        // rounds because they will permute elements within both vectors.
6125        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6126            EltStride == NumElems/2)
6127          continue;
6128
6129        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6130      }
6131      EltStride >>= 1;
6132    }
6133    return V[0];
6134  }
6135  return SDValue();
6136}
6137
6138// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6139// to create 256-bit vectors from two other 128-bit ones.
6140static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6141  SDLoc dl(Op);
6142  MVT ResVT = Op.getSimpleValueType();
6143
6144  assert((ResVT.is256BitVector() ||
6145          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6146
6147  SDValue V1 = Op.getOperand(0);
6148  SDValue V2 = Op.getOperand(1);
6149  unsigned NumElems = ResVT.getVectorNumElements();
6150  if(ResVT.is256BitVector())
6151    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6152
6153  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6154}
6155
6156static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6157  assert(Op.getNumOperands() == 2);
6158
6159  // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
6160  // from two other 128-bit ones.
6161  return LowerAVXCONCAT_VECTORS(Op, DAG);
6162}
6163
6164// Try to lower a shuffle node into a simple blend instruction.
6165static SDValue
6166LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6167                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6168  SDValue V1 = SVOp->getOperand(0);
6169  SDValue V2 = SVOp->getOperand(1);
6170  SDLoc dl(SVOp);
6171  MVT VT = SVOp->getSimpleValueType(0);
6172  MVT EltVT = VT.getVectorElementType();
6173  unsigned NumElems = VT.getVectorNumElements();
6174
6175  // There is no blend with immediate in AVX-512.
6176  if (VT.is512BitVector())
6177    return SDValue();
6178
6179  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6180    return SDValue();
6181  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6182    return SDValue();
6183
6184  // Check the mask for BLEND and build the value.
6185  unsigned MaskValue = 0;
6186  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6187  unsigned NumLanes = (NumElems-1)/8 + 1;
6188  unsigned NumElemsInLane = NumElems / NumLanes;
6189
6190  // Blend for v16i16 should be symetric for the both lanes.
6191  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6192
6193    int SndLaneEltIdx = (NumLanes == 2) ?
6194      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6195    int EltIdx = SVOp->getMaskElt(i);
6196
6197    if ((EltIdx < 0 || EltIdx == (int)i) &&
6198        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6199      continue;
6200
6201    if (((unsigned)EltIdx == (i + NumElems)) &&
6202        (SndLaneEltIdx < 0 ||
6203         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6204      MaskValue |= (1<<i);
6205    else
6206      return SDValue();
6207  }
6208
6209  // Convert i32 vectors to floating point if it is not AVX2.
6210  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6211  MVT BlendVT = VT;
6212  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6213    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6214                               NumElems);
6215    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6216    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6217  }
6218
6219  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6220                            DAG.getConstant(MaskValue, MVT::i32));
6221  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6222}
6223
6224// v8i16 shuffles - Prefer shuffles in the following order:
6225// 1. [all]   pshuflw, pshufhw, optional move
6226// 2. [ssse3] 1 x pshufb
6227// 3. [ssse3] 2 x pshufb + 1 x por
6228// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6229static SDValue
6230LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6231                         SelectionDAG &DAG) {
6232  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6233  SDValue V1 = SVOp->getOperand(0);
6234  SDValue V2 = SVOp->getOperand(1);
6235  SDLoc dl(SVOp);
6236  SmallVector<int, 8> MaskVals;
6237
6238  // Determine if more than 1 of the words in each of the low and high quadwords
6239  // of the result come from the same quadword of one of the two inputs.  Undef
6240  // mask values count as coming from any quadword, for better codegen.
6241  unsigned LoQuad[] = { 0, 0, 0, 0 };
6242  unsigned HiQuad[] = { 0, 0, 0, 0 };
6243  std::bitset<4> InputQuads;
6244  for (unsigned i = 0; i < 8; ++i) {
6245    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6246    int EltIdx = SVOp->getMaskElt(i);
6247    MaskVals.push_back(EltIdx);
6248    if (EltIdx < 0) {
6249      ++Quad[0];
6250      ++Quad[1];
6251      ++Quad[2];
6252      ++Quad[3];
6253      continue;
6254    }
6255    ++Quad[EltIdx / 4];
6256    InputQuads.set(EltIdx / 4);
6257  }
6258
6259  int BestLoQuad = -1;
6260  unsigned MaxQuad = 1;
6261  for (unsigned i = 0; i < 4; ++i) {
6262    if (LoQuad[i] > MaxQuad) {
6263      BestLoQuad = i;
6264      MaxQuad = LoQuad[i];
6265    }
6266  }
6267
6268  int BestHiQuad = -1;
6269  MaxQuad = 1;
6270  for (unsigned i = 0; i < 4; ++i) {
6271    if (HiQuad[i] > MaxQuad) {
6272      BestHiQuad = i;
6273      MaxQuad = HiQuad[i];
6274    }
6275  }
6276
6277  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6278  // of the two input vectors, shuffle them into one input vector so only a
6279  // single pshufb instruction is necessary. If There are more than 2 input
6280  // quads, disable the next transformation since it does not help SSSE3.
6281  bool V1Used = InputQuads[0] || InputQuads[1];
6282  bool V2Used = InputQuads[2] || InputQuads[3];
6283  if (Subtarget->hasSSSE3()) {
6284    if (InputQuads.count() == 2 && V1Used && V2Used) {
6285      BestLoQuad = InputQuads[0] ? 0 : 1;
6286      BestHiQuad = InputQuads[2] ? 2 : 3;
6287    }
6288    if (InputQuads.count() > 2) {
6289      BestLoQuad = -1;
6290      BestHiQuad = -1;
6291    }
6292  }
6293
6294  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6295  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6296  // words from all 4 input quadwords.
6297  SDValue NewV;
6298  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6299    int MaskV[] = {
6300      BestLoQuad < 0 ? 0 : BestLoQuad,
6301      BestHiQuad < 0 ? 1 : BestHiQuad
6302    };
6303    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6304                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6305                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6306    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6307
6308    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6309    // source words for the shuffle, to aid later transformations.
6310    bool AllWordsInNewV = true;
6311    bool InOrder[2] = { true, true };
6312    for (unsigned i = 0; i != 8; ++i) {
6313      int idx = MaskVals[i];
6314      if (idx != (int)i)
6315        InOrder[i/4] = false;
6316      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6317        continue;
6318      AllWordsInNewV = false;
6319      break;
6320    }
6321
6322    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6323    if (AllWordsInNewV) {
6324      for (int i = 0; i != 8; ++i) {
6325        int idx = MaskVals[i];
6326        if (idx < 0)
6327          continue;
6328        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6329        if ((idx != i) && idx < 4)
6330          pshufhw = false;
6331        if ((idx != i) && idx > 3)
6332          pshuflw = false;
6333      }
6334      V1 = NewV;
6335      V2Used = false;
6336      BestLoQuad = 0;
6337      BestHiQuad = 1;
6338    }
6339
6340    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6341    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6342    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6343      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6344      unsigned TargetMask = 0;
6345      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6346                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6347      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6348      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6349                             getShufflePSHUFLWImmediate(SVOp);
6350      V1 = NewV.getOperand(0);
6351      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6352    }
6353  }
6354
6355  // Promote splats to a larger type which usually leads to more efficient code.
6356  // FIXME: Is this true if pshufb is available?
6357  if (SVOp->isSplat())
6358    return PromoteSplat(SVOp, DAG);
6359
6360  // If we have SSSE3, and all words of the result are from 1 input vector,
6361  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6362  // is present, fall back to case 4.
6363  if (Subtarget->hasSSSE3()) {
6364    SmallVector<SDValue,16> pshufbMask;
6365
6366    // If we have elements from both input vectors, set the high bit of the
6367    // shuffle mask element to zero out elements that come from V2 in the V1
6368    // mask, and elements that come from V1 in the V2 mask, so that the two
6369    // results can be OR'd together.
6370    bool TwoInputs = V1Used && V2Used;
6371    for (unsigned i = 0; i != 8; ++i) {
6372      int EltIdx = MaskVals[i] * 2;
6373      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
6374      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
6375      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6376      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6377    }
6378    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
6379    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6380                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6381                                 MVT::v16i8, &pshufbMask[0], 16));
6382    if (!TwoInputs)
6383      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6384
6385    // Calculate the shuffle mask for the second input, shuffle it, and
6386    // OR it with the first shuffled input.
6387    pshufbMask.clear();
6388    for (unsigned i = 0; i != 8; ++i) {
6389      int EltIdx = MaskVals[i] * 2;
6390      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6391      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
6392      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6393      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6394    }
6395    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
6396    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6397                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6398                                 MVT::v16i8, &pshufbMask[0], 16));
6399    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6400    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6401  }
6402
6403  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6404  // and update MaskVals with new element order.
6405  std::bitset<8> InOrder;
6406  if (BestLoQuad >= 0) {
6407    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6408    for (int i = 0; i != 4; ++i) {
6409      int idx = MaskVals[i];
6410      if (idx < 0) {
6411        InOrder.set(i);
6412      } else if ((idx / 4) == BestLoQuad) {
6413        MaskV[i] = idx & 3;
6414        InOrder.set(i);
6415      }
6416    }
6417    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6418                                &MaskV[0]);
6419
6420    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6421      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6422      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6423                                  NewV.getOperand(0),
6424                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6425    }
6426  }
6427
6428  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6429  // and update MaskVals with the new element order.
6430  if (BestHiQuad >= 0) {
6431    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6432    for (unsigned i = 4; i != 8; ++i) {
6433      int idx = MaskVals[i];
6434      if (idx < 0) {
6435        InOrder.set(i);
6436      } else if ((idx / 4) == BestHiQuad) {
6437        MaskV[i] = (idx & 3) + 4;
6438        InOrder.set(i);
6439      }
6440    }
6441    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6442                                &MaskV[0]);
6443
6444    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6445      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6446      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6447                                  NewV.getOperand(0),
6448                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6449    }
6450  }
6451
6452  // In case BestHi & BestLo were both -1, which means each quadword has a word
6453  // from each of the four input quadwords, calculate the InOrder bitvector now
6454  // before falling through to the insert/extract cleanup.
6455  if (BestLoQuad == -1 && BestHiQuad == -1) {
6456    NewV = V1;
6457    for (int i = 0; i != 8; ++i)
6458      if (MaskVals[i] < 0 || MaskVals[i] == i)
6459        InOrder.set(i);
6460  }
6461
6462  // The other elements are put in the right place using pextrw and pinsrw.
6463  for (unsigned i = 0; i != 8; ++i) {
6464    if (InOrder[i])
6465      continue;
6466    int EltIdx = MaskVals[i];
6467    if (EltIdx < 0)
6468      continue;
6469    SDValue ExtOp = (EltIdx < 8) ?
6470      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6471                  DAG.getIntPtrConstant(EltIdx)) :
6472      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6473                  DAG.getIntPtrConstant(EltIdx - 8));
6474    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6475                       DAG.getIntPtrConstant(i));
6476  }
6477  return NewV;
6478}
6479
6480// v16i8 shuffles - Prefer shuffles in the following order:
6481// 1. [ssse3] 1 x pshufb
6482// 2. [ssse3] 2 x pshufb + 1 x por
6483// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6484static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6485                                        const X86Subtarget* Subtarget,
6486                                        SelectionDAG &DAG) {
6487  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6488  SDValue V1 = SVOp->getOperand(0);
6489  SDValue V2 = SVOp->getOperand(1);
6490  SDLoc dl(SVOp);
6491  ArrayRef<int> MaskVals = SVOp->getMask();
6492
6493  // Promote splats to a larger type which usually leads to more efficient code.
6494  // FIXME: Is this true if pshufb is available?
6495  if (SVOp->isSplat())
6496    return PromoteSplat(SVOp, DAG);
6497
6498  // If we have SSSE3, case 1 is generated when all result bytes come from
6499  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6500  // present, fall back to case 3.
6501
6502  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6503  if (Subtarget->hasSSSE3()) {
6504    SmallVector<SDValue,16> pshufbMask;
6505
6506    // If all result elements are from one input vector, then only translate
6507    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6508    //
6509    // Otherwise, we have elements from both input vectors, and must zero out
6510    // elements that come from V2 in the first mask, and V1 in the second mask
6511    // so that we can OR them together.
6512    for (unsigned i = 0; i != 16; ++i) {
6513      int EltIdx = MaskVals[i];
6514      if (EltIdx < 0 || EltIdx >= 16)
6515        EltIdx = 0x80;
6516      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6517    }
6518    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6519                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6520                                 MVT::v16i8, &pshufbMask[0], 16));
6521
6522    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6523    // the 2nd operand if it's undefined or zero.
6524    if (V2.getOpcode() == ISD::UNDEF ||
6525        ISD::isBuildVectorAllZeros(V2.getNode()))
6526      return V1;
6527
6528    // Calculate the shuffle mask for the second input, shuffle it, and
6529    // OR it with the first shuffled input.
6530    pshufbMask.clear();
6531    for (unsigned i = 0; i != 16; ++i) {
6532      int EltIdx = MaskVals[i];
6533      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6534      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6535    }
6536    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6537                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6538                                 MVT::v16i8, &pshufbMask[0], 16));
6539    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6540  }
6541
6542  // No SSSE3 - Calculate in place words and then fix all out of place words
6543  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6544  // the 16 different words that comprise the two doublequadword input vectors.
6545  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6546  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6547  SDValue NewV = V1;
6548  for (int i = 0; i != 8; ++i) {
6549    int Elt0 = MaskVals[i*2];
6550    int Elt1 = MaskVals[i*2+1];
6551
6552    // This word of the result is all undef, skip it.
6553    if (Elt0 < 0 && Elt1 < 0)
6554      continue;
6555
6556    // This word of the result is already in the correct place, skip it.
6557    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6558      continue;
6559
6560    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6561    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6562    SDValue InsElt;
6563
6564    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6565    // using a single extract together, load it and store it.
6566    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6567      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6568                           DAG.getIntPtrConstant(Elt1 / 2));
6569      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6570                        DAG.getIntPtrConstant(i));
6571      continue;
6572    }
6573
6574    // If Elt1 is defined, extract it from the appropriate source.  If the
6575    // source byte is not also odd, shift the extracted word left 8 bits
6576    // otherwise clear the bottom 8 bits if we need to do an or.
6577    if (Elt1 >= 0) {
6578      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6579                           DAG.getIntPtrConstant(Elt1 / 2));
6580      if ((Elt1 & 1) == 0)
6581        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6582                             DAG.getConstant(8,
6583                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6584      else if (Elt0 >= 0)
6585        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6586                             DAG.getConstant(0xFF00, MVT::i16));
6587    }
6588    // If Elt0 is defined, extract it from the appropriate source.  If the
6589    // source byte is not also even, shift the extracted word right 8 bits. If
6590    // Elt1 was also defined, OR the extracted values together before
6591    // inserting them in the result.
6592    if (Elt0 >= 0) {
6593      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6594                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6595      if ((Elt0 & 1) != 0)
6596        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6597                              DAG.getConstant(8,
6598                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6599      else if (Elt1 >= 0)
6600        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6601                             DAG.getConstant(0x00FF, MVT::i16));
6602      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6603                         : InsElt0;
6604    }
6605    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6606                       DAG.getIntPtrConstant(i));
6607  }
6608  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6609}
6610
6611// v32i8 shuffles - Translate to VPSHUFB if possible.
6612static
6613SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6614                                 const X86Subtarget *Subtarget,
6615                                 SelectionDAG &DAG) {
6616  MVT VT = SVOp->getSimpleValueType(0);
6617  SDValue V1 = SVOp->getOperand(0);
6618  SDValue V2 = SVOp->getOperand(1);
6619  SDLoc dl(SVOp);
6620  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6621
6622  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6623  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6624  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6625
6626  // VPSHUFB may be generated if
6627  // (1) one of input vector is undefined or zeroinitializer.
6628  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6629  // And (2) the mask indexes don't cross the 128-bit lane.
6630  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6631      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6632    return SDValue();
6633
6634  if (V1IsAllZero && !V2IsAllZero) {
6635    CommuteVectorShuffleMask(MaskVals, 32);
6636    V1 = V2;
6637  }
6638  SmallVector<SDValue, 32> pshufbMask;
6639  for (unsigned i = 0; i != 32; i++) {
6640    int EltIdx = MaskVals[i];
6641    if (EltIdx < 0 || EltIdx >= 32)
6642      EltIdx = 0x80;
6643    else {
6644      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6645        // Cross lane is not allowed.
6646        return SDValue();
6647      EltIdx &= 0xf;
6648    }
6649    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6650  }
6651  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6652                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6653                                  MVT::v32i8, &pshufbMask[0], 32));
6654}
6655
6656/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6657/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6658/// done when every pair / quad of shuffle mask elements point to elements in
6659/// the right sequence. e.g.
6660/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6661static
6662SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6663                                 SelectionDAG &DAG) {
6664  MVT VT = SVOp->getSimpleValueType(0);
6665  SDLoc dl(SVOp);
6666  unsigned NumElems = VT.getVectorNumElements();
6667  MVT NewVT;
6668  unsigned Scale;
6669  switch (VT.SimpleTy) {
6670  default: llvm_unreachable("Unexpected!");
6671  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6672  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6673  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6674  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6675  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6676  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6677  }
6678
6679  SmallVector<int, 8> MaskVec;
6680  for (unsigned i = 0; i != NumElems; i += Scale) {
6681    int StartIdx = -1;
6682    for (unsigned j = 0; j != Scale; ++j) {
6683      int EltIdx = SVOp->getMaskElt(i+j);
6684      if (EltIdx < 0)
6685        continue;
6686      if (StartIdx < 0)
6687        StartIdx = (EltIdx / Scale);
6688      if (EltIdx != (int)(StartIdx*Scale + j))
6689        return SDValue();
6690    }
6691    MaskVec.push_back(StartIdx);
6692  }
6693
6694  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6695  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6696  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6697}
6698
6699/// getVZextMovL - Return a zero-extending vector move low node.
6700///
6701static SDValue getVZextMovL(MVT VT, MVT OpVT,
6702                            SDValue SrcOp, SelectionDAG &DAG,
6703                            const X86Subtarget *Subtarget, SDLoc dl) {
6704  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6705    LoadSDNode *LD = NULL;
6706    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6707      LD = dyn_cast<LoadSDNode>(SrcOp);
6708    if (!LD) {
6709      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6710      // instead.
6711      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6712      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6713          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6714          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6715          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6716        // PR2108
6717        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6718        return DAG.getNode(ISD::BITCAST, dl, VT,
6719                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6720                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6721                                                   OpVT,
6722                                                   SrcOp.getOperand(0)
6723                                                          .getOperand(0))));
6724      }
6725    }
6726  }
6727
6728  return DAG.getNode(ISD::BITCAST, dl, VT,
6729                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6730                                 DAG.getNode(ISD::BITCAST, dl,
6731                                             OpVT, SrcOp)));
6732}
6733
6734/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6735/// which could not be matched by any known target speficic shuffle
6736static SDValue
6737LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6738
6739  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6740  if (NewOp.getNode())
6741    return NewOp;
6742
6743  MVT VT = SVOp->getSimpleValueType(0);
6744
6745  unsigned NumElems = VT.getVectorNumElements();
6746  unsigned NumLaneElems = NumElems / 2;
6747
6748  SDLoc dl(SVOp);
6749  MVT EltVT = VT.getVectorElementType();
6750  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6751  SDValue Output[2];
6752
6753  SmallVector<int, 16> Mask;
6754  for (unsigned l = 0; l < 2; ++l) {
6755    // Build a shuffle mask for the output, discovering on the fly which
6756    // input vectors to use as shuffle operands (recorded in InputUsed).
6757    // If building a suitable shuffle vector proves too hard, then bail
6758    // out with UseBuildVector set.
6759    bool UseBuildVector = false;
6760    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6761    unsigned LaneStart = l * NumLaneElems;
6762    for (unsigned i = 0; i != NumLaneElems; ++i) {
6763      // The mask element.  This indexes into the input.
6764      int Idx = SVOp->getMaskElt(i+LaneStart);
6765      if (Idx < 0) {
6766        // the mask element does not index into any input vector.
6767        Mask.push_back(-1);
6768        continue;
6769      }
6770
6771      // The input vector this mask element indexes into.
6772      int Input = Idx / NumLaneElems;
6773
6774      // Turn the index into an offset from the start of the input vector.
6775      Idx -= Input * NumLaneElems;
6776
6777      // Find or create a shuffle vector operand to hold this input.
6778      unsigned OpNo;
6779      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6780        if (InputUsed[OpNo] == Input)
6781          // This input vector is already an operand.
6782          break;
6783        if (InputUsed[OpNo] < 0) {
6784          // Create a new operand for this input vector.
6785          InputUsed[OpNo] = Input;
6786          break;
6787        }
6788      }
6789
6790      if (OpNo >= array_lengthof(InputUsed)) {
6791        // More than two input vectors used!  Give up on trying to create a
6792        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6793        UseBuildVector = true;
6794        break;
6795      }
6796
6797      // Add the mask index for the new shuffle vector.
6798      Mask.push_back(Idx + OpNo * NumLaneElems);
6799    }
6800
6801    if (UseBuildVector) {
6802      SmallVector<SDValue, 16> SVOps;
6803      for (unsigned i = 0; i != NumLaneElems; ++i) {
6804        // The mask element.  This indexes into the input.
6805        int Idx = SVOp->getMaskElt(i+LaneStart);
6806        if (Idx < 0) {
6807          SVOps.push_back(DAG.getUNDEF(EltVT));
6808          continue;
6809        }
6810
6811        // The input vector this mask element indexes into.
6812        int Input = Idx / NumElems;
6813
6814        // Turn the index into an offset from the start of the input vector.
6815        Idx -= Input * NumElems;
6816
6817        // Extract the vector element by hand.
6818        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6819                                    SVOp->getOperand(Input),
6820                                    DAG.getIntPtrConstant(Idx)));
6821      }
6822
6823      // Construct the output using a BUILD_VECTOR.
6824      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6825                              SVOps.size());
6826    } else if (InputUsed[0] < 0) {
6827      // No input vectors were used! The result is undefined.
6828      Output[l] = DAG.getUNDEF(NVT);
6829    } else {
6830      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6831                                        (InputUsed[0] % 2) * NumLaneElems,
6832                                        DAG, dl);
6833      // If only one input was used, use an undefined vector for the other.
6834      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6835        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6836                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6837      // At least one input vector was used. Create a new shuffle vector.
6838      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6839    }
6840
6841    Mask.clear();
6842  }
6843
6844  // Concatenate the result back
6845  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6846}
6847
6848/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6849/// 4 elements, and match them with several different shuffle types.
6850static SDValue
6851LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6852  SDValue V1 = SVOp->getOperand(0);
6853  SDValue V2 = SVOp->getOperand(1);
6854  SDLoc dl(SVOp);
6855  MVT VT = SVOp->getSimpleValueType(0);
6856
6857  assert(VT.is128BitVector() && "Unsupported vector size");
6858
6859  std::pair<int, int> Locs[4];
6860  int Mask1[] = { -1, -1, -1, -1 };
6861  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6862
6863  unsigned NumHi = 0;
6864  unsigned NumLo = 0;
6865  for (unsigned i = 0; i != 4; ++i) {
6866    int Idx = PermMask[i];
6867    if (Idx < 0) {
6868      Locs[i] = std::make_pair(-1, -1);
6869    } else {
6870      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6871      if (Idx < 4) {
6872        Locs[i] = std::make_pair(0, NumLo);
6873        Mask1[NumLo] = Idx;
6874        NumLo++;
6875      } else {
6876        Locs[i] = std::make_pair(1, NumHi);
6877        if (2+NumHi < 4)
6878          Mask1[2+NumHi] = Idx;
6879        NumHi++;
6880      }
6881    }
6882  }
6883
6884  if (NumLo <= 2 && NumHi <= 2) {
6885    // If no more than two elements come from either vector. This can be
6886    // implemented with two shuffles. First shuffle gather the elements.
6887    // The second shuffle, which takes the first shuffle as both of its
6888    // vector operands, put the elements into the right order.
6889    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6890
6891    int Mask2[] = { -1, -1, -1, -1 };
6892
6893    for (unsigned i = 0; i != 4; ++i)
6894      if (Locs[i].first != -1) {
6895        unsigned Idx = (i < 2) ? 0 : 4;
6896        Idx += Locs[i].first * 2 + Locs[i].second;
6897        Mask2[i] = Idx;
6898      }
6899
6900    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6901  }
6902
6903  if (NumLo == 3 || NumHi == 3) {
6904    // Otherwise, we must have three elements from one vector, call it X, and
6905    // one element from the other, call it Y.  First, use a shufps to build an
6906    // intermediate vector with the one element from Y and the element from X
6907    // that will be in the same half in the final destination (the indexes don't
6908    // matter). Then, use a shufps to build the final vector, taking the half
6909    // containing the element from Y from the intermediate, and the other half
6910    // from X.
6911    if (NumHi == 3) {
6912      // Normalize it so the 3 elements come from V1.
6913      CommuteVectorShuffleMask(PermMask, 4);
6914      std::swap(V1, V2);
6915    }
6916
6917    // Find the element from V2.
6918    unsigned HiIndex;
6919    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6920      int Val = PermMask[HiIndex];
6921      if (Val < 0)
6922        continue;
6923      if (Val >= 4)
6924        break;
6925    }
6926
6927    Mask1[0] = PermMask[HiIndex];
6928    Mask1[1] = -1;
6929    Mask1[2] = PermMask[HiIndex^1];
6930    Mask1[3] = -1;
6931    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6932
6933    if (HiIndex >= 2) {
6934      Mask1[0] = PermMask[0];
6935      Mask1[1] = PermMask[1];
6936      Mask1[2] = HiIndex & 1 ? 6 : 4;
6937      Mask1[3] = HiIndex & 1 ? 4 : 6;
6938      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6939    }
6940
6941    Mask1[0] = HiIndex & 1 ? 2 : 0;
6942    Mask1[1] = HiIndex & 1 ? 0 : 2;
6943    Mask1[2] = PermMask[2];
6944    Mask1[3] = PermMask[3];
6945    if (Mask1[2] >= 0)
6946      Mask1[2] += 4;
6947    if (Mask1[3] >= 0)
6948      Mask1[3] += 4;
6949    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6950  }
6951
6952  // Break it into (shuffle shuffle_hi, shuffle_lo).
6953  int LoMask[] = { -1, -1, -1, -1 };
6954  int HiMask[] = { -1, -1, -1, -1 };
6955
6956  int *MaskPtr = LoMask;
6957  unsigned MaskIdx = 0;
6958  unsigned LoIdx = 0;
6959  unsigned HiIdx = 2;
6960  for (unsigned i = 0; i != 4; ++i) {
6961    if (i == 2) {
6962      MaskPtr = HiMask;
6963      MaskIdx = 1;
6964      LoIdx = 0;
6965      HiIdx = 2;
6966    }
6967    int Idx = PermMask[i];
6968    if (Idx < 0) {
6969      Locs[i] = std::make_pair(-1, -1);
6970    } else if (Idx < 4) {
6971      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6972      MaskPtr[LoIdx] = Idx;
6973      LoIdx++;
6974    } else {
6975      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6976      MaskPtr[HiIdx] = Idx;
6977      HiIdx++;
6978    }
6979  }
6980
6981  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6982  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6983  int MaskOps[] = { -1, -1, -1, -1 };
6984  for (unsigned i = 0; i != 4; ++i)
6985    if (Locs[i].first != -1)
6986      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6987  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6988}
6989
6990static bool MayFoldVectorLoad(SDValue V) {
6991  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6992    V = V.getOperand(0);
6993
6994  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6995    V = V.getOperand(0);
6996  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6997      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6998    // BUILD_VECTOR (load), undef
6999    V = V.getOperand(0);
7000
7001  return MayFoldLoad(V);
7002}
7003
7004static
7005SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
7006  MVT VT = Op.getSimpleValueType();
7007
7008  // Canonizalize to v2f64.
7009  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7010  return DAG.getNode(ISD::BITCAST, dl, VT,
7011                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
7012                                          V1, DAG));
7013}
7014
7015static
7016SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
7017                        bool HasSSE2) {
7018  SDValue V1 = Op.getOperand(0);
7019  SDValue V2 = Op.getOperand(1);
7020  MVT VT = Op.getSimpleValueType();
7021
7022  assert(VT != MVT::v2i64 && "unsupported shuffle type");
7023
7024  if (HasSSE2 && VT == MVT::v2f64)
7025    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
7026
7027  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
7028  return DAG.getNode(ISD::BITCAST, dl, VT,
7029                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
7030                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
7031                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
7032}
7033
7034static
7035SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
7036  SDValue V1 = Op.getOperand(0);
7037  SDValue V2 = Op.getOperand(1);
7038  MVT VT = Op.getSimpleValueType();
7039
7040  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7041         "unsupported shuffle type");
7042
7043  if (V2.getOpcode() == ISD::UNDEF)
7044    V2 = V1;
7045
7046  // v4i32 or v4f32
7047  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7048}
7049
7050static
7051SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7052  SDValue V1 = Op.getOperand(0);
7053  SDValue V2 = Op.getOperand(1);
7054  MVT VT = Op.getSimpleValueType();
7055  unsigned NumElems = VT.getVectorNumElements();
7056
7057  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7058  // operand of these instructions is only memory, so check if there's a
7059  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7060  // same masks.
7061  bool CanFoldLoad = false;
7062
7063  // Trivial case, when V2 comes from a load.
7064  if (MayFoldVectorLoad(V2))
7065    CanFoldLoad = true;
7066
7067  // When V1 is a load, it can be folded later into a store in isel, example:
7068  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7069  //    turns into:
7070  //  (MOVLPSmr addr:$src1, VR128:$src2)
7071  // So, recognize this potential and also use MOVLPS or MOVLPD
7072  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7073    CanFoldLoad = true;
7074
7075  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7076  if (CanFoldLoad) {
7077    if (HasSSE2 && NumElems == 2)
7078      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7079
7080    if (NumElems == 4)
7081      // If we don't care about the second element, proceed to use movss.
7082      if (SVOp->getMaskElt(1) != -1)
7083        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7084  }
7085
7086  // movl and movlp will both match v2i64, but v2i64 is never matched by
7087  // movl earlier because we make it strict to avoid messing with the movlp load
7088  // folding logic (see the code above getMOVLP call). Match it here then,
7089  // this is horrible, but will stay like this until we move all shuffle
7090  // matching to x86 specific nodes. Note that for the 1st condition all
7091  // types are matched with movsd.
7092  if (HasSSE2) {
7093    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7094    // as to remove this logic from here, as much as possible
7095    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7096      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7097    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7098  }
7099
7100  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7101
7102  // Invert the operand order and use SHUFPS to match it.
7103  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7104                              getShuffleSHUFImmediate(SVOp), DAG);
7105}
7106
7107// Reduce a vector shuffle to zext.
7108static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7109                                    SelectionDAG &DAG) {
7110  // PMOVZX is only available from SSE41.
7111  if (!Subtarget->hasSSE41())
7112    return SDValue();
7113
7114  MVT VT = Op.getSimpleValueType();
7115
7116  // Only AVX2 support 256-bit vector integer extending.
7117  if (!Subtarget->hasInt256() && VT.is256BitVector())
7118    return SDValue();
7119
7120  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7121  SDLoc DL(Op);
7122  SDValue V1 = Op.getOperand(0);
7123  SDValue V2 = Op.getOperand(1);
7124  unsigned NumElems = VT.getVectorNumElements();
7125
7126  // Extending is an unary operation and the element type of the source vector
7127  // won't be equal to or larger than i64.
7128  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7129      VT.getVectorElementType() == MVT::i64)
7130    return SDValue();
7131
7132  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7133  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7134  while ((1U << Shift) < NumElems) {
7135    if (SVOp->getMaskElt(1U << Shift) == 1)
7136      break;
7137    Shift += 1;
7138    // The maximal ratio is 8, i.e. from i8 to i64.
7139    if (Shift > 3)
7140      return SDValue();
7141  }
7142
7143  // Check the shuffle mask.
7144  unsigned Mask = (1U << Shift) - 1;
7145  for (unsigned i = 0; i != NumElems; ++i) {
7146    int EltIdx = SVOp->getMaskElt(i);
7147    if ((i & Mask) != 0 && EltIdx != -1)
7148      return SDValue();
7149    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7150      return SDValue();
7151  }
7152
7153  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7154  MVT NeVT = MVT::getIntegerVT(NBits);
7155  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7156
7157  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7158    return SDValue();
7159
7160  // Simplify the operand as it's prepared to be fed into shuffle.
7161  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7162  if (V1.getOpcode() == ISD::BITCAST &&
7163      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7164      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7165      V1.getOperand(0).getOperand(0)
7166        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7167    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7168    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7169    ConstantSDNode *CIdx =
7170      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7171    // If it's foldable, i.e. normal load with single use, we will let code
7172    // selection to fold it. Otherwise, we will short the conversion sequence.
7173    if (CIdx && CIdx->getZExtValue() == 0 &&
7174        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7175      MVT FullVT = V.getSimpleValueType();
7176      MVT V1VT = V1.getSimpleValueType();
7177      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7178        // The "ext_vec_elt" node is wider than the result node.
7179        // In this case we should extract subvector from V.
7180        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7181        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7182        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7183                                        FullVT.getVectorNumElements()/Ratio);
7184        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7185                        DAG.getIntPtrConstant(0));
7186      }
7187      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7188    }
7189  }
7190
7191  return DAG.getNode(ISD::BITCAST, DL, VT,
7192                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7193}
7194
7195static SDValue
7196NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7197                       SelectionDAG &DAG) {
7198  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7199  MVT VT = Op.getSimpleValueType();
7200  SDLoc dl(Op);
7201  SDValue V1 = Op.getOperand(0);
7202  SDValue V2 = Op.getOperand(1);
7203
7204  if (isZeroShuffle(SVOp))
7205    return getZeroVector(VT, Subtarget, DAG, dl);
7206
7207  // Handle splat operations
7208  if (SVOp->isSplat()) {
7209    // Use vbroadcast whenever the splat comes from a foldable load
7210    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7211    if (Broadcast.getNode())
7212      return Broadcast;
7213  }
7214
7215  // Check integer expanding shuffles.
7216  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7217  if (NewOp.getNode())
7218    return NewOp;
7219
7220  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7221  // do it!
7222  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
7223      VT == MVT::v16i16 || VT == MVT::v32i8) {
7224    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7225    if (NewOp.getNode())
7226      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7227  } else if ((VT == MVT::v4i32 ||
7228             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
7229    // FIXME: Figure out a cleaner way to do this.
7230    // Try to make use of movq to zero out the top part.
7231    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7232      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7233      if (NewOp.getNode()) {
7234        MVT NewVT = NewOp.getSimpleValueType();
7235        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7236                               NewVT, true, false))
7237          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
7238                              DAG, Subtarget, dl);
7239      }
7240    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7241      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7242      if (NewOp.getNode()) {
7243        MVT NewVT = NewOp.getSimpleValueType();
7244        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7245          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
7246                              DAG, Subtarget, dl);
7247      }
7248    }
7249  }
7250  return SDValue();
7251}
7252
7253SDValue
7254X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7255  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7256  SDValue V1 = Op.getOperand(0);
7257  SDValue V2 = Op.getOperand(1);
7258  MVT VT = Op.getSimpleValueType();
7259  SDLoc dl(Op);
7260  unsigned NumElems = VT.getVectorNumElements();
7261  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7262  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7263  bool V1IsSplat = false;
7264  bool V2IsSplat = false;
7265  bool HasSSE2 = Subtarget->hasSSE2();
7266  bool HasFp256    = Subtarget->hasFp256();
7267  bool HasInt256   = Subtarget->hasInt256();
7268  MachineFunction &MF = DAG.getMachineFunction();
7269  bool OptForSize = MF.getFunction()->getAttributes().
7270    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7271
7272  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7273
7274  if (V1IsUndef && V2IsUndef)
7275    return DAG.getUNDEF(VT);
7276
7277  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
7278
7279  // Vector shuffle lowering takes 3 steps:
7280  //
7281  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7282  //    narrowing and commutation of operands should be handled.
7283  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7284  //    shuffle nodes.
7285  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7286  //    so the shuffle can be broken into other shuffles and the legalizer can
7287  //    try the lowering again.
7288  //
7289  // The general idea is that no vector_shuffle operation should be left to
7290  // be matched during isel, all of them must be converted to a target specific
7291  // node here.
7292
7293  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7294  // narrowing and commutation of operands should be handled. The actual code
7295  // doesn't include all of those, work in progress...
7296  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7297  if (NewOp.getNode())
7298    return NewOp;
7299
7300  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7301
7302  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7303  // unpckh_undef). Only use pshufd if speed is more important than size.
7304  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7305    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7306  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7307    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7308
7309  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7310      V2IsUndef && MayFoldVectorLoad(V1))
7311    return getMOVDDup(Op, dl, V1, DAG);
7312
7313  if (isMOVHLPS_v_undef_Mask(M, VT))
7314    return getMOVHighToLow(Op, dl, DAG);
7315
7316  // Use to match splats
7317  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7318      (VT == MVT::v2f64 || VT == MVT::v2i64))
7319    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7320
7321  if (isPSHUFDMask(M, VT)) {
7322    // The actual implementation will match the mask in the if above and then
7323    // during isel it can match several different instructions, not only pshufd
7324    // as its name says, sad but true, emulate the behavior for now...
7325    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7326      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7327
7328    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7329
7330    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7331      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7332
7333    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7334      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7335                                  DAG);
7336
7337    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7338                                TargetMask, DAG);
7339  }
7340
7341  if (isPALIGNRMask(M, VT, Subtarget))
7342    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7343                                getShufflePALIGNRImmediate(SVOp),
7344                                DAG);
7345
7346  // Check if this can be converted into a logical shift.
7347  bool isLeft = false;
7348  unsigned ShAmt = 0;
7349  SDValue ShVal;
7350  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7351  if (isShift && ShVal.hasOneUse()) {
7352    // If the shifted value has multiple uses, it may be cheaper to use
7353    // v_set0 + movlhps or movhlps, etc.
7354    MVT EltVT = VT.getVectorElementType();
7355    ShAmt *= EltVT.getSizeInBits();
7356    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7357  }
7358
7359  if (isMOVLMask(M, VT)) {
7360    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7361      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7362    if (!isMOVLPMask(M, VT)) {
7363      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7364        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7365
7366      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7367        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7368    }
7369  }
7370
7371  // FIXME: fold these into legal mask.
7372  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7373    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7374
7375  if (isMOVHLPSMask(M, VT))
7376    return getMOVHighToLow(Op, dl, DAG);
7377
7378  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7379    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7380
7381  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7382    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7383
7384  if (isMOVLPMask(M, VT))
7385    return getMOVLP(Op, dl, DAG, HasSSE2);
7386
7387  if (ShouldXformToMOVHLPS(M, VT) ||
7388      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7389    return CommuteVectorShuffle(SVOp, DAG);
7390
7391  if (isShift) {
7392    // No better options. Use a vshldq / vsrldq.
7393    MVT EltVT = VT.getVectorElementType();
7394    ShAmt *= EltVT.getSizeInBits();
7395    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7396  }
7397
7398  bool Commuted = false;
7399  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7400  // 1,1,1,1 -> v8i16 though.
7401  V1IsSplat = isSplatVector(V1.getNode());
7402  V2IsSplat = isSplatVector(V2.getNode());
7403
7404  // Canonicalize the splat or undef, if present, to be on the RHS.
7405  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7406    CommuteVectorShuffleMask(M, NumElems);
7407    std::swap(V1, V2);
7408    std::swap(V1IsSplat, V2IsSplat);
7409    Commuted = true;
7410  }
7411
7412  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7413    // Shuffling low element of v1 into undef, just return v1.
7414    if (V2IsUndef)
7415      return V1;
7416    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7417    // the instruction selector will not match, so get a canonical MOVL with
7418    // swapped operands to undo the commute.
7419    return getMOVL(DAG, dl, VT, V2, V1);
7420  }
7421
7422  if (isUNPCKLMask(M, VT, HasInt256))
7423    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7424
7425  if (isUNPCKHMask(M, VT, HasInt256))
7426    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7427
7428  if (V2IsSplat) {
7429    // Normalize mask so all entries that point to V2 points to its first
7430    // element then try to match unpck{h|l} again. If match, return a
7431    // new vector_shuffle with the corrected mask.p
7432    SmallVector<int, 8> NewMask(M.begin(), M.end());
7433    NormalizeMask(NewMask, NumElems);
7434    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7435      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7436    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7437      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7438  }
7439
7440  if (Commuted) {
7441    // Commute is back and try unpck* again.
7442    // FIXME: this seems wrong.
7443    CommuteVectorShuffleMask(M, NumElems);
7444    std::swap(V1, V2);
7445    std::swap(V1IsSplat, V2IsSplat);
7446    Commuted = false;
7447
7448    if (isUNPCKLMask(M, VT, HasInt256))
7449      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7450
7451    if (isUNPCKHMask(M, VT, HasInt256))
7452      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7453  }
7454
7455  // Normalize the node to match x86 shuffle ops if needed
7456  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7457    return CommuteVectorShuffle(SVOp, DAG);
7458
7459  // The checks below are all present in isShuffleMaskLegal, but they are
7460  // inlined here right now to enable us to directly emit target specific
7461  // nodes, and remove one by one until they don't return Op anymore.
7462
7463  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7464      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7465    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7466      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7467  }
7468
7469  if (isPSHUFHWMask(M, VT, HasInt256))
7470    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7471                                getShufflePSHUFHWImmediate(SVOp),
7472                                DAG);
7473
7474  if (isPSHUFLWMask(M, VT, HasInt256))
7475    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7476                                getShufflePSHUFLWImmediate(SVOp),
7477                                DAG);
7478
7479  if (isSHUFPMask(M, VT))
7480    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7481                                getShuffleSHUFImmediate(SVOp), DAG);
7482
7483  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7484    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7485  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7486    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7487
7488  //===--------------------------------------------------------------------===//
7489  // Generate target specific nodes for 128 or 256-bit shuffles only
7490  // supported in the AVX instruction set.
7491  //
7492
7493  // Handle VMOVDDUPY permutations
7494  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7495    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7496
7497  // Handle VPERMILPS/D* permutations
7498  if (isVPERMILPMask(M, VT)) {
7499    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7500      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7501                                  getShuffleSHUFImmediate(SVOp), DAG);
7502    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7503                                getShuffleSHUFImmediate(SVOp), DAG);
7504  }
7505
7506  // Handle VPERM2F128/VPERM2I128 permutations
7507  if (isVPERM2X128Mask(M, VT, HasFp256))
7508    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7509                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7510
7511  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7512  if (BlendOp.getNode())
7513    return BlendOp;
7514
7515  unsigned Imm8;
7516  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7517    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7518
7519  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7520      VT.is512BitVector()) {
7521    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7522    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7523    SmallVector<SDValue, 16> permclMask;
7524    for (unsigned i = 0; i != NumElems; ++i) {
7525      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7526    }
7527
7528    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
7529                                &permclMask[0], NumElems);
7530    if (V2IsUndef)
7531      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7532      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7533                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7534    return DAG.getNode(X86ISD::VPERMV3, dl, VT,
7535                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
7536  }
7537
7538  //===--------------------------------------------------------------------===//
7539  // Since no target specific shuffle was selected for this generic one,
7540  // lower it into other known shuffles. FIXME: this isn't true yet, but
7541  // this is the plan.
7542  //
7543
7544  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7545  if (VT == MVT::v8i16) {
7546    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7547    if (NewOp.getNode())
7548      return NewOp;
7549  }
7550
7551  if (VT == MVT::v16i8) {
7552    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7553    if (NewOp.getNode())
7554      return NewOp;
7555  }
7556
7557  if (VT == MVT::v32i8) {
7558    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7559    if (NewOp.getNode())
7560      return NewOp;
7561  }
7562
7563  // Handle all 128-bit wide vectors with 4 elements, and match them with
7564  // several different shuffle types.
7565  if (NumElems == 4 && VT.is128BitVector())
7566    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7567
7568  // Handle general 256-bit shuffles
7569  if (VT.is256BitVector())
7570    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7571
7572  return SDValue();
7573}
7574
7575static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7576  MVT VT = Op.getSimpleValueType();
7577  SDLoc dl(Op);
7578
7579  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
7580    return SDValue();
7581
7582  if (VT.getSizeInBits() == 8) {
7583    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7584                                  Op.getOperand(0), Op.getOperand(1));
7585    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7586                                  DAG.getValueType(VT));
7587    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7588  }
7589
7590  if (VT.getSizeInBits() == 16) {
7591    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7592    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7593    if (Idx == 0)
7594      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7595                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7596                                     DAG.getNode(ISD::BITCAST, dl,
7597                                                 MVT::v4i32,
7598                                                 Op.getOperand(0)),
7599                                     Op.getOperand(1)));
7600    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7601                                  Op.getOperand(0), Op.getOperand(1));
7602    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7603                                  DAG.getValueType(VT));
7604    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7605  }
7606
7607  if (VT == MVT::f32) {
7608    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7609    // the result back to FR32 register. It's only worth matching if the
7610    // result has a single use which is a store or a bitcast to i32.  And in
7611    // the case of a store, it's not worth it if the index is a constant 0,
7612    // because a MOVSSmr can be used instead, which is smaller and faster.
7613    if (!Op.hasOneUse())
7614      return SDValue();
7615    SDNode *User = *Op.getNode()->use_begin();
7616    if ((User->getOpcode() != ISD::STORE ||
7617         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7618          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7619        (User->getOpcode() != ISD::BITCAST ||
7620         User->getValueType(0) != MVT::i32))
7621      return SDValue();
7622    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7623                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7624                                              Op.getOperand(0)),
7625                                              Op.getOperand(1));
7626    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7627  }
7628
7629  if (VT == MVT::i32 || VT == MVT::i64) {
7630    // ExtractPS/pextrq works with constant index.
7631    if (isa<ConstantSDNode>(Op.getOperand(1)))
7632      return Op;
7633  }
7634  return SDValue();
7635}
7636
7637SDValue
7638X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7639                                           SelectionDAG &DAG) const {
7640  SDLoc dl(Op);
7641  SDValue Vec = Op.getOperand(0);
7642  MVT VecVT = Vec.getSimpleValueType();
7643  SDValue Idx = Op.getOperand(1);
7644  if (!isa<ConstantSDNode>(Idx)) {
7645    if (VecVT.is512BitVector() ||
7646        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
7647         VecVT.getVectorElementType().getSizeInBits() == 32)) {
7648
7649      MVT MaskEltVT =
7650        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
7651      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
7652                                    MaskEltVT.getSizeInBits());
7653
7654      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
7655      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
7656                                getZeroVector(MaskVT, Subtarget, DAG, dl),
7657                                Idx, DAG.getConstant(0, getPointerTy()));
7658      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
7659      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
7660                        Perm, DAG.getConstant(0, getPointerTy()));
7661    }
7662    return SDValue();
7663  }
7664
7665  // If this is a 256-bit vector result, first extract the 128-bit vector and
7666  // then extract the element from the 128-bit vector.
7667  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
7668
7669    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7670    // Get the 128-bit vector.
7671    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7672    MVT EltVT = VecVT.getVectorElementType();
7673
7674    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
7675
7676    //if (IdxVal >= NumElems/2)
7677    //  IdxVal -= NumElems/2;
7678    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
7679    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7680                       DAG.getConstant(IdxVal, MVT::i32));
7681  }
7682
7683  assert(VecVT.is128BitVector() && "Unexpected vector length");
7684
7685  if (Subtarget->hasSSE41()) {
7686    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7687    if (Res.getNode())
7688      return Res;
7689  }
7690
7691  MVT VT = Op.getSimpleValueType();
7692  // TODO: handle v16i8.
7693  if (VT.getSizeInBits() == 16) {
7694    SDValue Vec = Op.getOperand(0);
7695    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7696    if (Idx == 0)
7697      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7698                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7699                                     DAG.getNode(ISD::BITCAST, dl,
7700                                                 MVT::v4i32, Vec),
7701                                     Op.getOperand(1)));
7702    // Transform it so it match pextrw which produces a 32-bit result.
7703    MVT EltVT = MVT::i32;
7704    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7705                                  Op.getOperand(0), Op.getOperand(1));
7706    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7707                                  DAG.getValueType(VT));
7708    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7709  }
7710
7711  if (VT.getSizeInBits() == 32) {
7712    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7713    if (Idx == 0)
7714      return Op;
7715
7716    // SHUFPS the element to the lowest double word, then movss.
7717    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7718    MVT VVT = Op.getOperand(0).getSimpleValueType();
7719    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7720                                       DAG.getUNDEF(VVT), Mask);
7721    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7722                       DAG.getIntPtrConstant(0));
7723  }
7724
7725  if (VT.getSizeInBits() == 64) {
7726    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7727    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7728    //        to match extract_elt for f64.
7729    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7730    if (Idx == 0)
7731      return Op;
7732
7733    // UNPCKHPD the element to the lowest double word, then movsd.
7734    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7735    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7736    int Mask[2] = { 1, -1 };
7737    MVT VVT = Op.getOperand(0).getSimpleValueType();
7738    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7739                                       DAG.getUNDEF(VVT), Mask);
7740    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7741                       DAG.getIntPtrConstant(0));
7742  }
7743
7744  return SDValue();
7745}
7746
7747static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7748  MVT VT = Op.getSimpleValueType();
7749  MVT EltVT = VT.getVectorElementType();
7750  SDLoc dl(Op);
7751
7752  SDValue N0 = Op.getOperand(0);
7753  SDValue N1 = Op.getOperand(1);
7754  SDValue N2 = Op.getOperand(2);
7755
7756  if (!VT.is128BitVector())
7757    return SDValue();
7758
7759  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7760      isa<ConstantSDNode>(N2)) {
7761    unsigned Opc;
7762    if (VT == MVT::v8i16)
7763      Opc = X86ISD::PINSRW;
7764    else if (VT == MVT::v16i8)
7765      Opc = X86ISD::PINSRB;
7766    else
7767      Opc = X86ISD::PINSRB;
7768
7769    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7770    // argument.
7771    if (N1.getValueType() != MVT::i32)
7772      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7773    if (N2.getValueType() != MVT::i32)
7774      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7775    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7776  }
7777
7778  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7779    // Bits [7:6] of the constant are the source select.  This will always be
7780    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7781    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7782    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7783    // Bits [5:4] of the constant are the destination select.  This is the
7784    //  value of the incoming immediate.
7785    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7786    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7787    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7788    // Create this as a scalar to vector..
7789    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7790    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7791  }
7792
7793  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7794    // PINSR* works with constant index.
7795    return Op;
7796  }
7797  return SDValue();
7798}
7799
7800SDValue
7801X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7802  MVT VT = Op.getSimpleValueType();
7803  MVT EltVT = VT.getVectorElementType();
7804
7805  SDLoc dl(Op);
7806  SDValue N0 = Op.getOperand(0);
7807  SDValue N1 = Op.getOperand(1);
7808  SDValue N2 = Op.getOperand(2);
7809
7810  // If this is a 256-bit vector result, first extract the 128-bit vector,
7811  // insert the element into the extracted half and then place it back.
7812  if (VT.is256BitVector() || VT.is512BitVector()) {
7813    if (!isa<ConstantSDNode>(N2))
7814      return SDValue();
7815
7816    // Get the desired 128-bit vector half.
7817    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7818    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7819
7820    // Insert the element into the desired half.
7821    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
7822    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
7823
7824    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7825                    DAG.getConstant(IdxIn128, MVT::i32));
7826
7827    // Insert the changed part back to the 256-bit vector
7828    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7829  }
7830
7831  if (Subtarget->hasSSE41())
7832    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7833
7834  if (EltVT == MVT::i8)
7835    return SDValue();
7836
7837  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7838    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7839    // as its second argument.
7840    if (N1.getValueType() != MVT::i32)
7841      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7842    if (N2.getValueType() != MVT::i32)
7843      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7844    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7845  }
7846  return SDValue();
7847}
7848
7849static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7850  SDLoc dl(Op);
7851  MVT OpVT = Op.getSimpleValueType();
7852
7853  // If this is a 256-bit vector result, first insert into a 128-bit
7854  // vector and then insert into the 256-bit vector.
7855  if (!OpVT.is128BitVector()) {
7856    // Insert into a 128-bit vector.
7857    unsigned SizeFactor = OpVT.getSizeInBits()/128;
7858    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
7859                                 OpVT.getVectorNumElements() / SizeFactor);
7860
7861    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7862
7863    // Insert the 128-bit vector.
7864    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7865  }
7866
7867  if (OpVT == MVT::v1i64 &&
7868      Op.getOperand(0).getValueType() == MVT::i64)
7869    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7870
7871  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7872  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7873  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7874                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7875}
7876
7877// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7878// a simple subregister reference or explicit instructions to grab
7879// upper bits of a vector.
7880static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7881                                      SelectionDAG &DAG) {
7882  SDLoc dl(Op);
7883  SDValue In =  Op.getOperand(0);
7884  SDValue Idx = Op.getOperand(1);
7885  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7886  MVT ResVT   = Op.getSimpleValueType();
7887  MVT InVT    = In.getSimpleValueType();
7888
7889  if (Subtarget->hasFp256()) {
7890    if (ResVT.is128BitVector() &&
7891        (InVT.is256BitVector() || InVT.is512BitVector()) &&
7892        isa<ConstantSDNode>(Idx)) {
7893      return Extract128BitVector(In, IdxVal, DAG, dl);
7894    }
7895    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
7896        isa<ConstantSDNode>(Idx)) {
7897      return Extract256BitVector(In, IdxVal, DAG, dl);
7898    }
7899  }
7900  return SDValue();
7901}
7902
7903// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7904// simple superregister reference or explicit instructions to insert
7905// the upper bits of a vector.
7906static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7907                                     SelectionDAG &DAG) {
7908  if (Subtarget->hasFp256()) {
7909    SDLoc dl(Op.getNode());
7910    SDValue Vec = Op.getNode()->getOperand(0);
7911    SDValue SubVec = Op.getNode()->getOperand(1);
7912    SDValue Idx = Op.getNode()->getOperand(2);
7913
7914    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
7915         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
7916        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
7917        isa<ConstantSDNode>(Idx)) {
7918      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7919      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7920    }
7921
7922    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
7923        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
7924        isa<ConstantSDNode>(Idx)) {
7925      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7926      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
7927    }
7928  }
7929  return SDValue();
7930}
7931
7932// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7933// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7934// one of the above mentioned nodes. It has to be wrapped because otherwise
7935// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7936// be used to form addressing mode. These wrapped nodes will be selected
7937// into MOV32ri.
7938SDValue
7939X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7940  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7941
7942  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7943  // global base reg.
7944  unsigned char OpFlag = 0;
7945  unsigned WrapperKind = X86ISD::Wrapper;
7946  CodeModel::Model M = getTargetMachine().getCodeModel();
7947
7948  if (Subtarget->isPICStyleRIPRel() &&
7949      (M == CodeModel::Small || M == CodeModel::Kernel))
7950    WrapperKind = X86ISD::WrapperRIP;
7951  else if (Subtarget->isPICStyleGOT())
7952    OpFlag = X86II::MO_GOTOFF;
7953  else if (Subtarget->isPICStyleStubPIC())
7954    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7955
7956  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7957                                             CP->getAlignment(),
7958                                             CP->getOffset(), OpFlag);
7959  SDLoc DL(CP);
7960  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7961  // With PIC, the address is actually $g + Offset.
7962  if (OpFlag) {
7963    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7964                         DAG.getNode(X86ISD::GlobalBaseReg,
7965                                     SDLoc(), getPointerTy()),
7966                         Result);
7967  }
7968
7969  return Result;
7970}
7971
7972SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7973  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7974
7975  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7976  // global base reg.
7977  unsigned char OpFlag = 0;
7978  unsigned WrapperKind = X86ISD::Wrapper;
7979  CodeModel::Model M = getTargetMachine().getCodeModel();
7980
7981  if (Subtarget->isPICStyleRIPRel() &&
7982      (M == CodeModel::Small || M == CodeModel::Kernel))
7983    WrapperKind = X86ISD::WrapperRIP;
7984  else if (Subtarget->isPICStyleGOT())
7985    OpFlag = X86II::MO_GOTOFF;
7986  else if (Subtarget->isPICStyleStubPIC())
7987    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7988
7989  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7990                                          OpFlag);
7991  SDLoc DL(JT);
7992  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7993
7994  // With PIC, the address is actually $g + Offset.
7995  if (OpFlag)
7996    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7997                         DAG.getNode(X86ISD::GlobalBaseReg,
7998                                     SDLoc(), getPointerTy()),
7999                         Result);
8000
8001  return Result;
8002}
8003
8004SDValue
8005X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
8006  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8007
8008  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8009  // global base reg.
8010  unsigned char OpFlag = 0;
8011  unsigned WrapperKind = X86ISD::Wrapper;
8012  CodeModel::Model M = getTargetMachine().getCodeModel();
8013
8014  if (Subtarget->isPICStyleRIPRel() &&
8015      (M == CodeModel::Small || M == CodeModel::Kernel)) {
8016    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
8017      OpFlag = X86II::MO_GOTPCREL;
8018    WrapperKind = X86ISD::WrapperRIP;
8019  } else if (Subtarget->isPICStyleGOT()) {
8020    OpFlag = X86II::MO_GOT;
8021  } else if (Subtarget->isPICStyleStubPIC()) {
8022    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
8023  } else if (Subtarget->isPICStyleStubNoDynamic()) {
8024    OpFlag = X86II::MO_DARWIN_NONLAZY;
8025  }
8026
8027  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
8028
8029  SDLoc DL(Op);
8030  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8031
8032  // With PIC, the address is actually $g + Offset.
8033  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
8034      !Subtarget->is64Bit()) {
8035    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8036                         DAG.getNode(X86ISD::GlobalBaseReg,
8037                                     SDLoc(), getPointerTy()),
8038                         Result);
8039  }
8040
8041  // For symbols that require a load from a stub to get the address, emit the
8042  // load.
8043  if (isGlobalStubReference(OpFlag))
8044    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
8045                         MachinePointerInfo::getGOT(), false, false, false, 0);
8046
8047  return Result;
8048}
8049
8050SDValue
8051X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
8052  // Create the TargetBlockAddressAddress node.
8053  unsigned char OpFlags =
8054    Subtarget->ClassifyBlockAddressReference();
8055  CodeModel::Model M = getTargetMachine().getCodeModel();
8056  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8057  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8058  SDLoc dl(Op);
8059  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8060                                             OpFlags);
8061
8062  if (Subtarget->isPICStyleRIPRel() &&
8063      (M == CodeModel::Small || M == CodeModel::Kernel))
8064    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8065  else
8066    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8067
8068  // With PIC, the address is actually $g + Offset.
8069  if (isGlobalRelativeToPICBase(OpFlags)) {
8070    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8071                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8072                         Result);
8073  }
8074
8075  return Result;
8076}
8077
8078SDValue
8079X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8080                                      int64_t Offset, SelectionDAG &DAG) const {
8081  // Create the TargetGlobalAddress node, folding in the constant
8082  // offset if it is legal.
8083  unsigned char OpFlags =
8084    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8085  CodeModel::Model M = getTargetMachine().getCodeModel();
8086  SDValue Result;
8087  if (OpFlags == X86II::MO_NO_FLAG &&
8088      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8089    // A direct static reference to a global.
8090    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8091    Offset = 0;
8092  } else {
8093    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8094  }
8095
8096  if (Subtarget->isPICStyleRIPRel() &&
8097      (M == CodeModel::Small || M == CodeModel::Kernel))
8098    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8099  else
8100    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8101
8102  // With PIC, the address is actually $g + Offset.
8103  if (isGlobalRelativeToPICBase(OpFlags)) {
8104    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8105                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8106                         Result);
8107  }
8108
8109  // For globals that require a load from a stub to get the address, emit the
8110  // load.
8111  if (isGlobalStubReference(OpFlags))
8112    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8113                         MachinePointerInfo::getGOT(), false, false, false, 0);
8114
8115  // If there was a non-zero offset that we didn't fold, create an explicit
8116  // addition for it.
8117  if (Offset != 0)
8118    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8119                         DAG.getConstant(Offset, getPointerTy()));
8120
8121  return Result;
8122}
8123
8124SDValue
8125X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8126  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8127  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8128  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8129}
8130
8131static SDValue
8132GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8133           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8134           unsigned char OperandFlags, bool LocalDynamic = false) {
8135  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8136  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8137  SDLoc dl(GA);
8138  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8139                                           GA->getValueType(0),
8140                                           GA->getOffset(),
8141                                           OperandFlags);
8142
8143  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8144                                           : X86ISD::TLSADDR;
8145
8146  if (InFlag) {
8147    SDValue Ops[] = { Chain,  TGA, *InFlag };
8148    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8149  } else {
8150    SDValue Ops[]  = { Chain, TGA };
8151    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8152  }
8153
8154  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8155  MFI->setAdjustsStack(true);
8156
8157  SDValue Flag = Chain.getValue(1);
8158  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8159}
8160
8161// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8162static SDValue
8163LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8164                                const EVT PtrVT) {
8165  SDValue InFlag;
8166  SDLoc dl(GA);  // ? function entry point might be better
8167  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8168                                   DAG.getNode(X86ISD::GlobalBaseReg,
8169                                               SDLoc(), PtrVT), InFlag);
8170  InFlag = Chain.getValue(1);
8171
8172  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8173}
8174
8175// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8176static SDValue
8177LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8178                                const EVT PtrVT) {
8179  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
8180                    X86::RAX, X86II::MO_TLSGD);
8181}
8182
8183static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8184                                           SelectionDAG &DAG,
8185                                           const EVT PtrVT,
8186                                           bool is64Bit) {
8187  SDLoc dl(GA);
8188
8189  // Get the start address of the TLS block for this module.
8190  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8191      .getInfo<X86MachineFunctionInfo>();
8192  MFI->incNumLocalDynamicTLSAccesses();
8193
8194  SDValue Base;
8195  if (is64Bit) {
8196    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
8197                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8198  } else {
8199    SDValue InFlag;
8200    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8201        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8202    InFlag = Chain.getValue(1);
8203    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8204                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8205  }
8206
8207  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8208  // of Base.
8209
8210  // Build x@dtpoff.
8211  unsigned char OperandFlags = X86II::MO_DTPOFF;
8212  unsigned WrapperKind = X86ISD::Wrapper;
8213  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8214                                           GA->getValueType(0),
8215                                           GA->getOffset(), OperandFlags);
8216  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8217
8218  // Add x@dtpoff with the base.
8219  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8220}
8221
8222// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8223static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8224                                   const EVT PtrVT, TLSModel::Model model,
8225                                   bool is64Bit, bool isPIC) {
8226  SDLoc dl(GA);
8227
8228  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8229  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8230                                                         is64Bit ? 257 : 256));
8231
8232  SDValue ThreadPointer =
8233      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
8234                  MachinePointerInfo(Ptr), false, false, false, 0);
8235
8236  unsigned char OperandFlags = 0;
8237  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8238  // initialexec.
8239  unsigned WrapperKind = X86ISD::Wrapper;
8240  if (model == TLSModel::LocalExec) {
8241    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8242  } else if (model == TLSModel::InitialExec) {
8243    if (is64Bit) {
8244      OperandFlags = X86II::MO_GOTTPOFF;
8245      WrapperKind = X86ISD::WrapperRIP;
8246    } else {
8247      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8248    }
8249  } else {
8250    llvm_unreachable("Unexpected model");
8251  }
8252
8253  // emit "addl x@ntpoff,%eax" (local exec)
8254  // or "addl x@indntpoff,%eax" (initial exec)
8255  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8256  SDValue TGA =
8257      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
8258                                 GA->getOffset(), OperandFlags);
8259  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8260
8261  if (model == TLSModel::InitialExec) {
8262    if (isPIC && !is64Bit) {
8263      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8264                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8265                           Offset);
8266    }
8267
8268    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8269                         MachinePointerInfo::getGOT(), false, false, false, 0);
8270  }
8271
8272  // The address of the thread local variable is the add of the thread
8273  // pointer with the offset of the variable.
8274  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8275}
8276
8277SDValue
8278X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8279
8280  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8281  const GlobalValue *GV = GA->getGlobal();
8282
8283  if (Subtarget->isTargetELF()) {
8284    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8285
8286    switch (model) {
8287      case TLSModel::GeneralDynamic:
8288        if (Subtarget->is64Bit())
8289          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8290        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8291      case TLSModel::LocalDynamic:
8292        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8293                                           Subtarget->is64Bit());
8294      case TLSModel::InitialExec:
8295      case TLSModel::LocalExec:
8296        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8297                                   Subtarget->is64Bit(),
8298                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8299    }
8300    llvm_unreachable("Unknown TLS model.");
8301  }
8302
8303  if (Subtarget->isTargetDarwin()) {
8304    // Darwin only has one model of TLS.  Lower to that.
8305    unsigned char OpFlag = 0;
8306    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8307                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8308
8309    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8310    // global base reg.
8311    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8312                  !Subtarget->is64Bit();
8313    if (PIC32)
8314      OpFlag = X86II::MO_TLVP_PIC_BASE;
8315    else
8316      OpFlag = X86II::MO_TLVP;
8317    SDLoc DL(Op);
8318    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8319                                                GA->getValueType(0),
8320                                                GA->getOffset(), OpFlag);
8321    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8322
8323    // With PIC32, the address is actually $g + Offset.
8324    if (PIC32)
8325      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8326                           DAG.getNode(X86ISD::GlobalBaseReg,
8327                                       SDLoc(), getPointerTy()),
8328                           Offset);
8329
8330    // Lowering the machine isd will make sure everything is in the right
8331    // location.
8332    SDValue Chain = DAG.getEntryNode();
8333    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8334    SDValue Args[] = { Chain, Offset };
8335    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
8336
8337    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8338    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8339    MFI->setAdjustsStack(true);
8340
8341    // And our return value (tls address) is in the standard call return value
8342    // location.
8343    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8344    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8345                              Chain.getValue(1));
8346  }
8347
8348  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
8349    // Just use the implicit TLS architecture
8350    // Need to generate someting similar to:
8351    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8352    //                                  ; from TEB
8353    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8354    //   mov     rcx, qword [rdx+rcx*8]
8355    //   mov     eax, .tls$:tlsvar
8356    //   [rax+rcx] contains the address
8357    // Windows 64bit: gs:0x58
8358    // Windows 32bit: fs:__tls_array
8359
8360    // If GV is an alias then use the aliasee for determining
8361    // thread-localness.
8362    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
8363      GV = GA->resolveAliasedGlobal(false);
8364    SDLoc dl(GA);
8365    SDValue Chain = DAG.getEntryNode();
8366
8367    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8368    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8369    // use its literal value of 0x2C.
8370    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8371                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8372                                                             256)
8373                                        : Type::getInt32PtrTy(*DAG.getContext(),
8374                                                              257));
8375
8376    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
8377      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
8378        DAG.getExternalSymbol("_tls_array", getPointerTy()));
8379
8380    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8381                                        MachinePointerInfo(Ptr),
8382                                        false, false, false, 0);
8383
8384    // Load the _tls_index variable
8385    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8386    if (Subtarget->is64Bit())
8387      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8388                           IDX, MachinePointerInfo(), MVT::i32,
8389                           false, false, 0);
8390    else
8391      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8392                        false, false, false, 0);
8393
8394    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8395                                    getPointerTy());
8396    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8397
8398    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8399    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8400                      false, false, false, 0);
8401
8402    // Get the offset of start of .tls section
8403    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8404                                             GA->getValueType(0),
8405                                             GA->getOffset(), X86II::MO_SECREL);
8406    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8407
8408    // The address of the thread local variable is the add of the thread
8409    // pointer with the offset of the variable.
8410    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8411  }
8412
8413  llvm_unreachable("TLS not implemented for this target.");
8414}
8415
8416/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
8417/// and take a 2 x i32 value to shift plus a shift amount.
8418SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
8419  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
8420  EVT VT = Op.getValueType();
8421  unsigned VTBits = VT.getSizeInBits();
8422  SDLoc dl(Op);
8423  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
8424  SDValue ShOpLo = Op.getOperand(0);
8425  SDValue ShOpHi = Op.getOperand(1);
8426  SDValue ShAmt  = Op.getOperand(2);
8427  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8428                                     DAG.getConstant(VTBits - 1, MVT::i8))
8429                       : DAG.getConstant(0, VT);
8430
8431  SDValue Tmp2, Tmp3;
8432  if (Op.getOpcode() == ISD::SHL_PARTS) {
8433    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
8434    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
8435  } else {
8436    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
8437    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
8438  }
8439
8440  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8441                                DAG.getConstant(VTBits, MVT::i8));
8442  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8443                             AndNode, DAG.getConstant(0, MVT::i8));
8444
8445  SDValue Hi, Lo;
8446  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8447  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
8448  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
8449
8450  if (Op.getOpcode() == ISD::SHL_PARTS) {
8451    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8452    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8453  } else {
8454    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8455    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8456  }
8457
8458  SDValue Ops[2] = { Lo, Hi };
8459  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
8460}
8461
8462SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
8463                                           SelectionDAG &DAG) const {
8464  EVT SrcVT = Op.getOperand(0).getValueType();
8465
8466  if (SrcVT.isVector())
8467    return SDValue();
8468
8469  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
8470         "Unknown SINT_TO_FP to lower!");
8471
8472  // These are really Legal; return the operand so the caller accepts it as
8473  // Legal.
8474  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8475    return Op;
8476  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8477      Subtarget->is64Bit()) {
8478    return Op;
8479  }
8480
8481  SDLoc dl(Op);
8482  unsigned Size = SrcVT.getSizeInBits()/8;
8483  MachineFunction &MF = DAG.getMachineFunction();
8484  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8485  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8486  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8487                               StackSlot,
8488                               MachinePointerInfo::getFixedStack(SSFI),
8489                               false, false, 0);
8490  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8491}
8492
8493SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8494                                     SDValue StackSlot,
8495                                     SelectionDAG &DAG) const {
8496  // Build the FILD
8497  SDLoc DL(Op);
8498  SDVTList Tys;
8499  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8500  if (useSSE)
8501    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8502  else
8503    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8504
8505  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8506
8507  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8508  MachineMemOperand *MMO;
8509  if (FI) {
8510    int SSFI = FI->getIndex();
8511    MMO =
8512      DAG.getMachineFunction()
8513      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8514                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8515  } else {
8516    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8517    StackSlot = StackSlot.getOperand(1);
8518  }
8519  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8520  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8521                                           X86ISD::FILD, DL,
8522                                           Tys, Ops, array_lengthof(Ops),
8523                                           SrcVT, MMO);
8524
8525  if (useSSE) {
8526    Chain = Result.getValue(1);
8527    SDValue InFlag = Result.getValue(2);
8528
8529    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8530    // shouldn't be necessary except that RFP cannot be live across
8531    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8532    MachineFunction &MF = DAG.getMachineFunction();
8533    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8534    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8535    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8536    Tys = DAG.getVTList(MVT::Other);
8537    SDValue Ops[] = {
8538      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8539    };
8540    MachineMemOperand *MMO =
8541      DAG.getMachineFunction()
8542      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8543                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8544
8545    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8546                                    Ops, array_lengthof(Ops),
8547                                    Op.getValueType(), MMO);
8548    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8549                         MachinePointerInfo::getFixedStack(SSFI),
8550                         false, false, false, 0);
8551  }
8552
8553  return Result;
8554}
8555
8556// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8557SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8558                                               SelectionDAG &DAG) const {
8559  // This algorithm is not obvious. Here it is what we're trying to output:
8560  /*
8561     movq       %rax,  %xmm0
8562     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8563     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8564     #ifdef __SSE3__
8565       haddpd   %xmm0, %xmm0
8566     #else
8567       pshufd   $0x4e, %xmm0, %xmm1
8568       addpd    %xmm1, %xmm0
8569     #endif
8570  */
8571
8572  SDLoc dl(Op);
8573  LLVMContext *Context = DAG.getContext();
8574
8575  // Build some magic constants.
8576  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8577  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8578  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8579
8580  SmallVector<Constant*,2> CV1;
8581  CV1.push_back(
8582    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8583                                      APInt(64, 0x4330000000000000ULL))));
8584  CV1.push_back(
8585    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8586                                      APInt(64, 0x4530000000000000ULL))));
8587  Constant *C1 = ConstantVector::get(CV1);
8588  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8589
8590  // Load the 64-bit value into an XMM register.
8591  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8592                            Op.getOperand(0));
8593  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8594                              MachinePointerInfo::getConstantPool(),
8595                              false, false, false, 16);
8596  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8597                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8598                              CLod0);
8599
8600  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8601                              MachinePointerInfo::getConstantPool(),
8602                              false, false, false, 16);
8603  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8604  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8605  SDValue Result;
8606
8607  if (Subtarget->hasSSE3()) {
8608    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8609    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8610  } else {
8611    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8612    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8613                                           S2F, 0x4E, DAG);
8614    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8615                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8616                         Sub);
8617  }
8618
8619  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8620                     DAG.getIntPtrConstant(0));
8621}
8622
8623// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8624SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8625                                               SelectionDAG &DAG) const {
8626  SDLoc dl(Op);
8627  // FP constant to bias correct the final result.
8628  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8629                                   MVT::f64);
8630
8631  // Load the 32-bit value into an XMM register.
8632  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8633                             Op.getOperand(0));
8634
8635  // Zero out the upper parts of the register.
8636  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8637
8638  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8639                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8640                     DAG.getIntPtrConstant(0));
8641
8642  // Or the load with the bias.
8643  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8644                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8645                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8646                                                   MVT::v2f64, Load)),
8647                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8648                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8649                                                   MVT::v2f64, Bias)));
8650  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8651                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8652                   DAG.getIntPtrConstant(0));
8653
8654  // Subtract the bias.
8655  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8656
8657  // Handle final rounding.
8658  EVT DestVT = Op.getValueType();
8659
8660  if (DestVT.bitsLT(MVT::f64))
8661    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8662                       DAG.getIntPtrConstant(0));
8663  if (DestVT.bitsGT(MVT::f64))
8664    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8665
8666  // Handle final rounding.
8667  return Sub;
8668}
8669
8670SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8671                                               SelectionDAG &DAG) const {
8672  SDValue N0 = Op.getOperand(0);
8673  EVT SVT = N0.getValueType();
8674  SDLoc dl(Op);
8675
8676  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8677          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8678         "Custom UINT_TO_FP is not supported!");
8679
8680  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8681                             SVT.getVectorNumElements());
8682  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8683                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8684}
8685
8686SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8687                                           SelectionDAG &DAG) const {
8688  SDValue N0 = Op.getOperand(0);
8689  SDLoc dl(Op);
8690
8691  if (Op.getValueType().isVector())
8692    return lowerUINT_TO_FP_vec(Op, DAG);
8693
8694  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8695  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8696  // the optimization here.
8697  if (DAG.SignBitIsZero(N0))
8698    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8699
8700  EVT SrcVT = N0.getValueType();
8701  EVT DstVT = Op.getValueType();
8702  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8703    return LowerUINT_TO_FP_i64(Op, DAG);
8704  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8705    return LowerUINT_TO_FP_i32(Op, DAG);
8706  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8707    return SDValue();
8708
8709  // Make a 64-bit buffer, and use it to build an FILD.
8710  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8711  if (SrcVT == MVT::i32) {
8712    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8713    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8714                                     getPointerTy(), StackSlot, WordOff);
8715    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8716                                  StackSlot, MachinePointerInfo(),
8717                                  false, false, 0);
8718    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8719                                  OffsetSlot, MachinePointerInfo(),
8720                                  false, false, 0);
8721    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8722    return Fild;
8723  }
8724
8725  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8726  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8727                               StackSlot, MachinePointerInfo(),
8728                               false, false, 0);
8729  // For i64 source, we need to add the appropriate power of 2 if the input
8730  // was negative.  This is the same as the optimization in
8731  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8732  // we must be careful to do the computation in x87 extended precision, not
8733  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8734  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8735  MachineMemOperand *MMO =
8736    DAG.getMachineFunction()
8737    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8738                          MachineMemOperand::MOLoad, 8, 8);
8739
8740  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8741  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8742  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8743                                         array_lengthof(Ops), MVT::i64, MMO);
8744
8745  APInt FF(32, 0x5F800000ULL);
8746
8747  // Check whether the sign bit is set.
8748  SDValue SignSet = DAG.getSetCC(dl,
8749                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8750                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8751                                 ISD::SETLT);
8752
8753  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8754  SDValue FudgePtr = DAG.getConstantPool(
8755                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8756                                         getPointerTy());
8757
8758  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8759  SDValue Zero = DAG.getIntPtrConstant(0);
8760  SDValue Four = DAG.getIntPtrConstant(4);
8761  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8762                               Zero, Four);
8763  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8764
8765  // Load the value out, extending it from f32 to f80.
8766  // FIXME: Avoid the extend by constructing the right constant pool?
8767  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8768                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8769                                 MVT::f32, false, false, 4);
8770  // Extend everything to 80 bits to force it to be done on x87.
8771  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8772  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8773}
8774
8775std::pair<SDValue,SDValue>
8776X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8777                                    bool IsSigned, bool IsReplace) const {
8778  SDLoc DL(Op);
8779
8780  EVT DstTy = Op.getValueType();
8781
8782  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8783    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8784    DstTy = MVT::i64;
8785  }
8786
8787  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8788         DstTy.getSimpleVT() >= MVT::i16 &&
8789         "Unknown FP_TO_INT to lower!");
8790
8791  // These are really Legal.
8792  if (DstTy == MVT::i32 &&
8793      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8794    return std::make_pair(SDValue(), SDValue());
8795  if (Subtarget->is64Bit() &&
8796      DstTy == MVT::i64 &&
8797      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8798    return std::make_pair(SDValue(), SDValue());
8799
8800  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8801  // stack slot, or into the FTOL runtime function.
8802  MachineFunction &MF = DAG.getMachineFunction();
8803  unsigned MemSize = DstTy.getSizeInBits()/8;
8804  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8805  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8806
8807  unsigned Opc;
8808  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8809    Opc = X86ISD::WIN_FTOL;
8810  else
8811    switch (DstTy.getSimpleVT().SimpleTy) {
8812    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8813    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8814    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8815    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8816    }
8817
8818  SDValue Chain = DAG.getEntryNode();
8819  SDValue Value = Op.getOperand(0);
8820  EVT TheVT = Op.getOperand(0).getValueType();
8821  // FIXME This causes a redundant load/store if the SSE-class value is already
8822  // in memory, such as if it is on the callstack.
8823  if (isScalarFPTypeInSSEReg(TheVT)) {
8824    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8825    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8826                         MachinePointerInfo::getFixedStack(SSFI),
8827                         false, false, 0);
8828    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8829    SDValue Ops[] = {
8830      Chain, StackSlot, DAG.getValueType(TheVT)
8831    };
8832
8833    MachineMemOperand *MMO =
8834      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8835                              MachineMemOperand::MOLoad, MemSize, MemSize);
8836    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8837                                    array_lengthof(Ops), DstTy, MMO);
8838    Chain = Value.getValue(1);
8839    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8840    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8841  }
8842
8843  MachineMemOperand *MMO =
8844    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8845                            MachineMemOperand::MOStore, MemSize, MemSize);
8846
8847  if (Opc != X86ISD::WIN_FTOL) {
8848    // Build the FP_TO_INT*_IN_MEM
8849    SDValue Ops[] = { Chain, Value, StackSlot };
8850    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8851                                           Ops, array_lengthof(Ops), DstTy,
8852                                           MMO);
8853    return std::make_pair(FIST, StackSlot);
8854  } else {
8855    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8856      DAG.getVTList(MVT::Other, MVT::Glue),
8857      Chain, Value);
8858    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8859      MVT::i32, ftol.getValue(1));
8860    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8861      MVT::i32, eax.getValue(2));
8862    SDValue Ops[] = { eax, edx };
8863    SDValue pair = IsReplace
8864      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8865      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8866    return std::make_pair(pair, SDValue());
8867  }
8868}
8869
8870static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8871                              const X86Subtarget *Subtarget) {
8872  MVT VT = Op->getSimpleValueType(0);
8873  SDValue In = Op->getOperand(0);
8874  MVT InVT = In.getSimpleValueType();
8875  SDLoc dl(Op);
8876
8877  // Optimize vectors in AVX mode:
8878  //
8879  //   v8i16 -> v8i32
8880  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8881  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8882  //   Concat upper and lower parts.
8883  //
8884  //   v4i32 -> v4i64
8885  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8886  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8887  //   Concat upper and lower parts.
8888  //
8889
8890  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
8891      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8892      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8893    return SDValue();
8894
8895  if (Subtarget->hasInt256())
8896    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8897
8898  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8899  SDValue Undef = DAG.getUNDEF(InVT);
8900  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8901  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8902  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8903
8904  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8905                             VT.getVectorNumElements()/2);
8906
8907  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8908  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8909
8910  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8911}
8912
8913static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
8914                                        SelectionDAG &DAG) {
8915  MVT VT = Op->getValueType(0).getSimpleVT();
8916  SDValue In = Op->getOperand(0);
8917  MVT InVT = In.getValueType().getSimpleVT();
8918  SDLoc DL(Op);
8919  unsigned int NumElts = VT.getVectorNumElements();
8920  if (NumElts != 8 && NumElts != 16)
8921    return SDValue();
8922
8923  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
8924    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8925
8926  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
8927  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8928  // Now we have only mask extension
8929  assert(InVT.getVectorElementType() == MVT::i1);
8930  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
8931  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8932  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
8933  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8934  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8935                           MachinePointerInfo::getConstantPool(),
8936                           false, false, false, Alignment);
8937
8938  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
8939  if (VT.is512BitVector())
8940    return Brcst;
8941  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
8942}
8943
8944static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8945                               SelectionDAG &DAG) {
8946  if (Subtarget->hasFp256()) {
8947    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8948    if (Res.getNode())
8949      return Res;
8950  }
8951
8952  return SDValue();
8953}
8954
8955static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8956                                SelectionDAG &DAG) {
8957  SDLoc DL(Op);
8958  MVT VT = Op.getSimpleValueType();
8959  SDValue In = Op.getOperand(0);
8960  MVT SVT = In.getSimpleValueType();
8961
8962  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
8963    return LowerZERO_EXTEND_AVX512(Op, DAG);
8964
8965  if (Subtarget->hasFp256()) {
8966    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8967    if (Res.getNode())
8968      return Res;
8969  }
8970
8971  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
8972         VT.getVectorNumElements() != SVT.getVectorNumElements());
8973  return SDValue();
8974}
8975
8976SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8977  SDLoc DL(Op);
8978  MVT VT = Op.getSimpleValueType();
8979  SDValue In = Op.getOperand(0);
8980  MVT InVT = In.getSimpleValueType();
8981  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
8982         "Invalid TRUNCATE operation");
8983
8984  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
8985    if (VT.getVectorElementType().getSizeInBits() >=8)
8986      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
8987
8988    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
8989    unsigned NumElts = InVT.getVectorNumElements();
8990    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
8991    if (InVT.getSizeInBits() < 512) {
8992      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
8993      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
8994      InVT = ExtVT;
8995    }
8996    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
8997    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8998    SDValue CP = DAG.getConstantPool(C, getPointerTy());
8999    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
9000    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
9001                           MachinePointerInfo::getConstantPool(),
9002                           false, false, false, Alignment);
9003    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
9004    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
9005    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
9006  }
9007
9008  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
9009    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
9010    if (Subtarget->hasInt256()) {
9011      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
9012      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
9013      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
9014                                ShufMask);
9015      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
9016                         DAG.getIntPtrConstant(0));
9017    }
9018
9019    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
9020    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9021                               DAG.getIntPtrConstant(0));
9022    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9023                               DAG.getIntPtrConstant(2));
9024
9025    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9026    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9027
9028    // The PSHUFD mask:
9029    static const int ShufMask1[] = {0, 2, 0, 0};
9030    SDValue Undef = DAG.getUNDEF(VT);
9031    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
9032    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
9033
9034    // The MOVLHPS mask:
9035    static const int ShufMask2[] = {0, 1, 4, 5};
9036    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
9037  }
9038
9039  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9040    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9041    if (Subtarget->hasInt256()) {
9042      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9043
9044      SmallVector<SDValue,32> pshufbMask;
9045      for (unsigned i = 0; i < 2; ++i) {
9046        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9047        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9048        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9049        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9050        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9051        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9052        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9053        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9054        for (unsigned j = 0; j < 8; ++j)
9055          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9056      }
9057      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
9058                               &pshufbMask[0], 32);
9059      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9060      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9061
9062      static const int ShufMask[] = {0,  2,  -1,  -1};
9063      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9064                                &ShufMask[0]);
9065      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9066                       DAG.getIntPtrConstant(0));
9067      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9068    }
9069
9070    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9071                               DAG.getIntPtrConstant(0));
9072
9073    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9074                               DAG.getIntPtrConstant(4));
9075
9076    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9077    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9078
9079    // The PSHUFB mask:
9080    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9081                                   -1, -1, -1, -1, -1, -1, -1, -1};
9082
9083    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9084    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9085    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9086
9087    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9088    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9089
9090    // The MOVLHPS Mask:
9091    static const int ShufMask2[] = {0, 1, 4, 5};
9092    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9093    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9094  }
9095
9096  // Handle truncation of V256 to V128 using shuffles.
9097  if (!VT.is128BitVector() || !InVT.is256BitVector())
9098    return SDValue();
9099
9100  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9101
9102  unsigned NumElems = VT.getVectorNumElements();
9103  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9104                             NumElems * 2);
9105
9106  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9107  // Prepare truncation shuffle mask
9108  for (unsigned i = 0; i != NumElems; ++i)
9109    MaskVec[i] = i * 2;
9110  SDValue V = DAG.getVectorShuffle(NVT, DL,
9111                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9112                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9113  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9114                     DAG.getIntPtrConstant(0));
9115}
9116
9117SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9118                                           SelectionDAG &DAG) const {
9119  MVT VT = Op.getSimpleValueType();
9120  if (VT.isVector()) {
9121    if (VT == MVT::v8i16)
9122      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
9123                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
9124                                     MVT::v8i32, Op.getOperand(0)));
9125    return SDValue();
9126  }
9127
9128  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9129    /*IsSigned=*/ true, /*IsReplace=*/ false);
9130  SDValue FIST = Vals.first, StackSlot = Vals.second;
9131  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9132  if (FIST.getNode() == 0) return Op;
9133
9134  if (StackSlot.getNode())
9135    // Load the result.
9136    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9137                       FIST, StackSlot, MachinePointerInfo(),
9138                       false, false, false, 0);
9139
9140  // The node is the result.
9141  return FIST;
9142}
9143
9144SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9145                                           SelectionDAG &DAG) const {
9146  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9147    /*IsSigned=*/ false, /*IsReplace=*/ false);
9148  SDValue FIST = Vals.first, StackSlot = Vals.second;
9149  assert(FIST.getNode() && "Unexpected failure");
9150
9151  if (StackSlot.getNode())
9152    // Load the result.
9153    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9154                       FIST, StackSlot, MachinePointerInfo(),
9155                       false, false, false, 0);
9156
9157  // The node is the result.
9158  return FIST;
9159}
9160
9161static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9162  SDLoc DL(Op);
9163  MVT VT = Op.getSimpleValueType();
9164  SDValue In = Op.getOperand(0);
9165  MVT SVT = In.getSimpleValueType();
9166
9167  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9168
9169  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9170                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9171                                 In, DAG.getUNDEF(SVT)));
9172}
9173
9174SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
9175  LLVMContext *Context = DAG.getContext();
9176  SDLoc dl(Op);
9177  MVT VT = Op.getSimpleValueType();
9178  MVT EltVT = VT;
9179  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9180  if (VT.isVector()) {
9181    EltVT = VT.getVectorElementType();
9182    NumElts = VT.getVectorNumElements();
9183  }
9184  Constant *C;
9185  if (EltVT == MVT::f64)
9186    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9187                                          APInt(64, ~(1ULL << 63))));
9188  else
9189    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9190                                          APInt(32, ~(1U << 31))));
9191  C = ConstantVector::getSplat(NumElts, C);
9192  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9193  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9194  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9195                             MachinePointerInfo::getConstantPool(),
9196                             false, false, false, Alignment);
9197  if (VT.isVector()) {
9198    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9199    return DAG.getNode(ISD::BITCAST, dl, VT,
9200                       DAG.getNode(ISD::AND, dl, ANDVT,
9201                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9202                                               Op.getOperand(0)),
9203                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9204  }
9205  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9206}
9207
9208SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
9209  LLVMContext *Context = DAG.getContext();
9210  SDLoc dl(Op);
9211  MVT VT = Op.getSimpleValueType();
9212  MVT EltVT = VT;
9213  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9214  if (VT.isVector()) {
9215    EltVT = VT.getVectorElementType();
9216    NumElts = VT.getVectorNumElements();
9217  }
9218  Constant *C;
9219  if (EltVT == MVT::f64)
9220    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9221                                          APInt(64, 1ULL << 63)));
9222  else
9223    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9224                                          APInt(32, 1U << 31)));
9225  C = ConstantVector::getSplat(NumElts, C);
9226  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9227  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9228  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9229                             MachinePointerInfo::getConstantPool(),
9230                             false, false, false, Alignment);
9231  if (VT.isVector()) {
9232    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9233    return DAG.getNode(ISD::BITCAST, dl, VT,
9234                       DAG.getNode(ISD::XOR, dl, XORVT,
9235                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9236                                               Op.getOperand(0)),
9237                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9238  }
9239
9240  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9241}
9242
9243SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
9244  LLVMContext *Context = DAG.getContext();
9245  SDValue Op0 = Op.getOperand(0);
9246  SDValue Op1 = Op.getOperand(1);
9247  SDLoc dl(Op);
9248  MVT VT = Op.getSimpleValueType();
9249  MVT SrcVT = Op1.getSimpleValueType();
9250
9251  // If second operand is smaller, extend it first.
9252  if (SrcVT.bitsLT(VT)) {
9253    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9254    SrcVT = VT;
9255  }
9256  // And if it is bigger, shrink it first.
9257  if (SrcVT.bitsGT(VT)) {
9258    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9259    SrcVT = VT;
9260  }
9261
9262  // At this point the operands and the result should have the same
9263  // type, and that won't be f80 since that is not custom lowered.
9264
9265  // First get the sign bit of second operand.
9266  SmallVector<Constant*,4> CV;
9267  if (SrcVT == MVT::f64) {
9268    const fltSemantics &Sem = APFloat::IEEEdouble;
9269    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9270    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9271  } else {
9272    const fltSemantics &Sem = APFloat::IEEEsingle;
9273    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9274    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9275    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9276    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9277  }
9278  Constant *C = ConstantVector::get(CV);
9279  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9280  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9281                              MachinePointerInfo::getConstantPool(),
9282                              false, false, false, 16);
9283  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9284
9285  // Shift sign bit right or left if the two operands have different types.
9286  if (SrcVT.bitsGT(VT)) {
9287    // Op0 is MVT::f32, Op1 is MVT::f64.
9288    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9289    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9290                          DAG.getConstant(32, MVT::i32));
9291    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9292    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9293                          DAG.getIntPtrConstant(0));
9294  }
9295
9296  // Clear first operand sign bit.
9297  CV.clear();
9298  if (VT == MVT::f64) {
9299    const fltSemantics &Sem = APFloat::IEEEdouble;
9300    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9301                                                   APInt(64, ~(1ULL << 63)))));
9302    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9303  } else {
9304    const fltSemantics &Sem = APFloat::IEEEsingle;
9305    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9306                                                   APInt(32, ~(1U << 31)))));
9307    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9308    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9309    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9310  }
9311  C = ConstantVector::get(CV);
9312  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9313  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9314                              MachinePointerInfo::getConstantPool(),
9315                              false, false, false, 16);
9316  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9317
9318  // Or the value with the sign bit.
9319  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9320}
9321
9322static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9323  SDValue N0 = Op.getOperand(0);
9324  SDLoc dl(Op);
9325  MVT VT = Op.getSimpleValueType();
9326
9327  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9328  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9329                                  DAG.getConstant(1, VT));
9330  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9331}
9332
9333// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9334//
9335static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9336                                      SelectionDAG &DAG) {
9337  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9338
9339  if (!Subtarget->hasSSE41())
9340    return SDValue();
9341
9342  if (!Op->hasOneUse())
9343    return SDValue();
9344
9345  SDNode *N = Op.getNode();
9346  SDLoc DL(N);
9347
9348  SmallVector<SDValue, 8> Opnds;
9349  DenseMap<SDValue, unsigned> VecInMap;
9350  EVT VT = MVT::Other;
9351
9352  // Recognize a special case where a vector is casted into wide integer to
9353  // test all 0s.
9354  Opnds.push_back(N->getOperand(0));
9355  Opnds.push_back(N->getOperand(1));
9356
9357  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9358    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9359    // BFS traverse all OR'd operands.
9360    if (I->getOpcode() == ISD::OR) {
9361      Opnds.push_back(I->getOperand(0));
9362      Opnds.push_back(I->getOperand(1));
9363      // Re-evaluate the number of nodes to be traversed.
9364      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9365      continue;
9366    }
9367
9368    // Quit if a non-EXTRACT_VECTOR_ELT
9369    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9370      return SDValue();
9371
9372    // Quit if without a constant index.
9373    SDValue Idx = I->getOperand(1);
9374    if (!isa<ConstantSDNode>(Idx))
9375      return SDValue();
9376
9377    SDValue ExtractedFromVec = I->getOperand(0);
9378    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9379    if (M == VecInMap.end()) {
9380      VT = ExtractedFromVec.getValueType();
9381      // Quit if not 128/256-bit vector.
9382      if (!VT.is128BitVector() && !VT.is256BitVector())
9383        return SDValue();
9384      // Quit if not the same type.
9385      if (VecInMap.begin() != VecInMap.end() &&
9386          VT != VecInMap.begin()->first.getValueType())
9387        return SDValue();
9388      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9389    }
9390    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9391  }
9392
9393  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9394         "Not extracted from 128-/256-bit vector.");
9395
9396  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9397  SmallVector<SDValue, 8> VecIns;
9398
9399  for (DenseMap<SDValue, unsigned>::const_iterator
9400        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9401    // Quit if not all elements are used.
9402    if (I->second != FullMask)
9403      return SDValue();
9404    VecIns.push_back(I->first);
9405  }
9406
9407  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9408
9409  // Cast all vectors into TestVT for PTEST.
9410  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9411    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9412
9413  // If more than one full vectors are evaluated, OR them first before PTEST.
9414  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
9415    // Each iteration will OR 2 nodes and append the result until there is only
9416    // 1 node left, i.e. the final OR'd value of all vectors.
9417    SDValue LHS = VecIns[Slot];
9418    SDValue RHS = VecIns[Slot + 1];
9419    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
9420  }
9421
9422  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
9423                     VecIns.back(), VecIns.back());
9424}
9425
9426/// Emit nodes that will be selected as "test Op0,Op0", or something
9427/// equivalent.
9428SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
9429                                    SelectionDAG &DAG) const {
9430  SDLoc dl(Op);
9431
9432  // CF and OF aren't always set the way we want. Determine which
9433  // of these we need.
9434  bool NeedCF = false;
9435  bool NeedOF = false;
9436  switch (X86CC) {
9437  default: break;
9438  case X86::COND_A: case X86::COND_AE:
9439  case X86::COND_B: case X86::COND_BE:
9440    NeedCF = true;
9441    break;
9442  case X86::COND_G: case X86::COND_GE:
9443  case X86::COND_L: case X86::COND_LE:
9444  case X86::COND_O: case X86::COND_NO:
9445    NeedOF = true;
9446    break;
9447  }
9448
9449  // See if we can use the EFLAGS value from the operand instead of
9450  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
9451  // we prove that the arithmetic won't overflow, we can't use OF or CF.
9452  if (Op.getResNo() != 0 || NeedOF || NeedCF)
9453    // Emit a CMP with 0, which is the TEST pattern.
9454    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9455                       DAG.getConstant(0, Op.getValueType()));
9456
9457  unsigned Opcode = 0;
9458  unsigned NumOperands = 0;
9459
9460  // Truncate operations may prevent the merge of the SETCC instruction
9461  // and the arithmetic instruction before it. Attempt to truncate the operands
9462  // of the arithmetic instruction and use a reduced bit-width instruction.
9463  bool NeedTruncation = false;
9464  SDValue ArithOp = Op;
9465  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
9466    SDValue Arith = Op->getOperand(0);
9467    // Both the trunc and the arithmetic op need to have one user each.
9468    if (Arith->hasOneUse())
9469      switch (Arith.getOpcode()) {
9470        default: break;
9471        case ISD::ADD:
9472        case ISD::SUB:
9473        case ISD::AND:
9474        case ISD::OR:
9475        case ISD::XOR: {
9476          NeedTruncation = true;
9477          ArithOp = Arith;
9478        }
9479      }
9480  }
9481
9482  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
9483  // which may be the result of a CAST.  We use the variable 'Op', which is the
9484  // non-casted variable when we check for possible users.
9485  switch (ArithOp.getOpcode()) {
9486  case ISD::ADD:
9487    // Due to an isel shortcoming, be conservative if this add is likely to be
9488    // selected as part of a load-modify-store instruction. When the root node
9489    // in a match is a store, isel doesn't know how to remap non-chain non-flag
9490    // uses of other nodes in the match, such as the ADD in this case. This
9491    // leads to the ADD being left around and reselected, with the result being
9492    // two adds in the output.  Alas, even if none our users are stores, that
9493    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
9494    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
9495    // climbing the DAG back to the root, and it doesn't seem to be worth the
9496    // effort.
9497    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9498         UE = Op.getNode()->use_end(); UI != UE; ++UI)
9499      if (UI->getOpcode() != ISD::CopyToReg &&
9500          UI->getOpcode() != ISD::SETCC &&
9501          UI->getOpcode() != ISD::STORE)
9502        goto default_case;
9503
9504    if (ConstantSDNode *C =
9505        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
9506      // An add of one will be selected as an INC.
9507      if (C->getAPIntValue() == 1) {
9508        Opcode = X86ISD::INC;
9509        NumOperands = 1;
9510        break;
9511      }
9512
9513      // An add of negative one (subtract of one) will be selected as a DEC.
9514      if (C->getAPIntValue().isAllOnesValue()) {
9515        Opcode = X86ISD::DEC;
9516        NumOperands = 1;
9517        break;
9518      }
9519    }
9520
9521    // Otherwise use a regular EFLAGS-setting add.
9522    Opcode = X86ISD::ADD;
9523    NumOperands = 2;
9524    break;
9525  case ISD::AND: {
9526    // If the primary and result isn't used, don't bother using X86ISD::AND,
9527    // because a TEST instruction will be better.
9528    bool NonFlagUse = false;
9529    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9530           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9531      SDNode *User = *UI;
9532      unsigned UOpNo = UI.getOperandNo();
9533      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9534        // Look pass truncate.
9535        UOpNo = User->use_begin().getOperandNo();
9536        User = *User->use_begin();
9537      }
9538
9539      if (User->getOpcode() != ISD::BRCOND &&
9540          User->getOpcode() != ISD::SETCC &&
9541          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9542        NonFlagUse = true;
9543        break;
9544      }
9545    }
9546
9547    if (!NonFlagUse)
9548      break;
9549  }
9550    // FALL THROUGH
9551  case ISD::SUB:
9552  case ISD::OR:
9553  case ISD::XOR:
9554    // Due to the ISEL shortcoming noted above, be conservative if this op is
9555    // likely to be selected as part of a load-modify-store instruction.
9556    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9557           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9558      if (UI->getOpcode() == ISD::STORE)
9559        goto default_case;
9560
9561    // Otherwise use a regular EFLAGS-setting instruction.
9562    switch (ArithOp.getOpcode()) {
9563    default: llvm_unreachable("unexpected operator!");
9564    case ISD::SUB: Opcode = X86ISD::SUB; break;
9565    case ISD::XOR: Opcode = X86ISD::XOR; break;
9566    case ISD::AND: Opcode = X86ISD::AND; break;
9567    case ISD::OR: {
9568      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9569        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
9570        if (EFLAGS.getNode())
9571          return EFLAGS;
9572      }
9573      Opcode = X86ISD::OR;
9574      break;
9575    }
9576    }
9577
9578    NumOperands = 2;
9579    break;
9580  case X86ISD::ADD:
9581  case X86ISD::SUB:
9582  case X86ISD::INC:
9583  case X86ISD::DEC:
9584  case X86ISD::OR:
9585  case X86ISD::XOR:
9586  case X86ISD::AND:
9587    return SDValue(Op.getNode(), 1);
9588  default:
9589  default_case:
9590    break;
9591  }
9592
9593  // If we found that truncation is beneficial, perform the truncation and
9594  // update 'Op'.
9595  if (NeedTruncation) {
9596    EVT VT = Op.getValueType();
9597    SDValue WideVal = Op->getOperand(0);
9598    EVT WideVT = WideVal.getValueType();
9599    unsigned ConvertedOp = 0;
9600    // Use a target machine opcode to prevent further DAGCombine
9601    // optimizations that may separate the arithmetic operations
9602    // from the setcc node.
9603    switch (WideVal.getOpcode()) {
9604      default: break;
9605      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9606      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9607      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9608      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9609      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9610    }
9611
9612    if (ConvertedOp) {
9613      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9614      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9615        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9616        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9617        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9618      }
9619    }
9620  }
9621
9622  if (Opcode == 0)
9623    // Emit a CMP with 0, which is the TEST pattern.
9624    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9625                       DAG.getConstant(0, Op.getValueType()));
9626
9627  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9628  SmallVector<SDValue, 4> Ops;
9629  for (unsigned i = 0; i != NumOperands; ++i)
9630    Ops.push_back(Op.getOperand(i));
9631
9632  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9633  DAG.ReplaceAllUsesWith(Op, New);
9634  return SDValue(New.getNode(), 1);
9635}
9636
9637/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9638/// equivalent.
9639SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9640                                   SelectionDAG &DAG) const {
9641  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9642    if (C->getAPIntValue() == 0)
9643      return EmitTest(Op0, X86CC, DAG);
9644
9645  SDLoc dl(Op0);
9646  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9647       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9648    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9649    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9650    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9651                              Op0, Op1);
9652    return SDValue(Sub.getNode(), 1);
9653  }
9654  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9655}
9656
9657/// Convert a comparison if required by the subtarget.
9658SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9659                                                 SelectionDAG &DAG) const {
9660  // If the subtarget does not support the FUCOMI instruction, floating-point
9661  // comparisons have to be converted.
9662  if (Subtarget->hasCMov() ||
9663      Cmp.getOpcode() != X86ISD::CMP ||
9664      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9665      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9666    return Cmp;
9667
9668  // The instruction selector will select an FUCOM instruction instead of
9669  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9670  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9671  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9672  SDLoc dl(Cmp);
9673  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9674  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9675  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9676                            DAG.getConstant(8, MVT::i8));
9677  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9678  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9679}
9680
9681static bool isAllOnes(SDValue V) {
9682  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9683  return C && C->isAllOnesValue();
9684}
9685
9686/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9687/// if it's possible.
9688SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9689                                     SDLoc dl, SelectionDAG &DAG) const {
9690  SDValue Op0 = And.getOperand(0);
9691  SDValue Op1 = And.getOperand(1);
9692  if (Op0.getOpcode() == ISD::TRUNCATE)
9693    Op0 = Op0.getOperand(0);
9694  if (Op1.getOpcode() == ISD::TRUNCATE)
9695    Op1 = Op1.getOperand(0);
9696
9697  SDValue LHS, RHS;
9698  if (Op1.getOpcode() == ISD::SHL)
9699    std::swap(Op0, Op1);
9700  if (Op0.getOpcode() == ISD::SHL) {
9701    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9702      if (And00C->getZExtValue() == 1) {
9703        // If we looked past a truncate, check that it's only truncating away
9704        // known zeros.
9705        unsigned BitWidth = Op0.getValueSizeInBits();
9706        unsigned AndBitWidth = And.getValueSizeInBits();
9707        if (BitWidth > AndBitWidth) {
9708          APInt Zeros, Ones;
9709          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9710          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9711            return SDValue();
9712        }
9713        LHS = Op1;
9714        RHS = Op0.getOperand(1);
9715      }
9716  } else if (Op1.getOpcode() == ISD::Constant) {
9717    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9718    uint64_t AndRHSVal = AndRHS->getZExtValue();
9719    SDValue AndLHS = Op0;
9720
9721    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9722      LHS = AndLHS.getOperand(0);
9723      RHS = AndLHS.getOperand(1);
9724    }
9725
9726    // Use BT if the immediate can't be encoded in a TEST instruction.
9727    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9728      LHS = AndLHS;
9729      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9730    }
9731  }
9732
9733  if (LHS.getNode()) {
9734    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9735    // instruction.  Since the shift amount is in-range-or-undefined, we know
9736    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9737    // the encoding for the i16 version is larger than the i32 version.
9738    // Also promote i16 to i32 for performance / code size reason.
9739    if (LHS.getValueType() == MVT::i8 ||
9740        LHS.getValueType() == MVT::i16)
9741      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9742
9743    // If the operand types disagree, extend the shift amount to match.  Since
9744    // BT ignores high bits (like shifts) we can use anyextend.
9745    if (LHS.getValueType() != RHS.getValueType())
9746      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9747
9748    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9749    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9750    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9751                       DAG.getConstant(Cond, MVT::i8), BT);
9752  }
9753
9754  return SDValue();
9755}
9756
9757/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
9758/// mask CMPs.
9759static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
9760                              SDValue &Op1) {
9761  unsigned SSECC;
9762  bool Swap = false;
9763
9764  // SSE Condition code mapping:
9765  //  0 - EQ
9766  //  1 - LT
9767  //  2 - LE
9768  //  3 - UNORD
9769  //  4 - NEQ
9770  //  5 - NLT
9771  //  6 - NLE
9772  //  7 - ORD
9773  switch (SetCCOpcode) {
9774  default: llvm_unreachable("Unexpected SETCC condition");
9775  case ISD::SETOEQ:
9776  case ISD::SETEQ:  SSECC = 0; break;
9777  case ISD::SETOGT:
9778  case ISD::SETGT:  Swap = true; // Fallthrough
9779  case ISD::SETLT:
9780  case ISD::SETOLT: SSECC = 1; break;
9781  case ISD::SETOGE:
9782  case ISD::SETGE:  Swap = true; // Fallthrough
9783  case ISD::SETLE:
9784  case ISD::SETOLE: SSECC = 2; break;
9785  case ISD::SETUO:  SSECC = 3; break;
9786  case ISD::SETUNE:
9787  case ISD::SETNE:  SSECC = 4; break;
9788  case ISD::SETULE: Swap = true; // Fallthrough
9789  case ISD::SETUGE: SSECC = 5; break;
9790  case ISD::SETULT: Swap = true; // Fallthrough
9791  case ISD::SETUGT: SSECC = 6; break;
9792  case ISD::SETO:   SSECC = 7; break;
9793  case ISD::SETUEQ:
9794  case ISD::SETONE: SSECC = 8; break;
9795  }
9796  if (Swap)
9797    std::swap(Op0, Op1);
9798
9799  return SSECC;
9800}
9801
9802// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9803// ones, and then concatenate the result back.
9804static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9805  MVT VT = Op.getSimpleValueType();
9806
9807  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9808         "Unsupported value type for operation");
9809
9810  unsigned NumElems = VT.getVectorNumElements();
9811  SDLoc dl(Op);
9812  SDValue CC = Op.getOperand(2);
9813
9814  // Extract the LHS vectors
9815  SDValue LHS = Op.getOperand(0);
9816  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9817  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9818
9819  // Extract the RHS vectors
9820  SDValue RHS = Op.getOperand(1);
9821  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9822  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9823
9824  // Issue the operation on the smaller types and concatenate the result back
9825  MVT EltVT = VT.getVectorElementType();
9826  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9827  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9828                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9829                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9830}
9831
9832static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
9833  SDValue Op0 = Op.getOperand(0);
9834  SDValue Op1 = Op.getOperand(1);
9835  SDValue CC = Op.getOperand(2);
9836  MVT VT = Op.getSimpleValueType();
9837
9838  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
9839         Op.getValueType().getScalarType() == MVT::i1 &&
9840         "Cannot set masked compare for this operation");
9841
9842  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9843  SDLoc dl(Op);
9844
9845  bool Unsigned = false;
9846  unsigned SSECC;
9847  switch (SetCCOpcode) {
9848  default: llvm_unreachable("Unexpected SETCC condition");
9849  case ISD::SETNE:  SSECC = 4; break;
9850  case ISD::SETEQ:  SSECC = 0; break;
9851  case ISD::SETUGT: Unsigned = true;
9852  case ISD::SETGT:  SSECC = 6; break; // NLE
9853  case ISD::SETULT: Unsigned = true;
9854  case ISD::SETLT:  SSECC = 1; break;
9855  case ISD::SETUGE: Unsigned = true;
9856  case ISD::SETGE:  SSECC = 5; break; // NLT
9857  case ISD::SETULE: Unsigned = true;
9858  case ISD::SETLE:  SSECC = 2; break;
9859  }
9860  unsigned  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
9861  return DAG.getNode(Opc, dl, VT, Op0, Op1,
9862                     DAG.getConstant(SSECC, MVT::i8));
9863
9864}
9865
9866static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9867                           SelectionDAG &DAG) {
9868  SDValue Op0 = Op.getOperand(0);
9869  SDValue Op1 = Op.getOperand(1);
9870  SDValue CC = Op.getOperand(2);
9871  MVT VT = Op.getSimpleValueType();
9872  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9873  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
9874  SDLoc dl(Op);
9875
9876  if (isFP) {
9877#ifndef NDEBUG
9878    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
9879    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9880#endif
9881
9882    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
9883    unsigned Opc = X86ISD::CMPP;
9884    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
9885      assert(VT.getVectorNumElements() <= 16);
9886      Opc = X86ISD::CMPM;
9887    }
9888    // In the two special cases we can't handle, emit two comparisons.
9889    if (SSECC == 8) {
9890      unsigned CC0, CC1;
9891      unsigned CombineOpc;
9892      if (SetCCOpcode == ISD::SETUEQ) {
9893        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9894      } else {
9895        assert(SetCCOpcode == ISD::SETONE);
9896        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9897      }
9898
9899      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9900                                 DAG.getConstant(CC0, MVT::i8));
9901      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9902                                 DAG.getConstant(CC1, MVT::i8));
9903      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9904    }
9905    // Handle all other FP comparisons here.
9906    return DAG.getNode(Opc, dl, VT, Op0, Op1,
9907                       DAG.getConstant(SSECC, MVT::i8));
9908  }
9909
9910  // Break 256-bit integer vector compare into smaller ones.
9911  if (VT.is256BitVector() && !Subtarget->hasInt256())
9912    return Lower256IntVSETCC(Op, DAG);
9913
9914  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
9915  EVT OpVT = Op1.getValueType();
9916  if (Subtarget->hasAVX512()) {
9917    if (Op1.getValueType().is512BitVector() ||
9918        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
9919      return LowerIntVSETCC_AVX512(Op, DAG);
9920
9921    // In AVX-512 architecture setcc returns mask with i1 elements,
9922    // But there is no compare instruction for i8 and i16 elements.
9923    // We are not talking about 512-bit operands in this case, these
9924    // types are illegal.
9925    if (MaskResult &&
9926        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
9927         OpVT.getVectorElementType().getSizeInBits() >= 8))
9928      return DAG.getNode(ISD::TRUNCATE, dl, VT,
9929                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
9930  }
9931
9932  // We are handling one of the integer comparisons here.  Since SSE only has
9933  // GT and EQ comparisons for integer, swapping operands and multiple
9934  // operations may be required for some comparisons.
9935  unsigned Opc;
9936  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9937
9938  switch (SetCCOpcode) {
9939  default: llvm_unreachable("Unexpected SETCC condition");
9940  case ISD::SETNE:  Invert = true;
9941  case ISD::SETEQ:  Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
9942  case ISD::SETLT:  Swap = true;
9943  case ISD::SETGT:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
9944  case ISD::SETGE:  Swap = true;
9945  case ISD::SETLE:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9946                    Invert = true; break;
9947  case ISD::SETULT: Swap = true;
9948  case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9949                    FlipSigns = true; break;
9950  case ISD::SETUGE: Swap = true;
9951  case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9952                    FlipSigns = true; Invert = true; break;
9953  }
9954
9955  // Special case: Use min/max operations for SETULE/SETUGE
9956  MVT VET = VT.getVectorElementType();
9957  bool hasMinMax =
9958       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9959    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9960
9961  if (hasMinMax) {
9962    switch (SetCCOpcode) {
9963    default: break;
9964    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9965    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9966    }
9967
9968    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9969  }
9970
9971  if (Swap)
9972    std::swap(Op0, Op1);
9973
9974  // Check that the operation in question is available (most are plain SSE2,
9975  // but PCMPGTQ and PCMPEQQ have different requirements).
9976  if (VT == MVT::v2i64) {
9977    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9978      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9979
9980      // First cast everything to the right type.
9981      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9982      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9983
9984      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9985      // bits of the inputs before performing those operations. The lower
9986      // compare is always unsigned.
9987      SDValue SB;
9988      if (FlipSigns) {
9989        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9990      } else {
9991        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9992        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9993        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9994                         Sign, Zero, Sign, Zero);
9995      }
9996      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9997      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9998
9999      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
10000      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
10001      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
10002
10003      // Create masks for only the low parts/high parts of the 64 bit integers.
10004      static const int MaskHi[] = { 1, 1, 3, 3 };
10005      static const int MaskLo[] = { 0, 0, 2, 2 };
10006      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
10007      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
10008      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
10009
10010      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
10011      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
10012
10013      if (Invert)
10014        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10015
10016      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10017    }
10018
10019    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
10020      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
10021      // pcmpeqd + pshufd + pand.
10022      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
10023
10024      // First cast everything to the right type.
10025      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10026      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10027
10028      // Do the compare.
10029      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
10030
10031      // Make sure the lower and upper halves are both all-ones.
10032      static const int Mask[] = { 1, 0, 3, 2 };
10033      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
10034      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
10035
10036      if (Invert)
10037        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10038
10039      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10040    }
10041  }
10042
10043  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10044  // bits of the inputs before performing those operations.
10045  if (FlipSigns) {
10046    EVT EltVT = VT.getVectorElementType();
10047    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10048    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10049    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10050  }
10051
10052  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10053
10054  // If the logical-not of the result is required, perform that now.
10055  if (Invert)
10056    Result = DAG.getNOT(dl, Result, VT);
10057
10058  if (MinMax)
10059    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10060
10061  return Result;
10062}
10063
10064SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10065
10066  MVT VT = Op.getSimpleValueType();
10067
10068  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10069
10070  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
10071  SDValue Op0 = Op.getOperand(0);
10072  SDValue Op1 = Op.getOperand(1);
10073  SDLoc dl(Op);
10074  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10075
10076  // Optimize to BT if possible.
10077  // Lower (X & (1 << N)) == 0 to BT(X, N).
10078  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10079  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10080  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10081      Op1.getOpcode() == ISD::Constant &&
10082      cast<ConstantSDNode>(Op1)->isNullValue() &&
10083      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10084    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10085    if (NewSetCC.getNode())
10086      return NewSetCC;
10087  }
10088
10089  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10090  // these.
10091  if (Op1.getOpcode() == ISD::Constant &&
10092      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10093       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10094      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10095
10096    // If the input is a setcc, then reuse the input setcc or use a new one with
10097    // the inverted condition.
10098    if (Op0.getOpcode() == X86ISD::SETCC) {
10099      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10100      bool Invert = (CC == ISD::SETNE) ^
10101        cast<ConstantSDNode>(Op1)->isNullValue();
10102      if (!Invert) return Op0;
10103
10104      CCode = X86::GetOppositeBranchCondition(CCode);
10105      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10106                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
10107    }
10108  }
10109
10110  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10111  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10112  if (X86CC == X86::COND_INVALID)
10113    return SDValue();
10114
10115  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
10116  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10117  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10118                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10119}
10120
10121// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10122static bool isX86LogicalCmp(SDValue Op) {
10123  unsigned Opc = Op.getNode()->getOpcode();
10124  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10125      Opc == X86ISD::SAHF)
10126    return true;
10127  if (Op.getResNo() == 1 &&
10128      (Opc == X86ISD::ADD ||
10129       Opc == X86ISD::SUB ||
10130       Opc == X86ISD::ADC ||
10131       Opc == X86ISD::SBB ||
10132       Opc == X86ISD::SMUL ||
10133       Opc == X86ISD::UMUL ||
10134       Opc == X86ISD::INC ||
10135       Opc == X86ISD::DEC ||
10136       Opc == X86ISD::OR ||
10137       Opc == X86ISD::XOR ||
10138       Opc == X86ISD::AND))
10139    return true;
10140
10141  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10142    return true;
10143
10144  return false;
10145}
10146
10147static bool isZero(SDValue V) {
10148  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10149  return C && C->isNullValue();
10150}
10151
10152static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10153  if (V.getOpcode() != ISD::TRUNCATE)
10154    return false;
10155
10156  SDValue VOp0 = V.getOperand(0);
10157  unsigned InBits = VOp0.getValueSizeInBits();
10158  unsigned Bits = V.getValueSizeInBits();
10159  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10160}
10161
10162SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10163  bool addTest = true;
10164  SDValue Cond  = Op.getOperand(0);
10165  SDValue Op1 = Op.getOperand(1);
10166  SDValue Op2 = Op.getOperand(2);
10167  SDLoc DL(Op);
10168  EVT VT = Op1.getValueType();
10169  SDValue CC;
10170
10171  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10172  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10173  // sequence later on.
10174  if (Cond.getOpcode() == ISD::SETCC &&
10175      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10176       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10177      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10178    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10179    int SSECC = translateX86FSETCC(
10180        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10181
10182    if (SSECC != 8) {
10183      unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
10184      SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
10185                                DAG.getConstant(SSECC, MVT::i8));
10186      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10187      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10188      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10189    }
10190  }
10191
10192  if (Cond.getOpcode() == ISD::SETCC) {
10193    SDValue NewCond = LowerSETCC(Cond, DAG);
10194    if (NewCond.getNode())
10195      Cond = NewCond;
10196  }
10197
10198  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10199  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10200  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10201  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10202  if (Cond.getOpcode() == X86ISD::SETCC &&
10203      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10204      isZero(Cond.getOperand(1).getOperand(1))) {
10205    SDValue Cmp = Cond.getOperand(1);
10206
10207    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10208
10209    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10210        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10211      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10212
10213      SDValue CmpOp0 = Cmp.getOperand(0);
10214      // Apply further optimizations for special cases
10215      // (select (x != 0), -1, 0) -> neg & sbb
10216      // (select (x == 0), 0, -1) -> neg & sbb
10217      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10218        if (YC->isNullValue() &&
10219            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10220          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10221          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10222                                    DAG.getConstant(0, CmpOp0.getValueType()),
10223                                    CmpOp0);
10224          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10225                                    DAG.getConstant(X86::COND_B, MVT::i8),
10226                                    SDValue(Neg.getNode(), 1));
10227          return Res;
10228        }
10229
10230      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10231                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10232      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10233
10234      SDValue Res =   // Res = 0 or -1.
10235        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10236                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10237
10238      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10239        Res = DAG.getNOT(DL, Res, Res.getValueType());
10240
10241      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10242      if (N2C == 0 || !N2C->isNullValue())
10243        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10244      return Res;
10245    }
10246  }
10247
10248  // Look past (and (setcc_carry (cmp ...)), 1).
10249  if (Cond.getOpcode() == ISD::AND &&
10250      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10251    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10252    if (C && C->getAPIntValue() == 1)
10253      Cond = Cond.getOperand(0);
10254  }
10255
10256  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10257  // setting operand in place of the X86ISD::SETCC.
10258  unsigned CondOpcode = Cond.getOpcode();
10259  if (CondOpcode == X86ISD::SETCC ||
10260      CondOpcode == X86ISD::SETCC_CARRY) {
10261    CC = Cond.getOperand(0);
10262
10263    SDValue Cmp = Cond.getOperand(1);
10264    unsigned Opc = Cmp.getOpcode();
10265    MVT VT = Op.getSimpleValueType();
10266
10267    bool IllegalFPCMov = false;
10268    if (VT.isFloatingPoint() && !VT.isVector() &&
10269        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10270      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10271
10272    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10273        Opc == X86ISD::BT) { // FIXME
10274      Cond = Cmp;
10275      addTest = false;
10276    }
10277  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10278             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10279             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10280              Cond.getOperand(0).getValueType() != MVT::i8)) {
10281    SDValue LHS = Cond.getOperand(0);
10282    SDValue RHS = Cond.getOperand(1);
10283    unsigned X86Opcode;
10284    unsigned X86Cond;
10285    SDVTList VTs;
10286    switch (CondOpcode) {
10287    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10288    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10289    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10290    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10291    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10292    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10293    default: llvm_unreachable("unexpected overflowing operator");
10294    }
10295    if (CondOpcode == ISD::UMULO)
10296      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10297                          MVT::i32);
10298    else
10299      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10300
10301    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
10302
10303    if (CondOpcode == ISD::UMULO)
10304      Cond = X86Op.getValue(2);
10305    else
10306      Cond = X86Op.getValue(1);
10307
10308    CC = DAG.getConstant(X86Cond, MVT::i8);
10309    addTest = false;
10310  }
10311
10312  if (addTest) {
10313    // Look pass the truncate if the high bits are known zero.
10314    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10315        Cond = Cond.getOperand(0);
10316
10317    // We know the result of AND is compared against zero. Try to match
10318    // it to BT.
10319    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10320      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
10321      if (NewSetCC.getNode()) {
10322        CC = NewSetCC.getOperand(0);
10323        Cond = NewSetCC.getOperand(1);
10324        addTest = false;
10325      }
10326    }
10327  }
10328
10329  if (addTest) {
10330    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10331    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10332  }
10333
10334  // a <  b ? -1 :  0 -> RES = ~setcc_carry
10335  // a <  b ?  0 : -1 -> RES = setcc_carry
10336  // a >= b ? -1 :  0 -> RES = setcc_carry
10337  // a >= b ?  0 : -1 -> RES = ~setcc_carry
10338  if (Cond.getOpcode() == X86ISD::SUB) {
10339    Cond = ConvertCmpIfNecessary(Cond, DAG);
10340    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
10341
10342    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
10343        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
10344      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10345                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
10346      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
10347        return DAG.getNOT(DL, Res, Res.getValueType());
10348      return Res;
10349    }
10350  }
10351
10352  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
10353  // widen the cmov and push the truncate through. This avoids introducing a new
10354  // branch during isel and doesn't add any extensions.
10355  if (Op.getValueType() == MVT::i8 &&
10356      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
10357    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
10358    if (T1.getValueType() == T2.getValueType() &&
10359        // Blacklist CopyFromReg to avoid partial register stalls.
10360        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
10361      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
10362      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
10363      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
10364    }
10365  }
10366
10367  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
10368  // condition is true.
10369  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
10370  SDValue Ops[] = { Op2, Op1, CC, Cond };
10371  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
10372}
10373
10374static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
10375  MVT VT = Op->getSimpleValueType(0);
10376  SDValue In = Op->getOperand(0);
10377  MVT InVT = In.getSimpleValueType();
10378  SDLoc dl(Op);
10379
10380  unsigned int NumElts = VT.getVectorNumElements();
10381  if (NumElts != 8 && NumElts != 16)
10382    return SDValue();
10383
10384  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
10385    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
10386
10387  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10388  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
10389
10390  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
10391  Constant *C = ConstantInt::get(*DAG.getContext(),
10392    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
10393
10394  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
10395  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
10396  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
10397                          MachinePointerInfo::getConstantPool(),
10398                          false, false, false, Alignment);
10399  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
10400  if (VT.is512BitVector())
10401    return Brcst;
10402  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
10403}
10404
10405static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
10406                                SelectionDAG &DAG) {
10407  MVT VT = Op->getSimpleValueType(0);
10408  SDValue In = Op->getOperand(0);
10409  MVT InVT = In.getSimpleValueType();
10410  SDLoc dl(Op);
10411
10412  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
10413    return LowerSIGN_EXTEND_AVX512(Op, DAG);
10414
10415  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
10416      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
10417      (VT != MVT::v16i16 || InVT != MVT::v16i8))
10418    return SDValue();
10419
10420  if (Subtarget->hasInt256())
10421    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
10422
10423  // Optimize vectors in AVX mode
10424  // Sign extend  v8i16 to v8i32 and
10425  //              v4i32 to v4i64
10426  //
10427  // Divide input vector into two parts
10428  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
10429  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
10430  // concat the vectors to original VT
10431
10432  unsigned NumElems = InVT.getVectorNumElements();
10433  SDValue Undef = DAG.getUNDEF(InVT);
10434
10435  SmallVector<int,8> ShufMask1(NumElems, -1);
10436  for (unsigned i = 0; i != NumElems/2; ++i)
10437    ShufMask1[i] = i;
10438
10439  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
10440
10441  SmallVector<int,8> ShufMask2(NumElems, -1);
10442  for (unsigned i = 0; i != NumElems/2; ++i)
10443    ShufMask2[i] = i + NumElems/2;
10444
10445  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
10446
10447  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
10448                                VT.getVectorNumElements()/2);
10449
10450  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
10451  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
10452
10453  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
10454}
10455
10456// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
10457// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
10458// from the AND / OR.
10459static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
10460  Opc = Op.getOpcode();
10461  if (Opc != ISD::OR && Opc != ISD::AND)
10462    return false;
10463  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10464          Op.getOperand(0).hasOneUse() &&
10465          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
10466          Op.getOperand(1).hasOneUse());
10467}
10468
10469// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
10470// 1 and that the SETCC node has a single use.
10471static bool isXor1OfSetCC(SDValue Op) {
10472  if (Op.getOpcode() != ISD::XOR)
10473    return false;
10474  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10475  if (N1C && N1C->getAPIntValue() == 1) {
10476    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10477      Op.getOperand(0).hasOneUse();
10478  }
10479  return false;
10480}
10481
10482SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
10483  bool addTest = true;
10484  SDValue Chain = Op.getOperand(0);
10485  SDValue Cond  = Op.getOperand(1);
10486  SDValue Dest  = Op.getOperand(2);
10487  SDLoc dl(Op);
10488  SDValue CC;
10489  bool Inverted = false;
10490
10491  if (Cond.getOpcode() == ISD::SETCC) {
10492    // Check for setcc([su]{add,sub,mul}o == 0).
10493    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
10494        isa<ConstantSDNode>(Cond.getOperand(1)) &&
10495        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
10496        Cond.getOperand(0).getResNo() == 1 &&
10497        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
10498         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
10499         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
10500         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
10501         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
10502         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
10503      Inverted = true;
10504      Cond = Cond.getOperand(0);
10505    } else {
10506      SDValue NewCond = LowerSETCC(Cond, DAG);
10507      if (NewCond.getNode())
10508        Cond = NewCond;
10509    }
10510  }
10511#if 0
10512  // FIXME: LowerXALUO doesn't handle these!!
10513  else if (Cond.getOpcode() == X86ISD::ADD  ||
10514           Cond.getOpcode() == X86ISD::SUB  ||
10515           Cond.getOpcode() == X86ISD::SMUL ||
10516           Cond.getOpcode() == X86ISD::UMUL)
10517    Cond = LowerXALUO(Cond, DAG);
10518#endif
10519
10520  // Look pass (and (setcc_carry (cmp ...)), 1).
10521  if (Cond.getOpcode() == ISD::AND &&
10522      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10523    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10524    if (C && C->getAPIntValue() == 1)
10525      Cond = Cond.getOperand(0);
10526  }
10527
10528  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10529  // setting operand in place of the X86ISD::SETCC.
10530  unsigned CondOpcode = Cond.getOpcode();
10531  if (CondOpcode == X86ISD::SETCC ||
10532      CondOpcode == X86ISD::SETCC_CARRY) {
10533    CC = Cond.getOperand(0);
10534
10535    SDValue Cmp = Cond.getOperand(1);
10536    unsigned Opc = Cmp.getOpcode();
10537    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
10538    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
10539      Cond = Cmp;
10540      addTest = false;
10541    } else {
10542      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
10543      default: break;
10544      case X86::COND_O:
10545      case X86::COND_B:
10546        // These can only come from an arithmetic instruction with overflow,
10547        // e.g. SADDO, UADDO.
10548        Cond = Cond.getNode()->getOperand(1);
10549        addTest = false;
10550        break;
10551      }
10552    }
10553  }
10554  CondOpcode = Cond.getOpcode();
10555  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10556      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10557      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10558       Cond.getOperand(0).getValueType() != MVT::i8)) {
10559    SDValue LHS = Cond.getOperand(0);
10560    SDValue RHS = Cond.getOperand(1);
10561    unsigned X86Opcode;
10562    unsigned X86Cond;
10563    SDVTList VTs;
10564    switch (CondOpcode) {
10565    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10566    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10567    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10568    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10569    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10570    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10571    default: llvm_unreachable("unexpected overflowing operator");
10572    }
10573    if (Inverted)
10574      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
10575    if (CondOpcode == ISD::UMULO)
10576      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10577                          MVT::i32);
10578    else
10579      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10580
10581    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
10582
10583    if (CondOpcode == ISD::UMULO)
10584      Cond = X86Op.getValue(2);
10585    else
10586      Cond = X86Op.getValue(1);
10587
10588    CC = DAG.getConstant(X86Cond, MVT::i8);
10589    addTest = false;
10590  } else {
10591    unsigned CondOpc;
10592    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
10593      SDValue Cmp = Cond.getOperand(0).getOperand(1);
10594      if (CondOpc == ISD::OR) {
10595        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
10596        // two branches instead of an explicit OR instruction with a
10597        // separate test.
10598        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10599            isX86LogicalCmp(Cmp)) {
10600          CC = Cond.getOperand(0).getOperand(0);
10601          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10602                              Chain, Dest, CC, Cmp);
10603          CC = Cond.getOperand(1).getOperand(0);
10604          Cond = Cmp;
10605          addTest = false;
10606        }
10607      } else { // ISD::AND
10608        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
10609        // two branches instead of an explicit AND instruction with a
10610        // separate test. However, we only do this if this block doesn't
10611        // have a fall-through edge, because this requires an explicit
10612        // jmp when the condition is false.
10613        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10614            isX86LogicalCmp(Cmp) &&
10615            Op.getNode()->hasOneUse()) {
10616          X86::CondCode CCode =
10617            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10618          CCode = X86::GetOppositeBranchCondition(CCode);
10619          CC = DAG.getConstant(CCode, MVT::i8);
10620          SDNode *User = *Op.getNode()->use_begin();
10621          // Look for an unconditional branch following this conditional branch.
10622          // We need this because we need to reverse the successors in order
10623          // to implement FCMP_OEQ.
10624          if (User->getOpcode() == ISD::BR) {
10625            SDValue FalseBB = User->getOperand(1);
10626            SDNode *NewBR =
10627              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10628            assert(NewBR == User);
10629            (void)NewBR;
10630            Dest = FalseBB;
10631
10632            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10633                                Chain, Dest, CC, Cmp);
10634            X86::CondCode CCode =
10635              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
10636            CCode = X86::GetOppositeBranchCondition(CCode);
10637            CC = DAG.getConstant(CCode, MVT::i8);
10638            Cond = Cmp;
10639            addTest = false;
10640          }
10641        }
10642      }
10643    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10644      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10645      // It should be transformed during dag combiner except when the condition
10646      // is set by a arithmetics with overflow node.
10647      X86::CondCode CCode =
10648        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10649      CCode = X86::GetOppositeBranchCondition(CCode);
10650      CC = DAG.getConstant(CCode, MVT::i8);
10651      Cond = Cond.getOperand(0).getOperand(1);
10652      addTest = false;
10653    } else if (Cond.getOpcode() == ISD::SETCC &&
10654               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10655      // For FCMP_OEQ, we can emit
10656      // two branches instead of an explicit AND instruction with a
10657      // separate test. However, we only do this if this block doesn't
10658      // have a fall-through edge, because this requires an explicit
10659      // jmp when the condition is false.
10660      if (Op.getNode()->hasOneUse()) {
10661        SDNode *User = *Op.getNode()->use_begin();
10662        // Look for an unconditional branch following this conditional branch.
10663        // We need this because we need to reverse the successors in order
10664        // to implement FCMP_OEQ.
10665        if (User->getOpcode() == ISD::BR) {
10666          SDValue FalseBB = User->getOperand(1);
10667          SDNode *NewBR =
10668            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10669          assert(NewBR == User);
10670          (void)NewBR;
10671          Dest = FalseBB;
10672
10673          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10674                                    Cond.getOperand(0), Cond.getOperand(1));
10675          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10676          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10677          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10678                              Chain, Dest, CC, Cmp);
10679          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10680          Cond = Cmp;
10681          addTest = false;
10682        }
10683      }
10684    } else if (Cond.getOpcode() == ISD::SETCC &&
10685               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10686      // For FCMP_UNE, we can emit
10687      // two branches instead of an explicit AND instruction with a
10688      // separate test. However, we only do this if this block doesn't
10689      // have a fall-through edge, because this requires an explicit
10690      // jmp when the condition is false.
10691      if (Op.getNode()->hasOneUse()) {
10692        SDNode *User = *Op.getNode()->use_begin();
10693        // Look for an unconditional branch following this conditional branch.
10694        // We need this because we need to reverse the successors in order
10695        // to implement FCMP_UNE.
10696        if (User->getOpcode() == ISD::BR) {
10697          SDValue FalseBB = User->getOperand(1);
10698          SDNode *NewBR =
10699            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10700          assert(NewBR == User);
10701          (void)NewBR;
10702
10703          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10704                                    Cond.getOperand(0), Cond.getOperand(1));
10705          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10706          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10707          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10708                              Chain, Dest, CC, Cmp);
10709          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10710          Cond = Cmp;
10711          addTest = false;
10712          Dest = FalseBB;
10713        }
10714      }
10715    }
10716  }
10717
10718  if (addTest) {
10719    // Look pass the truncate if the high bits are known zero.
10720    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10721        Cond = Cond.getOperand(0);
10722
10723    // We know the result of AND is compared against zero. Try to match
10724    // it to BT.
10725    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10726      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10727      if (NewSetCC.getNode()) {
10728        CC = NewSetCC.getOperand(0);
10729        Cond = NewSetCC.getOperand(1);
10730        addTest = false;
10731      }
10732    }
10733  }
10734
10735  if (addTest) {
10736    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10737    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10738  }
10739  Cond = ConvertCmpIfNecessary(Cond, DAG);
10740  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10741                     Chain, Dest, CC, Cond);
10742}
10743
10744// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10745// Calls to _alloca is needed to probe the stack when allocating more than 4k
10746// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10747// that the guard pages used by the OS virtual memory manager are allocated in
10748// correct sequence.
10749SDValue
10750X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10751                                           SelectionDAG &DAG) const {
10752  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10753          getTargetMachine().Options.EnableSegmentedStacks) &&
10754         "This should be used only on Windows targets or when segmented stacks "
10755         "are being used");
10756  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10757  SDLoc dl(Op);
10758
10759  // Get the inputs.
10760  SDValue Chain = Op.getOperand(0);
10761  SDValue Size  = Op.getOperand(1);
10762  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10763  EVT VT = Op.getNode()->getValueType(0);
10764
10765  bool Is64Bit = Subtarget->is64Bit();
10766  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10767
10768  if (getTargetMachine().Options.EnableSegmentedStacks) {
10769    MachineFunction &MF = DAG.getMachineFunction();
10770    MachineRegisterInfo &MRI = MF.getRegInfo();
10771
10772    if (Is64Bit) {
10773      // The 64 bit implementation of segmented stacks needs to clobber both r10
10774      // r11. This makes it impossible to use it along with nested parameters.
10775      const Function *F = MF.getFunction();
10776
10777      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10778           I != E; ++I)
10779        if (I->hasNestAttr())
10780          report_fatal_error("Cannot use segmented stacks with functions that "
10781                             "have nested arguments.");
10782    }
10783
10784    const TargetRegisterClass *AddrRegClass =
10785      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10786    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10787    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10788    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10789                                DAG.getRegister(Vreg, SPTy));
10790    SDValue Ops1[2] = { Value, Chain };
10791    return DAG.getMergeValues(Ops1, 2, dl);
10792  } else {
10793    SDValue Flag;
10794    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10795
10796    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10797    Flag = Chain.getValue(1);
10798    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10799
10800    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10801
10802    const X86RegisterInfo *RegInfo =
10803      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10804    unsigned SPReg = RegInfo->getStackRegister();
10805    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
10806    Chain = SP.getValue(1);
10807
10808    if (Align) {
10809      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
10810                       DAG.getConstant(-(uint64_t)Align, VT));
10811      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
10812    }
10813
10814    SDValue Ops1[2] = { SP, Chain };
10815    return DAG.getMergeValues(Ops1, 2, dl);
10816  }
10817}
10818
10819SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10820  MachineFunction &MF = DAG.getMachineFunction();
10821  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10822
10823  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10824  SDLoc DL(Op);
10825
10826  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10827    // vastart just stores the address of the VarArgsFrameIndex slot into the
10828    // memory location argument.
10829    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10830                                   getPointerTy());
10831    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10832                        MachinePointerInfo(SV), false, false, 0);
10833  }
10834
10835  // __va_list_tag:
10836  //   gp_offset         (0 - 6 * 8)
10837  //   fp_offset         (48 - 48 + 8 * 16)
10838  //   overflow_arg_area (point to parameters coming in memory).
10839  //   reg_save_area
10840  SmallVector<SDValue, 8> MemOps;
10841  SDValue FIN = Op.getOperand(1);
10842  // Store gp_offset
10843  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10844                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10845                                               MVT::i32),
10846                               FIN, MachinePointerInfo(SV), false, false, 0);
10847  MemOps.push_back(Store);
10848
10849  // Store fp_offset
10850  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10851                    FIN, DAG.getIntPtrConstant(4));
10852  Store = DAG.getStore(Op.getOperand(0), DL,
10853                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10854                                       MVT::i32),
10855                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10856  MemOps.push_back(Store);
10857
10858  // Store ptr to overflow_arg_area
10859  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10860                    FIN, DAG.getIntPtrConstant(4));
10861  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10862                                    getPointerTy());
10863  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10864                       MachinePointerInfo(SV, 8),
10865                       false, false, 0);
10866  MemOps.push_back(Store);
10867
10868  // Store ptr to reg_save_area.
10869  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10870                    FIN, DAG.getIntPtrConstant(8));
10871  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10872                                    getPointerTy());
10873  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10874                       MachinePointerInfo(SV, 16), false, false, 0);
10875  MemOps.push_back(Store);
10876  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10877                     &MemOps[0], MemOps.size());
10878}
10879
10880SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10881  assert(Subtarget->is64Bit() &&
10882         "LowerVAARG only handles 64-bit va_arg!");
10883  assert((Subtarget->isTargetLinux() ||
10884          Subtarget->isTargetDarwin()) &&
10885          "Unhandled target in LowerVAARG");
10886  assert(Op.getNode()->getNumOperands() == 4);
10887  SDValue Chain = Op.getOperand(0);
10888  SDValue SrcPtr = Op.getOperand(1);
10889  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10890  unsigned Align = Op.getConstantOperandVal(3);
10891  SDLoc dl(Op);
10892
10893  EVT ArgVT = Op.getNode()->getValueType(0);
10894  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10895  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10896  uint8_t ArgMode;
10897
10898  // Decide which area this value should be read from.
10899  // TODO: Implement the AMD64 ABI in its entirety. This simple
10900  // selection mechanism works only for the basic types.
10901  if (ArgVT == MVT::f80) {
10902    llvm_unreachable("va_arg for f80 not yet implemented");
10903  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10904    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10905  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10906    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10907  } else {
10908    llvm_unreachable("Unhandled argument type in LowerVAARG");
10909  }
10910
10911  if (ArgMode == 2) {
10912    // Sanity Check: Make sure using fp_offset makes sense.
10913    assert(!getTargetMachine().Options.UseSoftFloat &&
10914           !(DAG.getMachineFunction()
10915                .getFunction()->getAttributes()
10916                .hasAttribute(AttributeSet::FunctionIndex,
10917                              Attribute::NoImplicitFloat)) &&
10918           Subtarget->hasSSE1());
10919  }
10920
10921  // Insert VAARG_64 node into the DAG
10922  // VAARG_64 returns two values: Variable Argument Address, Chain
10923  SmallVector<SDValue, 11> InstOps;
10924  InstOps.push_back(Chain);
10925  InstOps.push_back(SrcPtr);
10926  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10927  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10928  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10929  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10930  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10931                                          VTs, &InstOps[0], InstOps.size(),
10932                                          MVT::i64,
10933                                          MachinePointerInfo(SV),
10934                                          /*Align=*/0,
10935                                          /*Volatile=*/false,
10936                                          /*ReadMem=*/true,
10937                                          /*WriteMem=*/true);
10938  Chain = VAARG.getValue(1);
10939
10940  // Load the next argument and return it
10941  return DAG.getLoad(ArgVT, dl,
10942                     Chain,
10943                     VAARG,
10944                     MachinePointerInfo(),
10945                     false, false, false, 0);
10946}
10947
10948static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10949                           SelectionDAG &DAG) {
10950  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10951  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10952  SDValue Chain = Op.getOperand(0);
10953  SDValue DstPtr = Op.getOperand(1);
10954  SDValue SrcPtr = Op.getOperand(2);
10955  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10956  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10957  SDLoc DL(Op);
10958
10959  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10960                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10961                       false,
10962                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10963}
10964
10965// getTargetVShiftByConstNode - Handle vector element shifts where the shift
10966// amount is a constant. Takes immediate version of shift as input.
10967static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
10968                                          SDValue SrcOp, uint64_t ShiftAmt,
10969                                          SelectionDAG &DAG) {
10970
10971  // Check for ShiftAmt >= element width
10972  if (ShiftAmt >= VT.getVectorElementType().getSizeInBits()) {
10973    if (Opc == X86ISD::VSRAI)
10974      ShiftAmt = VT.getVectorElementType().getSizeInBits() - 1;
10975    else
10976      return DAG.getConstant(0, VT);
10977  }
10978
10979  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
10980         && "Unknown target vector shift-by-constant node");
10981
10982  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
10983}
10984
10985// getTargetVShiftNode - Handle vector element shifts where the shift amount
10986// may or may not be a constant. Takes immediate version of shift as input.
10987static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
10988                                   SDValue SrcOp, SDValue ShAmt,
10989                                   SelectionDAG &DAG) {
10990  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10991
10992  // Catch shift-by-constant.
10993  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
10994    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
10995                                      CShAmt->getZExtValue(), DAG);
10996
10997  // Change opcode to non-immediate version
10998  switch (Opc) {
10999    default: llvm_unreachable("Unknown target vector shift node");
11000    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
11001    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
11002    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
11003  }
11004
11005  // Need to build a vector containing shift amount
11006  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
11007  SDValue ShOps[4];
11008  ShOps[0] = ShAmt;
11009  ShOps[1] = DAG.getConstant(0, MVT::i32);
11010  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
11011  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
11012
11013  // The return type has to be a 128-bit type with the same element
11014  // type as the input type.
11015  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11016  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
11017
11018  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
11019  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
11020}
11021
11022static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
11023  SDLoc dl(Op);
11024  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11025  switch (IntNo) {
11026  default: return SDValue();    // Don't custom lower most intrinsics.
11027  // Comparison intrinsics.
11028  case Intrinsic::x86_sse_comieq_ss:
11029  case Intrinsic::x86_sse_comilt_ss:
11030  case Intrinsic::x86_sse_comile_ss:
11031  case Intrinsic::x86_sse_comigt_ss:
11032  case Intrinsic::x86_sse_comige_ss:
11033  case Intrinsic::x86_sse_comineq_ss:
11034  case Intrinsic::x86_sse_ucomieq_ss:
11035  case Intrinsic::x86_sse_ucomilt_ss:
11036  case Intrinsic::x86_sse_ucomile_ss:
11037  case Intrinsic::x86_sse_ucomigt_ss:
11038  case Intrinsic::x86_sse_ucomige_ss:
11039  case Intrinsic::x86_sse_ucomineq_ss:
11040  case Intrinsic::x86_sse2_comieq_sd:
11041  case Intrinsic::x86_sse2_comilt_sd:
11042  case Intrinsic::x86_sse2_comile_sd:
11043  case Intrinsic::x86_sse2_comigt_sd:
11044  case Intrinsic::x86_sse2_comige_sd:
11045  case Intrinsic::x86_sse2_comineq_sd:
11046  case Intrinsic::x86_sse2_ucomieq_sd:
11047  case Intrinsic::x86_sse2_ucomilt_sd:
11048  case Intrinsic::x86_sse2_ucomile_sd:
11049  case Intrinsic::x86_sse2_ucomigt_sd:
11050  case Intrinsic::x86_sse2_ucomige_sd:
11051  case Intrinsic::x86_sse2_ucomineq_sd: {
11052    unsigned Opc;
11053    ISD::CondCode CC;
11054    switch (IntNo) {
11055    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11056    case Intrinsic::x86_sse_comieq_ss:
11057    case Intrinsic::x86_sse2_comieq_sd:
11058      Opc = X86ISD::COMI;
11059      CC = ISD::SETEQ;
11060      break;
11061    case Intrinsic::x86_sse_comilt_ss:
11062    case Intrinsic::x86_sse2_comilt_sd:
11063      Opc = X86ISD::COMI;
11064      CC = ISD::SETLT;
11065      break;
11066    case Intrinsic::x86_sse_comile_ss:
11067    case Intrinsic::x86_sse2_comile_sd:
11068      Opc = X86ISD::COMI;
11069      CC = ISD::SETLE;
11070      break;
11071    case Intrinsic::x86_sse_comigt_ss:
11072    case Intrinsic::x86_sse2_comigt_sd:
11073      Opc = X86ISD::COMI;
11074      CC = ISD::SETGT;
11075      break;
11076    case Intrinsic::x86_sse_comige_ss:
11077    case Intrinsic::x86_sse2_comige_sd:
11078      Opc = X86ISD::COMI;
11079      CC = ISD::SETGE;
11080      break;
11081    case Intrinsic::x86_sse_comineq_ss:
11082    case Intrinsic::x86_sse2_comineq_sd:
11083      Opc = X86ISD::COMI;
11084      CC = ISD::SETNE;
11085      break;
11086    case Intrinsic::x86_sse_ucomieq_ss:
11087    case Intrinsic::x86_sse2_ucomieq_sd:
11088      Opc = X86ISD::UCOMI;
11089      CC = ISD::SETEQ;
11090      break;
11091    case Intrinsic::x86_sse_ucomilt_ss:
11092    case Intrinsic::x86_sse2_ucomilt_sd:
11093      Opc = X86ISD::UCOMI;
11094      CC = ISD::SETLT;
11095      break;
11096    case Intrinsic::x86_sse_ucomile_ss:
11097    case Intrinsic::x86_sse2_ucomile_sd:
11098      Opc = X86ISD::UCOMI;
11099      CC = ISD::SETLE;
11100      break;
11101    case Intrinsic::x86_sse_ucomigt_ss:
11102    case Intrinsic::x86_sse2_ucomigt_sd:
11103      Opc = X86ISD::UCOMI;
11104      CC = ISD::SETGT;
11105      break;
11106    case Intrinsic::x86_sse_ucomige_ss:
11107    case Intrinsic::x86_sse2_ucomige_sd:
11108      Opc = X86ISD::UCOMI;
11109      CC = ISD::SETGE;
11110      break;
11111    case Intrinsic::x86_sse_ucomineq_ss:
11112    case Intrinsic::x86_sse2_ucomineq_sd:
11113      Opc = X86ISD::UCOMI;
11114      CC = ISD::SETNE;
11115      break;
11116    }
11117
11118    SDValue LHS = Op.getOperand(1);
11119    SDValue RHS = Op.getOperand(2);
11120    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11121    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11122    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11123    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11124                                DAG.getConstant(X86CC, MVT::i8), Cond);
11125    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11126  }
11127
11128  // Arithmetic intrinsics.
11129  case Intrinsic::x86_sse2_pmulu_dq:
11130  case Intrinsic::x86_avx2_pmulu_dq:
11131    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11132                       Op.getOperand(1), Op.getOperand(2));
11133
11134  // SSE2/AVX2 sub with unsigned saturation intrinsics
11135  case Intrinsic::x86_sse2_psubus_b:
11136  case Intrinsic::x86_sse2_psubus_w:
11137  case Intrinsic::x86_avx2_psubus_b:
11138  case Intrinsic::x86_avx2_psubus_w:
11139    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11140                       Op.getOperand(1), Op.getOperand(2));
11141
11142  // SSE3/AVX horizontal add/sub intrinsics
11143  case Intrinsic::x86_sse3_hadd_ps:
11144  case Intrinsic::x86_sse3_hadd_pd:
11145  case Intrinsic::x86_avx_hadd_ps_256:
11146  case Intrinsic::x86_avx_hadd_pd_256:
11147  case Intrinsic::x86_sse3_hsub_ps:
11148  case Intrinsic::x86_sse3_hsub_pd:
11149  case Intrinsic::x86_avx_hsub_ps_256:
11150  case Intrinsic::x86_avx_hsub_pd_256:
11151  case Intrinsic::x86_ssse3_phadd_w_128:
11152  case Intrinsic::x86_ssse3_phadd_d_128:
11153  case Intrinsic::x86_avx2_phadd_w:
11154  case Intrinsic::x86_avx2_phadd_d:
11155  case Intrinsic::x86_ssse3_phsub_w_128:
11156  case Intrinsic::x86_ssse3_phsub_d_128:
11157  case Intrinsic::x86_avx2_phsub_w:
11158  case Intrinsic::x86_avx2_phsub_d: {
11159    unsigned Opcode;
11160    switch (IntNo) {
11161    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11162    case Intrinsic::x86_sse3_hadd_ps:
11163    case Intrinsic::x86_sse3_hadd_pd:
11164    case Intrinsic::x86_avx_hadd_ps_256:
11165    case Intrinsic::x86_avx_hadd_pd_256:
11166      Opcode = X86ISD::FHADD;
11167      break;
11168    case Intrinsic::x86_sse3_hsub_ps:
11169    case Intrinsic::x86_sse3_hsub_pd:
11170    case Intrinsic::x86_avx_hsub_ps_256:
11171    case Intrinsic::x86_avx_hsub_pd_256:
11172      Opcode = X86ISD::FHSUB;
11173      break;
11174    case Intrinsic::x86_ssse3_phadd_w_128:
11175    case Intrinsic::x86_ssse3_phadd_d_128:
11176    case Intrinsic::x86_avx2_phadd_w:
11177    case Intrinsic::x86_avx2_phadd_d:
11178      Opcode = X86ISD::HADD;
11179      break;
11180    case Intrinsic::x86_ssse3_phsub_w_128:
11181    case Intrinsic::x86_ssse3_phsub_d_128:
11182    case Intrinsic::x86_avx2_phsub_w:
11183    case Intrinsic::x86_avx2_phsub_d:
11184      Opcode = X86ISD::HSUB;
11185      break;
11186    }
11187    return DAG.getNode(Opcode, dl, Op.getValueType(),
11188                       Op.getOperand(1), Op.getOperand(2));
11189  }
11190
11191  // SSE2/SSE41/AVX2 integer max/min intrinsics.
11192  case Intrinsic::x86_sse2_pmaxu_b:
11193  case Intrinsic::x86_sse41_pmaxuw:
11194  case Intrinsic::x86_sse41_pmaxud:
11195  case Intrinsic::x86_avx2_pmaxu_b:
11196  case Intrinsic::x86_avx2_pmaxu_w:
11197  case Intrinsic::x86_avx2_pmaxu_d:
11198  case Intrinsic::x86_avx512_pmaxu_d:
11199  case Intrinsic::x86_avx512_pmaxu_q:
11200  case Intrinsic::x86_sse2_pminu_b:
11201  case Intrinsic::x86_sse41_pminuw:
11202  case Intrinsic::x86_sse41_pminud:
11203  case Intrinsic::x86_avx2_pminu_b:
11204  case Intrinsic::x86_avx2_pminu_w:
11205  case Intrinsic::x86_avx2_pminu_d:
11206  case Intrinsic::x86_avx512_pminu_d:
11207  case Intrinsic::x86_avx512_pminu_q:
11208  case Intrinsic::x86_sse41_pmaxsb:
11209  case Intrinsic::x86_sse2_pmaxs_w:
11210  case Intrinsic::x86_sse41_pmaxsd:
11211  case Intrinsic::x86_avx2_pmaxs_b:
11212  case Intrinsic::x86_avx2_pmaxs_w:
11213  case Intrinsic::x86_avx2_pmaxs_d:
11214  case Intrinsic::x86_avx512_pmaxs_d:
11215  case Intrinsic::x86_avx512_pmaxs_q:
11216  case Intrinsic::x86_sse41_pminsb:
11217  case Intrinsic::x86_sse2_pmins_w:
11218  case Intrinsic::x86_sse41_pminsd:
11219  case Intrinsic::x86_avx2_pmins_b:
11220  case Intrinsic::x86_avx2_pmins_w:
11221  case Intrinsic::x86_avx2_pmins_d:
11222  case Intrinsic::x86_avx512_pmins_d:
11223  case Intrinsic::x86_avx512_pmins_q: {
11224    unsigned Opcode;
11225    switch (IntNo) {
11226    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11227    case Intrinsic::x86_sse2_pmaxu_b:
11228    case Intrinsic::x86_sse41_pmaxuw:
11229    case Intrinsic::x86_sse41_pmaxud:
11230    case Intrinsic::x86_avx2_pmaxu_b:
11231    case Intrinsic::x86_avx2_pmaxu_w:
11232    case Intrinsic::x86_avx2_pmaxu_d:
11233    case Intrinsic::x86_avx512_pmaxu_d:
11234    case Intrinsic::x86_avx512_pmaxu_q:
11235      Opcode = X86ISD::UMAX;
11236      break;
11237    case Intrinsic::x86_sse2_pminu_b:
11238    case Intrinsic::x86_sse41_pminuw:
11239    case Intrinsic::x86_sse41_pminud:
11240    case Intrinsic::x86_avx2_pminu_b:
11241    case Intrinsic::x86_avx2_pminu_w:
11242    case Intrinsic::x86_avx2_pminu_d:
11243    case Intrinsic::x86_avx512_pminu_d:
11244    case Intrinsic::x86_avx512_pminu_q:
11245      Opcode = X86ISD::UMIN;
11246      break;
11247    case Intrinsic::x86_sse41_pmaxsb:
11248    case Intrinsic::x86_sse2_pmaxs_w:
11249    case Intrinsic::x86_sse41_pmaxsd:
11250    case Intrinsic::x86_avx2_pmaxs_b:
11251    case Intrinsic::x86_avx2_pmaxs_w:
11252    case Intrinsic::x86_avx2_pmaxs_d:
11253    case Intrinsic::x86_avx512_pmaxs_d:
11254    case Intrinsic::x86_avx512_pmaxs_q:
11255      Opcode = X86ISD::SMAX;
11256      break;
11257    case Intrinsic::x86_sse41_pminsb:
11258    case Intrinsic::x86_sse2_pmins_w:
11259    case Intrinsic::x86_sse41_pminsd:
11260    case Intrinsic::x86_avx2_pmins_b:
11261    case Intrinsic::x86_avx2_pmins_w:
11262    case Intrinsic::x86_avx2_pmins_d:
11263    case Intrinsic::x86_avx512_pmins_d:
11264    case Intrinsic::x86_avx512_pmins_q:
11265      Opcode = X86ISD::SMIN;
11266      break;
11267    }
11268    return DAG.getNode(Opcode, dl, Op.getValueType(),
11269                       Op.getOperand(1), Op.getOperand(2));
11270  }
11271
11272  // SSE/SSE2/AVX floating point max/min intrinsics.
11273  case Intrinsic::x86_sse_max_ps:
11274  case Intrinsic::x86_sse2_max_pd:
11275  case Intrinsic::x86_avx_max_ps_256:
11276  case Intrinsic::x86_avx_max_pd_256:
11277  case Intrinsic::x86_avx512_max_ps_512:
11278  case Intrinsic::x86_avx512_max_pd_512:
11279  case Intrinsic::x86_sse_min_ps:
11280  case Intrinsic::x86_sse2_min_pd:
11281  case Intrinsic::x86_avx_min_ps_256:
11282  case Intrinsic::x86_avx_min_pd_256:
11283  case Intrinsic::x86_avx512_min_ps_512:
11284  case Intrinsic::x86_avx512_min_pd_512:  {
11285    unsigned Opcode;
11286    switch (IntNo) {
11287    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11288    case Intrinsic::x86_sse_max_ps:
11289    case Intrinsic::x86_sse2_max_pd:
11290    case Intrinsic::x86_avx_max_ps_256:
11291    case Intrinsic::x86_avx_max_pd_256:
11292    case Intrinsic::x86_avx512_max_ps_512:
11293    case Intrinsic::x86_avx512_max_pd_512:
11294      Opcode = X86ISD::FMAX;
11295      break;
11296    case Intrinsic::x86_sse_min_ps:
11297    case Intrinsic::x86_sse2_min_pd:
11298    case Intrinsic::x86_avx_min_ps_256:
11299    case Intrinsic::x86_avx_min_pd_256:
11300    case Intrinsic::x86_avx512_min_ps_512:
11301    case Intrinsic::x86_avx512_min_pd_512:
11302      Opcode = X86ISD::FMIN;
11303      break;
11304    }
11305    return DAG.getNode(Opcode, dl, Op.getValueType(),
11306                       Op.getOperand(1), Op.getOperand(2));
11307  }
11308
11309  // AVX2 variable shift intrinsics
11310  case Intrinsic::x86_avx2_psllv_d:
11311  case Intrinsic::x86_avx2_psllv_q:
11312  case Intrinsic::x86_avx2_psllv_d_256:
11313  case Intrinsic::x86_avx2_psllv_q_256:
11314  case Intrinsic::x86_avx2_psrlv_d:
11315  case Intrinsic::x86_avx2_psrlv_q:
11316  case Intrinsic::x86_avx2_psrlv_d_256:
11317  case Intrinsic::x86_avx2_psrlv_q_256:
11318  case Intrinsic::x86_avx2_psrav_d:
11319  case Intrinsic::x86_avx2_psrav_d_256: {
11320    unsigned Opcode;
11321    switch (IntNo) {
11322    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11323    case Intrinsic::x86_avx2_psllv_d:
11324    case Intrinsic::x86_avx2_psllv_q:
11325    case Intrinsic::x86_avx2_psllv_d_256:
11326    case Intrinsic::x86_avx2_psllv_q_256:
11327      Opcode = ISD::SHL;
11328      break;
11329    case Intrinsic::x86_avx2_psrlv_d:
11330    case Intrinsic::x86_avx2_psrlv_q:
11331    case Intrinsic::x86_avx2_psrlv_d_256:
11332    case Intrinsic::x86_avx2_psrlv_q_256:
11333      Opcode = ISD::SRL;
11334      break;
11335    case Intrinsic::x86_avx2_psrav_d:
11336    case Intrinsic::x86_avx2_psrav_d_256:
11337      Opcode = ISD::SRA;
11338      break;
11339    }
11340    return DAG.getNode(Opcode, dl, Op.getValueType(),
11341                       Op.getOperand(1), Op.getOperand(2));
11342  }
11343
11344  case Intrinsic::x86_ssse3_pshuf_b_128:
11345  case Intrinsic::x86_avx2_pshuf_b:
11346    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
11347                       Op.getOperand(1), Op.getOperand(2));
11348
11349  case Intrinsic::x86_ssse3_psign_b_128:
11350  case Intrinsic::x86_ssse3_psign_w_128:
11351  case Intrinsic::x86_ssse3_psign_d_128:
11352  case Intrinsic::x86_avx2_psign_b:
11353  case Intrinsic::x86_avx2_psign_w:
11354  case Intrinsic::x86_avx2_psign_d:
11355    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
11356                       Op.getOperand(1), Op.getOperand(2));
11357
11358  case Intrinsic::x86_sse41_insertps:
11359    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
11360                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11361
11362  case Intrinsic::x86_avx_vperm2f128_ps_256:
11363  case Intrinsic::x86_avx_vperm2f128_pd_256:
11364  case Intrinsic::x86_avx_vperm2f128_si_256:
11365  case Intrinsic::x86_avx2_vperm2i128:
11366    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
11367                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11368
11369  case Intrinsic::x86_avx2_permd:
11370  case Intrinsic::x86_avx2_permps:
11371    // Operands intentionally swapped. Mask is last operand to intrinsic,
11372    // but second operand for node/instruction.
11373    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
11374                       Op.getOperand(2), Op.getOperand(1));
11375
11376  case Intrinsic::x86_sse_sqrt_ps:
11377  case Intrinsic::x86_sse2_sqrt_pd:
11378  case Intrinsic::x86_avx_sqrt_ps_256:
11379  case Intrinsic::x86_avx_sqrt_pd_256:
11380    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
11381
11382  // ptest and testp intrinsics. The intrinsic these come from are designed to
11383  // return an integer value, not just an instruction so lower it to the ptest
11384  // or testp pattern and a setcc for the result.
11385  case Intrinsic::x86_sse41_ptestz:
11386  case Intrinsic::x86_sse41_ptestc:
11387  case Intrinsic::x86_sse41_ptestnzc:
11388  case Intrinsic::x86_avx_ptestz_256:
11389  case Intrinsic::x86_avx_ptestc_256:
11390  case Intrinsic::x86_avx_ptestnzc_256:
11391  case Intrinsic::x86_avx_vtestz_ps:
11392  case Intrinsic::x86_avx_vtestc_ps:
11393  case Intrinsic::x86_avx_vtestnzc_ps:
11394  case Intrinsic::x86_avx_vtestz_pd:
11395  case Intrinsic::x86_avx_vtestc_pd:
11396  case Intrinsic::x86_avx_vtestnzc_pd:
11397  case Intrinsic::x86_avx_vtestz_ps_256:
11398  case Intrinsic::x86_avx_vtestc_ps_256:
11399  case Intrinsic::x86_avx_vtestnzc_ps_256:
11400  case Intrinsic::x86_avx_vtestz_pd_256:
11401  case Intrinsic::x86_avx_vtestc_pd_256:
11402  case Intrinsic::x86_avx_vtestnzc_pd_256: {
11403    bool IsTestPacked = false;
11404    unsigned X86CC;
11405    switch (IntNo) {
11406    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
11407    case Intrinsic::x86_avx_vtestz_ps:
11408    case Intrinsic::x86_avx_vtestz_pd:
11409    case Intrinsic::x86_avx_vtestz_ps_256:
11410    case Intrinsic::x86_avx_vtestz_pd_256:
11411      IsTestPacked = true; // Fallthrough
11412    case Intrinsic::x86_sse41_ptestz:
11413    case Intrinsic::x86_avx_ptestz_256:
11414      // ZF = 1
11415      X86CC = X86::COND_E;
11416      break;
11417    case Intrinsic::x86_avx_vtestc_ps:
11418    case Intrinsic::x86_avx_vtestc_pd:
11419    case Intrinsic::x86_avx_vtestc_ps_256:
11420    case Intrinsic::x86_avx_vtestc_pd_256:
11421      IsTestPacked = true; // Fallthrough
11422    case Intrinsic::x86_sse41_ptestc:
11423    case Intrinsic::x86_avx_ptestc_256:
11424      // CF = 1
11425      X86CC = X86::COND_B;
11426      break;
11427    case Intrinsic::x86_avx_vtestnzc_ps:
11428    case Intrinsic::x86_avx_vtestnzc_pd:
11429    case Intrinsic::x86_avx_vtestnzc_ps_256:
11430    case Intrinsic::x86_avx_vtestnzc_pd_256:
11431      IsTestPacked = true; // Fallthrough
11432    case Intrinsic::x86_sse41_ptestnzc:
11433    case Intrinsic::x86_avx_ptestnzc_256:
11434      // ZF and CF = 0
11435      X86CC = X86::COND_A;
11436      break;
11437    }
11438
11439    SDValue LHS = Op.getOperand(1);
11440    SDValue RHS = Op.getOperand(2);
11441    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
11442    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
11443    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11444    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11445    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11446  }
11447  case Intrinsic::x86_avx512_kortestz:
11448  case Intrinsic::x86_avx512_kortestc: {
11449    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
11450    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
11451    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
11452    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11453    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
11454    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11455    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11456  }
11457
11458  // SSE/AVX shift intrinsics
11459  case Intrinsic::x86_sse2_psll_w:
11460  case Intrinsic::x86_sse2_psll_d:
11461  case Intrinsic::x86_sse2_psll_q:
11462  case Intrinsic::x86_avx2_psll_w:
11463  case Intrinsic::x86_avx2_psll_d:
11464  case Intrinsic::x86_avx2_psll_q:
11465  case Intrinsic::x86_sse2_psrl_w:
11466  case Intrinsic::x86_sse2_psrl_d:
11467  case Intrinsic::x86_sse2_psrl_q:
11468  case Intrinsic::x86_avx2_psrl_w:
11469  case Intrinsic::x86_avx2_psrl_d:
11470  case Intrinsic::x86_avx2_psrl_q:
11471  case Intrinsic::x86_sse2_psra_w:
11472  case Intrinsic::x86_sse2_psra_d:
11473  case Intrinsic::x86_avx2_psra_w:
11474  case Intrinsic::x86_avx2_psra_d: {
11475    unsigned Opcode;
11476    switch (IntNo) {
11477    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11478    case Intrinsic::x86_sse2_psll_w:
11479    case Intrinsic::x86_sse2_psll_d:
11480    case Intrinsic::x86_sse2_psll_q:
11481    case Intrinsic::x86_avx2_psll_w:
11482    case Intrinsic::x86_avx2_psll_d:
11483    case Intrinsic::x86_avx2_psll_q:
11484      Opcode = X86ISD::VSHL;
11485      break;
11486    case Intrinsic::x86_sse2_psrl_w:
11487    case Intrinsic::x86_sse2_psrl_d:
11488    case Intrinsic::x86_sse2_psrl_q:
11489    case Intrinsic::x86_avx2_psrl_w:
11490    case Intrinsic::x86_avx2_psrl_d:
11491    case Intrinsic::x86_avx2_psrl_q:
11492      Opcode = X86ISD::VSRL;
11493      break;
11494    case Intrinsic::x86_sse2_psra_w:
11495    case Intrinsic::x86_sse2_psra_d:
11496    case Intrinsic::x86_avx2_psra_w:
11497    case Intrinsic::x86_avx2_psra_d:
11498      Opcode = X86ISD::VSRA;
11499      break;
11500    }
11501    return DAG.getNode(Opcode, dl, Op.getValueType(),
11502                       Op.getOperand(1), Op.getOperand(2));
11503  }
11504
11505  // SSE/AVX immediate shift intrinsics
11506  case Intrinsic::x86_sse2_pslli_w:
11507  case Intrinsic::x86_sse2_pslli_d:
11508  case Intrinsic::x86_sse2_pslli_q:
11509  case Intrinsic::x86_avx2_pslli_w:
11510  case Intrinsic::x86_avx2_pslli_d:
11511  case Intrinsic::x86_avx2_pslli_q:
11512  case Intrinsic::x86_sse2_psrli_w:
11513  case Intrinsic::x86_sse2_psrli_d:
11514  case Intrinsic::x86_sse2_psrli_q:
11515  case Intrinsic::x86_avx2_psrli_w:
11516  case Intrinsic::x86_avx2_psrli_d:
11517  case Intrinsic::x86_avx2_psrli_q:
11518  case Intrinsic::x86_sse2_psrai_w:
11519  case Intrinsic::x86_sse2_psrai_d:
11520  case Intrinsic::x86_avx2_psrai_w:
11521  case Intrinsic::x86_avx2_psrai_d: {
11522    unsigned Opcode;
11523    switch (IntNo) {
11524    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11525    case Intrinsic::x86_sse2_pslli_w:
11526    case Intrinsic::x86_sse2_pslli_d:
11527    case Intrinsic::x86_sse2_pslli_q:
11528    case Intrinsic::x86_avx2_pslli_w:
11529    case Intrinsic::x86_avx2_pslli_d:
11530    case Intrinsic::x86_avx2_pslli_q:
11531      Opcode = X86ISD::VSHLI;
11532      break;
11533    case Intrinsic::x86_sse2_psrli_w:
11534    case Intrinsic::x86_sse2_psrli_d:
11535    case Intrinsic::x86_sse2_psrli_q:
11536    case Intrinsic::x86_avx2_psrli_w:
11537    case Intrinsic::x86_avx2_psrli_d:
11538    case Intrinsic::x86_avx2_psrli_q:
11539      Opcode = X86ISD::VSRLI;
11540      break;
11541    case Intrinsic::x86_sse2_psrai_w:
11542    case Intrinsic::x86_sse2_psrai_d:
11543    case Intrinsic::x86_avx2_psrai_w:
11544    case Intrinsic::x86_avx2_psrai_d:
11545      Opcode = X86ISD::VSRAI;
11546      break;
11547    }
11548    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
11549                               Op.getOperand(1), Op.getOperand(2), DAG);
11550  }
11551
11552  case Intrinsic::x86_sse42_pcmpistria128:
11553  case Intrinsic::x86_sse42_pcmpestria128:
11554  case Intrinsic::x86_sse42_pcmpistric128:
11555  case Intrinsic::x86_sse42_pcmpestric128:
11556  case Intrinsic::x86_sse42_pcmpistrio128:
11557  case Intrinsic::x86_sse42_pcmpestrio128:
11558  case Intrinsic::x86_sse42_pcmpistris128:
11559  case Intrinsic::x86_sse42_pcmpestris128:
11560  case Intrinsic::x86_sse42_pcmpistriz128:
11561  case Intrinsic::x86_sse42_pcmpestriz128: {
11562    unsigned Opcode;
11563    unsigned X86CC;
11564    switch (IntNo) {
11565    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11566    case Intrinsic::x86_sse42_pcmpistria128:
11567      Opcode = X86ISD::PCMPISTRI;
11568      X86CC = X86::COND_A;
11569      break;
11570    case Intrinsic::x86_sse42_pcmpestria128:
11571      Opcode = X86ISD::PCMPESTRI;
11572      X86CC = X86::COND_A;
11573      break;
11574    case Intrinsic::x86_sse42_pcmpistric128:
11575      Opcode = X86ISD::PCMPISTRI;
11576      X86CC = X86::COND_B;
11577      break;
11578    case Intrinsic::x86_sse42_pcmpestric128:
11579      Opcode = X86ISD::PCMPESTRI;
11580      X86CC = X86::COND_B;
11581      break;
11582    case Intrinsic::x86_sse42_pcmpistrio128:
11583      Opcode = X86ISD::PCMPISTRI;
11584      X86CC = X86::COND_O;
11585      break;
11586    case Intrinsic::x86_sse42_pcmpestrio128:
11587      Opcode = X86ISD::PCMPESTRI;
11588      X86CC = X86::COND_O;
11589      break;
11590    case Intrinsic::x86_sse42_pcmpistris128:
11591      Opcode = X86ISD::PCMPISTRI;
11592      X86CC = X86::COND_S;
11593      break;
11594    case Intrinsic::x86_sse42_pcmpestris128:
11595      Opcode = X86ISD::PCMPESTRI;
11596      X86CC = X86::COND_S;
11597      break;
11598    case Intrinsic::x86_sse42_pcmpistriz128:
11599      Opcode = X86ISD::PCMPISTRI;
11600      X86CC = X86::COND_E;
11601      break;
11602    case Intrinsic::x86_sse42_pcmpestriz128:
11603      Opcode = X86ISD::PCMPESTRI;
11604      X86CC = X86::COND_E;
11605      break;
11606    }
11607    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11608    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11609    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11610    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11611                                DAG.getConstant(X86CC, MVT::i8),
11612                                SDValue(PCMP.getNode(), 1));
11613    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11614  }
11615
11616  case Intrinsic::x86_sse42_pcmpistri128:
11617  case Intrinsic::x86_sse42_pcmpestri128: {
11618    unsigned Opcode;
11619    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
11620      Opcode = X86ISD::PCMPISTRI;
11621    else
11622      Opcode = X86ISD::PCMPESTRI;
11623
11624    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11625    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11626    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11627  }
11628  case Intrinsic::x86_fma_vfmadd_ps:
11629  case Intrinsic::x86_fma_vfmadd_pd:
11630  case Intrinsic::x86_fma_vfmsub_ps:
11631  case Intrinsic::x86_fma_vfmsub_pd:
11632  case Intrinsic::x86_fma_vfnmadd_ps:
11633  case Intrinsic::x86_fma_vfnmadd_pd:
11634  case Intrinsic::x86_fma_vfnmsub_ps:
11635  case Intrinsic::x86_fma_vfnmsub_pd:
11636  case Intrinsic::x86_fma_vfmaddsub_ps:
11637  case Intrinsic::x86_fma_vfmaddsub_pd:
11638  case Intrinsic::x86_fma_vfmsubadd_ps:
11639  case Intrinsic::x86_fma_vfmsubadd_pd:
11640  case Intrinsic::x86_fma_vfmadd_ps_256:
11641  case Intrinsic::x86_fma_vfmadd_pd_256:
11642  case Intrinsic::x86_fma_vfmsub_ps_256:
11643  case Intrinsic::x86_fma_vfmsub_pd_256:
11644  case Intrinsic::x86_fma_vfnmadd_ps_256:
11645  case Intrinsic::x86_fma_vfnmadd_pd_256:
11646  case Intrinsic::x86_fma_vfnmsub_ps_256:
11647  case Intrinsic::x86_fma_vfnmsub_pd_256:
11648  case Intrinsic::x86_fma_vfmaddsub_ps_256:
11649  case Intrinsic::x86_fma_vfmaddsub_pd_256:
11650  case Intrinsic::x86_fma_vfmsubadd_ps_256:
11651  case Intrinsic::x86_fma_vfmsubadd_pd_256:
11652  case Intrinsic::x86_fma_vfmadd_ps_512:
11653  case Intrinsic::x86_fma_vfmadd_pd_512:
11654  case Intrinsic::x86_fma_vfmsub_ps_512:
11655  case Intrinsic::x86_fma_vfmsub_pd_512:
11656  case Intrinsic::x86_fma_vfnmadd_ps_512:
11657  case Intrinsic::x86_fma_vfnmadd_pd_512:
11658  case Intrinsic::x86_fma_vfnmsub_ps_512:
11659  case Intrinsic::x86_fma_vfnmsub_pd_512:
11660  case Intrinsic::x86_fma_vfmaddsub_ps_512:
11661  case Intrinsic::x86_fma_vfmaddsub_pd_512:
11662  case Intrinsic::x86_fma_vfmsubadd_ps_512:
11663  case Intrinsic::x86_fma_vfmsubadd_pd_512: {
11664    unsigned Opc;
11665    switch (IntNo) {
11666    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11667    case Intrinsic::x86_fma_vfmadd_ps:
11668    case Intrinsic::x86_fma_vfmadd_pd:
11669    case Intrinsic::x86_fma_vfmadd_ps_256:
11670    case Intrinsic::x86_fma_vfmadd_pd_256:
11671    case Intrinsic::x86_fma_vfmadd_ps_512:
11672    case Intrinsic::x86_fma_vfmadd_pd_512:
11673      Opc = X86ISD::FMADD;
11674      break;
11675    case Intrinsic::x86_fma_vfmsub_ps:
11676    case Intrinsic::x86_fma_vfmsub_pd:
11677    case Intrinsic::x86_fma_vfmsub_ps_256:
11678    case Intrinsic::x86_fma_vfmsub_pd_256:
11679    case Intrinsic::x86_fma_vfmsub_ps_512:
11680    case Intrinsic::x86_fma_vfmsub_pd_512:
11681      Opc = X86ISD::FMSUB;
11682      break;
11683    case Intrinsic::x86_fma_vfnmadd_ps:
11684    case Intrinsic::x86_fma_vfnmadd_pd:
11685    case Intrinsic::x86_fma_vfnmadd_ps_256:
11686    case Intrinsic::x86_fma_vfnmadd_pd_256:
11687    case Intrinsic::x86_fma_vfnmadd_ps_512:
11688    case Intrinsic::x86_fma_vfnmadd_pd_512:
11689      Opc = X86ISD::FNMADD;
11690      break;
11691    case Intrinsic::x86_fma_vfnmsub_ps:
11692    case Intrinsic::x86_fma_vfnmsub_pd:
11693    case Intrinsic::x86_fma_vfnmsub_ps_256:
11694    case Intrinsic::x86_fma_vfnmsub_pd_256:
11695    case Intrinsic::x86_fma_vfnmsub_ps_512:
11696    case Intrinsic::x86_fma_vfnmsub_pd_512:
11697      Opc = X86ISD::FNMSUB;
11698      break;
11699    case Intrinsic::x86_fma_vfmaddsub_ps:
11700    case Intrinsic::x86_fma_vfmaddsub_pd:
11701    case Intrinsic::x86_fma_vfmaddsub_ps_256:
11702    case Intrinsic::x86_fma_vfmaddsub_pd_256:
11703    case Intrinsic::x86_fma_vfmaddsub_ps_512:
11704    case Intrinsic::x86_fma_vfmaddsub_pd_512:
11705      Opc = X86ISD::FMADDSUB;
11706      break;
11707    case Intrinsic::x86_fma_vfmsubadd_ps:
11708    case Intrinsic::x86_fma_vfmsubadd_pd:
11709    case Intrinsic::x86_fma_vfmsubadd_ps_256:
11710    case Intrinsic::x86_fma_vfmsubadd_pd_256:
11711    case Intrinsic::x86_fma_vfmsubadd_ps_512:
11712    case Intrinsic::x86_fma_vfmsubadd_pd_512:
11713      Opc = X86ISD::FMSUBADD;
11714      break;
11715    }
11716
11717    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11718                       Op.getOperand(2), Op.getOperand(3));
11719  }
11720  }
11721}
11722
11723static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11724                             SDValue Base, SDValue Index,
11725                             SDValue ScaleOp, SDValue Chain,
11726                             const X86Subtarget * Subtarget) {
11727  SDLoc dl(Op);
11728  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11729  assert(C && "Invalid scale type");
11730  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11731  SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11732  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11733                                Index.getValueType().getVectorNumElements());
11734  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11735  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11736  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11737  SDValue Segment = DAG.getRegister(0, MVT::i32);
11738  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11739  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11740  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11741  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11742}
11743
11744static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11745                              SDValue Src, SDValue Mask, SDValue Base,
11746                              SDValue Index, SDValue ScaleOp, SDValue Chain,
11747                              const X86Subtarget * Subtarget) {
11748  SDLoc dl(Op);
11749  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11750  assert(C && "Invalid scale type");
11751  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11752  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11753                                Index.getValueType().getVectorNumElements());
11754  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11755  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11756  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11757  SDValue Segment = DAG.getRegister(0, MVT::i32);
11758  if (Src.getOpcode() == ISD::UNDEF)
11759    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11760  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11761  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11762  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11763  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11764}
11765
11766static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11767                              SDValue Src, SDValue Base, SDValue Index,
11768                              SDValue ScaleOp, SDValue Chain) {
11769  SDLoc dl(Op);
11770  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11771  assert(C && "Invalid scale type");
11772  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11773  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11774  SDValue Segment = DAG.getRegister(0, MVT::i32);
11775  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11776                                Index.getValueType().getVectorNumElements());
11777  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11778  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11779  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11780  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11781  return SDValue(Res, 1);
11782}
11783
11784static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11785                               SDValue Src, SDValue Mask, SDValue Base,
11786                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
11787  SDLoc dl(Op);
11788  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11789  assert(C && "Invalid scale type");
11790  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11791  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11792  SDValue Segment = DAG.getRegister(0, MVT::i32);
11793  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11794                                Index.getValueType().getVectorNumElements());
11795  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11796  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11797  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11798  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11799  return SDValue(Res, 1);
11800}
11801
11802static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
11803                                      SelectionDAG &DAG) {
11804  SDLoc dl(Op);
11805  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11806  switch (IntNo) {
11807  default: return SDValue();    // Don't custom lower most intrinsics.
11808
11809  // RDRAND/RDSEED intrinsics.
11810  case Intrinsic::x86_rdrand_16:
11811  case Intrinsic::x86_rdrand_32:
11812  case Intrinsic::x86_rdrand_64:
11813  case Intrinsic::x86_rdseed_16:
11814  case Intrinsic::x86_rdseed_32:
11815  case Intrinsic::x86_rdseed_64: {
11816    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11817                       IntNo == Intrinsic::x86_rdseed_32 ||
11818                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11819                                                            X86ISD::RDRAND;
11820    // Emit the node with the right value type.
11821    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11822    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11823
11824    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11825    // Otherwise return the value from Rand, which is always 0, casted to i32.
11826    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11827                      DAG.getConstant(1, Op->getValueType(1)),
11828                      DAG.getConstant(X86::COND_B, MVT::i32),
11829                      SDValue(Result.getNode(), 1) };
11830    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11831                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11832                                  Ops, array_lengthof(Ops));
11833
11834    // Return { result, isValid, chain }.
11835    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11836                       SDValue(Result.getNode(), 2));
11837  }
11838  //int_gather(index, base, scale);
11839  case Intrinsic::x86_avx512_gather_qpd_512:
11840  case Intrinsic::x86_avx512_gather_qps_512:
11841  case Intrinsic::x86_avx512_gather_dpd_512:
11842  case Intrinsic::x86_avx512_gather_qpi_512:
11843  case Intrinsic::x86_avx512_gather_qpq_512:
11844  case Intrinsic::x86_avx512_gather_dpq_512:
11845  case Intrinsic::x86_avx512_gather_dps_512:
11846  case Intrinsic::x86_avx512_gather_dpi_512: {
11847    unsigned Opc;
11848    switch (IntNo) {
11849      default: llvm_unreachable("Unexpected intrinsic!");
11850      case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break;
11851      case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break;
11852      case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break;
11853      case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break;
11854      case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break;
11855      case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break;
11856      case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break;
11857      case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break;
11858    }
11859    SDValue Chain = Op.getOperand(0);
11860    SDValue Index = Op.getOperand(2);
11861    SDValue Base  = Op.getOperand(3);
11862    SDValue Scale = Op.getOperand(4);
11863    return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget);
11864  }
11865  //int_gather_mask(v1, mask, index, base, scale);
11866  case Intrinsic::x86_avx512_gather_qps_mask_512:
11867  case Intrinsic::x86_avx512_gather_qpd_mask_512:
11868  case Intrinsic::x86_avx512_gather_dpd_mask_512:
11869  case Intrinsic::x86_avx512_gather_dps_mask_512:
11870  case Intrinsic::x86_avx512_gather_qpi_mask_512:
11871  case Intrinsic::x86_avx512_gather_qpq_mask_512:
11872  case Intrinsic::x86_avx512_gather_dpi_mask_512:
11873  case Intrinsic::x86_avx512_gather_dpq_mask_512: {
11874    unsigned Opc;
11875    switch (IntNo) {
11876      default: llvm_unreachable("Unexpected intrinsic!");
11877      case Intrinsic::x86_avx512_gather_qps_mask_512:
11878        Opc = X86::VGATHERQPSZrm; break;
11879      case Intrinsic::x86_avx512_gather_qpd_mask_512:
11880        Opc = X86::VGATHERQPDZrm; break;
11881      case Intrinsic::x86_avx512_gather_dpd_mask_512:
11882        Opc = X86::VGATHERDPDZrm; break;
11883      case Intrinsic::x86_avx512_gather_dps_mask_512:
11884        Opc = X86::VGATHERDPSZrm; break;
11885      case Intrinsic::x86_avx512_gather_qpi_mask_512:
11886        Opc = X86::VPGATHERQDZrm; break;
11887      case Intrinsic::x86_avx512_gather_qpq_mask_512:
11888        Opc = X86::VPGATHERQQZrm; break;
11889      case Intrinsic::x86_avx512_gather_dpi_mask_512:
11890        Opc = X86::VPGATHERDDZrm; break;
11891      case Intrinsic::x86_avx512_gather_dpq_mask_512:
11892        Opc = X86::VPGATHERDQZrm; break;
11893    }
11894    SDValue Chain = Op.getOperand(0);
11895    SDValue Src   = Op.getOperand(2);
11896    SDValue Mask  = Op.getOperand(3);
11897    SDValue Index = Op.getOperand(4);
11898    SDValue Base  = Op.getOperand(5);
11899    SDValue Scale = Op.getOperand(6);
11900    return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
11901                          Subtarget);
11902  }
11903  //int_scatter(base, index, v1, scale);
11904  case Intrinsic::x86_avx512_scatter_qpd_512:
11905  case Intrinsic::x86_avx512_scatter_qps_512:
11906  case Intrinsic::x86_avx512_scatter_dpd_512:
11907  case Intrinsic::x86_avx512_scatter_qpi_512:
11908  case Intrinsic::x86_avx512_scatter_qpq_512:
11909  case Intrinsic::x86_avx512_scatter_dpq_512:
11910  case Intrinsic::x86_avx512_scatter_dps_512:
11911  case Intrinsic::x86_avx512_scatter_dpi_512: {
11912    unsigned Opc;
11913    switch (IntNo) {
11914      default: llvm_unreachable("Unexpected intrinsic!");
11915      case Intrinsic::x86_avx512_scatter_qpd_512:
11916        Opc = X86::VSCATTERQPDZmr; break;
11917      case Intrinsic::x86_avx512_scatter_qps_512:
11918        Opc = X86::VSCATTERQPSZmr; break;
11919      case Intrinsic::x86_avx512_scatter_dpd_512:
11920        Opc = X86::VSCATTERDPDZmr; break;
11921      case Intrinsic::x86_avx512_scatter_dps_512:
11922        Opc = X86::VSCATTERDPSZmr; break;
11923      case Intrinsic::x86_avx512_scatter_qpi_512:
11924        Opc = X86::VPSCATTERQDZmr; break;
11925      case Intrinsic::x86_avx512_scatter_qpq_512:
11926        Opc = X86::VPSCATTERQQZmr; break;
11927      case Intrinsic::x86_avx512_scatter_dpq_512:
11928        Opc = X86::VPSCATTERDQZmr; break;
11929      case Intrinsic::x86_avx512_scatter_dpi_512:
11930        Opc = X86::VPSCATTERDDZmr; break;
11931    }
11932    SDValue Chain = Op.getOperand(0);
11933    SDValue Base  = Op.getOperand(2);
11934    SDValue Index = Op.getOperand(3);
11935    SDValue Src   = Op.getOperand(4);
11936    SDValue Scale = Op.getOperand(5);
11937    return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain);
11938  }
11939  //int_scatter_mask(base, mask, index, v1, scale);
11940  case Intrinsic::x86_avx512_scatter_qps_mask_512:
11941  case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11942  case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11943  case Intrinsic::x86_avx512_scatter_dps_mask_512:
11944  case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11945  case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11946  case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11947  case Intrinsic::x86_avx512_scatter_dpq_mask_512: {
11948    unsigned Opc;
11949    switch (IntNo) {
11950      default: llvm_unreachable("Unexpected intrinsic!");
11951      case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11952        Opc = X86::VSCATTERQPDZmr; break;
11953      case Intrinsic::x86_avx512_scatter_qps_mask_512:
11954        Opc = X86::VSCATTERQPSZmr; break;
11955      case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11956        Opc = X86::VSCATTERDPDZmr; break;
11957      case Intrinsic::x86_avx512_scatter_dps_mask_512:
11958        Opc = X86::VSCATTERDPSZmr; break;
11959      case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11960        Opc = X86::VPSCATTERQDZmr; break;
11961      case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11962        Opc = X86::VPSCATTERQQZmr; break;
11963      case Intrinsic::x86_avx512_scatter_dpq_mask_512:
11964        Opc = X86::VPSCATTERDQZmr; break;
11965      case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11966        Opc = X86::VPSCATTERDDZmr; break;
11967    }
11968    SDValue Chain = Op.getOperand(0);
11969    SDValue Base  = Op.getOperand(2);
11970    SDValue Mask  = Op.getOperand(3);
11971    SDValue Index = Op.getOperand(4);
11972    SDValue Src   = Op.getOperand(5);
11973    SDValue Scale = Op.getOperand(6);
11974    return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
11975  }
11976  // XTEST intrinsics.
11977  case Intrinsic::x86_xtest: {
11978    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11979    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11980    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11981                                DAG.getConstant(X86::COND_NE, MVT::i8),
11982                                InTrans);
11983    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11984    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11985                       Ret, SDValue(InTrans.getNode(), 1));
11986  }
11987  }
11988}
11989
11990SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11991                                           SelectionDAG &DAG) const {
11992  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11993  MFI->setReturnAddressIsTaken(true);
11994
11995  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11996  SDLoc dl(Op);
11997  EVT PtrVT = getPointerTy();
11998
11999  if (Depth > 0) {
12000    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12001    const X86RegisterInfo *RegInfo =
12002      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12003    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
12004    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12005                       DAG.getNode(ISD::ADD, dl, PtrVT,
12006                                   FrameAddr, Offset),
12007                       MachinePointerInfo(), false, false, false, 0);
12008  }
12009
12010  // Just load the return address.
12011  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
12012  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12013                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
12014}
12015
12016SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
12017  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12018  MFI->setFrameAddressIsTaken(true);
12019
12020  EVT VT = Op.getValueType();
12021  SDLoc dl(Op);  // FIXME probably not meaningful
12022  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12023  const X86RegisterInfo *RegInfo =
12024    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12025  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12026  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
12027          (FrameReg == X86::EBP && VT == MVT::i32)) &&
12028         "Invalid Frame Register!");
12029  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
12030  while (Depth--)
12031    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
12032                            MachinePointerInfo(),
12033                            false, false, false, 0);
12034  return FrameAddr;
12035}
12036
12037SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
12038                                                     SelectionDAG &DAG) const {
12039  const X86RegisterInfo *RegInfo =
12040    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12041  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
12042}
12043
12044SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
12045  SDValue Chain     = Op.getOperand(0);
12046  SDValue Offset    = Op.getOperand(1);
12047  SDValue Handler   = Op.getOperand(2);
12048  SDLoc dl      (Op);
12049
12050  EVT PtrVT = getPointerTy();
12051  const X86RegisterInfo *RegInfo =
12052    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12053  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12054  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
12055          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
12056         "Invalid Frame Register!");
12057  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
12058  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
12059
12060  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
12061                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
12062  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
12063  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
12064                       false, false, 0);
12065  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
12066
12067  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
12068                     DAG.getRegister(StoreAddrReg, PtrVT));
12069}
12070
12071SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
12072                                               SelectionDAG &DAG) const {
12073  SDLoc DL(Op);
12074  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
12075                     DAG.getVTList(MVT::i32, MVT::Other),
12076                     Op.getOperand(0), Op.getOperand(1));
12077}
12078
12079SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
12080                                                SelectionDAG &DAG) const {
12081  SDLoc DL(Op);
12082  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
12083                     Op.getOperand(0), Op.getOperand(1));
12084}
12085
12086static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
12087  return Op.getOperand(0);
12088}
12089
12090SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
12091                                                SelectionDAG &DAG) const {
12092  SDValue Root = Op.getOperand(0);
12093  SDValue Trmp = Op.getOperand(1); // trampoline
12094  SDValue FPtr = Op.getOperand(2); // nested function
12095  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
12096  SDLoc dl (Op);
12097
12098  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
12099  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12100
12101  if (Subtarget->is64Bit()) {
12102    SDValue OutChains[6];
12103
12104    // Large code-model.
12105    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
12106    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
12107
12108    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
12109    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
12110
12111    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
12112
12113    // Load the pointer to the nested function into R11.
12114    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
12115    SDValue Addr = Trmp;
12116    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12117                                Addr, MachinePointerInfo(TrmpAddr),
12118                                false, false, 0);
12119
12120    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12121                       DAG.getConstant(2, MVT::i64));
12122    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
12123                                MachinePointerInfo(TrmpAddr, 2),
12124                                false, false, 2);
12125
12126    // Load the 'nest' parameter value into R10.
12127    // R10 is specified in X86CallingConv.td
12128    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
12129    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12130                       DAG.getConstant(10, MVT::i64));
12131    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12132                                Addr, MachinePointerInfo(TrmpAddr, 10),
12133                                false, false, 0);
12134
12135    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12136                       DAG.getConstant(12, MVT::i64));
12137    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
12138                                MachinePointerInfo(TrmpAddr, 12),
12139                                false, false, 2);
12140
12141    // Jump to the nested function.
12142    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
12143    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12144                       DAG.getConstant(20, MVT::i64));
12145    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12146                                Addr, MachinePointerInfo(TrmpAddr, 20),
12147                                false, false, 0);
12148
12149    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
12150    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12151                       DAG.getConstant(22, MVT::i64));
12152    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
12153                                MachinePointerInfo(TrmpAddr, 22),
12154                                false, false, 0);
12155
12156    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
12157  } else {
12158    const Function *Func =
12159      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
12160    CallingConv::ID CC = Func->getCallingConv();
12161    unsigned NestReg;
12162
12163    switch (CC) {
12164    default:
12165      llvm_unreachable("Unsupported calling convention");
12166    case CallingConv::C:
12167    case CallingConv::X86_StdCall: {
12168      // Pass 'nest' parameter in ECX.
12169      // Must be kept in sync with X86CallingConv.td
12170      NestReg = X86::ECX;
12171
12172      // Check that ECX wasn't needed by an 'inreg' parameter.
12173      FunctionType *FTy = Func->getFunctionType();
12174      const AttributeSet &Attrs = Func->getAttributes();
12175
12176      if (!Attrs.isEmpty() && !Func->isVarArg()) {
12177        unsigned InRegCount = 0;
12178        unsigned Idx = 1;
12179
12180        for (FunctionType::param_iterator I = FTy->param_begin(),
12181             E = FTy->param_end(); I != E; ++I, ++Idx)
12182          if (Attrs.hasAttribute(Idx, Attribute::InReg))
12183            // FIXME: should only count parameters that are lowered to integers.
12184            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
12185
12186        if (InRegCount > 2) {
12187          report_fatal_error("Nest register in use - reduce number of inreg"
12188                             " parameters!");
12189        }
12190      }
12191      break;
12192    }
12193    case CallingConv::X86_FastCall:
12194    case CallingConv::X86_ThisCall:
12195    case CallingConv::Fast:
12196      // Pass 'nest' parameter in EAX.
12197      // Must be kept in sync with X86CallingConv.td
12198      NestReg = X86::EAX;
12199      break;
12200    }
12201
12202    SDValue OutChains[4];
12203    SDValue Addr, Disp;
12204
12205    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12206                       DAG.getConstant(10, MVT::i32));
12207    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
12208
12209    // This is storing the opcode for MOV32ri.
12210    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
12211    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
12212    OutChains[0] = DAG.getStore(Root, dl,
12213                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
12214                                Trmp, MachinePointerInfo(TrmpAddr),
12215                                false, false, 0);
12216
12217    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12218                       DAG.getConstant(1, MVT::i32));
12219    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
12220                                MachinePointerInfo(TrmpAddr, 1),
12221                                false, false, 1);
12222
12223    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
12224    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12225                       DAG.getConstant(5, MVT::i32));
12226    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
12227                                MachinePointerInfo(TrmpAddr, 5),
12228                                false, false, 1);
12229
12230    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12231                       DAG.getConstant(6, MVT::i32));
12232    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
12233                                MachinePointerInfo(TrmpAddr, 6),
12234                                false, false, 1);
12235
12236    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
12237  }
12238}
12239
12240SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
12241                                            SelectionDAG &DAG) const {
12242  /*
12243   The rounding mode is in bits 11:10 of FPSR, and has the following
12244   settings:
12245     00 Round to nearest
12246     01 Round to -inf
12247     10 Round to +inf
12248     11 Round to 0
12249
12250  FLT_ROUNDS, on the other hand, expects the following:
12251    -1 Undefined
12252     0 Round to 0
12253     1 Round to nearest
12254     2 Round to +inf
12255     3 Round to -inf
12256
12257  To perform the conversion, we do:
12258    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
12259  */
12260
12261  MachineFunction &MF = DAG.getMachineFunction();
12262  const TargetMachine &TM = MF.getTarget();
12263  const TargetFrameLowering &TFI = *TM.getFrameLowering();
12264  unsigned StackAlignment = TFI.getStackAlignment();
12265  EVT VT = Op.getValueType();
12266  SDLoc DL(Op);
12267
12268  // Save FP Control Word to stack slot
12269  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
12270  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12271
12272  MachineMemOperand *MMO =
12273   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12274                           MachineMemOperand::MOStore, 2, 2);
12275
12276  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
12277  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
12278                                          DAG.getVTList(MVT::Other),
12279                                          Ops, array_lengthof(Ops), MVT::i16,
12280                                          MMO);
12281
12282  // Load FP Control Word from stack slot
12283  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
12284                            MachinePointerInfo(), false, false, false, 0);
12285
12286  // Transform as necessary
12287  SDValue CWD1 =
12288    DAG.getNode(ISD::SRL, DL, MVT::i16,
12289                DAG.getNode(ISD::AND, DL, MVT::i16,
12290                            CWD, DAG.getConstant(0x800, MVT::i16)),
12291                DAG.getConstant(11, MVT::i8));
12292  SDValue CWD2 =
12293    DAG.getNode(ISD::SRL, DL, MVT::i16,
12294                DAG.getNode(ISD::AND, DL, MVT::i16,
12295                            CWD, DAG.getConstant(0x400, MVT::i16)),
12296                DAG.getConstant(9, MVT::i8));
12297
12298  SDValue RetVal =
12299    DAG.getNode(ISD::AND, DL, MVT::i16,
12300                DAG.getNode(ISD::ADD, DL, MVT::i16,
12301                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
12302                            DAG.getConstant(1, MVT::i16)),
12303                DAG.getConstant(3, MVT::i16));
12304
12305  return DAG.getNode((VT.getSizeInBits() < 16 ?
12306                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
12307}
12308
12309static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
12310  EVT VT = Op.getValueType();
12311  EVT OpVT = VT;
12312  unsigned NumBits = VT.getSizeInBits();
12313  SDLoc dl(Op);
12314
12315  Op = Op.getOperand(0);
12316  if (VT == MVT::i8) {
12317    // Zero extend to i32 since there is not an i8 bsr.
12318    OpVT = MVT::i32;
12319    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12320  }
12321
12322  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
12323  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12324  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12325
12326  // If src is zero (i.e. bsr sets ZF), returns NumBits.
12327  SDValue Ops[] = {
12328    Op,
12329    DAG.getConstant(NumBits+NumBits-1, OpVT),
12330    DAG.getConstant(X86::COND_E, MVT::i8),
12331    Op.getValue(1)
12332  };
12333  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
12334
12335  // Finally xor with NumBits-1.
12336  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12337
12338  if (VT == MVT::i8)
12339    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12340  return Op;
12341}
12342
12343static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
12344  EVT VT = Op.getValueType();
12345  EVT OpVT = VT;
12346  unsigned NumBits = VT.getSizeInBits();
12347  SDLoc dl(Op);
12348
12349  Op = Op.getOperand(0);
12350  if (VT == MVT::i8) {
12351    // Zero extend to i32 since there is not an i8 bsr.
12352    OpVT = MVT::i32;
12353    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12354  }
12355
12356  // Issue a bsr (scan bits in reverse).
12357  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12358  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12359
12360  // And xor with NumBits-1.
12361  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12362
12363  if (VT == MVT::i8)
12364    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12365  return Op;
12366}
12367
12368static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
12369  EVT VT = Op.getValueType();
12370  unsigned NumBits = VT.getSizeInBits();
12371  SDLoc dl(Op);
12372  Op = Op.getOperand(0);
12373
12374  // Issue a bsf (scan bits forward) which also sets EFLAGS.
12375  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12376  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
12377
12378  // If src is zero (i.e. bsf sets ZF), returns NumBits.
12379  SDValue Ops[] = {
12380    Op,
12381    DAG.getConstant(NumBits, VT),
12382    DAG.getConstant(X86::COND_E, MVT::i8),
12383    Op.getValue(1)
12384  };
12385  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
12386}
12387
12388// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
12389// ones, and then concatenate the result back.
12390static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
12391  EVT VT = Op.getValueType();
12392
12393  assert(VT.is256BitVector() && VT.isInteger() &&
12394         "Unsupported value type for operation");
12395
12396  unsigned NumElems = VT.getVectorNumElements();
12397  SDLoc dl(Op);
12398
12399  // Extract the LHS vectors
12400  SDValue LHS = Op.getOperand(0);
12401  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12402  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12403
12404  // Extract the RHS vectors
12405  SDValue RHS = Op.getOperand(1);
12406  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12407  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12408
12409  MVT EltVT = VT.getVectorElementType().getSimpleVT();
12410  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12411
12412  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12413                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
12414                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
12415}
12416
12417static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
12418  assert(Op.getValueType().is256BitVector() &&
12419         Op.getValueType().isInteger() &&
12420         "Only handle AVX 256-bit vector integer operation");
12421  return Lower256IntArith(Op, DAG);
12422}
12423
12424static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
12425  assert(Op.getValueType().is256BitVector() &&
12426         Op.getValueType().isInteger() &&
12427         "Only handle AVX 256-bit vector integer operation");
12428  return Lower256IntArith(Op, DAG);
12429}
12430
12431static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
12432                        SelectionDAG &DAG) {
12433  SDLoc dl(Op);
12434  EVT VT = Op.getValueType();
12435
12436  // Decompose 256-bit ops into smaller 128-bit ops.
12437  if (VT.is256BitVector() && !Subtarget->hasInt256())
12438    return Lower256IntArith(Op, DAG);
12439
12440  SDValue A = Op.getOperand(0);
12441  SDValue B = Op.getOperand(1);
12442
12443  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
12444  if (VT == MVT::v4i32) {
12445    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
12446           "Should not custom lower when pmuldq is available!");
12447
12448    // Extract the odd parts.
12449    static const int UnpackMask[] = { 1, -1, 3, -1 };
12450    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
12451    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
12452
12453    // Multiply the even parts.
12454    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
12455    // Now multiply odd parts.
12456    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
12457
12458    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
12459    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
12460
12461    // Merge the two vectors back together with a shuffle. This expands into 2
12462    // shuffles.
12463    static const int ShufMask[] = { 0, 4, 2, 6 };
12464    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
12465  }
12466
12467  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
12468         "Only know how to lower V2I64/V4I64/V8I64 multiply");
12469
12470  //  Ahi = psrlqi(a, 32);
12471  //  Bhi = psrlqi(b, 32);
12472  //
12473  //  AloBlo = pmuludq(a, b);
12474  //  AloBhi = pmuludq(a, Bhi);
12475  //  AhiBlo = pmuludq(Ahi, b);
12476
12477  //  AloBhi = psllqi(AloBhi, 32);
12478  //  AhiBlo = psllqi(AhiBlo, 32);
12479  //  return AloBlo + AloBhi + AhiBlo;
12480
12481  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
12482  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
12483
12484  // Bit cast to 32-bit vectors for MULUDQ
12485  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
12486                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
12487  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
12488  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
12489  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
12490  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
12491
12492  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
12493  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
12494  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
12495
12496  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
12497  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
12498
12499  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
12500  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
12501}
12502
12503static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
12504  EVT VT = Op.getValueType();
12505  EVT EltTy = VT.getVectorElementType();
12506  unsigned NumElts = VT.getVectorNumElements();
12507  SDValue N0 = Op.getOperand(0);
12508  SDLoc dl(Op);
12509
12510  // Lower sdiv X, pow2-const.
12511  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
12512  if (!C)
12513    return SDValue();
12514
12515  APInt SplatValue, SplatUndef;
12516  unsigned SplatBitSize;
12517  bool HasAnyUndefs;
12518  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
12519                          HasAnyUndefs) ||
12520      EltTy.getSizeInBits() < SplatBitSize)
12521    return SDValue();
12522
12523  if ((SplatValue != 0) &&
12524      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
12525    unsigned Lg2 = SplatValue.countTrailingZeros();
12526    // Splat the sign bit.
12527    SmallVector<SDValue, 16> Sz(NumElts,
12528                                DAG.getConstant(EltTy.getSizeInBits() - 1,
12529                                                EltTy));
12530    SDValue SGN = DAG.getNode(ISD::SRA, dl, VT, N0,
12531                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Sz[0],
12532                                          NumElts));
12533    // Add (N0 < 0) ? abs2 - 1 : 0;
12534    SmallVector<SDValue, 16> Amt(NumElts,
12535                                 DAG.getConstant(EltTy.getSizeInBits() - Lg2,
12536                                                 EltTy));
12537    SDValue SRL = DAG.getNode(ISD::SRL, dl, VT, SGN,
12538                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Amt[0],
12539                                          NumElts));
12540    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
12541    SmallVector<SDValue, 16> Lg2Amt(NumElts, DAG.getConstant(Lg2, EltTy));
12542    SDValue SRA = DAG.getNode(ISD::SRA, dl, VT, ADD,
12543                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Lg2Amt[0],
12544                                          NumElts));
12545
12546    // If we're dividing by a positive value, we're done.  Otherwise, we must
12547    // negate the result.
12548    if (SplatValue.isNonNegative())
12549      return SRA;
12550
12551    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
12552    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
12553    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
12554  }
12555  return SDValue();
12556}
12557
12558static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
12559                                         const X86Subtarget *Subtarget) {
12560  EVT VT = Op.getValueType();
12561  SDLoc dl(Op);
12562  SDValue R = Op.getOperand(0);
12563  SDValue Amt = Op.getOperand(1);
12564
12565  // Optimize shl/srl/sra with constant shift amount.
12566  if (isSplatVector(Amt.getNode())) {
12567    SDValue SclrAmt = Amt->getOperand(0);
12568    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
12569      uint64_t ShiftAmt = C->getZExtValue();
12570
12571      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
12572          (Subtarget->hasInt256() &&
12573           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12574          (Subtarget->hasAVX512() &&
12575           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12576        if (Op.getOpcode() == ISD::SHL)
12577          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12578                                            DAG);
12579        if (Op.getOpcode() == ISD::SRL)
12580          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12581                                            DAG);
12582        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
12583          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12584                                            DAG);
12585      }
12586
12587      if (VT == MVT::v16i8) {
12588        if (Op.getOpcode() == ISD::SHL) {
12589          // Make a large shift.
12590          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12591                                                   MVT::v8i16, R, ShiftAmt,
12592                                                   DAG);
12593          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12594          // Zero out the rightmost bits.
12595          SmallVector<SDValue, 16> V(16,
12596                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12597                                                     MVT::i8));
12598          return DAG.getNode(ISD::AND, dl, VT, SHL,
12599                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12600        }
12601        if (Op.getOpcode() == ISD::SRL) {
12602          // Make a large shift.
12603          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12604                                                   MVT::v8i16, R, ShiftAmt,
12605                                                   DAG);
12606          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12607          // Zero out the leftmost bits.
12608          SmallVector<SDValue, 16> V(16,
12609                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12610                                                     MVT::i8));
12611          return DAG.getNode(ISD::AND, dl, VT, SRL,
12612                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12613        }
12614        if (Op.getOpcode() == ISD::SRA) {
12615          if (ShiftAmt == 7) {
12616            // R s>> 7  ===  R s< 0
12617            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12618            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12619          }
12620
12621          // R s>> a === ((R u>> a) ^ m) - m
12622          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12623          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
12624                                                         MVT::i8));
12625          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
12626          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12627          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12628          return Res;
12629        }
12630        llvm_unreachable("Unknown shift opcode.");
12631      }
12632
12633      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
12634        if (Op.getOpcode() == ISD::SHL) {
12635          // Make a large shift.
12636          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12637                                                   MVT::v16i16, R, ShiftAmt,
12638                                                   DAG);
12639          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12640          // Zero out the rightmost bits.
12641          SmallVector<SDValue, 32> V(32,
12642                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12643                                                     MVT::i8));
12644          return DAG.getNode(ISD::AND, dl, VT, SHL,
12645                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12646        }
12647        if (Op.getOpcode() == ISD::SRL) {
12648          // Make a large shift.
12649          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12650                                                   MVT::v16i16, R, ShiftAmt,
12651                                                   DAG);
12652          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12653          // Zero out the leftmost bits.
12654          SmallVector<SDValue, 32> V(32,
12655                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12656                                                     MVT::i8));
12657          return DAG.getNode(ISD::AND, dl, VT, SRL,
12658                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12659        }
12660        if (Op.getOpcode() == ISD::SRA) {
12661          if (ShiftAmt == 7) {
12662            // R s>> 7  ===  R s< 0
12663            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12664            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12665          }
12666
12667          // R s>> a === ((R u>> a) ^ m) - m
12668          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12669          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
12670                                                         MVT::i8));
12671          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
12672          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12673          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12674          return Res;
12675        }
12676        llvm_unreachable("Unknown shift opcode.");
12677      }
12678    }
12679  }
12680
12681  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12682  if (!Subtarget->is64Bit() &&
12683      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
12684      Amt.getOpcode() == ISD::BITCAST &&
12685      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12686    Amt = Amt.getOperand(0);
12687    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12688                     VT.getVectorNumElements();
12689    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
12690    uint64_t ShiftAmt = 0;
12691    for (unsigned i = 0; i != Ratio; ++i) {
12692      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
12693      if (C == 0)
12694        return SDValue();
12695      // 6 == Log2(64)
12696      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
12697    }
12698    // Check remaining shift amounts.
12699    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12700      uint64_t ShAmt = 0;
12701      for (unsigned j = 0; j != Ratio; ++j) {
12702        ConstantSDNode *C =
12703          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
12704        if (C == 0)
12705          return SDValue();
12706        // 6 == Log2(64)
12707        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
12708      }
12709      if (ShAmt != ShiftAmt)
12710        return SDValue();
12711    }
12712    switch (Op.getOpcode()) {
12713    default:
12714      llvm_unreachable("Unknown shift opcode!");
12715    case ISD::SHL:
12716      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12717                                        DAG);
12718    case ISD::SRL:
12719      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12720                                        DAG);
12721    case ISD::SRA:
12722      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12723                                        DAG);
12724    }
12725  }
12726
12727  return SDValue();
12728}
12729
12730static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
12731                                        const X86Subtarget* Subtarget) {
12732  EVT VT = Op.getValueType();
12733  SDLoc dl(Op);
12734  SDValue R = Op.getOperand(0);
12735  SDValue Amt = Op.getOperand(1);
12736
12737  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
12738      VT == MVT::v4i32 || VT == MVT::v8i16 ||
12739      (Subtarget->hasInt256() &&
12740       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
12741        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12742       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12743    SDValue BaseShAmt;
12744    EVT EltVT = VT.getVectorElementType();
12745
12746    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12747      unsigned NumElts = VT.getVectorNumElements();
12748      unsigned i, j;
12749      for (i = 0; i != NumElts; ++i) {
12750        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
12751          continue;
12752        break;
12753      }
12754      for (j = i; j != NumElts; ++j) {
12755        SDValue Arg = Amt.getOperand(j);
12756        if (Arg.getOpcode() == ISD::UNDEF) continue;
12757        if (Arg != Amt.getOperand(i))
12758          break;
12759      }
12760      if (i != NumElts && j == NumElts)
12761        BaseShAmt = Amt.getOperand(i);
12762    } else {
12763      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12764        Amt = Amt.getOperand(0);
12765      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
12766               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
12767        SDValue InVec = Amt.getOperand(0);
12768        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12769          unsigned NumElts = InVec.getValueType().getVectorNumElements();
12770          unsigned i = 0;
12771          for (; i != NumElts; ++i) {
12772            SDValue Arg = InVec.getOperand(i);
12773            if (Arg.getOpcode() == ISD::UNDEF) continue;
12774            BaseShAmt = Arg;
12775            break;
12776          }
12777        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12778           if (ConstantSDNode *C =
12779               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12780             unsigned SplatIdx =
12781               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
12782             if (C->getZExtValue() == SplatIdx)
12783               BaseShAmt = InVec.getOperand(1);
12784           }
12785        }
12786        if (BaseShAmt.getNode() == 0)
12787          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
12788                                  DAG.getIntPtrConstant(0));
12789      }
12790    }
12791
12792    if (BaseShAmt.getNode()) {
12793      if (EltVT.bitsGT(MVT::i32))
12794        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
12795      else if (EltVT.bitsLT(MVT::i32))
12796        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
12797
12798      switch (Op.getOpcode()) {
12799      default:
12800        llvm_unreachable("Unknown shift opcode!");
12801      case ISD::SHL:
12802        switch (VT.getSimpleVT().SimpleTy) {
12803        default: return SDValue();
12804        case MVT::v2i64:
12805        case MVT::v4i32:
12806        case MVT::v8i16:
12807        case MVT::v4i64:
12808        case MVT::v8i32:
12809        case MVT::v16i16:
12810        case MVT::v16i32:
12811        case MVT::v8i64:
12812          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
12813        }
12814      case ISD::SRA:
12815        switch (VT.getSimpleVT().SimpleTy) {
12816        default: return SDValue();
12817        case MVT::v4i32:
12818        case MVT::v8i16:
12819        case MVT::v8i32:
12820        case MVT::v16i16:
12821        case MVT::v16i32:
12822        case MVT::v8i64:
12823          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
12824        }
12825      case ISD::SRL:
12826        switch (VT.getSimpleVT().SimpleTy) {
12827        default: return SDValue();
12828        case MVT::v2i64:
12829        case MVT::v4i32:
12830        case MVT::v8i16:
12831        case MVT::v4i64:
12832        case MVT::v8i32:
12833        case MVT::v16i16:
12834        case MVT::v16i32:
12835        case MVT::v8i64:
12836          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
12837        }
12838      }
12839    }
12840  }
12841
12842  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12843  if (!Subtarget->is64Bit() &&
12844      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
12845      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
12846      Amt.getOpcode() == ISD::BITCAST &&
12847      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12848    Amt = Amt.getOperand(0);
12849    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12850                     VT.getVectorNumElements();
12851    std::vector<SDValue> Vals(Ratio);
12852    for (unsigned i = 0; i != Ratio; ++i)
12853      Vals[i] = Amt.getOperand(i);
12854    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12855      for (unsigned j = 0; j != Ratio; ++j)
12856        if (Vals[j] != Amt.getOperand(i + j))
12857          return SDValue();
12858    }
12859    switch (Op.getOpcode()) {
12860    default:
12861      llvm_unreachable("Unknown shift opcode!");
12862    case ISD::SHL:
12863      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
12864    case ISD::SRL:
12865      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
12866    case ISD::SRA:
12867      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
12868    }
12869  }
12870
12871  return SDValue();
12872}
12873
12874static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
12875                          SelectionDAG &DAG) {
12876
12877  EVT VT = Op.getValueType();
12878  SDLoc dl(Op);
12879  SDValue R = Op.getOperand(0);
12880  SDValue Amt = Op.getOperand(1);
12881  SDValue V;
12882
12883  if (!Subtarget->hasSSE2())
12884    return SDValue();
12885
12886  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
12887  if (V.getNode())
12888    return V;
12889
12890  V = LowerScalarVariableShift(Op, DAG, Subtarget);
12891  if (V.getNode())
12892      return V;
12893
12894  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
12895    return Op;
12896  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
12897  if (Subtarget->hasInt256()) {
12898    if (Op.getOpcode() == ISD::SRL &&
12899        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12900         VT == MVT::v4i64 || VT == MVT::v8i32))
12901      return Op;
12902    if (Op.getOpcode() == ISD::SHL &&
12903        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12904         VT == MVT::v4i64 || VT == MVT::v8i32))
12905      return Op;
12906    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
12907      return Op;
12908  }
12909
12910  // Lower SHL with variable shift amount.
12911  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
12912    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
12913
12914    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
12915    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
12916    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
12917    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
12918  }
12919  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
12920    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
12921
12922    // a = a << 5;
12923    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
12924    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
12925
12926    // Turn 'a' into a mask suitable for VSELECT
12927    SDValue VSelM = DAG.getConstant(0x80, VT);
12928    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12929    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12930
12931    SDValue CM1 = DAG.getConstant(0x0f, VT);
12932    SDValue CM2 = DAG.getConstant(0x3f, VT);
12933
12934    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
12935    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
12936    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
12937    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12938    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12939
12940    // a += a
12941    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12942    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12943    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12944
12945    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
12946    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
12947    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
12948    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12949    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12950
12951    // a += a
12952    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12953    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12954    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12955
12956    // return VSELECT(r, r+r, a);
12957    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12958                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12959    return R;
12960  }
12961
12962  // Decompose 256-bit shifts into smaller 128-bit shifts.
12963  if (VT.is256BitVector()) {
12964    unsigned NumElems = VT.getVectorNumElements();
12965    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12966    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12967
12968    // Extract the two vectors
12969    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12970    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12971
12972    // Recreate the shift amount vectors
12973    SDValue Amt1, Amt2;
12974    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12975      // Constant shift amount
12976      SmallVector<SDValue, 4> Amt1Csts;
12977      SmallVector<SDValue, 4> Amt2Csts;
12978      for (unsigned i = 0; i != NumElems/2; ++i)
12979        Amt1Csts.push_back(Amt->getOperand(i));
12980      for (unsigned i = NumElems/2; i != NumElems; ++i)
12981        Amt2Csts.push_back(Amt->getOperand(i));
12982
12983      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12984                                 &Amt1Csts[0], NumElems/2);
12985      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12986                                 &Amt2Csts[0], NumElems/2);
12987    } else {
12988      // Variable shift amount
12989      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
12990      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
12991    }
12992
12993    // Issue new vector shifts for the smaller types
12994    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
12995    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
12996
12997    // Concatenate the result back
12998    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
12999  }
13000
13001  return SDValue();
13002}
13003
13004static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
13005  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
13006  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
13007  // looks for this combo and may remove the "setcc" instruction if the "setcc"
13008  // has only one use.
13009  SDNode *N = Op.getNode();
13010  SDValue LHS = N->getOperand(0);
13011  SDValue RHS = N->getOperand(1);
13012  unsigned BaseOp = 0;
13013  unsigned Cond = 0;
13014  SDLoc DL(Op);
13015  switch (Op.getOpcode()) {
13016  default: llvm_unreachable("Unknown ovf instruction!");
13017  case ISD::SADDO:
13018    // A subtract of one will be selected as a INC. Note that INC doesn't
13019    // set CF, so we can't do this for UADDO.
13020    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13021      if (C->isOne()) {
13022        BaseOp = X86ISD::INC;
13023        Cond = X86::COND_O;
13024        break;
13025      }
13026    BaseOp = X86ISD::ADD;
13027    Cond = X86::COND_O;
13028    break;
13029  case ISD::UADDO:
13030    BaseOp = X86ISD::ADD;
13031    Cond = X86::COND_B;
13032    break;
13033  case ISD::SSUBO:
13034    // A subtract of one will be selected as a DEC. Note that DEC doesn't
13035    // set CF, so we can't do this for USUBO.
13036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13037      if (C->isOne()) {
13038        BaseOp = X86ISD::DEC;
13039        Cond = X86::COND_O;
13040        break;
13041      }
13042    BaseOp = X86ISD::SUB;
13043    Cond = X86::COND_O;
13044    break;
13045  case ISD::USUBO:
13046    BaseOp = X86ISD::SUB;
13047    Cond = X86::COND_B;
13048    break;
13049  case ISD::SMULO:
13050    BaseOp = X86ISD::SMUL;
13051    Cond = X86::COND_O;
13052    break;
13053  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
13054    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
13055                                 MVT::i32);
13056    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
13057
13058    SDValue SetCC =
13059      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13060                  DAG.getConstant(X86::COND_O, MVT::i32),
13061                  SDValue(Sum.getNode(), 2));
13062
13063    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13064  }
13065  }
13066
13067  // Also sets EFLAGS.
13068  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
13069  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
13070
13071  SDValue SetCC =
13072    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
13073                DAG.getConstant(Cond, MVT::i32),
13074                SDValue(Sum.getNode(), 1));
13075
13076  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13077}
13078
13079SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
13080                                                  SelectionDAG &DAG) const {
13081  SDLoc dl(Op);
13082  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
13083  EVT VT = Op.getValueType();
13084
13085  if (!Subtarget->hasSSE2() || !VT.isVector())
13086    return SDValue();
13087
13088  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
13089                      ExtraVT.getScalarType().getSizeInBits();
13090
13091  switch (VT.getSimpleVT().SimpleTy) {
13092    default: return SDValue();
13093    case MVT::v8i32:
13094    case MVT::v16i16:
13095      if (!Subtarget->hasFp256())
13096        return SDValue();
13097      if (!Subtarget->hasInt256()) {
13098        // needs to be split
13099        unsigned NumElems = VT.getVectorNumElements();
13100
13101        // Extract the LHS vectors
13102        SDValue LHS = Op.getOperand(0);
13103        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
13104        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
13105
13106        MVT EltVT = VT.getVectorElementType().getSimpleVT();
13107        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
13108
13109        EVT ExtraEltVT = ExtraVT.getVectorElementType();
13110        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
13111        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
13112                                   ExtraNumElems/2);
13113        SDValue Extra = DAG.getValueType(ExtraVT);
13114
13115        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
13116        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
13117
13118        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
13119      }
13120      // fall through
13121    case MVT::v4i32:
13122    case MVT::v8i16: {
13123      SDValue Op0 = Op.getOperand(0);
13124      SDValue Op00 = Op0.getOperand(0);
13125      SDValue Tmp1;
13126      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
13127      if (Op0.getOpcode() == ISD::BITCAST &&
13128          Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
13129        // (sext (vzext x)) -> (vsext x)
13130        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
13131        if (Tmp1.getNode()) {
13132          EVT ExtraEltVT = ExtraVT.getVectorElementType();
13133          // This folding is only valid when the in-reg type is a vector of i8,
13134          // i16, or i32.
13135          if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
13136              ExtraEltVT == MVT::i32) {
13137            SDValue Tmp1Op0 = Tmp1.getOperand(0);
13138            assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
13139                   "This optimization is invalid without a VZEXT.");
13140            return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
13141          }
13142          Op0 = Tmp1;
13143        }
13144      }
13145
13146      // If the above didn't work, then just use Shift-Left + Shift-Right.
13147      Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
13148                                        DAG);
13149      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
13150                                        DAG);
13151    }
13152  }
13153}
13154
13155static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
13156                                 SelectionDAG &DAG) {
13157  SDLoc dl(Op);
13158  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
13159    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
13160  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
13161    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
13162
13163  // The only fence that needs an instruction is a sequentially-consistent
13164  // cross-thread fence.
13165  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
13166    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
13167    // no-sse2). There isn't any reason to disable it if the target processor
13168    // supports it.
13169    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
13170      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
13171
13172    SDValue Chain = Op.getOperand(0);
13173    SDValue Zero = DAG.getConstant(0, MVT::i32);
13174    SDValue Ops[] = {
13175      DAG.getRegister(X86::ESP, MVT::i32), // Base
13176      DAG.getTargetConstant(1, MVT::i8),   // Scale
13177      DAG.getRegister(0, MVT::i32),        // Index
13178      DAG.getTargetConstant(0, MVT::i32),  // Disp
13179      DAG.getRegister(0, MVT::i32),        // Segment.
13180      Zero,
13181      Chain
13182    };
13183    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
13184    return SDValue(Res, 0);
13185  }
13186
13187  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
13188  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
13189}
13190
13191static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
13192                             SelectionDAG &DAG) {
13193  EVT T = Op.getValueType();
13194  SDLoc DL(Op);
13195  unsigned Reg = 0;
13196  unsigned size = 0;
13197  switch(T.getSimpleVT().SimpleTy) {
13198  default: llvm_unreachable("Invalid value type!");
13199  case MVT::i8:  Reg = X86::AL;  size = 1; break;
13200  case MVT::i16: Reg = X86::AX;  size = 2; break;
13201  case MVT::i32: Reg = X86::EAX; size = 4; break;
13202  case MVT::i64:
13203    assert(Subtarget->is64Bit() && "Node not type legal!");
13204    Reg = X86::RAX; size = 8;
13205    break;
13206  }
13207  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
13208                                    Op.getOperand(2), SDValue());
13209  SDValue Ops[] = { cpIn.getValue(0),
13210                    Op.getOperand(1),
13211                    Op.getOperand(3),
13212                    DAG.getTargetConstant(size, MVT::i8),
13213                    cpIn.getValue(1) };
13214  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13215  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
13216  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
13217                                           Ops, array_lengthof(Ops), T, MMO);
13218  SDValue cpOut =
13219    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
13220  return cpOut;
13221}
13222
13223static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
13224                                     SelectionDAG &DAG) {
13225  assert(Subtarget->is64Bit() && "Result not type legalized?");
13226  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13227  SDValue TheChain = Op.getOperand(0);
13228  SDLoc dl(Op);
13229  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13230  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
13231  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
13232                                   rax.getValue(2));
13233  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
13234                            DAG.getConstant(32, MVT::i8));
13235  SDValue Ops[] = {
13236    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
13237    rdx.getValue(1)
13238  };
13239  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
13240}
13241
13242static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
13243                            SelectionDAG &DAG) {
13244  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
13245  MVT DstVT = Op.getSimpleValueType();
13246  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
13247         Subtarget->hasMMX() && "Unexpected custom BITCAST");
13248  assert((DstVT == MVT::i64 ||
13249          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
13250         "Unexpected custom BITCAST");
13251  // i64 <=> MMX conversions are Legal.
13252  if (SrcVT==MVT::i64 && DstVT.isVector())
13253    return Op;
13254  if (DstVT==MVT::i64 && SrcVT.isVector())
13255    return Op;
13256  // MMX <=> MMX conversions are Legal.
13257  if (SrcVT.isVector() && DstVT.isVector())
13258    return Op;
13259  // All other conversions need to be expanded.
13260  return SDValue();
13261}
13262
13263static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
13264  SDNode *Node = Op.getNode();
13265  SDLoc dl(Node);
13266  EVT T = Node->getValueType(0);
13267  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
13268                              DAG.getConstant(0, T), Node->getOperand(2));
13269  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
13270                       cast<AtomicSDNode>(Node)->getMemoryVT(),
13271                       Node->getOperand(0),
13272                       Node->getOperand(1), negOp,
13273                       cast<AtomicSDNode>(Node)->getSrcValue(),
13274                       cast<AtomicSDNode>(Node)->getAlignment(),
13275                       cast<AtomicSDNode>(Node)->getOrdering(),
13276                       cast<AtomicSDNode>(Node)->getSynchScope());
13277}
13278
13279static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
13280  SDNode *Node = Op.getNode();
13281  SDLoc dl(Node);
13282  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13283
13284  // Convert seq_cst store -> xchg
13285  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
13286  // FIXME: On 32-bit, store -> fist or movq would be more efficient
13287  //        (The only way to get a 16-byte store is cmpxchg16b)
13288  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
13289  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
13290      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13291    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
13292                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
13293                                 Node->getOperand(0),
13294                                 Node->getOperand(1), Node->getOperand(2),
13295                                 cast<AtomicSDNode>(Node)->getMemOperand(),
13296                                 cast<AtomicSDNode>(Node)->getOrdering(),
13297                                 cast<AtomicSDNode>(Node)->getSynchScope());
13298    return Swap.getValue(1);
13299  }
13300  // Other atomic stores have a simple pattern.
13301  return Op;
13302}
13303
13304static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
13305  EVT VT = Op.getNode()->getValueType(0);
13306
13307  // Let legalize expand this if it isn't a legal type yet.
13308  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13309    return SDValue();
13310
13311  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13312
13313  unsigned Opc;
13314  bool ExtraOp = false;
13315  switch (Op.getOpcode()) {
13316  default: llvm_unreachable("Invalid code");
13317  case ISD::ADDC: Opc = X86ISD::ADD; break;
13318  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
13319  case ISD::SUBC: Opc = X86ISD::SUB; break;
13320  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
13321  }
13322
13323  if (!ExtraOp)
13324    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13325                       Op.getOperand(1));
13326  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13327                     Op.getOperand(1), Op.getOperand(2));
13328}
13329
13330static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
13331                            SelectionDAG &DAG) {
13332  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
13333
13334  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
13335  // which returns the values as { float, float } (in XMM0) or
13336  // { double, double } (which is returned in XMM0, XMM1).
13337  SDLoc dl(Op);
13338  SDValue Arg = Op.getOperand(0);
13339  EVT ArgVT = Arg.getValueType();
13340  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13341
13342  TargetLowering::ArgListTy Args;
13343  TargetLowering::ArgListEntry Entry;
13344
13345  Entry.Node = Arg;
13346  Entry.Ty = ArgTy;
13347  Entry.isSExt = false;
13348  Entry.isZExt = false;
13349  Args.push_back(Entry);
13350
13351  bool isF64 = ArgVT == MVT::f64;
13352  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
13353  // the small struct {f32, f32} is returned in (eax, edx). For f64,
13354  // the results are returned via SRet in memory.
13355  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
13356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13357  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
13358
13359  Type *RetTy = isF64
13360    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
13361    : (Type*)VectorType::get(ArgTy, 4);
13362  TargetLowering::
13363    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
13364                         false, false, false, false, 0,
13365                         CallingConv::C, /*isTaillCall=*/false,
13366                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
13367                         Callee, Args, DAG, dl);
13368  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
13369
13370  if (isF64)
13371    // Returned in xmm0 and xmm1.
13372    return CallResult.first;
13373
13374  // Returned in bits 0:31 and 32:64 xmm0.
13375  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13376                               CallResult.first, DAG.getIntPtrConstant(0));
13377  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13378                               CallResult.first, DAG.getIntPtrConstant(1));
13379  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
13380  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
13381}
13382
13383/// LowerOperation - Provide custom lowering hooks for some operations.
13384///
13385SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
13386  switch (Op.getOpcode()) {
13387  default: llvm_unreachable("Should not custom lower this!");
13388  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
13389  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
13390  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
13391  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
13392  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
13393  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
13394  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
13395  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
13396  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
13397  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
13398  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
13399  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
13400  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
13401  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
13402  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
13403  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
13404  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
13405  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
13406  case ISD::SHL_PARTS:
13407  case ISD::SRA_PARTS:
13408  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
13409  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
13410  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
13411  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
13412  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
13413  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
13414  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
13415  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
13416  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
13417  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
13418  case ISD::FABS:               return LowerFABS(Op, DAG);
13419  case ISD::FNEG:               return LowerFNEG(Op, DAG);
13420  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
13421  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
13422  case ISD::SETCC:              return LowerSETCC(Op, DAG);
13423  case ISD::SELECT:             return LowerSELECT(Op, DAG);
13424  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
13425  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
13426  case ISD::VASTART:            return LowerVASTART(Op, DAG);
13427  case ISD::VAARG:              return LowerVAARG(Op, DAG);
13428  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
13429  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
13430  case ISD::INTRINSIC_VOID:
13431  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
13432  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
13433  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
13434  case ISD::FRAME_TO_ARGS_OFFSET:
13435                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
13436  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
13437  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
13438  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
13439  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
13440  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
13441  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
13442  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
13443  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
13444  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
13445  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
13446  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
13447  case ISD::SRA:
13448  case ISD::SRL:
13449  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
13450  case ISD::SADDO:
13451  case ISD::UADDO:
13452  case ISD::SSUBO:
13453  case ISD::USUBO:
13454  case ISD::SMULO:
13455  case ISD::UMULO:              return LowerXALUO(Op, DAG);
13456  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
13457  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
13458  case ISD::ADDC:
13459  case ISD::ADDE:
13460  case ISD::SUBC:
13461  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
13462  case ISD::ADD:                return LowerADD(Op, DAG);
13463  case ISD::SUB:                return LowerSUB(Op, DAG);
13464  case ISD::SDIV:               return LowerSDIV(Op, DAG);
13465  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
13466  }
13467}
13468
13469static void ReplaceATOMIC_LOAD(SDNode *Node,
13470                                  SmallVectorImpl<SDValue> &Results,
13471                                  SelectionDAG &DAG) {
13472  SDLoc dl(Node);
13473  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13474
13475  // Convert wide load -> cmpxchg8b/cmpxchg16b
13476  // FIXME: On 32-bit, load -> fild or movq would be more efficient
13477  //        (The only way to get a 16-byte load is cmpxchg16b)
13478  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
13479  SDValue Zero = DAG.getConstant(0, VT);
13480  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
13481                               Node->getOperand(0),
13482                               Node->getOperand(1), Zero, Zero,
13483                               cast<AtomicSDNode>(Node)->getMemOperand(),
13484                               cast<AtomicSDNode>(Node)->getOrdering(),
13485                               cast<AtomicSDNode>(Node)->getSynchScope());
13486  Results.push_back(Swap.getValue(0));
13487  Results.push_back(Swap.getValue(1));
13488}
13489
13490static void
13491ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
13492                        SelectionDAG &DAG, unsigned NewOp) {
13493  SDLoc dl(Node);
13494  assert (Node->getValueType(0) == MVT::i64 &&
13495          "Only know how to expand i64 atomics");
13496
13497  SDValue Chain = Node->getOperand(0);
13498  SDValue In1 = Node->getOperand(1);
13499  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13500                             Node->getOperand(2), DAG.getIntPtrConstant(0));
13501  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13502                             Node->getOperand(2), DAG.getIntPtrConstant(1));
13503  SDValue Ops[] = { Chain, In1, In2L, In2H };
13504  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
13505  SDValue Result =
13506    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
13507                            cast<MemSDNode>(Node)->getMemOperand());
13508  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
13509  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
13510  Results.push_back(Result.getValue(2));
13511}
13512
13513/// ReplaceNodeResults - Replace a node with an illegal result type
13514/// with a new node built out of custom code.
13515void X86TargetLowering::ReplaceNodeResults(SDNode *N,
13516                                           SmallVectorImpl<SDValue>&Results,
13517                                           SelectionDAG &DAG) const {
13518  SDLoc dl(N);
13519  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13520  switch (N->getOpcode()) {
13521  default:
13522    llvm_unreachable("Do not know how to custom type legalize this operation!");
13523  case ISD::SIGN_EXTEND_INREG:
13524  case ISD::ADDC:
13525  case ISD::ADDE:
13526  case ISD::SUBC:
13527  case ISD::SUBE:
13528    // We don't want to expand or promote these.
13529    return;
13530  case ISD::FP_TO_SINT:
13531  case ISD::FP_TO_UINT: {
13532    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
13533
13534    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
13535      return;
13536
13537    std::pair<SDValue,SDValue> Vals =
13538        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
13539    SDValue FIST = Vals.first, StackSlot = Vals.second;
13540    if (FIST.getNode() != 0) {
13541      EVT VT = N->getValueType(0);
13542      // Return a load from the stack slot.
13543      if (StackSlot.getNode() != 0)
13544        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
13545                                      MachinePointerInfo(),
13546                                      false, false, false, 0));
13547      else
13548        Results.push_back(FIST);
13549    }
13550    return;
13551  }
13552  case ISD::UINT_TO_FP: {
13553    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
13554    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
13555        N->getValueType(0) != MVT::v2f32)
13556      return;
13557    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
13558                                 N->getOperand(0));
13559    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
13560                                     MVT::f64);
13561    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
13562    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
13563                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
13564    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
13565    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
13566    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
13567    return;
13568  }
13569  case ISD::FP_ROUND: {
13570    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
13571        return;
13572    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
13573    Results.push_back(V);
13574    return;
13575  }
13576  case ISD::READCYCLECOUNTER: {
13577    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13578    SDValue TheChain = N->getOperand(0);
13579    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13580    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
13581                                     rd.getValue(1));
13582    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
13583                                     eax.getValue(2));
13584    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
13585    SDValue Ops[] = { eax, edx };
13586    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
13587                                  array_lengthof(Ops)));
13588    Results.push_back(edx.getValue(1));
13589    return;
13590  }
13591  case ISD::ATOMIC_CMP_SWAP: {
13592    EVT T = N->getValueType(0);
13593    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
13594    bool Regs64bit = T == MVT::i128;
13595    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
13596    SDValue cpInL, cpInH;
13597    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13598                        DAG.getConstant(0, HalfT));
13599    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13600                        DAG.getConstant(1, HalfT));
13601    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
13602                             Regs64bit ? X86::RAX : X86::EAX,
13603                             cpInL, SDValue());
13604    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
13605                             Regs64bit ? X86::RDX : X86::EDX,
13606                             cpInH, cpInL.getValue(1));
13607    SDValue swapInL, swapInH;
13608    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13609                          DAG.getConstant(0, HalfT));
13610    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13611                          DAG.getConstant(1, HalfT));
13612    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
13613                               Regs64bit ? X86::RBX : X86::EBX,
13614                               swapInL, cpInH.getValue(1));
13615    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
13616                               Regs64bit ? X86::RCX : X86::ECX,
13617                               swapInH, swapInL.getValue(1));
13618    SDValue Ops[] = { swapInH.getValue(0),
13619                      N->getOperand(1),
13620                      swapInH.getValue(1) };
13621    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13622    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
13623    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
13624                                  X86ISD::LCMPXCHG8_DAG;
13625    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
13626                                             Ops, array_lengthof(Ops), T, MMO);
13627    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
13628                                        Regs64bit ? X86::RAX : X86::EAX,
13629                                        HalfT, Result.getValue(1));
13630    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
13631                                        Regs64bit ? X86::RDX : X86::EDX,
13632                                        HalfT, cpOutL.getValue(2));
13633    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
13634    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
13635    Results.push_back(cpOutH.getValue(1));
13636    return;
13637  }
13638  case ISD::ATOMIC_LOAD_ADD:
13639  case ISD::ATOMIC_LOAD_AND:
13640  case ISD::ATOMIC_LOAD_NAND:
13641  case ISD::ATOMIC_LOAD_OR:
13642  case ISD::ATOMIC_LOAD_SUB:
13643  case ISD::ATOMIC_LOAD_XOR:
13644  case ISD::ATOMIC_LOAD_MAX:
13645  case ISD::ATOMIC_LOAD_MIN:
13646  case ISD::ATOMIC_LOAD_UMAX:
13647  case ISD::ATOMIC_LOAD_UMIN:
13648  case ISD::ATOMIC_SWAP: {
13649    unsigned Opc;
13650    switch (N->getOpcode()) {
13651    default: llvm_unreachable("Unexpected opcode");
13652    case ISD::ATOMIC_LOAD_ADD:
13653      Opc = X86ISD::ATOMADD64_DAG;
13654      break;
13655    case ISD::ATOMIC_LOAD_AND:
13656      Opc = X86ISD::ATOMAND64_DAG;
13657      break;
13658    case ISD::ATOMIC_LOAD_NAND:
13659      Opc = X86ISD::ATOMNAND64_DAG;
13660      break;
13661    case ISD::ATOMIC_LOAD_OR:
13662      Opc = X86ISD::ATOMOR64_DAG;
13663      break;
13664    case ISD::ATOMIC_LOAD_SUB:
13665      Opc = X86ISD::ATOMSUB64_DAG;
13666      break;
13667    case ISD::ATOMIC_LOAD_XOR:
13668      Opc = X86ISD::ATOMXOR64_DAG;
13669      break;
13670    case ISD::ATOMIC_LOAD_MAX:
13671      Opc = X86ISD::ATOMMAX64_DAG;
13672      break;
13673    case ISD::ATOMIC_LOAD_MIN:
13674      Opc = X86ISD::ATOMMIN64_DAG;
13675      break;
13676    case ISD::ATOMIC_LOAD_UMAX:
13677      Opc = X86ISD::ATOMUMAX64_DAG;
13678      break;
13679    case ISD::ATOMIC_LOAD_UMIN:
13680      Opc = X86ISD::ATOMUMIN64_DAG;
13681      break;
13682    case ISD::ATOMIC_SWAP:
13683      Opc = X86ISD::ATOMSWAP64_DAG;
13684      break;
13685    }
13686    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
13687    return;
13688  }
13689  case ISD::ATOMIC_LOAD:
13690    ReplaceATOMIC_LOAD(N, Results, DAG);
13691  }
13692}
13693
13694const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
13695  switch (Opcode) {
13696  default: return NULL;
13697  case X86ISD::BSF:                return "X86ISD::BSF";
13698  case X86ISD::BSR:                return "X86ISD::BSR";
13699  case X86ISD::SHLD:               return "X86ISD::SHLD";
13700  case X86ISD::SHRD:               return "X86ISD::SHRD";
13701  case X86ISD::FAND:               return "X86ISD::FAND";
13702  case X86ISD::FANDN:              return "X86ISD::FANDN";
13703  case X86ISD::FOR:                return "X86ISD::FOR";
13704  case X86ISD::FXOR:               return "X86ISD::FXOR";
13705  case X86ISD::FSRL:               return "X86ISD::FSRL";
13706  case X86ISD::FILD:               return "X86ISD::FILD";
13707  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
13708  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
13709  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
13710  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
13711  case X86ISD::FLD:                return "X86ISD::FLD";
13712  case X86ISD::FST:                return "X86ISD::FST";
13713  case X86ISD::CALL:               return "X86ISD::CALL";
13714  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
13715  case X86ISD::BT:                 return "X86ISD::BT";
13716  case X86ISD::CMP:                return "X86ISD::CMP";
13717  case X86ISD::COMI:               return "X86ISD::COMI";
13718  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
13719  case X86ISD::CMPM:               return "X86ISD::CMPM";
13720  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
13721  case X86ISD::SETCC:              return "X86ISD::SETCC";
13722  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
13723  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
13724  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
13725  case X86ISD::CMOV:               return "X86ISD::CMOV";
13726  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
13727  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
13728  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
13729  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
13730  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
13731  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
13732  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
13733  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
13734  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
13735  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
13736  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
13737  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
13738  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
13739  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
13740  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
13741  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
13742  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
13743  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
13744  case X86ISD::HADD:               return "X86ISD::HADD";
13745  case X86ISD::HSUB:               return "X86ISD::HSUB";
13746  case X86ISD::FHADD:              return "X86ISD::FHADD";
13747  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
13748  case X86ISD::UMAX:               return "X86ISD::UMAX";
13749  case X86ISD::UMIN:               return "X86ISD::UMIN";
13750  case X86ISD::SMAX:               return "X86ISD::SMAX";
13751  case X86ISD::SMIN:               return "X86ISD::SMIN";
13752  case X86ISD::FMAX:               return "X86ISD::FMAX";
13753  case X86ISD::FMIN:               return "X86ISD::FMIN";
13754  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
13755  case X86ISD::FMINC:              return "X86ISD::FMINC";
13756  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
13757  case X86ISD::FRCP:               return "X86ISD::FRCP";
13758  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
13759  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
13760  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
13761  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
13762  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
13763  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
13764  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
13765  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
13766  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
13767  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
13768  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
13769  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
13770  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
13771  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
13772  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
13773  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
13774  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
13775  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
13776  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
13777  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
13778  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
13779  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
13780  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
13781  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
13782  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
13783  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
13784  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
13785  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
13786  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
13787  case X86ISD::VSHL:               return "X86ISD::VSHL";
13788  case X86ISD::VSRL:               return "X86ISD::VSRL";
13789  case X86ISD::VSRA:               return "X86ISD::VSRA";
13790  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
13791  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
13792  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
13793  case X86ISD::CMPP:               return "X86ISD::CMPP";
13794  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
13795  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
13796  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
13797  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
13798  case X86ISD::ADD:                return "X86ISD::ADD";
13799  case X86ISD::SUB:                return "X86ISD::SUB";
13800  case X86ISD::ADC:                return "X86ISD::ADC";
13801  case X86ISD::SBB:                return "X86ISD::SBB";
13802  case X86ISD::SMUL:               return "X86ISD::SMUL";
13803  case X86ISD::UMUL:               return "X86ISD::UMUL";
13804  case X86ISD::INC:                return "X86ISD::INC";
13805  case X86ISD::DEC:                return "X86ISD::DEC";
13806  case X86ISD::OR:                 return "X86ISD::OR";
13807  case X86ISD::XOR:                return "X86ISD::XOR";
13808  case X86ISD::AND:                return "X86ISD::AND";
13809  case X86ISD::BLSI:               return "X86ISD::BLSI";
13810  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
13811  case X86ISD::BLSR:               return "X86ISD::BLSR";
13812  case X86ISD::BZHI:               return "X86ISD::BZHI";
13813  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
13814  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
13815  case X86ISD::PTEST:              return "X86ISD::PTEST";
13816  case X86ISD::TESTP:              return "X86ISD::TESTP";
13817  case X86ISD::TESTM:              return "X86ISD::TESTM";
13818  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
13819  case X86ISD::KTEST:              return "X86ISD::KTEST";
13820  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
13821  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
13822  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
13823  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
13824  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
13825  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
13826  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
13827  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
13828  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
13829  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
13830  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
13831  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
13832  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
13833  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
13834  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
13835  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
13836  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
13837  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
13838  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
13839  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
13840  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
13841  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
13842  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
13843  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
13844  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
13845  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
13846  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
13847  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
13848  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
13849  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
13850  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
13851  case X86ISD::SAHF:               return "X86ISD::SAHF";
13852  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
13853  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
13854  case X86ISD::FMADD:              return "X86ISD::FMADD";
13855  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
13856  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
13857  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
13858  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
13859  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
13860  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
13861  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
13862  case X86ISD::XTEST:              return "X86ISD::XTEST";
13863  }
13864}
13865
13866// isLegalAddressingMode - Return true if the addressing mode represented
13867// by AM is legal for this target, for a load/store of the specified type.
13868bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
13869                                              Type *Ty) const {
13870  // X86 supports extremely general addressing modes.
13871  CodeModel::Model M = getTargetMachine().getCodeModel();
13872  Reloc::Model R = getTargetMachine().getRelocationModel();
13873
13874  // X86 allows a sign-extended 32-bit immediate field as a displacement.
13875  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
13876    return false;
13877
13878  if (AM.BaseGV) {
13879    unsigned GVFlags =
13880      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
13881
13882    // If a reference to this global requires an extra load, we can't fold it.
13883    if (isGlobalStubReference(GVFlags))
13884      return false;
13885
13886    // If BaseGV requires a register for the PIC base, we cannot also have a
13887    // BaseReg specified.
13888    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
13889      return false;
13890
13891    // If lower 4G is not available, then we must use rip-relative addressing.
13892    if ((M != CodeModel::Small || R != Reloc::Static) &&
13893        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
13894      return false;
13895  }
13896
13897  switch (AM.Scale) {
13898  case 0:
13899  case 1:
13900  case 2:
13901  case 4:
13902  case 8:
13903    // These scales always work.
13904    break;
13905  case 3:
13906  case 5:
13907  case 9:
13908    // These scales are formed with basereg+scalereg.  Only accept if there is
13909    // no basereg yet.
13910    if (AM.HasBaseReg)
13911      return false;
13912    break;
13913  default:  // Other stuff never works.
13914    return false;
13915  }
13916
13917  return true;
13918}
13919
13920bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13921  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13922    return false;
13923  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13924  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13925  return NumBits1 > NumBits2;
13926}
13927
13928bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13929  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13930    return false;
13931
13932  if (!isTypeLegal(EVT::getEVT(Ty1)))
13933    return false;
13934
13935  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13936
13937  // Assuming the caller doesn't have a zeroext or signext return parameter,
13938  // truncation all the way down to i1 is valid.
13939  return true;
13940}
13941
13942bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13943  return isInt<32>(Imm);
13944}
13945
13946bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
13947  // Can also use sub to handle negated immediates.
13948  return isInt<32>(Imm);
13949}
13950
13951bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13952  if (!VT1.isInteger() || !VT2.isInteger())
13953    return false;
13954  unsigned NumBits1 = VT1.getSizeInBits();
13955  unsigned NumBits2 = VT2.getSizeInBits();
13956  return NumBits1 > NumBits2;
13957}
13958
13959bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
13960  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13961  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
13962}
13963
13964bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
13965  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13966  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
13967}
13968
13969bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13970  EVT VT1 = Val.getValueType();
13971  if (isZExtFree(VT1, VT2))
13972    return true;
13973
13974  if (Val.getOpcode() != ISD::LOAD)
13975    return false;
13976
13977  if (!VT1.isSimple() || !VT1.isInteger() ||
13978      !VT2.isSimple() || !VT2.isInteger())
13979    return false;
13980
13981  switch (VT1.getSimpleVT().SimpleTy) {
13982  default: break;
13983  case MVT::i8:
13984  case MVT::i16:
13985  case MVT::i32:
13986    // X86 has 8, 16, and 32-bit zero-extending loads.
13987    return true;
13988  }
13989
13990  return false;
13991}
13992
13993bool
13994X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13995  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
13996    return false;
13997
13998  VT = VT.getScalarType();
13999
14000  if (!VT.isSimple())
14001    return false;
14002
14003  switch (VT.getSimpleVT().SimpleTy) {
14004  case MVT::f32:
14005  case MVT::f64:
14006    return true;
14007  default:
14008    break;
14009  }
14010
14011  return false;
14012}
14013
14014bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
14015  // i16 instructions are longer (0x66 prefix) and potentially slower.
14016  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
14017}
14018
14019/// isShuffleMaskLegal - Targets can use this to indicate that they only
14020/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
14021/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
14022/// are assumed to be legal.
14023bool
14024X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
14025                                      EVT VT) const {
14026  if (!VT.isSimple())
14027    return false;
14028
14029  MVT SVT = VT.getSimpleVT();
14030
14031  // Very little shuffling can be done for 64-bit vectors right now.
14032  if (VT.getSizeInBits() == 64)
14033    return false;
14034
14035  // FIXME: pshufb, blends, shifts.
14036  return (SVT.getVectorNumElements() == 2 ||
14037          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
14038          isMOVLMask(M, SVT) ||
14039          isSHUFPMask(M, SVT) ||
14040          isPSHUFDMask(M, SVT) ||
14041          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
14042          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
14043          isPALIGNRMask(M, SVT, Subtarget) ||
14044          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
14045          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
14046          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
14047          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
14048}
14049
14050bool
14051X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
14052                                          EVT VT) const {
14053  if (!VT.isSimple())
14054    return false;
14055
14056  MVT SVT = VT.getSimpleVT();
14057  unsigned NumElts = SVT.getVectorNumElements();
14058  // FIXME: This collection of masks seems suspect.
14059  if (NumElts == 2)
14060    return true;
14061  if (NumElts == 4 && SVT.is128BitVector()) {
14062    return (isMOVLMask(Mask, SVT)  ||
14063            isCommutedMOVLMask(Mask, SVT, true) ||
14064            isSHUFPMask(Mask, SVT) ||
14065            isSHUFPMask(Mask, SVT, /* Commuted */ true));
14066  }
14067  return false;
14068}
14069
14070//===----------------------------------------------------------------------===//
14071//                           X86 Scheduler Hooks
14072//===----------------------------------------------------------------------===//
14073
14074/// Utility function to emit xbegin specifying the start of an RTM region.
14075static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
14076                                     const TargetInstrInfo *TII) {
14077  DebugLoc DL = MI->getDebugLoc();
14078
14079  const BasicBlock *BB = MBB->getBasicBlock();
14080  MachineFunction::iterator I = MBB;
14081  ++I;
14082
14083  // For the v = xbegin(), we generate
14084  //
14085  // thisMBB:
14086  //  xbegin sinkMBB
14087  //
14088  // mainMBB:
14089  //  eax = -1
14090  //
14091  // sinkMBB:
14092  //  v = eax
14093
14094  MachineBasicBlock *thisMBB = MBB;
14095  MachineFunction *MF = MBB->getParent();
14096  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14097  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14098  MF->insert(I, mainMBB);
14099  MF->insert(I, sinkMBB);
14100
14101  // Transfer the remainder of BB and its successor edges to sinkMBB.
14102  sinkMBB->splice(sinkMBB->begin(), MBB,
14103                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14104  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14105
14106  // thisMBB:
14107  //  xbegin sinkMBB
14108  //  # fallthrough to mainMBB
14109  //  # abortion to sinkMBB
14110  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
14111  thisMBB->addSuccessor(mainMBB);
14112  thisMBB->addSuccessor(sinkMBB);
14113
14114  // mainMBB:
14115  //  EAX = -1
14116  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
14117  mainMBB->addSuccessor(sinkMBB);
14118
14119  // sinkMBB:
14120  // EAX is live into the sinkMBB
14121  sinkMBB->addLiveIn(X86::EAX);
14122  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14123          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14124    .addReg(X86::EAX);
14125
14126  MI->eraseFromParent();
14127  return sinkMBB;
14128}
14129
14130// Get CMPXCHG opcode for the specified data type.
14131static unsigned getCmpXChgOpcode(EVT VT) {
14132  switch (VT.getSimpleVT().SimpleTy) {
14133  case MVT::i8:  return X86::LCMPXCHG8;
14134  case MVT::i16: return X86::LCMPXCHG16;
14135  case MVT::i32: return X86::LCMPXCHG32;
14136  case MVT::i64: return X86::LCMPXCHG64;
14137  default:
14138    break;
14139  }
14140  llvm_unreachable("Invalid operand size!");
14141}
14142
14143// Get LOAD opcode for the specified data type.
14144static unsigned getLoadOpcode(EVT VT) {
14145  switch (VT.getSimpleVT().SimpleTy) {
14146  case MVT::i8:  return X86::MOV8rm;
14147  case MVT::i16: return X86::MOV16rm;
14148  case MVT::i32: return X86::MOV32rm;
14149  case MVT::i64: return X86::MOV64rm;
14150  default:
14151    break;
14152  }
14153  llvm_unreachable("Invalid operand size!");
14154}
14155
14156// Get opcode of the non-atomic one from the specified atomic instruction.
14157static unsigned getNonAtomicOpcode(unsigned Opc) {
14158  switch (Opc) {
14159  case X86::ATOMAND8:  return X86::AND8rr;
14160  case X86::ATOMAND16: return X86::AND16rr;
14161  case X86::ATOMAND32: return X86::AND32rr;
14162  case X86::ATOMAND64: return X86::AND64rr;
14163  case X86::ATOMOR8:   return X86::OR8rr;
14164  case X86::ATOMOR16:  return X86::OR16rr;
14165  case X86::ATOMOR32:  return X86::OR32rr;
14166  case X86::ATOMOR64:  return X86::OR64rr;
14167  case X86::ATOMXOR8:  return X86::XOR8rr;
14168  case X86::ATOMXOR16: return X86::XOR16rr;
14169  case X86::ATOMXOR32: return X86::XOR32rr;
14170  case X86::ATOMXOR64: return X86::XOR64rr;
14171  }
14172  llvm_unreachable("Unhandled atomic-load-op opcode!");
14173}
14174
14175// Get opcode of the non-atomic one from the specified atomic instruction with
14176// extra opcode.
14177static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
14178                                               unsigned &ExtraOpc) {
14179  switch (Opc) {
14180  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
14181  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
14182  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
14183  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
14184  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
14185  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
14186  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
14187  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
14188  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
14189  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
14190  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
14191  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
14192  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
14193  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
14194  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
14195  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
14196  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
14197  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
14198  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
14199  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
14200  }
14201  llvm_unreachable("Unhandled atomic-load-op opcode!");
14202}
14203
14204// Get opcode of the non-atomic one from the specified atomic instruction for
14205// 64-bit data type on 32-bit target.
14206static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
14207  switch (Opc) {
14208  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
14209  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
14210  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
14211  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
14212  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
14213  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
14214  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
14215  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
14216  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
14217  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
14218  }
14219  llvm_unreachable("Unhandled atomic-load-op opcode!");
14220}
14221
14222// Get opcode of the non-atomic one from the specified atomic instruction for
14223// 64-bit data type on 32-bit target with extra opcode.
14224static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
14225                                                   unsigned &HiOpc,
14226                                                   unsigned &ExtraOpc) {
14227  switch (Opc) {
14228  case X86::ATOMNAND6432:
14229    ExtraOpc = X86::NOT32r;
14230    HiOpc = X86::AND32rr;
14231    return X86::AND32rr;
14232  }
14233  llvm_unreachable("Unhandled atomic-load-op opcode!");
14234}
14235
14236// Get pseudo CMOV opcode from the specified data type.
14237static unsigned getPseudoCMOVOpc(EVT VT) {
14238  switch (VT.getSimpleVT().SimpleTy) {
14239  case MVT::i8:  return X86::CMOV_GR8;
14240  case MVT::i16: return X86::CMOV_GR16;
14241  case MVT::i32: return X86::CMOV_GR32;
14242  default:
14243    break;
14244  }
14245  llvm_unreachable("Unknown CMOV opcode!");
14246}
14247
14248// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
14249// They will be translated into a spin-loop or compare-exchange loop from
14250//
14251//    ...
14252//    dst = atomic-fetch-op MI.addr, MI.val
14253//    ...
14254//
14255// to
14256//
14257//    ...
14258//    t1 = LOAD MI.addr
14259// loop:
14260//    t4 = phi(t1, t3 / loop)
14261//    t2 = OP MI.val, t4
14262//    EAX = t4
14263//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
14264//    t3 = EAX
14265//    JNE loop
14266// sink:
14267//    dst = t3
14268//    ...
14269MachineBasicBlock *
14270X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
14271                                       MachineBasicBlock *MBB) const {
14272  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14273  DebugLoc DL = MI->getDebugLoc();
14274
14275  MachineFunction *MF = MBB->getParent();
14276  MachineRegisterInfo &MRI = MF->getRegInfo();
14277
14278  const BasicBlock *BB = MBB->getBasicBlock();
14279  MachineFunction::iterator I = MBB;
14280  ++I;
14281
14282  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
14283         "Unexpected number of operands");
14284
14285  assert(MI->hasOneMemOperand() &&
14286         "Expected atomic-load-op to have one memoperand");
14287
14288  // Memory Reference
14289  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14290  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14291
14292  unsigned DstReg, SrcReg;
14293  unsigned MemOpndSlot;
14294
14295  unsigned CurOp = 0;
14296
14297  DstReg = MI->getOperand(CurOp++).getReg();
14298  MemOpndSlot = CurOp;
14299  CurOp += X86::AddrNumOperands;
14300  SrcReg = MI->getOperand(CurOp++).getReg();
14301
14302  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14303  MVT::SimpleValueType VT = *RC->vt_begin();
14304  unsigned t1 = MRI.createVirtualRegister(RC);
14305  unsigned t2 = MRI.createVirtualRegister(RC);
14306  unsigned t3 = MRI.createVirtualRegister(RC);
14307  unsigned t4 = MRI.createVirtualRegister(RC);
14308  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
14309
14310  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
14311  unsigned LOADOpc = getLoadOpcode(VT);
14312
14313  // For the atomic load-arith operator, we generate
14314  //
14315  //  thisMBB:
14316  //    t1 = LOAD [MI.addr]
14317  //  mainMBB:
14318  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
14319  //    t1 = OP MI.val, EAX
14320  //    EAX = t4
14321  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
14322  //    t3 = EAX
14323  //    JNE mainMBB
14324  //  sinkMBB:
14325  //    dst = t3
14326
14327  MachineBasicBlock *thisMBB = MBB;
14328  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14329  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14330  MF->insert(I, mainMBB);
14331  MF->insert(I, sinkMBB);
14332
14333  MachineInstrBuilder MIB;
14334
14335  // Transfer the remainder of BB and its successor edges to sinkMBB.
14336  sinkMBB->splice(sinkMBB->begin(), MBB,
14337                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14338  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14339
14340  // thisMBB:
14341  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
14342  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14343    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14344    if (NewMO.isReg())
14345      NewMO.setIsKill(false);
14346    MIB.addOperand(NewMO);
14347  }
14348  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14349    unsigned flags = (*MMOI)->getFlags();
14350    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14351    MachineMemOperand *MMO =
14352      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14353                               (*MMOI)->getSize(),
14354                               (*MMOI)->getBaseAlignment(),
14355                               (*MMOI)->getTBAAInfo(),
14356                               (*MMOI)->getRanges());
14357    MIB.addMemOperand(MMO);
14358  }
14359
14360  thisMBB->addSuccessor(mainMBB);
14361
14362  // mainMBB:
14363  MachineBasicBlock *origMainMBB = mainMBB;
14364
14365  // Add a PHI.
14366  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
14367                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14368
14369  unsigned Opc = MI->getOpcode();
14370  switch (Opc) {
14371  default:
14372    llvm_unreachable("Unhandled atomic-load-op opcode!");
14373  case X86::ATOMAND8:
14374  case X86::ATOMAND16:
14375  case X86::ATOMAND32:
14376  case X86::ATOMAND64:
14377  case X86::ATOMOR8:
14378  case X86::ATOMOR16:
14379  case X86::ATOMOR32:
14380  case X86::ATOMOR64:
14381  case X86::ATOMXOR8:
14382  case X86::ATOMXOR16:
14383  case X86::ATOMXOR32:
14384  case X86::ATOMXOR64: {
14385    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
14386    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
14387      .addReg(t4);
14388    break;
14389  }
14390  case X86::ATOMNAND8:
14391  case X86::ATOMNAND16:
14392  case X86::ATOMNAND32:
14393  case X86::ATOMNAND64: {
14394    unsigned Tmp = MRI.createVirtualRegister(RC);
14395    unsigned NOTOpc;
14396    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
14397    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
14398      .addReg(t4);
14399    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
14400    break;
14401  }
14402  case X86::ATOMMAX8:
14403  case X86::ATOMMAX16:
14404  case X86::ATOMMAX32:
14405  case X86::ATOMMAX64:
14406  case X86::ATOMMIN8:
14407  case X86::ATOMMIN16:
14408  case X86::ATOMMIN32:
14409  case X86::ATOMMIN64:
14410  case X86::ATOMUMAX8:
14411  case X86::ATOMUMAX16:
14412  case X86::ATOMUMAX32:
14413  case X86::ATOMUMAX64:
14414  case X86::ATOMUMIN8:
14415  case X86::ATOMUMIN16:
14416  case X86::ATOMUMIN32:
14417  case X86::ATOMUMIN64: {
14418    unsigned CMPOpc;
14419    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
14420
14421    BuildMI(mainMBB, DL, TII->get(CMPOpc))
14422      .addReg(SrcReg)
14423      .addReg(t4);
14424
14425    if (Subtarget->hasCMov()) {
14426      if (VT != MVT::i8) {
14427        // Native support
14428        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
14429          .addReg(SrcReg)
14430          .addReg(t4);
14431      } else {
14432        // Promote i8 to i32 to use CMOV32
14433        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14434        const TargetRegisterClass *RC32 =
14435          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
14436        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
14437        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
14438        unsigned Tmp = MRI.createVirtualRegister(RC32);
14439
14440        unsigned Undef = MRI.createVirtualRegister(RC32);
14441        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
14442
14443        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
14444          .addReg(Undef)
14445          .addReg(SrcReg)
14446          .addImm(X86::sub_8bit);
14447        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
14448          .addReg(Undef)
14449          .addReg(t4)
14450          .addImm(X86::sub_8bit);
14451
14452        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
14453          .addReg(SrcReg32)
14454          .addReg(AccReg32);
14455
14456        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
14457          .addReg(Tmp, 0, X86::sub_8bit);
14458      }
14459    } else {
14460      // Use pseudo select and lower them.
14461      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
14462             "Invalid atomic-load-op transformation!");
14463      unsigned SelOpc = getPseudoCMOVOpc(VT);
14464      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
14465      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
14466      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
14467              .addReg(SrcReg).addReg(t4)
14468              .addImm(CC);
14469      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14470      // Replace the original PHI node as mainMBB is changed after CMOV
14471      // lowering.
14472      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
14473        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14474      Phi->eraseFromParent();
14475    }
14476    break;
14477  }
14478  }
14479
14480  // Copy PhyReg back from virtual register.
14481  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
14482    .addReg(t4);
14483
14484  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14485  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14486    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14487    if (NewMO.isReg())
14488      NewMO.setIsKill(false);
14489    MIB.addOperand(NewMO);
14490  }
14491  MIB.addReg(t2);
14492  MIB.setMemRefs(MMOBegin, MMOEnd);
14493
14494  // Copy PhyReg back to virtual register.
14495  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
14496    .addReg(PhyReg);
14497
14498  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14499
14500  mainMBB->addSuccessor(origMainMBB);
14501  mainMBB->addSuccessor(sinkMBB);
14502
14503  // sinkMBB:
14504  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14505          TII->get(TargetOpcode::COPY), DstReg)
14506    .addReg(t3);
14507
14508  MI->eraseFromParent();
14509  return sinkMBB;
14510}
14511
14512// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
14513// instructions. They will be translated into a spin-loop or compare-exchange
14514// loop from
14515//
14516//    ...
14517//    dst = atomic-fetch-op MI.addr, MI.val
14518//    ...
14519//
14520// to
14521//
14522//    ...
14523//    t1L = LOAD [MI.addr + 0]
14524//    t1H = LOAD [MI.addr + 4]
14525// loop:
14526//    t4L = phi(t1L, t3L / loop)
14527//    t4H = phi(t1H, t3H / loop)
14528//    t2L = OP MI.val.lo, t4L
14529//    t2H = OP MI.val.hi, t4H
14530//    EAX = t4L
14531//    EDX = t4H
14532//    EBX = t2L
14533//    ECX = t2H
14534//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14535//    t3L = EAX
14536//    t3H = EDX
14537//    JNE loop
14538// sink:
14539//    dstL = t3L
14540//    dstH = t3H
14541//    ...
14542MachineBasicBlock *
14543X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
14544                                           MachineBasicBlock *MBB) const {
14545  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14546  DebugLoc DL = MI->getDebugLoc();
14547
14548  MachineFunction *MF = MBB->getParent();
14549  MachineRegisterInfo &MRI = MF->getRegInfo();
14550
14551  const BasicBlock *BB = MBB->getBasicBlock();
14552  MachineFunction::iterator I = MBB;
14553  ++I;
14554
14555  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
14556         "Unexpected number of operands");
14557
14558  assert(MI->hasOneMemOperand() &&
14559         "Expected atomic-load-op32 to have one memoperand");
14560
14561  // Memory Reference
14562  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14563  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14564
14565  unsigned DstLoReg, DstHiReg;
14566  unsigned SrcLoReg, SrcHiReg;
14567  unsigned MemOpndSlot;
14568
14569  unsigned CurOp = 0;
14570
14571  DstLoReg = MI->getOperand(CurOp++).getReg();
14572  DstHiReg = MI->getOperand(CurOp++).getReg();
14573  MemOpndSlot = CurOp;
14574  CurOp += X86::AddrNumOperands;
14575  SrcLoReg = MI->getOperand(CurOp++).getReg();
14576  SrcHiReg = MI->getOperand(CurOp++).getReg();
14577
14578  const TargetRegisterClass *RC = &X86::GR32RegClass;
14579  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
14580
14581  unsigned t1L = MRI.createVirtualRegister(RC);
14582  unsigned t1H = MRI.createVirtualRegister(RC);
14583  unsigned t2L = MRI.createVirtualRegister(RC);
14584  unsigned t2H = MRI.createVirtualRegister(RC);
14585  unsigned t3L = MRI.createVirtualRegister(RC);
14586  unsigned t3H = MRI.createVirtualRegister(RC);
14587  unsigned t4L = MRI.createVirtualRegister(RC);
14588  unsigned t4H = MRI.createVirtualRegister(RC);
14589
14590  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
14591  unsigned LOADOpc = X86::MOV32rm;
14592
14593  // For the atomic load-arith operator, we generate
14594  //
14595  //  thisMBB:
14596  //    t1L = LOAD [MI.addr + 0]
14597  //    t1H = LOAD [MI.addr + 4]
14598  //  mainMBB:
14599  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
14600  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
14601  //    t2L = OP MI.val.lo, t4L
14602  //    t2H = OP MI.val.hi, t4H
14603  //    EBX = t2L
14604  //    ECX = t2H
14605  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14606  //    t3L = EAX
14607  //    t3H = EDX
14608  //    JNE loop
14609  //  sinkMBB:
14610  //    dstL = t3L
14611  //    dstH = t3H
14612
14613  MachineBasicBlock *thisMBB = MBB;
14614  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14615  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14616  MF->insert(I, mainMBB);
14617  MF->insert(I, sinkMBB);
14618
14619  MachineInstrBuilder MIB;
14620
14621  // Transfer the remainder of BB and its successor edges to sinkMBB.
14622  sinkMBB->splice(sinkMBB->begin(), MBB,
14623                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14624  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14625
14626  // thisMBB:
14627  // Lo
14628  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
14629  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14630    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14631    if (NewMO.isReg())
14632      NewMO.setIsKill(false);
14633    MIB.addOperand(NewMO);
14634  }
14635  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14636    unsigned flags = (*MMOI)->getFlags();
14637    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14638    MachineMemOperand *MMO =
14639      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14640                               (*MMOI)->getSize(),
14641                               (*MMOI)->getBaseAlignment(),
14642                               (*MMOI)->getTBAAInfo(),
14643                               (*MMOI)->getRanges());
14644    MIB.addMemOperand(MMO);
14645  };
14646  MachineInstr *LowMI = MIB;
14647
14648  // Hi
14649  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
14650  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14651    if (i == X86::AddrDisp) {
14652      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
14653    } else {
14654      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14655      if (NewMO.isReg())
14656        NewMO.setIsKill(false);
14657      MIB.addOperand(NewMO);
14658    }
14659  }
14660  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
14661
14662  thisMBB->addSuccessor(mainMBB);
14663
14664  // mainMBB:
14665  MachineBasicBlock *origMainMBB = mainMBB;
14666
14667  // Add PHIs.
14668  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
14669                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14670  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
14671                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14672
14673  unsigned Opc = MI->getOpcode();
14674  switch (Opc) {
14675  default:
14676    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
14677  case X86::ATOMAND6432:
14678  case X86::ATOMOR6432:
14679  case X86::ATOMXOR6432:
14680  case X86::ATOMADD6432:
14681  case X86::ATOMSUB6432: {
14682    unsigned HiOpc;
14683    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14684    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
14685      .addReg(SrcLoReg);
14686    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
14687      .addReg(SrcHiReg);
14688    break;
14689  }
14690  case X86::ATOMNAND6432: {
14691    unsigned HiOpc, NOTOpc;
14692    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
14693    unsigned TmpL = MRI.createVirtualRegister(RC);
14694    unsigned TmpH = MRI.createVirtualRegister(RC);
14695    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
14696      .addReg(t4L);
14697    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
14698      .addReg(t4H);
14699    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
14700    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
14701    break;
14702  }
14703  case X86::ATOMMAX6432:
14704  case X86::ATOMMIN6432:
14705  case X86::ATOMUMAX6432:
14706  case X86::ATOMUMIN6432: {
14707    unsigned HiOpc;
14708    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14709    unsigned cL = MRI.createVirtualRegister(RC8);
14710    unsigned cH = MRI.createVirtualRegister(RC8);
14711    unsigned cL32 = MRI.createVirtualRegister(RC);
14712    unsigned cH32 = MRI.createVirtualRegister(RC);
14713    unsigned cc = MRI.createVirtualRegister(RC);
14714    // cl := cmp src_lo, lo
14715    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14716      .addReg(SrcLoReg).addReg(t4L);
14717    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
14718    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
14719    // ch := cmp src_hi, hi
14720    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14721      .addReg(SrcHiReg).addReg(t4H);
14722    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
14723    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
14724    // cc := if (src_hi == hi) ? cl : ch;
14725    if (Subtarget->hasCMov()) {
14726      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
14727        .addReg(cH32).addReg(cL32);
14728    } else {
14729      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
14730              .addReg(cH32).addReg(cL32)
14731              .addImm(X86::COND_E);
14732      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14733    }
14734    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
14735    if (Subtarget->hasCMov()) {
14736      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
14737        .addReg(SrcLoReg).addReg(t4L);
14738      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
14739        .addReg(SrcHiReg).addReg(t4H);
14740    } else {
14741      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
14742              .addReg(SrcLoReg).addReg(t4L)
14743              .addImm(X86::COND_NE);
14744      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14745      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
14746      // 2nd CMOV lowering.
14747      mainMBB->addLiveIn(X86::EFLAGS);
14748      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
14749              .addReg(SrcHiReg).addReg(t4H)
14750              .addImm(X86::COND_NE);
14751      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14752      // Replace the original PHI node as mainMBB is changed after CMOV
14753      // lowering.
14754      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
14755        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14756      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
14757        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14758      PhiL->eraseFromParent();
14759      PhiH->eraseFromParent();
14760    }
14761    break;
14762  }
14763  case X86::ATOMSWAP6432: {
14764    unsigned HiOpc;
14765    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14766    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
14767    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
14768    break;
14769  }
14770  }
14771
14772  // Copy EDX:EAX back from HiReg:LoReg
14773  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
14774  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
14775  // Copy ECX:EBX from t1H:t1L
14776  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
14777  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
14778
14779  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14780  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14781    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14782    if (NewMO.isReg())
14783      NewMO.setIsKill(false);
14784    MIB.addOperand(NewMO);
14785  }
14786  MIB.setMemRefs(MMOBegin, MMOEnd);
14787
14788  // Copy EDX:EAX back to t3H:t3L
14789  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
14790  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
14791
14792  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14793
14794  mainMBB->addSuccessor(origMainMBB);
14795  mainMBB->addSuccessor(sinkMBB);
14796
14797  // sinkMBB:
14798  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14799          TII->get(TargetOpcode::COPY), DstLoReg)
14800    .addReg(t3L);
14801  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14802          TII->get(TargetOpcode::COPY), DstHiReg)
14803    .addReg(t3H);
14804
14805  MI->eraseFromParent();
14806  return sinkMBB;
14807}
14808
14809// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
14810// or XMM0_V32I8 in AVX all of this code can be replaced with that
14811// in the .td file.
14812static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
14813                                       const TargetInstrInfo *TII) {
14814  unsigned Opc;
14815  switch (MI->getOpcode()) {
14816  default: llvm_unreachable("illegal opcode!");
14817  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
14818  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
14819  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
14820  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
14821  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
14822  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
14823  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
14824  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
14825  }
14826
14827  DebugLoc dl = MI->getDebugLoc();
14828  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14829
14830  unsigned NumArgs = MI->getNumOperands();
14831  for (unsigned i = 1; i < NumArgs; ++i) {
14832    MachineOperand &Op = MI->getOperand(i);
14833    if (!(Op.isReg() && Op.isImplicit()))
14834      MIB.addOperand(Op);
14835  }
14836  if (MI->hasOneMemOperand())
14837    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14838
14839  BuildMI(*BB, MI, dl,
14840    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14841    .addReg(X86::XMM0);
14842
14843  MI->eraseFromParent();
14844  return BB;
14845}
14846
14847// FIXME: Custom handling because TableGen doesn't support multiple implicit
14848// defs in an instruction pattern
14849static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
14850                                       const TargetInstrInfo *TII) {
14851  unsigned Opc;
14852  switch (MI->getOpcode()) {
14853  default: llvm_unreachable("illegal opcode!");
14854  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
14855  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
14856  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
14857  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
14858  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
14859  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
14860  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
14861  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
14862  }
14863
14864  DebugLoc dl = MI->getDebugLoc();
14865  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14866
14867  unsigned NumArgs = MI->getNumOperands(); // remove the results
14868  for (unsigned i = 1; i < NumArgs; ++i) {
14869    MachineOperand &Op = MI->getOperand(i);
14870    if (!(Op.isReg() && Op.isImplicit()))
14871      MIB.addOperand(Op);
14872  }
14873  if (MI->hasOneMemOperand())
14874    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14875
14876  BuildMI(*BB, MI, dl,
14877    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14878    .addReg(X86::ECX);
14879
14880  MI->eraseFromParent();
14881  return BB;
14882}
14883
14884static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
14885                                       const TargetInstrInfo *TII,
14886                                       const X86Subtarget* Subtarget) {
14887  DebugLoc dl = MI->getDebugLoc();
14888
14889  // Address into RAX/EAX, other two args into ECX, EDX.
14890  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
14891  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
14892  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
14893  for (int i = 0; i < X86::AddrNumOperands; ++i)
14894    MIB.addOperand(MI->getOperand(i));
14895
14896  unsigned ValOps = X86::AddrNumOperands;
14897  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
14898    .addReg(MI->getOperand(ValOps).getReg());
14899  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
14900    .addReg(MI->getOperand(ValOps+1).getReg());
14901
14902  // The instruction doesn't actually take any operands though.
14903  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
14904
14905  MI->eraseFromParent(); // The pseudo is gone now.
14906  return BB;
14907}
14908
14909MachineBasicBlock *
14910X86TargetLowering::EmitVAARG64WithCustomInserter(
14911                   MachineInstr *MI,
14912                   MachineBasicBlock *MBB) const {
14913  // Emit va_arg instruction on X86-64.
14914
14915  // Operands to this pseudo-instruction:
14916  // 0  ) Output        : destination address (reg)
14917  // 1-5) Input         : va_list address (addr, i64mem)
14918  // 6  ) ArgSize       : Size (in bytes) of vararg type
14919  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
14920  // 8  ) Align         : Alignment of type
14921  // 9  ) EFLAGS (implicit-def)
14922
14923  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
14924  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
14925
14926  unsigned DestReg = MI->getOperand(0).getReg();
14927  MachineOperand &Base = MI->getOperand(1);
14928  MachineOperand &Scale = MI->getOperand(2);
14929  MachineOperand &Index = MI->getOperand(3);
14930  MachineOperand &Disp = MI->getOperand(4);
14931  MachineOperand &Segment = MI->getOperand(5);
14932  unsigned ArgSize = MI->getOperand(6).getImm();
14933  unsigned ArgMode = MI->getOperand(7).getImm();
14934  unsigned Align = MI->getOperand(8).getImm();
14935
14936  // Memory Reference
14937  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
14938  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14939  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14940
14941  // Machine Information
14942  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14943  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
14944  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
14945  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
14946  DebugLoc DL = MI->getDebugLoc();
14947
14948  // struct va_list {
14949  //   i32   gp_offset
14950  //   i32   fp_offset
14951  //   i64   overflow_area (address)
14952  //   i64   reg_save_area (address)
14953  // }
14954  // sizeof(va_list) = 24
14955  // alignment(va_list) = 8
14956
14957  unsigned TotalNumIntRegs = 6;
14958  unsigned TotalNumXMMRegs = 8;
14959  bool UseGPOffset = (ArgMode == 1);
14960  bool UseFPOffset = (ArgMode == 2);
14961  unsigned MaxOffset = TotalNumIntRegs * 8 +
14962                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
14963
14964  /* Align ArgSize to a multiple of 8 */
14965  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
14966  bool NeedsAlign = (Align > 8);
14967
14968  MachineBasicBlock *thisMBB = MBB;
14969  MachineBasicBlock *overflowMBB;
14970  MachineBasicBlock *offsetMBB;
14971  MachineBasicBlock *endMBB;
14972
14973  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
14974  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
14975  unsigned OffsetReg = 0;
14976
14977  if (!UseGPOffset && !UseFPOffset) {
14978    // If we only pull from the overflow region, we don't create a branch.
14979    // We don't need to alter control flow.
14980    OffsetDestReg = 0; // unused
14981    OverflowDestReg = DestReg;
14982
14983    offsetMBB = NULL;
14984    overflowMBB = thisMBB;
14985    endMBB = thisMBB;
14986  } else {
14987    // First emit code to check if gp_offset (or fp_offset) is below the bound.
14988    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
14989    // If not, pull from overflow_area. (branch to overflowMBB)
14990    //
14991    //       thisMBB
14992    //         |     .
14993    //         |        .
14994    //     offsetMBB   overflowMBB
14995    //         |        .
14996    //         |     .
14997    //        endMBB
14998
14999    // Registers for the PHI in endMBB
15000    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
15001    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
15002
15003    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15004    MachineFunction *MF = MBB->getParent();
15005    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15006    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15007    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15008
15009    MachineFunction::iterator MBBIter = MBB;
15010    ++MBBIter;
15011
15012    // Insert the new basic blocks
15013    MF->insert(MBBIter, offsetMBB);
15014    MF->insert(MBBIter, overflowMBB);
15015    MF->insert(MBBIter, endMBB);
15016
15017    // Transfer the remainder of MBB and its successor edges to endMBB.
15018    endMBB->splice(endMBB->begin(), thisMBB,
15019                    llvm::next(MachineBasicBlock::iterator(MI)),
15020                    thisMBB->end());
15021    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
15022
15023    // Make offsetMBB and overflowMBB successors of thisMBB
15024    thisMBB->addSuccessor(offsetMBB);
15025    thisMBB->addSuccessor(overflowMBB);
15026
15027    // endMBB is a successor of both offsetMBB and overflowMBB
15028    offsetMBB->addSuccessor(endMBB);
15029    overflowMBB->addSuccessor(endMBB);
15030
15031    // Load the offset value into a register
15032    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15033    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
15034      .addOperand(Base)
15035      .addOperand(Scale)
15036      .addOperand(Index)
15037      .addDisp(Disp, UseFPOffset ? 4 : 0)
15038      .addOperand(Segment)
15039      .setMemRefs(MMOBegin, MMOEnd);
15040
15041    // Check if there is enough room left to pull this argument.
15042    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
15043      .addReg(OffsetReg)
15044      .addImm(MaxOffset + 8 - ArgSizeA8);
15045
15046    // Branch to "overflowMBB" if offset >= max
15047    // Fall through to "offsetMBB" otherwise
15048    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
15049      .addMBB(overflowMBB);
15050  }
15051
15052  // In offsetMBB, emit code to use the reg_save_area.
15053  if (offsetMBB) {
15054    assert(OffsetReg != 0);
15055
15056    // Read the reg_save_area address.
15057    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
15058    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
15059      .addOperand(Base)
15060      .addOperand(Scale)
15061      .addOperand(Index)
15062      .addDisp(Disp, 16)
15063      .addOperand(Segment)
15064      .setMemRefs(MMOBegin, MMOEnd);
15065
15066    // Zero-extend the offset
15067    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
15068      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
15069        .addImm(0)
15070        .addReg(OffsetReg)
15071        .addImm(X86::sub_32bit);
15072
15073    // Add the offset to the reg_save_area to get the final address.
15074    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
15075      .addReg(OffsetReg64)
15076      .addReg(RegSaveReg);
15077
15078    // Compute the offset for the next argument
15079    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15080    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
15081      .addReg(OffsetReg)
15082      .addImm(UseFPOffset ? 16 : 8);
15083
15084    // Store it back into the va_list.
15085    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
15086      .addOperand(Base)
15087      .addOperand(Scale)
15088      .addOperand(Index)
15089      .addDisp(Disp, UseFPOffset ? 4 : 0)
15090      .addOperand(Segment)
15091      .addReg(NextOffsetReg)
15092      .setMemRefs(MMOBegin, MMOEnd);
15093
15094    // Jump to endMBB
15095    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
15096      .addMBB(endMBB);
15097  }
15098
15099  //
15100  // Emit code to use overflow area
15101  //
15102
15103  // Load the overflow_area address into a register.
15104  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
15105  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
15106    .addOperand(Base)
15107    .addOperand(Scale)
15108    .addOperand(Index)
15109    .addDisp(Disp, 8)
15110    .addOperand(Segment)
15111    .setMemRefs(MMOBegin, MMOEnd);
15112
15113  // If we need to align it, do so. Otherwise, just copy the address
15114  // to OverflowDestReg.
15115  if (NeedsAlign) {
15116    // Align the overflow address
15117    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
15118    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
15119
15120    // aligned_addr = (addr + (align-1)) & ~(align-1)
15121    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
15122      .addReg(OverflowAddrReg)
15123      .addImm(Align-1);
15124
15125    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
15126      .addReg(TmpReg)
15127      .addImm(~(uint64_t)(Align-1));
15128  } else {
15129    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
15130      .addReg(OverflowAddrReg);
15131  }
15132
15133  // Compute the next overflow address after this argument.
15134  // (the overflow address should be kept 8-byte aligned)
15135  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
15136  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
15137    .addReg(OverflowDestReg)
15138    .addImm(ArgSizeA8);
15139
15140  // Store the new overflow address.
15141  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
15142    .addOperand(Base)
15143    .addOperand(Scale)
15144    .addOperand(Index)
15145    .addDisp(Disp, 8)
15146    .addOperand(Segment)
15147    .addReg(NextAddrReg)
15148    .setMemRefs(MMOBegin, MMOEnd);
15149
15150  // If we branched, emit the PHI to the front of endMBB.
15151  if (offsetMBB) {
15152    BuildMI(*endMBB, endMBB->begin(), DL,
15153            TII->get(X86::PHI), DestReg)
15154      .addReg(OffsetDestReg).addMBB(offsetMBB)
15155      .addReg(OverflowDestReg).addMBB(overflowMBB);
15156  }
15157
15158  // Erase the pseudo instruction
15159  MI->eraseFromParent();
15160
15161  return endMBB;
15162}
15163
15164MachineBasicBlock *
15165X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
15166                                                 MachineInstr *MI,
15167                                                 MachineBasicBlock *MBB) const {
15168  // Emit code to save XMM registers to the stack. The ABI says that the
15169  // number of registers to save is given in %al, so it's theoretically
15170  // possible to do an indirect jump trick to avoid saving all of them,
15171  // however this code takes a simpler approach and just executes all
15172  // of the stores if %al is non-zero. It's less code, and it's probably
15173  // easier on the hardware branch predictor, and stores aren't all that
15174  // expensive anyway.
15175
15176  // Create the new basic blocks. One block contains all the XMM stores,
15177  // and one block is the final destination regardless of whether any
15178  // stores were performed.
15179  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15180  MachineFunction *F = MBB->getParent();
15181  MachineFunction::iterator MBBIter = MBB;
15182  ++MBBIter;
15183  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
15184  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
15185  F->insert(MBBIter, XMMSaveMBB);
15186  F->insert(MBBIter, EndMBB);
15187
15188  // Transfer the remainder of MBB and its successor edges to EndMBB.
15189  EndMBB->splice(EndMBB->begin(), MBB,
15190                 llvm::next(MachineBasicBlock::iterator(MI)),
15191                 MBB->end());
15192  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
15193
15194  // The original block will now fall through to the XMM save block.
15195  MBB->addSuccessor(XMMSaveMBB);
15196  // The XMMSaveMBB will fall through to the end block.
15197  XMMSaveMBB->addSuccessor(EndMBB);
15198
15199  // Now add the instructions.
15200  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15201  DebugLoc DL = MI->getDebugLoc();
15202
15203  unsigned CountReg = MI->getOperand(0).getReg();
15204  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
15205  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
15206
15207  if (!Subtarget->isTargetWin64()) {
15208    // If %al is 0, branch around the XMM save block.
15209    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
15210    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
15211    MBB->addSuccessor(EndMBB);
15212  }
15213
15214  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
15215  // In the XMM save block, save all the XMM argument registers.
15216  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
15217    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
15218    MachineMemOperand *MMO =
15219      F->getMachineMemOperand(
15220          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
15221        MachineMemOperand::MOStore,
15222        /*Size=*/16, /*Align=*/16);
15223    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
15224      .addFrameIndex(RegSaveFrameIndex)
15225      .addImm(/*Scale=*/1)
15226      .addReg(/*IndexReg=*/0)
15227      .addImm(/*Disp=*/Offset)
15228      .addReg(/*Segment=*/0)
15229      .addReg(MI->getOperand(i).getReg())
15230      .addMemOperand(MMO);
15231  }
15232
15233  MI->eraseFromParent();   // The pseudo instruction is gone now.
15234
15235  return EndMBB;
15236}
15237
15238// The EFLAGS operand of SelectItr might be missing a kill marker
15239// because there were multiple uses of EFLAGS, and ISel didn't know
15240// which to mark. Figure out whether SelectItr should have had a
15241// kill marker, and set it if it should. Returns the correct kill
15242// marker value.
15243static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
15244                                     MachineBasicBlock* BB,
15245                                     const TargetRegisterInfo* TRI) {
15246  // Scan forward through BB for a use/def of EFLAGS.
15247  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
15248  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
15249    const MachineInstr& mi = *miI;
15250    if (mi.readsRegister(X86::EFLAGS))
15251      return false;
15252    if (mi.definesRegister(X86::EFLAGS))
15253      break; // Should have kill-flag - update below.
15254  }
15255
15256  // If we hit the end of the block, check whether EFLAGS is live into a
15257  // successor.
15258  if (miI == BB->end()) {
15259    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
15260                                          sEnd = BB->succ_end();
15261         sItr != sEnd; ++sItr) {
15262      MachineBasicBlock* succ = *sItr;
15263      if (succ->isLiveIn(X86::EFLAGS))
15264        return false;
15265    }
15266  }
15267
15268  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
15269  // out. SelectMI should have a kill flag on EFLAGS.
15270  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
15271  return true;
15272}
15273
15274MachineBasicBlock *
15275X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
15276                                     MachineBasicBlock *BB) const {
15277  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15278  DebugLoc DL = MI->getDebugLoc();
15279
15280  // To "insert" a SELECT_CC instruction, we actually have to insert the
15281  // diamond control-flow pattern.  The incoming instruction knows the
15282  // destination vreg to set, the condition code register to branch on, the
15283  // true/false values to select between, and a branch opcode to use.
15284  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15285  MachineFunction::iterator It = BB;
15286  ++It;
15287
15288  //  thisMBB:
15289  //  ...
15290  //   TrueVal = ...
15291  //   cmpTY ccX, r1, r2
15292  //   bCC copy1MBB
15293  //   fallthrough --> copy0MBB
15294  MachineBasicBlock *thisMBB = BB;
15295  MachineFunction *F = BB->getParent();
15296  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
15297  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
15298  F->insert(It, copy0MBB);
15299  F->insert(It, sinkMBB);
15300
15301  // If the EFLAGS register isn't dead in the terminator, then claim that it's
15302  // live into the sink and copy blocks.
15303  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
15304  if (!MI->killsRegister(X86::EFLAGS) &&
15305      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
15306    copy0MBB->addLiveIn(X86::EFLAGS);
15307    sinkMBB->addLiveIn(X86::EFLAGS);
15308  }
15309
15310  // Transfer the remainder of BB and its successor edges to sinkMBB.
15311  sinkMBB->splice(sinkMBB->begin(), BB,
15312                  llvm::next(MachineBasicBlock::iterator(MI)),
15313                  BB->end());
15314  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
15315
15316  // Add the true and fallthrough blocks as its successors.
15317  BB->addSuccessor(copy0MBB);
15318  BB->addSuccessor(sinkMBB);
15319
15320  // Create the conditional branch instruction.
15321  unsigned Opc =
15322    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
15323  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
15324
15325  //  copy0MBB:
15326  //   %FalseValue = ...
15327  //   # fallthrough to sinkMBB
15328  copy0MBB->addSuccessor(sinkMBB);
15329
15330  //  sinkMBB:
15331  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
15332  //  ...
15333  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15334          TII->get(X86::PHI), MI->getOperand(0).getReg())
15335    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
15336    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
15337
15338  MI->eraseFromParent();   // The pseudo instruction is gone now.
15339  return sinkMBB;
15340}
15341
15342MachineBasicBlock *
15343X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
15344                                        bool Is64Bit) const {
15345  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15346  DebugLoc DL = MI->getDebugLoc();
15347  MachineFunction *MF = BB->getParent();
15348  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15349
15350  assert(getTargetMachine().Options.EnableSegmentedStacks);
15351
15352  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
15353  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
15354
15355  // BB:
15356  //  ... [Till the alloca]
15357  // If stacklet is not large enough, jump to mallocMBB
15358  //
15359  // bumpMBB:
15360  //  Allocate by subtracting from RSP
15361  //  Jump to continueMBB
15362  //
15363  // mallocMBB:
15364  //  Allocate by call to runtime
15365  //
15366  // continueMBB:
15367  //  ...
15368  //  [rest of original BB]
15369  //
15370
15371  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15372  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15373  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15374
15375  MachineRegisterInfo &MRI = MF->getRegInfo();
15376  const TargetRegisterClass *AddrRegClass =
15377    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
15378
15379  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15380    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15381    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
15382    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
15383    sizeVReg = MI->getOperand(1).getReg(),
15384    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
15385
15386  MachineFunction::iterator MBBIter = BB;
15387  ++MBBIter;
15388
15389  MF->insert(MBBIter, bumpMBB);
15390  MF->insert(MBBIter, mallocMBB);
15391  MF->insert(MBBIter, continueMBB);
15392
15393  continueMBB->splice(continueMBB->begin(), BB, llvm::next
15394                      (MachineBasicBlock::iterator(MI)), BB->end());
15395  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
15396
15397  // Add code to the main basic block to check if the stack limit has been hit,
15398  // and if so, jump to mallocMBB otherwise to bumpMBB.
15399  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
15400  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
15401    .addReg(tmpSPVReg).addReg(sizeVReg);
15402  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
15403    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
15404    .addReg(SPLimitVReg);
15405  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
15406
15407  // bumpMBB simply decreases the stack pointer, since we know the current
15408  // stacklet has enough space.
15409  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
15410    .addReg(SPLimitVReg);
15411  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
15412    .addReg(SPLimitVReg);
15413  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15414
15415  // Calls into a routine in libgcc to allocate more space from the heap.
15416  const uint32_t *RegMask =
15417    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15418  if (Is64Bit) {
15419    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
15420      .addReg(sizeVReg);
15421    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
15422      .addExternalSymbol("__morestack_allocate_stack_space")
15423      .addRegMask(RegMask)
15424      .addReg(X86::RDI, RegState::Implicit)
15425      .addReg(X86::RAX, RegState::ImplicitDefine);
15426  } else {
15427    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
15428      .addImm(12);
15429    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
15430    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
15431      .addExternalSymbol("__morestack_allocate_stack_space")
15432      .addRegMask(RegMask)
15433      .addReg(X86::EAX, RegState::ImplicitDefine);
15434  }
15435
15436  if (!Is64Bit)
15437    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
15438      .addImm(16);
15439
15440  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
15441    .addReg(Is64Bit ? X86::RAX : X86::EAX);
15442  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15443
15444  // Set up the CFG correctly.
15445  BB->addSuccessor(bumpMBB);
15446  BB->addSuccessor(mallocMBB);
15447  mallocMBB->addSuccessor(continueMBB);
15448  bumpMBB->addSuccessor(continueMBB);
15449
15450  // Take care of the PHI nodes.
15451  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
15452          MI->getOperand(0).getReg())
15453    .addReg(mallocPtrVReg).addMBB(mallocMBB)
15454    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
15455
15456  // Delete the original pseudo instruction.
15457  MI->eraseFromParent();
15458
15459  // And we're done.
15460  return continueMBB;
15461}
15462
15463MachineBasicBlock *
15464X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
15465                                          MachineBasicBlock *BB) const {
15466  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15467  DebugLoc DL = MI->getDebugLoc();
15468
15469  assert(!Subtarget->isTargetEnvMacho());
15470
15471  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
15472  // non-trivial part is impdef of ESP.
15473
15474  if (Subtarget->isTargetWin64()) {
15475    if (Subtarget->isTargetCygMing()) {
15476      // ___chkstk(Mingw64):
15477      // Clobbers R10, R11, RAX and EFLAGS.
15478      // Updates RSP.
15479      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15480        .addExternalSymbol("___chkstk")
15481        .addReg(X86::RAX, RegState::Implicit)
15482        .addReg(X86::RSP, RegState::Implicit)
15483        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
15484        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
15485        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15486    } else {
15487      // __chkstk(MSVCRT): does not update stack pointer.
15488      // Clobbers R10, R11 and EFLAGS.
15489      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15490        .addExternalSymbol("__chkstk")
15491        .addReg(X86::RAX, RegState::Implicit)
15492        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15493      // RAX has the offset to be subtracted from RSP.
15494      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
15495        .addReg(X86::RSP)
15496        .addReg(X86::RAX);
15497    }
15498  } else {
15499    const char *StackProbeSymbol =
15500      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
15501
15502    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
15503      .addExternalSymbol(StackProbeSymbol)
15504      .addReg(X86::EAX, RegState::Implicit)
15505      .addReg(X86::ESP, RegState::Implicit)
15506      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
15507      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
15508      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15509  }
15510
15511  MI->eraseFromParent();   // The pseudo instruction is gone now.
15512  return BB;
15513}
15514
15515MachineBasicBlock *
15516X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
15517                                      MachineBasicBlock *BB) const {
15518  // This is pretty easy.  We're taking the value that we received from
15519  // our load from the relocation, sticking it in either RDI (x86-64)
15520  // or EAX and doing an indirect call.  The return value will then
15521  // be in the normal return register.
15522  const X86InstrInfo *TII
15523    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
15524  DebugLoc DL = MI->getDebugLoc();
15525  MachineFunction *F = BB->getParent();
15526
15527  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
15528  assert(MI->getOperand(3).isGlobal() && "This should be a global");
15529
15530  // Get a register mask for the lowered call.
15531  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
15532  // proper register mask.
15533  const uint32_t *RegMask =
15534    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15535  if (Subtarget->is64Bit()) {
15536    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15537                                      TII->get(X86::MOV64rm), X86::RDI)
15538    .addReg(X86::RIP)
15539    .addImm(0).addReg(0)
15540    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15541                      MI->getOperand(3).getTargetFlags())
15542    .addReg(0);
15543    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
15544    addDirectMem(MIB, X86::RDI);
15545    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
15546  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
15547    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15548                                      TII->get(X86::MOV32rm), X86::EAX)
15549    .addReg(0)
15550    .addImm(0).addReg(0)
15551    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15552                      MI->getOperand(3).getTargetFlags())
15553    .addReg(0);
15554    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15555    addDirectMem(MIB, X86::EAX);
15556    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15557  } else {
15558    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15559                                      TII->get(X86::MOV32rm), X86::EAX)
15560    .addReg(TII->getGlobalBaseReg(F))
15561    .addImm(0).addReg(0)
15562    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15563                      MI->getOperand(3).getTargetFlags())
15564    .addReg(0);
15565    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15566    addDirectMem(MIB, X86::EAX);
15567    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15568  }
15569
15570  MI->eraseFromParent(); // The pseudo instruction is gone now.
15571  return BB;
15572}
15573
15574MachineBasicBlock *
15575X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
15576                                    MachineBasicBlock *MBB) const {
15577  DebugLoc DL = MI->getDebugLoc();
15578  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15579
15580  MachineFunction *MF = MBB->getParent();
15581  MachineRegisterInfo &MRI = MF->getRegInfo();
15582
15583  const BasicBlock *BB = MBB->getBasicBlock();
15584  MachineFunction::iterator I = MBB;
15585  ++I;
15586
15587  // Memory Reference
15588  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15589  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15590
15591  unsigned DstReg;
15592  unsigned MemOpndSlot = 0;
15593
15594  unsigned CurOp = 0;
15595
15596  DstReg = MI->getOperand(CurOp++).getReg();
15597  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15598  assert(RC->hasType(MVT::i32) && "Invalid destination!");
15599  unsigned mainDstReg = MRI.createVirtualRegister(RC);
15600  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
15601
15602  MemOpndSlot = CurOp;
15603
15604  MVT PVT = getPointerTy();
15605  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15606         "Invalid Pointer Size!");
15607
15608  // For v = setjmp(buf), we generate
15609  //
15610  // thisMBB:
15611  //  buf[LabelOffset] = restoreMBB
15612  //  SjLjSetup restoreMBB
15613  //
15614  // mainMBB:
15615  //  v_main = 0
15616  //
15617  // sinkMBB:
15618  //  v = phi(main, restore)
15619  //
15620  // restoreMBB:
15621  //  v_restore = 1
15622
15623  MachineBasicBlock *thisMBB = MBB;
15624  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15625  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15626  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
15627  MF->insert(I, mainMBB);
15628  MF->insert(I, sinkMBB);
15629  MF->push_back(restoreMBB);
15630
15631  MachineInstrBuilder MIB;
15632
15633  // Transfer the remainder of BB and its successor edges to sinkMBB.
15634  sinkMBB->splice(sinkMBB->begin(), MBB,
15635                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
15636  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15637
15638  // thisMBB:
15639  unsigned PtrStoreOpc = 0;
15640  unsigned LabelReg = 0;
15641  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15642  Reloc::Model RM = getTargetMachine().getRelocationModel();
15643  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
15644                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
15645
15646  // Prepare IP either in reg or imm.
15647  if (!UseImmLabel) {
15648    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
15649    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
15650    LabelReg = MRI.createVirtualRegister(PtrRC);
15651    if (Subtarget->is64Bit()) {
15652      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
15653              .addReg(X86::RIP)
15654              .addImm(0)
15655              .addReg(0)
15656              .addMBB(restoreMBB)
15657              .addReg(0);
15658    } else {
15659      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
15660      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
15661              .addReg(XII->getGlobalBaseReg(MF))
15662              .addImm(0)
15663              .addReg(0)
15664              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
15665              .addReg(0);
15666    }
15667  } else
15668    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
15669  // Store IP
15670  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
15671  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15672    if (i == X86::AddrDisp)
15673      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
15674    else
15675      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
15676  }
15677  if (!UseImmLabel)
15678    MIB.addReg(LabelReg);
15679  else
15680    MIB.addMBB(restoreMBB);
15681  MIB.setMemRefs(MMOBegin, MMOEnd);
15682  // Setup
15683  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
15684          .addMBB(restoreMBB);
15685
15686  const X86RegisterInfo *RegInfo =
15687    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15688  MIB.addRegMask(RegInfo->getNoPreservedMask());
15689  thisMBB->addSuccessor(mainMBB);
15690  thisMBB->addSuccessor(restoreMBB);
15691
15692  // mainMBB:
15693  //  EAX = 0
15694  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
15695  mainMBB->addSuccessor(sinkMBB);
15696
15697  // sinkMBB:
15698  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15699          TII->get(X86::PHI), DstReg)
15700    .addReg(mainDstReg).addMBB(mainMBB)
15701    .addReg(restoreDstReg).addMBB(restoreMBB);
15702
15703  // restoreMBB:
15704  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
15705  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
15706  restoreMBB->addSuccessor(sinkMBB);
15707
15708  MI->eraseFromParent();
15709  return sinkMBB;
15710}
15711
15712MachineBasicBlock *
15713X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
15714                                     MachineBasicBlock *MBB) const {
15715  DebugLoc DL = MI->getDebugLoc();
15716  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15717
15718  MachineFunction *MF = MBB->getParent();
15719  MachineRegisterInfo &MRI = MF->getRegInfo();
15720
15721  // Memory Reference
15722  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15723  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15724
15725  MVT PVT = getPointerTy();
15726  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15727         "Invalid Pointer Size!");
15728
15729  const TargetRegisterClass *RC =
15730    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
15731  unsigned Tmp = MRI.createVirtualRegister(RC);
15732  // Since FP is only updated here but NOT referenced, it's treated as GPR.
15733  const X86RegisterInfo *RegInfo =
15734    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15735  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
15736  unsigned SP = RegInfo->getStackRegister();
15737
15738  MachineInstrBuilder MIB;
15739
15740  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15741  const int64_t SPOffset = 2 * PVT.getStoreSize();
15742
15743  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
15744  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
15745
15746  // Reload FP
15747  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
15748  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
15749    MIB.addOperand(MI->getOperand(i));
15750  MIB.setMemRefs(MMOBegin, MMOEnd);
15751  // Reload IP
15752  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
15753  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15754    if (i == X86::AddrDisp)
15755      MIB.addDisp(MI->getOperand(i), LabelOffset);
15756    else
15757      MIB.addOperand(MI->getOperand(i));
15758  }
15759  MIB.setMemRefs(MMOBegin, MMOEnd);
15760  // Reload SP
15761  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
15762  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15763    if (i == X86::AddrDisp)
15764      MIB.addDisp(MI->getOperand(i), SPOffset);
15765    else
15766      MIB.addOperand(MI->getOperand(i));
15767  }
15768  MIB.setMemRefs(MMOBegin, MMOEnd);
15769  // Jump
15770  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
15771
15772  MI->eraseFromParent();
15773  return MBB;
15774}
15775
15776MachineBasicBlock *
15777X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
15778                                               MachineBasicBlock *BB) const {
15779  switch (MI->getOpcode()) {
15780  default: llvm_unreachable("Unexpected instr type to insert");
15781  case X86::TAILJMPd64:
15782  case X86::TAILJMPr64:
15783  case X86::TAILJMPm64:
15784    llvm_unreachable("TAILJMP64 would not be touched here.");
15785  case X86::TCRETURNdi64:
15786  case X86::TCRETURNri64:
15787  case X86::TCRETURNmi64:
15788    return BB;
15789  case X86::WIN_ALLOCA:
15790    return EmitLoweredWinAlloca(MI, BB);
15791  case X86::SEG_ALLOCA_32:
15792    return EmitLoweredSegAlloca(MI, BB, false);
15793  case X86::SEG_ALLOCA_64:
15794    return EmitLoweredSegAlloca(MI, BB, true);
15795  case X86::TLSCall_32:
15796  case X86::TLSCall_64:
15797    return EmitLoweredTLSCall(MI, BB);
15798  case X86::CMOV_GR8:
15799  case X86::CMOV_FR32:
15800  case X86::CMOV_FR64:
15801  case X86::CMOV_V4F32:
15802  case X86::CMOV_V2F64:
15803  case X86::CMOV_V2I64:
15804  case X86::CMOV_V8F32:
15805  case X86::CMOV_V4F64:
15806  case X86::CMOV_V4I64:
15807  case X86::CMOV_V16F32:
15808  case X86::CMOV_V8F64:
15809  case X86::CMOV_V8I64:
15810  case X86::CMOV_GR16:
15811  case X86::CMOV_GR32:
15812  case X86::CMOV_RFP32:
15813  case X86::CMOV_RFP64:
15814  case X86::CMOV_RFP80:
15815    return EmitLoweredSelect(MI, BB);
15816
15817  case X86::FP32_TO_INT16_IN_MEM:
15818  case X86::FP32_TO_INT32_IN_MEM:
15819  case X86::FP32_TO_INT64_IN_MEM:
15820  case X86::FP64_TO_INT16_IN_MEM:
15821  case X86::FP64_TO_INT32_IN_MEM:
15822  case X86::FP64_TO_INT64_IN_MEM:
15823  case X86::FP80_TO_INT16_IN_MEM:
15824  case X86::FP80_TO_INT32_IN_MEM:
15825  case X86::FP80_TO_INT64_IN_MEM: {
15826    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15827    DebugLoc DL = MI->getDebugLoc();
15828
15829    // Change the floating point control register to use "round towards zero"
15830    // mode when truncating to an integer value.
15831    MachineFunction *F = BB->getParent();
15832    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
15833    addFrameReference(BuildMI(*BB, MI, DL,
15834                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
15835
15836    // Load the old value of the high byte of the control word...
15837    unsigned OldCW =
15838      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
15839    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
15840                      CWFrameIdx);
15841
15842    // Set the high part to be round to zero...
15843    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
15844      .addImm(0xC7F);
15845
15846    // Reload the modified control word now...
15847    addFrameReference(BuildMI(*BB, MI, DL,
15848                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15849
15850    // Restore the memory image of control word to original value
15851    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
15852      .addReg(OldCW);
15853
15854    // Get the X86 opcode to use.
15855    unsigned Opc;
15856    switch (MI->getOpcode()) {
15857    default: llvm_unreachable("illegal opcode!");
15858    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
15859    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
15860    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
15861    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
15862    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
15863    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
15864    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
15865    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
15866    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
15867    }
15868
15869    X86AddressMode AM;
15870    MachineOperand &Op = MI->getOperand(0);
15871    if (Op.isReg()) {
15872      AM.BaseType = X86AddressMode::RegBase;
15873      AM.Base.Reg = Op.getReg();
15874    } else {
15875      AM.BaseType = X86AddressMode::FrameIndexBase;
15876      AM.Base.FrameIndex = Op.getIndex();
15877    }
15878    Op = MI->getOperand(1);
15879    if (Op.isImm())
15880      AM.Scale = Op.getImm();
15881    Op = MI->getOperand(2);
15882    if (Op.isImm())
15883      AM.IndexReg = Op.getImm();
15884    Op = MI->getOperand(3);
15885    if (Op.isGlobal()) {
15886      AM.GV = Op.getGlobal();
15887    } else {
15888      AM.Disp = Op.getImm();
15889    }
15890    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
15891                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
15892
15893    // Reload the original control word now.
15894    addFrameReference(BuildMI(*BB, MI, DL,
15895                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15896
15897    MI->eraseFromParent();   // The pseudo instruction is gone now.
15898    return BB;
15899  }
15900    // String/text processing lowering.
15901  case X86::PCMPISTRM128REG:
15902  case X86::VPCMPISTRM128REG:
15903  case X86::PCMPISTRM128MEM:
15904  case X86::VPCMPISTRM128MEM:
15905  case X86::PCMPESTRM128REG:
15906  case X86::VPCMPESTRM128REG:
15907  case X86::PCMPESTRM128MEM:
15908  case X86::VPCMPESTRM128MEM:
15909    assert(Subtarget->hasSSE42() &&
15910           "Target must have SSE4.2 or AVX features enabled");
15911    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
15912
15913  // String/text processing lowering.
15914  case X86::PCMPISTRIREG:
15915  case X86::VPCMPISTRIREG:
15916  case X86::PCMPISTRIMEM:
15917  case X86::VPCMPISTRIMEM:
15918  case X86::PCMPESTRIREG:
15919  case X86::VPCMPESTRIREG:
15920  case X86::PCMPESTRIMEM:
15921  case X86::VPCMPESTRIMEM:
15922    assert(Subtarget->hasSSE42() &&
15923           "Target must have SSE4.2 or AVX features enabled");
15924    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
15925
15926  // Thread synchronization.
15927  case X86::MONITOR:
15928    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
15929
15930  // xbegin
15931  case X86::XBEGIN:
15932    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
15933
15934  // Atomic Lowering.
15935  case X86::ATOMAND8:
15936  case X86::ATOMAND16:
15937  case X86::ATOMAND32:
15938  case X86::ATOMAND64:
15939    // Fall through
15940  case X86::ATOMOR8:
15941  case X86::ATOMOR16:
15942  case X86::ATOMOR32:
15943  case X86::ATOMOR64:
15944    // Fall through
15945  case X86::ATOMXOR16:
15946  case X86::ATOMXOR8:
15947  case X86::ATOMXOR32:
15948  case X86::ATOMXOR64:
15949    // Fall through
15950  case X86::ATOMNAND8:
15951  case X86::ATOMNAND16:
15952  case X86::ATOMNAND32:
15953  case X86::ATOMNAND64:
15954    // Fall through
15955  case X86::ATOMMAX8:
15956  case X86::ATOMMAX16:
15957  case X86::ATOMMAX32:
15958  case X86::ATOMMAX64:
15959    // Fall through
15960  case X86::ATOMMIN8:
15961  case X86::ATOMMIN16:
15962  case X86::ATOMMIN32:
15963  case X86::ATOMMIN64:
15964    // Fall through
15965  case X86::ATOMUMAX8:
15966  case X86::ATOMUMAX16:
15967  case X86::ATOMUMAX32:
15968  case X86::ATOMUMAX64:
15969    // Fall through
15970  case X86::ATOMUMIN8:
15971  case X86::ATOMUMIN16:
15972  case X86::ATOMUMIN32:
15973  case X86::ATOMUMIN64:
15974    return EmitAtomicLoadArith(MI, BB);
15975
15976  // This group does 64-bit operations on a 32-bit host.
15977  case X86::ATOMAND6432:
15978  case X86::ATOMOR6432:
15979  case X86::ATOMXOR6432:
15980  case X86::ATOMNAND6432:
15981  case X86::ATOMADD6432:
15982  case X86::ATOMSUB6432:
15983  case X86::ATOMMAX6432:
15984  case X86::ATOMMIN6432:
15985  case X86::ATOMUMAX6432:
15986  case X86::ATOMUMIN6432:
15987  case X86::ATOMSWAP6432:
15988    return EmitAtomicLoadArith6432(MI, BB);
15989
15990  case X86::VASTART_SAVE_XMM_REGS:
15991    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
15992
15993  case X86::VAARG_64:
15994    return EmitVAARG64WithCustomInserter(MI, BB);
15995
15996  case X86::EH_SjLj_SetJmp32:
15997  case X86::EH_SjLj_SetJmp64:
15998    return emitEHSjLjSetJmp(MI, BB);
15999
16000  case X86::EH_SjLj_LongJmp32:
16001  case X86::EH_SjLj_LongJmp64:
16002    return emitEHSjLjLongJmp(MI, BB);
16003  }
16004}
16005
16006//===----------------------------------------------------------------------===//
16007//                           X86 Optimization Hooks
16008//===----------------------------------------------------------------------===//
16009
16010void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
16011                                                       APInt &KnownZero,
16012                                                       APInt &KnownOne,
16013                                                       const SelectionDAG &DAG,
16014                                                       unsigned Depth) const {
16015  unsigned BitWidth = KnownZero.getBitWidth();
16016  unsigned Opc = Op.getOpcode();
16017  assert((Opc >= ISD::BUILTIN_OP_END ||
16018          Opc == ISD::INTRINSIC_WO_CHAIN ||
16019          Opc == ISD::INTRINSIC_W_CHAIN ||
16020          Opc == ISD::INTRINSIC_VOID) &&
16021         "Should use MaskedValueIsZero if you don't know whether Op"
16022         " is a target node!");
16023
16024  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
16025  switch (Opc) {
16026  default: break;
16027  case X86ISD::ADD:
16028  case X86ISD::SUB:
16029  case X86ISD::ADC:
16030  case X86ISD::SBB:
16031  case X86ISD::SMUL:
16032  case X86ISD::UMUL:
16033  case X86ISD::INC:
16034  case X86ISD::DEC:
16035  case X86ISD::OR:
16036  case X86ISD::XOR:
16037  case X86ISD::AND:
16038    // These nodes' second result is a boolean.
16039    if (Op.getResNo() == 0)
16040      break;
16041    // Fallthrough
16042  case X86ISD::SETCC:
16043    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
16044    break;
16045  case ISD::INTRINSIC_WO_CHAIN: {
16046    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16047    unsigned NumLoBits = 0;
16048    switch (IntId) {
16049    default: break;
16050    case Intrinsic::x86_sse_movmsk_ps:
16051    case Intrinsic::x86_avx_movmsk_ps_256:
16052    case Intrinsic::x86_sse2_movmsk_pd:
16053    case Intrinsic::x86_avx_movmsk_pd_256:
16054    case Intrinsic::x86_mmx_pmovmskb:
16055    case Intrinsic::x86_sse2_pmovmskb_128:
16056    case Intrinsic::x86_avx2_pmovmskb: {
16057      // High bits of movmskp{s|d}, pmovmskb are known zero.
16058      switch (IntId) {
16059        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
16060        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
16061        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
16062        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
16063        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
16064        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
16065        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
16066        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
16067      }
16068      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
16069      break;
16070    }
16071    }
16072    break;
16073  }
16074  }
16075}
16076
16077unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
16078                                                         unsigned Depth) const {
16079  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
16080  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
16081    return Op.getValueType().getScalarType().getSizeInBits();
16082
16083  // Fallback case.
16084  return 1;
16085}
16086
16087/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
16088/// node is a GlobalAddress + offset.
16089bool X86TargetLowering::isGAPlusOffset(SDNode *N,
16090                                       const GlobalValue* &GA,
16091                                       int64_t &Offset) const {
16092  if (N->getOpcode() == X86ISD::Wrapper) {
16093    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
16094      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
16095      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
16096      return true;
16097    }
16098  }
16099  return TargetLowering::isGAPlusOffset(N, GA, Offset);
16100}
16101
16102/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
16103/// same as extracting the high 128-bit part of 256-bit vector and then
16104/// inserting the result into the low part of a new 256-bit vector
16105static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
16106  EVT VT = SVOp->getValueType(0);
16107  unsigned NumElems = VT.getVectorNumElements();
16108
16109  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16110  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
16111    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16112        SVOp->getMaskElt(j) >= 0)
16113      return false;
16114
16115  return true;
16116}
16117
16118/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
16119/// same as extracting the low 128-bit part of 256-bit vector and then
16120/// inserting the result into the high part of a new 256-bit vector
16121static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
16122  EVT VT = SVOp->getValueType(0);
16123  unsigned NumElems = VT.getVectorNumElements();
16124
16125  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16126  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
16127    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16128        SVOp->getMaskElt(j) >= 0)
16129      return false;
16130
16131  return true;
16132}
16133
16134/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
16135static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
16136                                        TargetLowering::DAGCombinerInfo &DCI,
16137                                        const X86Subtarget* Subtarget) {
16138  SDLoc dl(N);
16139  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
16140  SDValue V1 = SVOp->getOperand(0);
16141  SDValue V2 = SVOp->getOperand(1);
16142  EVT VT = SVOp->getValueType(0);
16143  unsigned NumElems = VT.getVectorNumElements();
16144
16145  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
16146      V2.getOpcode() == ISD::CONCAT_VECTORS) {
16147    //
16148    //                   0,0,0,...
16149    //                      |
16150    //    V      UNDEF    BUILD_VECTOR    UNDEF
16151    //     \      /           \           /
16152    //  CONCAT_VECTOR         CONCAT_VECTOR
16153    //         \                  /
16154    //          \                /
16155    //          RESULT: V + zero extended
16156    //
16157    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
16158        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
16159        V1.getOperand(1).getOpcode() != ISD::UNDEF)
16160      return SDValue();
16161
16162    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
16163      return SDValue();
16164
16165    // To match the shuffle mask, the first half of the mask should
16166    // be exactly the first vector, and all the rest a splat with the
16167    // first element of the second one.
16168    for (unsigned i = 0; i != NumElems/2; ++i)
16169      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
16170          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
16171        return SDValue();
16172
16173    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
16174    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
16175      if (Ld->hasNUsesOfValue(1, 0)) {
16176        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
16177        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
16178        SDValue ResNode =
16179          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
16180                                  array_lengthof(Ops),
16181                                  Ld->getMemoryVT(),
16182                                  Ld->getPointerInfo(),
16183                                  Ld->getAlignment(),
16184                                  false/*isVolatile*/, true/*ReadMem*/,
16185                                  false/*WriteMem*/);
16186
16187        // Make sure the newly-created LOAD is in the same position as Ld in
16188        // terms of dependency. We create a TokenFactor for Ld and ResNode,
16189        // and update uses of Ld's output chain to use the TokenFactor.
16190        if (Ld->hasAnyUseOfValue(1)) {
16191          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16192                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
16193          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
16194          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
16195                                 SDValue(ResNode.getNode(), 1));
16196        }
16197
16198        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
16199      }
16200    }
16201
16202    // Emit a zeroed vector and insert the desired subvector on its
16203    // first half.
16204    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16205    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
16206    return DCI.CombineTo(N, InsV);
16207  }
16208
16209  //===--------------------------------------------------------------------===//
16210  // Combine some shuffles into subvector extracts and inserts:
16211  //
16212
16213  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16214  if (isShuffleHigh128VectorInsertLow(SVOp)) {
16215    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
16216    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
16217    return DCI.CombineTo(N, InsV);
16218  }
16219
16220  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16221  if (isShuffleLow128VectorInsertHigh(SVOp)) {
16222    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
16223    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
16224    return DCI.CombineTo(N, InsV);
16225  }
16226
16227  return SDValue();
16228}
16229
16230/// PerformShuffleCombine - Performs several different shuffle combines.
16231static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
16232                                     TargetLowering::DAGCombinerInfo &DCI,
16233                                     const X86Subtarget *Subtarget) {
16234  SDLoc dl(N);
16235  EVT VT = N->getValueType(0);
16236
16237  // Don't create instructions with illegal types after legalize types has run.
16238  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16239  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
16240    return SDValue();
16241
16242  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
16243  if (Subtarget->hasFp256() && VT.is256BitVector() &&
16244      N->getOpcode() == ISD::VECTOR_SHUFFLE)
16245    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
16246
16247  // Only handle 128 wide vector from here on.
16248  if (!VT.is128BitVector())
16249    return SDValue();
16250
16251  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
16252  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
16253  // consecutive, non-overlapping, and in the right order.
16254  SmallVector<SDValue, 16> Elts;
16255  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
16256    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
16257
16258  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
16259}
16260
16261/// PerformTruncateCombine - Converts truncate operation to
16262/// a sequence of vector shuffle operations.
16263/// It is possible when we truncate 256-bit vector to 128-bit vector
16264static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
16265                                      TargetLowering::DAGCombinerInfo &DCI,
16266                                      const X86Subtarget *Subtarget)  {
16267  return SDValue();
16268}
16269
16270/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
16271/// specific shuffle of a load can be folded into a single element load.
16272/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
16273/// shuffles have been customed lowered so we need to handle those here.
16274static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
16275                                         TargetLowering::DAGCombinerInfo &DCI) {
16276  if (DCI.isBeforeLegalizeOps())
16277    return SDValue();
16278
16279  SDValue InVec = N->getOperand(0);
16280  SDValue EltNo = N->getOperand(1);
16281
16282  if (!isa<ConstantSDNode>(EltNo))
16283    return SDValue();
16284
16285  EVT VT = InVec.getValueType();
16286
16287  bool HasShuffleIntoBitcast = false;
16288  if (InVec.getOpcode() == ISD::BITCAST) {
16289    // Don't duplicate a load with other uses.
16290    if (!InVec.hasOneUse())
16291      return SDValue();
16292    EVT BCVT = InVec.getOperand(0).getValueType();
16293    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
16294      return SDValue();
16295    InVec = InVec.getOperand(0);
16296    HasShuffleIntoBitcast = true;
16297  }
16298
16299  if (!isTargetShuffle(InVec.getOpcode()))
16300    return SDValue();
16301
16302  // Don't duplicate a load with other uses.
16303  if (!InVec.hasOneUse())
16304    return SDValue();
16305
16306  SmallVector<int, 16> ShuffleMask;
16307  bool UnaryShuffle;
16308  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
16309                            UnaryShuffle))
16310    return SDValue();
16311
16312  // Select the input vector, guarding against out of range extract vector.
16313  unsigned NumElems = VT.getVectorNumElements();
16314  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
16315  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
16316  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
16317                                         : InVec.getOperand(1);
16318
16319  // If inputs to shuffle are the same for both ops, then allow 2 uses
16320  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
16321
16322  if (LdNode.getOpcode() == ISD::BITCAST) {
16323    // Don't duplicate a load with other uses.
16324    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
16325      return SDValue();
16326
16327    AllowedUses = 1; // only allow 1 load use if we have a bitcast
16328    LdNode = LdNode.getOperand(0);
16329  }
16330
16331  if (!ISD::isNormalLoad(LdNode.getNode()))
16332    return SDValue();
16333
16334  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
16335
16336  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
16337    return SDValue();
16338
16339  if (HasShuffleIntoBitcast) {
16340    // If there's a bitcast before the shuffle, check if the load type and
16341    // alignment is valid.
16342    unsigned Align = LN0->getAlignment();
16343    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16344    unsigned NewAlign = TLI.getDataLayout()->
16345      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
16346
16347    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
16348      return SDValue();
16349  }
16350
16351  // All checks match so transform back to vector_shuffle so that DAG combiner
16352  // can finish the job
16353  SDLoc dl(N);
16354
16355  // Create shuffle node taking into account the case that its a unary shuffle
16356  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
16357  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
16358                                 InVec.getOperand(0), Shuffle,
16359                                 &ShuffleMask[0]);
16360  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
16361  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
16362                     EltNo);
16363}
16364
16365/// Extract one bit from mask vector, like v16i1 or v8i1.
16366/// AVX-512 feature.
16367static SDValue ExtractBitFromMaskVector(SDNode *N, SelectionDAG &DAG) {
16368  SDValue Vec = N->getOperand(0);
16369  SDLoc dl(Vec);
16370  MVT VecVT = Vec.getSimpleValueType();
16371  SDValue Idx = N->getOperand(1);
16372  MVT EltVT = N->getSimpleValueType(0);
16373
16374  assert((VecVT.getVectorElementType() == MVT::i1 && EltVT == MVT::i8) ||
16375         "Unexpected operands in ExtractBitFromMaskVector");
16376
16377  // variable index
16378  if (!isa<ConstantSDNode>(Idx)) {
16379    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
16380    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
16381    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16382                              ExtVT.getVectorElementType(), Ext);
16383    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
16384  }
16385
16386  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
16387
16388  MVT ScalarVT = MVT::getIntegerVT(VecVT.getSizeInBits());
16389  unsigned MaxShift = VecVT.getSizeInBits() - 1;
16390  Vec = DAG.getNode(ISD::BITCAST, dl, ScalarVT, Vec);
16391  Vec = DAG.getNode(ISD::SHL, dl, ScalarVT, Vec,
16392              DAG.getConstant(MaxShift - IdxVal, ScalarVT));
16393  Vec = DAG.getNode(ISD::SRL, dl, ScalarVT, Vec,
16394    DAG.getConstant(MaxShift, ScalarVT));
16395
16396  if (VecVT == MVT::v16i1) {
16397    Vec = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Vec);
16398    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Vec);
16399  }
16400  return DAG.getNode(ISD::BITCAST, dl, MVT::i8, Vec);
16401}
16402
16403/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
16404/// generation and convert it from being a bunch of shuffles and extracts
16405/// to a simple store and scalar loads to extract the elements.
16406static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16407                                         TargetLowering::DAGCombinerInfo &DCI) {
16408  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
16409  if (NewOp.getNode())
16410    return NewOp;
16411
16412  SDValue InputVector = N->getOperand(0);
16413
16414  if (InputVector.getValueType().getVectorElementType() == MVT::i1 &&
16415      !DCI.isBeforeLegalize())
16416    return ExtractBitFromMaskVector(N, DAG);
16417
16418  // Detect whether we are trying to convert from mmx to i32 and the bitcast
16419  // from mmx to v2i32 has a single usage.
16420  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
16421      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
16422      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
16423    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
16424                       N->getValueType(0),
16425                       InputVector.getNode()->getOperand(0));
16426
16427  // Only operate on vectors of 4 elements, where the alternative shuffling
16428  // gets to be more expensive.
16429  if (InputVector.getValueType() != MVT::v4i32)
16430    return SDValue();
16431
16432  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
16433  // single use which is a sign-extend or zero-extend, and all elements are
16434  // used.
16435  SmallVector<SDNode *, 4> Uses;
16436  unsigned ExtractedElements = 0;
16437  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
16438       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
16439    if (UI.getUse().getResNo() != InputVector.getResNo())
16440      return SDValue();
16441
16442    SDNode *Extract = *UI;
16443    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16444      return SDValue();
16445
16446    if (Extract->getValueType(0) != MVT::i32)
16447      return SDValue();
16448    if (!Extract->hasOneUse())
16449      return SDValue();
16450    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
16451        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
16452      return SDValue();
16453    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
16454      return SDValue();
16455
16456    // Record which element was extracted.
16457    ExtractedElements |=
16458      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
16459
16460    Uses.push_back(Extract);
16461  }
16462
16463  // If not all the elements were used, this may not be worthwhile.
16464  if (ExtractedElements != 15)
16465    return SDValue();
16466
16467  // Ok, we've now decided to do the transformation.
16468  SDLoc dl(InputVector);
16469
16470  // Store the value to a temporary stack slot.
16471  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
16472  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
16473                            MachinePointerInfo(), false, false, 0);
16474
16475  // Replace each use (extract) with a load of the appropriate element.
16476  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
16477       UE = Uses.end(); UI != UE; ++UI) {
16478    SDNode *Extract = *UI;
16479
16480    // cOMpute the element's address.
16481    SDValue Idx = Extract->getOperand(1);
16482    unsigned EltSize =
16483        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
16484    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
16485    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16486    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
16487
16488    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
16489                                     StackPtr, OffsetVal);
16490
16491    // Load the scalar.
16492    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
16493                                     ScalarAddr, MachinePointerInfo(),
16494                                     false, false, false, 0);
16495
16496    // Replace the exact with the load.
16497    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
16498  }
16499
16500  // The replacement was made in place; don't return anything.
16501  return SDValue();
16502}
16503
16504/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
16505static std::pair<unsigned, bool>
16506matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
16507                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
16508  if (!VT.isVector())
16509    return std::make_pair(0, false);
16510
16511  bool NeedSplit = false;
16512  switch (VT.getSimpleVT().SimpleTy) {
16513  default: return std::make_pair(0, false);
16514  case MVT::v32i8:
16515  case MVT::v16i16:
16516  case MVT::v8i32:
16517    if (!Subtarget->hasAVX2())
16518      NeedSplit = true;
16519    if (!Subtarget->hasAVX())
16520      return std::make_pair(0, false);
16521    break;
16522  case MVT::v16i8:
16523  case MVT::v8i16:
16524  case MVT::v4i32:
16525    if (!Subtarget->hasSSE2())
16526      return std::make_pair(0, false);
16527  }
16528
16529  // SSE2 has only a small subset of the operations.
16530  bool hasUnsigned = Subtarget->hasSSE41() ||
16531                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
16532  bool hasSigned = Subtarget->hasSSE41() ||
16533                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
16534
16535  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16536
16537  unsigned Opc = 0;
16538  // Check for x CC y ? x : y.
16539  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16540      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16541    switch (CC) {
16542    default: break;
16543    case ISD::SETULT:
16544    case ISD::SETULE:
16545      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16546    case ISD::SETUGT:
16547    case ISD::SETUGE:
16548      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16549    case ISD::SETLT:
16550    case ISD::SETLE:
16551      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16552    case ISD::SETGT:
16553    case ISD::SETGE:
16554      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16555    }
16556  // Check for x CC y ? y : x -- a min/max with reversed arms.
16557  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16558             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16559    switch (CC) {
16560    default: break;
16561    case ISD::SETULT:
16562    case ISD::SETULE:
16563      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16564    case ISD::SETUGT:
16565    case ISD::SETUGE:
16566      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16567    case ISD::SETLT:
16568    case ISD::SETLE:
16569      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16570    case ISD::SETGT:
16571    case ISD::SETGE:
16572      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16573    }
16574  }
16575
16576  return std::make_pair(Opc, NeedSplit);
16577}
16578
16579/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
16580/// nodes.
16581static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
16582                                    TargetLowering::DAGCombinerInfo &DCI,
16583                                    const X86Subtarget *Subtarget) {
16584  SDLoc DL(N);
16585  SDValue Cond = N->getOperand(0);
16586  // Get the LHS/RHS of the select.
16587  SDValue LHS = N->getOperand(1);
16588  SDValue RHS = N->getOperand(2);
16589  EVT VT = LHS.getValueType();
16590  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16591
16592  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
16593  // instructions match the semantics of the common C idiom x<y?x:y but not
16594  // x<=y?x:y, because of how they handle negative zero (which can be
16595  // ignored in unsafe-math mode).
16596  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
16597      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
16598      (Subtarget->hasSSE2() ||
16599       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
16600    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16601
16602    unsigned Opcode = 0;
16603    // Check for x CC y ? x : y.
16604    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16605        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16606      switch (CC) {
16607      default: break;
16608      case ISD::SETULT:
16609        // Converting this to a min would handle NaNs incorrectly, and swapping
16610        // the operands would cause it to handle comparisons between positive
16611        // and negative zero incorrectly.
16612        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16613          if (!DAG.getTarget().Options.UnsafeFPMath &&
16614              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16615            break;
16616          std::swap(LHS, RHS);
16617        }
16618        Opcode = X86ISD::FMIN;
16619        break;
16620      case ISD::SETOLE:
16621        // Converting this to a min would handle comparisons between positive
16622        // and negative zero incorrectly.
16623        if (!DAG.getTarget().Options.UnsafeFPMath &&
16624            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16625          break;
16626        Opcode = X86ISD::FMIN;
16627        break;
16628      case ISD::SETULE:
16629        // Converting this to a min would handle both negative zeros and NaNs
16630        // incorrectly, but we can swap the operands to fix both.
16631        std::swap(LHS, RHS);
16632      case ISD::SETOLT:
16633      case ISD::SETLT:
16634      case ISD::SETLE:
16635        Opcode = X86ISD::FMIN;
16636        break;
16637
16638      case ISD::SETOGE:
16639        // Converting this to a max would handle comparisons between positive
16640        // and negative zero incorrectly.
16641        if (!DAG.getTarget().Options.UnsafeFPMath &&
16642            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16643          break;
16644        Opcode = X86ISD::FMAX;
16645        break;
16646      case ISD::SETUGT:
16647        // Converting this to a max would handle NaNs incorrectly, and swapping
16648        // the operands would cause it to handle comparisons between positive
16649        // and negative zero incorrectly.
16650        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16651          if (!DAG.getTarget().Options.UnsafeFPMath &&
16652              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16653            break;
16654          std::swap(LHS, RHS);
16655        }
16656        Opcode = X86ISD::FMAX;
16657        break;
16658      case ISD::SETUGE:
16659        // Converting this to a max would handle both negative zeros and NaNs
16660        // incorrectly, but we can swap the operands to fix both.
16661        std::swap(LHS, RHS);
16662      case ISD::SETOGT:
16663      case ISD::SETGT:
16664      case ISD::SETGE:
16665        Opcode = X86ISD::FMAX;
16666        break;
16667      }
16668    // Check for x CC y ? y : x -- a min/max with reversed arms.
16669    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16670               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16671      switch (CC) {
16672      default: break;
16673      case ISD::SETOGE:
16674        // Converting this to a min would handle comparisons between positive
16675        // and negative zero incorrectly, and swapping the operands would
16676        // cause it to handle NaNs incorrectly.
16677        if (!DAG.getTarget().Options.UnsafeFPMath &&
16678            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
16679          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16680            break;
16681          std::swap(LHS, RHS);
16682        }
16683        Opcode = X86ISD::FMIN;
16684        break;
16685      case ISD::SETUGT:
16686        // Converting this to a min would handle NaNs incorrectly.
16687        if (!DAG.getTarget().Options.UnsafeFPMath &&
16688            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
16689          break;
16690        Opcode = X86ISD::FMIN;
16691        break;
16692      case ISD::SETUGE:
16693        // Converting this to a min would handle both negative zeros and NaNs
16694        // incorrectly, but we can swap the operands to fix both.
16695        std::swap(LHS, RHS);
16696      case ISD::SETOGT:
16697      case ISD::SETGT:
16698      case ISD::SETGE:
16699        Opcode = X86ISD::FMIN;
16700        break;
16701
16702      case ISD::SETULT:
16703        // Converting this to a max would handle NaNs incorrectly.
16704        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16705          break;
16706        Opcode = X86ISD::FMAX;
16707        break;
16708      case ISD::SETOLE:
16709        // Converting this to a max would handle comparisons between positive
16710        // and negative zero incorrectly, and swapping the operands would
16711        // cause it to handle NaNs incorrectly.
16712        if (!DAG.getTarget().Options.UnsafeFPMath &&
16713            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
16714          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16715            break;
16716          std::swap(LHS, RHS);
16717        }
16718        Opcode = X86ISD::FMAX;
16719        break;
16720      case ISD::SETULE:
16721        // Converting this to a max would handle both negative zeros and NaNs
16722        // incorrectly, but we can swap the operands to fix both.
16723        std::swap(LHS, RHS);
16724      case ISD::SETOLT:
16725      case ISD::SETLT:
16726      case ISD::SETLE:
16727        Opcode = X86ISD::FMAX;
16728        break;
16729      }
16730    }
16731
16732    if (Opcode)
16733      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
16734  }
16735
16736  EVT CondVT = Cond.getValueType();
16737  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
16738      CondVT.getVectorElementType() == MVT::i1) {
16739    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
16740    // lowering on AVX-512. In this case we convert it to
16741    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
16742    // The same situation for all 128 and 256-bit vectors of i8 and i16
16743    EVT OpVT = LHS.getValueType();
16744    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
16745        (OpVT.getVectorElementType() == MVT::i8 ||
16746         OpVT.getVectorElementType() == MVT::i16)) {
16747      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
16748      DCI.AddToWorklist(Cond.getNode());
16749      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
16750    }
16751  }
16752  // If this is a select between two integer constants, try to do some
16753  // optimizations.
16754  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
16755    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
16756      // Don't do this for crazy integer types.
16757      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
16758        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
16759        // so that TrueC (the true value) is larger than FalseC.
16760        bool NeedsCondInvert = false;
16761
16762        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
16763            // Efficiently invertible.
16764            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
16765             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
16766              isa<ConstantSDNode>(Cond.getOperand(1))))) {
16767          NeedsCondInvert = true;
16768          std::swap(TrueC, FalseC);
16769        }
16770
16771        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
16772        if (FalseC->getAPIntValue() == 0 &&
16773            TrueC->getAPIntValue().isPowerOf2()) {
16774          if (NeedsCondInvert) // Invert the condition if needed.
16775            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16776                               DAG.getConstant(1, Cond.getValueType()));
16777
16778          // Zero extend the condition if needed.
16779          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
16780
16781          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16782          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
16783                             DAG.getConstant(ShAmt, MVT::i8));
16784        }
16785
16786        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
16787        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16788          if (NeedsCondInvert) // Invert the condition if needed.
16789            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16790                               DAG.getConstant(1, Cond.getValueType()));
16791
16792          // Zero extend the condition if needed.
16793          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16794                             FalseC->getValueType(0), Cond);
16795          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16796                             SDValue(FalseC, 0));
16797        }
16798
16799        // Optimize cases that will turn into an LEA instruction.  This requires
16800        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16801        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16802          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16803          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16804
16805          bool isFastMultiplier = false;
16806          if (Diff < 10) {
16807            switch ((unsigned char)Diff) {
16808              default: break;
16809              case 1:  // result = add base, cond
16810              case 2:  // result = lea base(    , cond*2)
16811              case 3:  // result = lea base(cond, cond*2)
16812              case 4:  // result = lea base(    , cond*4)
16813              case 5:  // result = lea base(cond, cond*4)
16814              case 8:  // result = lea base(    , cond*8)
16815              case 9:  // result = lea base(cond, cond*8)
16816                isFastMultiplier = true;
16817                break;
16818            }
16819          }
16820
16821          if (isFastMultiplier) {
16822            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16823            if (NeedsCondInvert) // Invert the condition if needed.
16824              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16825                                 DAG.getConstant(1, Cond.getValueType()));
16826
16827            // Zero extend the condition if needed.
16828            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16829                               Cond);
16830            // Scale the condition by the difference.
16831            if (Diff != 1)
16832              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16833                                 DAG.getConstant(Diff, Cond.getValueType()));
16834
16835            // Add the base if non-zero.
16836            if (FalseC->getAPIntValue() != 0)
16837              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16838                                 SDValue(FalseC, 0));
16839            return Cond;
16840          }
16841        }
16842      }
16843  }
16844
16845  // Canonicalize max and min:
16846  // (x > y) ? x : y -> (x >= y) ? x : y
16847  // (x < y) ? x : y -> (x <= y) ? x : y
16848  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
16849  // the need for an extra compare
16850  // against zero. e.g.
16851  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
16852  // subl   %esi, %edi
16853  // testl  %edi, %edi
16854  // movl   $0, %eax
16855  // cmovgl %edi, %eax
16856  // =>
16857  // xorl   %eax, %eax
16858  // subl   %esi, $edi
16859  // cmovsl %eax, %edi
16860  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
16861      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16862      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16863    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16864    switch (CC) {
16865    default: break;
16866    case ISD::SETLT:
16867    case ISD::SETGT: {
16868      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
16869      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
16870                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
16871      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
16872    }
16873    }
16874  }
16875
16876  // Early exit check
16877  if (!TLI.isTypeLegal(VT))
16878    return SDValue();
16879
16880  // Match VSELECTs into subs with unsigned saturation.
16881  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16882      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
16883      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
16884       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
16885    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16886
16887    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
16888    // left side invert the predicate to simplify logic below.
16889    SDValue Other;
16890    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
16891      Other = RHS;
16892      CC = ISD::getSetCCInverse(CC, true);
16893    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
16894      Other = LHS;
16895    }
16896
16897    if (Other.getNode() && Other->getNumOperands() == 2 &&
16898        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
16899      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
16900      SDValue CondRHS = Cond->getOperand(1);
16901
16902      // Look for a general sub with unsigned saturation first.
16903      // x >= y ? x-y : 0 --> subus x, y
16904      // x >  y ? x-y : 0 --> subus x, y
16905      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
16906          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
16907        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16908
16909      // If the RHS is a constant we have to reverse the const canonicalization.
16910      // x > C-1 ? x+-C : 0 --> subus x, C
16911      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
16912          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
16913        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16914        if (CondRHS.getConstantOperandVal(0) == -A-1)
16915          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
16916                             DAG.getConstant(-A, VT));
16917      }
16918
16919      // Another special case: If C was a sign bit, the sub has been
16920      // canonicalized into a xor.
16921      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
16922      //        it's safe to decanonicalize the xor?
16923      // x s< 0 ? x^C : 0 --> subus x, C
16924      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
16925          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
16926          isSplatVector(OpRHS.getNode())) {
16927        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16928        if (A.isSignBit())
16929          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16930      }
16931    }
16932  }
16933
16934  // Try to match a min/max vector operation.
16935  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
16936    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
16937    unsigned Opc = ret.first;
16938    bool NeedSplit = ret.second;
16939
16940    if (Opc && NeedSplit) {
16941      unsigned NumElems = VT.getVectorNumElements();
16942      // Extract the LHS vectors
16943      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
16944      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
16945
16946      // Extract the RHS vectors
16947      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
16948      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
16949
16950      // Create min/max for each subvector
16951      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
16952      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
16953
16954      // Merge the result
16955      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
16956    } else if (Opc)
16957      return DAG.getNode(Opc, DL, VT, LHS, RHS);
16958  }
16959
16960  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
16961  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16962      // Check if SETCC has already been promoted
16963      TLI.getSetCCResultType(*DAG.getContext(), VT) == Cond.getValueType()) {
16964
16965    assert(Cond.getValueType().isVector() &&
16966           "vector select expects a vector selector!");
16967
16968    EVT IntVT = Cond.getValueType();
16969    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
16970    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
16971
16972    if (!TValIsAllOnes && !FValIsAllZeros) {
16973      // Try invert the condition if true value is not all 1s and false value
16974      // is not all 0s.
16975      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
16976      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
16977
16978      if (TValIsAllZeros || FValIsAllOnes) {
16979        SDValue CC = Cond.getOperand(2);
16980        ISD::CondCode NewCC =
16981          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
16982                               Cond.getOperand(0).getValueType().isInteger());
16983        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
16984        std::swap(LHS, RHS);
16985        TValIsAllOnes = FValIsAllOnes;
16986        FValIsAllZeros = TValIsAllZeros;
16987      }
16988    }
16989
16990    if (TValIsAllOnes || FValIsAllZeros) {
16991      SDValue Ret;
16992
16993      if (TValIsAllOnes && FValIsAllZeros)
16994        Ret = Cond;
16995      else if (TValIsAllOnes)
16996        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
16997                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
16998      else if (FValIsAllZeros)
16999        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
17000                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
17001
17002      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
17003    }
17004  }
17005
17006  // If we know that this node is legal then we know that it is going to be
17007  // matched by one of the SSE/AVX BLEND instructions. These instructions only
17008  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
17009  // to simplify previous instructions.
17010  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
17011      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
17012    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
17013
17014    // Don't optimize vector selects that map to mask-registers.
17015    if (BitWidth == 1)
17016      return SDValue();
17017
17018    // Check all uses of that condition operand to check whether it will be
17019    // consumed by non-BLEND instructions, which may depend on all bits are set
17020    // properly.
17021    for (SDNode::use_iterator I = Cond->use_begin(),
17022                              E = Cond->use_end(); I != E; ++I)
17023      if (I->getOpcode() != ISD::VSELECT)
17024        // TODO: Add other opcodes eventually lowered into BLEND.
17025        return SDValue();
17026
17027    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
17028    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
17029
17030    APInt KnownZero, KnownOne;
17031    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
17032                                          DCI.isBeforeLegalizeOps());
17033    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
17034        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
17035      DCI.CommitTargetLoweringOpt(TLO);
17036  }
17037
17038  return SDValue();
17039}
17040
17041// Check whether a boolean test is testing a boolean value generated by
17042// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
17043// code.
17044//
17045// Simplify the following patterns:
17046// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
17047// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
17048// to (Op EFLAGS Cond)
17049//
17050// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
17051// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
17052// to (Op EFLAGS !Cond)
17053//
17054// where Op could be BRCOND or CMOV.
17055//
17056static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
17057  // Quit if not CMP and SUB with its value result used.
17058  if (Cmp.getOpcode() != X86ISD::CMP &&
17059      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
17060      return SDValue();
17061
17062  // Quit if not used as a boolean value.
17063  if (CC != X86::COND_E && CC != X86::COND_NE)
17064    return SDValue();
17065
17066  // Check CMP operands. One of them should be 0 or 1 and the other should be
17067  // an SetCC or extended from it.
17068  SDValue Op1 = Cmp.getOperand(0);
17069  SDValue Op2 = Cmp.getOperand(1);
17070
17071  SDValue SetCC;
17072  const ConstantSDNode* C = 0;
17073  bool needOppositeCond = (CC == X86::COND_E);
17074  bool checkAgainstTrue = false; // Is it a comparison against 1?
17075
17076  if ((C = dyn_cast<ConstantSDNode>(Op1)))
17077    SetCC = Op2;
17078  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
17079    SetCC = Op1;
17080  else // Quit if all operands are not constants.
17081    return SDValue();
17082
17083  if (C->getZExtValue() == 1) {
17084    needOppositeCond = !needOppositeCond;
17085    checkAgainstTrue = true;
17086  } else if (C->getZExtValue() != 0)
17087    // Quit if the constant is neither 0 or 1.
17088    return SDValue();
17089
17090  bool truncatedToBoolWithAnd = false;
17091  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
17092  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
17093         SetCC.getOpcode() == ISD::TRUNCATE ||
17094         SetCC.getOpcode() == ISD::AND) {
17095    if (SetCC.getOpcode() == ISD::AND) {
17096      int OpIdx = -1;
17097      ConstantSDNode *CS;
17098      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
17099          CS->getZExtValue() == 1)
17100        OpIdx = 1;
17101      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
17102          CS->getZExtValue() == 1)
17103        OpIdx = 0;
17104      if (OpIdx == -1)
17105        break;
17106      SetCC = SetCC.getOperand(OpIdx);
17107      truncatedToBoolWithAnd = true;
17108    } else
17109      SetCC = SetCC.getOperand(0);
17110  }
17111
17112  switch (SetCC.getOpcode()) {
17113  case X86ISD::SETCC_CARRY:
17114    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
17115    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
17116    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
17117    // truncated to i1 using 'and'.
17118    if (checkAgainstTrue && !truncatedToBoolWithAnd)
17119      break;
17120    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
17121           "Invalid use of SETCC_CARRY!");
17122    // FALL THROUGH
17123  case X86ISD::SETCC:
17124    // Set the condition code or opposite one if necessary.
17125    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
17126    if (needOppositeCond)
17127      CC = X86::GetOppositeBranchCondition(CC);
17128    return SetCC.getOperand(1);
17129  case X86ISD::CMOV: {
17130    // Check whether false/true value has canonical one, i.e. 0 or 1.
17131    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
17132    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
17133    // Quit if true value is not a constant.
17134    if (!TVal)
17135      return SDValue();
17136    // Quit if false value is not a constant.
17137    if (!FVal) {
17138      SDValue Op = SetCC.getOperand(0);
17139      // Skip 'zext' or 'trunc' node.
17140      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
17141          Op.getOpcode() == ISD::TRUNCATE)
17142        Op = Op.getOperand(0);
17143      // A special case for rdrand/rdseed, where 0 is set if false cond is
17144      // found.
17145      if ((Op.getOpcode() != X86ISD::RDRAND &&
17146           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
17147        return SDValue();
17148    }
17149    // Quit if false value is not the constant 0 or 1.
17150    bool FValIsFalse = true;
17151    if (FVal && FVal->getZExtValue() != 0) {
17152      if (FVal->getZExtValue() != 1)
17153        return SDValue();
17154      // If FVal is 1, opposite cond is needed.
17155      needOppositeCond = !needOppositeCond;
17156      FValIsFalse = false;
17157    }
17158    // Quit if TVal is not the constant opposite of FVal.
17159    if (FValIsFalse && TVal->getZExtValue() != 1)
17160      return SDValue();
17161    if (!FValIsFalse && TVal->getZExtValue() != 0)
17162      return SDValue();
17163    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
17164    if (needOppositeCond)
17165      CC = X86::GetOppositeBranchCondition(CC);
17166    return SetCC.getOperand(3);
17167  }
17168  }
17169
17170  return SDValue();
17171}
17172
17173/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
17174static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
17175                                  TargetLowering::DAGCombinerInfo &DCI,
17176                                  const X86Subtarget *Subtarget) {
17177  SDLoc DL(N);
17178
17179  // If the flag operand isn't dead, don't touch this CMOV.
17180  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
17181    return SDValue();
17182
17183  SDValue FalseOp = N->getOperand(0);
17184  SDValue TrueOp = N->getOperand(1);
17185  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
17186  SDValue Cond = N->getOperand(3);
17187
17188  if (CC == X86::COND_E || CC == X86::COND_NE) {
17189    switch (Cond.getOpcode()) {
17190    default: break;
17191    case X86ISD::BSR:
17192    case X86ISD::BSF:
17193      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
17194      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
17195        return (CC == X86::COND_E) ? FalseOp : TrueOp;
17196    }
17197  }
17198
17199  SDValue Flags;
17200
17201  Flags = checkBoolTestSetCCCombine(Cond, CC);
17202  if (Flags.getNode() &&
17203      // Extra check as FCMOV only supports a subset of X86 cond.
17204      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
17205    SDValue Ops[] = { FalseOp, TrueOp,
17206                      DAG.getConstant(CC, MVT::i8), Flags };
17207    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
17208                       Ops, array_lengthof(Ops));
17209  }
17210
17211  // If this is a select between two integer constants, try to do some
17212  // optimizations.  Note that the operands are ordered the opposite of SELECT
17213  // operands.
17214  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
17215    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
17216      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
17217      // larger than FalseC (the false value).
17218      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
17219        CC = X86::GetOppositeBranchCondition(CC);
17220        std::swap(TrueC, FalseC);
17221        std::swap(TrueOp, FalseOp);
17222      }
17223
17224      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
17225      // This is efficient for any integer data type (including i8/i16) and
17226      // shift amount.
17227      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
17228        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17229                           DAG.getConstant(CC, MVT::i8), Cond);
17230
17231        // Zero extend the condition if needed.
17232        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
17233
17234        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
17235        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
17236                           DAG.getConstant(ShAmt, MVT::i8));
17237        if (N->getNumValues() == 2)  // Dead flag value?
17238          return DCI.CombineTo(N, Cond, SDValue());
17239        return Cond;
17240      }
17241
17242      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
17243      // for any integer data type, including i8/i16.
17244      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
17245        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17246                           DAG.getConstant(CC, MVT::i8), Cond);
17247
17248        // Zero extend the condition if needed.
17249        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
17250                           FalseC->getValueType(0), Cond);
17251        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17252                           SDValue(FalseC, 0));
17253
17254        if (N->getNumValues() == 2)  // Dead flag value?
17255          return DCI.CombineTo(N, Cond, SDValue());
17256        return Cond;
17257      }
17258
17259      // Optimize cases that will turn into an LEA instruction.  This requires
17260      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
17261      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
17262        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
17263        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
17264
17265        bool isFastMultiplier = false;
17266        if (Diff < 10) {
17267          switch ((unsigned char)Diff) {
17268          default: break;
17269          case 1:  // result = add base, cond
17270          case 2:  // result = lea base(    , cond*2)
17271          case 3:  // result = lea base(cond, cond*2)
17272          case 4:  // result = lea base(    , cond*4)
17273          case 5:  // result = lea base(cond, cond*4)
17274          case 8:  // result = lea base(    , cond*8)
17275          case 9:  // result = lea base(cond, cond*8)
17276            isFastMultiplier = true;
17277            break;
17278          }
17279        }
17280
17281        if (isFastMultiplier) {
17282          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
17283          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17284                             DAG.getConstant(CC, MVT::i8), Cond);
17285          // Zero extend the condition if needed.
17286          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
17287                             Cond);
17288          // Scale the condition by the difference.
17289          if (Diff != 1)
17290            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
17291                               DAG.getConstant(Diff, Cond.getValueType()));
17292
17293          // Add the base if non-zero.
17294          if (FalseC->getAPIntValue() != 0)
17295            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17296                               SDValue(FalseC, 0));
17297          if (N->getNumValues() == 2)  // Dead flag value?
17298            return DCI.CombineTo(N, Cond, SDValue());
17299          return Cond;
17300        }
17301      }
17302    }
17303  }
17304
17305  // Handle these cases:
17306  //   (select (x != c), e, c) -> select (x != c), e, x),
17307  //   (select (x == c), c, e) -> select (x == c), x, e)
17308  // where the c is an integer constant, and the "select" is the combination
17309  // of CMOV and CMP.
17310  //
17311  // The rationale for this change is that the conditional-move from a constant
17312  // needs two instructions, however, conditional-move from a register needs
17313  // only one instruction.
17314  //
17315  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
17316  //  some instruction-combining opportunities. This opt needs to be
17317  //  postponed as late as possible.
17318  //
17319  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
17320    // the DCI.xxxx conditions are provided to postpone the optimization as
17321    // late as possible.
17322
17323    ConstantSDNode *CmpAgainst = 0;
17324    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
17325        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
17326        !isa<ConstantSDNode>(Cond.getOperand(0))) {
17327
17328      if (CC == X86::COND_NE &&
17329          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
17330        CC = X86::GetOppositeBranchCondition(CC);
17331        std::swap(TrueOp, FalseOp);
17332      }
17333
17334      if (CC == X86::COND_E &&
17335          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
17336        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
17337                          DAG.getConstant(CC, MVT::i8), Cond };
17338        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
17339                           array_lengthof(Ops));
17340      }
17341    }
17342  }
17343
17344  return SDValue();
17345}
17346
17347/// PerformMulCombine - Optimize a single multiply with constant into two
17348/// in order to implement it with two cheaper instructions, e.g.
17349/// LEA + SHL, LEA + LEA.
17350static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
17351                                 TargetLowering::DAGCombinerInfo &DCI) {
17352  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17353    return SDValue();
17354
17355  EVT VT = N->getValueType(0);
17356  if (VT != MVT::i64)
17357    return SDValue();
17358
17359  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
17360  if (!C)
17361    return SDValue();
17362  uint64_t MulAmt = C->getZExtValue();
17363  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
17364    return SDValue();
17365
17366  uint64_t MulAmt1 = 0;
17367  uint64_t MulAmt2 = 0;
17368  if ((MulAmt % 9) == 0) {
17369    MulAmt1 = 9;
17370    MulAmt2 = MulAmt / 9;
17371  } else if ((MulAmt % 5) == 0) {
17372    MulAmt1 = 5;
17373    MulAmt2 = MulAmt / 5;
17374  } else if ((MulAmt % 3) == 0) {
17375    MulAmt1 = 3;
17376    MulAmt2 = MulAmt / 3;
17377  }
17378  if (MulAmt2 &&
17379      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
17380    SDLoc DL(N);
17381
17382    if (isPowerOf2_64(MulAmt2) &&
17383        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
17384      // If second multiplifer is pow2, issue it first. We want the multiply by
17385      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
17386      // is an add.
17387      std::swap(MulAmt1, MulAmt2);
17388
17389    SDValue NewMul;
17390    if (isPowerOf2_64(MulAmt1))
17391      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17392                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
17393    else
17394      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
17395                           DAG.getConstant(MulAmt1, VT));
17396
17397    if (isPowerOf2_64(MulAmt2))
17398      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
17399                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
17400    else
17401      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
17402                           DAG.getConstant(MulAmt2, VT));
17403
17404    // Do not add new nodes to DAG combiner worklist.
17405    DCI.CombineTo(N, NewMul, false);
17406  }
17407  return SDValue();
17408}
17409
17410static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
17411  SDValue N0 = N->getOperand(0);
17412  SDValue N1 = N->getOperand(1);
17413  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
17414  EVT VT = N0.getValueType();
17415
17416  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
17417  // since the result of setcc_c is all zero's or all ones.
17418  if (VT.isInteger() && !VT.isVector() &&
17419      N1C && N0.getOpcode() == ISD::AND &&
17420      N0.getOperand(1).getOpcode() == ISD::Constant) {
17421    SDValue N00 = N0.getOperand(0);
17422    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
17423        ((N00.getOpcode() == ISD::ANY_EXTEND ||
17424          N00.getOpcode() == ISD::ZERO_EXTEND) &&
17425         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
17426      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
17427      APInt ShAmt = N1C->getAPIntValue();
17428      Mask = Mask.shl(ShAmt);
17429      if (Mask != 0)
17430        return DAG.getNode(ISD::AND, SDLoc(N), VT,
17431                           N00, DAG.getConstant(Mask, VT));
17432    }
17433  }
17434
17435  // Hardware support for vector shifts is sparse which makes us scalarize the
17436  // vector operations in many cases. Also, on sandybridge ADD is faster than
17437  // shl.
17438  // (shl V, 1) -> add V,V
17439  if (isSplatVector(N1.getNode())) {
17440    assert(N0.getValueType().isVector() && "Invalid vector shift type");
17441    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
17442    // We shift all of the values by one. In many cases we do not have
17443    // hardware support for this operation. This is better expressed as an ADD
17444    // of two values.
17445    if (N1C && (1 == N1C->getZExtValue())) {
17446      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
17447    }
17448  }
17449
17450  return SDValue();
17451}
17452
17453/// \brief Returns a vector of 0s if the node in input is a vector logical
17454/// shift by a constant amount which is known to be bigger than or equal
17455/// to the vector element size in bits.
17456static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
17457                                      const X86Subtarget *Subtarget) {
17458  EVT VT = N->getValueType(0);
17459
17460  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
17461      (!Subtarget->hasInt256() ||
17462       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
17463    return SDValue();
17464
17465  SDValue Amt = N->getOperand(1);
17466  SDLoc DL(N);
17467  if (isSplatVector(Amt.getNode())) {
17468    SDValue SclrAmt = Amt->getOperand(0);
17469    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
17470      APInt ShiftAmt = C->getAPIntValue();
17471      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
17472
17473      // SSE2/AVX2 logical shifts always return a vector of 0s
17474      // if the shift amount is bigger than or equal to
17475      // the element size. The constant shift amount will be
17476      // encoded as a 8-bit immediate.
17477      if (ShiftAmt.trunc(8).uge(MaxAmount))
17478        return getZeroVector(VT, Subtarget, DAG, DL);
17479    }
17480  }
17481
17482  return SDValue();
17483}
17484
17485/// PerformShiftCombine - Combine shifts.
17486static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
17487                                   TargetLowering::DAGCombinerInfo &DCI,
17488                                   const X86Subtarget *Subtarget) {
17489  if (N->getOpcode() == ISD::SHL) {
17490    SDValue V = PerformSHLCombine(N, DAG);
17491    if (V.getNode()) return V;
17492  }
17493
17494  if (N->getOpcode() != ISD::SRA) {
17495    // Try to fold this logical shift into a zero vector.
17496    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
17497    if (V.getNode()) return V;
17498  }
17499
17500  return SDValue();
17501}
17502
17503// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
17504// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
17505// and friends.  Likewise for OR -> CMPNEQSS.
17506static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
17507                            TargetLowering::DAGCombinerInfo &DCI,
17508                            const X86Subtarget *Subtarget) {
17509  unsigned opcode;
17510
17511  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
17512  // we're requiring SSE2 for both.
17513  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
17514    SDValue N0 = N->getOperand(0);
17515    SDValue N1 = N->getOperand(1);
17516    SDValue CMP0 = N0->getOperand(1);
17517    SDValue CMP1 = N1->getOperand(1);
17518    SDLoc DL(N);
17519
17520    // The SETCCs should both refer to the same CMP.
17521    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
17522      return SDValue();
17523
17524    SDValue CMP00 = CMP0->getOperand(0);
17525    SDValue CMP01 = CMP0->getOperand(1);
17526    EVT     VT    = CMP00.getValueType();
17527
17528    if (VT == MVT::f32 || VT == MVT::f64) {
17529      bool ExpectingFlags = false;
17530      // Check for any users that want flags:
17531      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
17532           !ExpectingFlags && UI != UE; ++UI)
17533        switch (UI->getOpcode()) {
17534        default:
17535        case ISD::BR_CC:
17536        case ISD::BRCOND:
17537        case ISD::SELECT:
17538          ExpectingFlags = true;
17539          break;
17540        case ISD::CopyToReg:
17541        case ISD::SIGN_EXTEND:
17542        case ISD::ZERO_EXTEND:
17543        case ISD::ANY_EXTEND:
17544          break;
17545        }
17546
17547      if (!ExpectingFlags) {
17548        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
17549        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
17550
17551        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
17552          X86::CondCode tmp = cc0;
17553          cc0 = cc1;
17554          cc1 = tmp;
17555        }
17556
17557        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
17558            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
17559          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
17560          X86ISD::NodeType NTOperator = is64BitFP ?
17561            X86ISD::FSETCCsd : X86ISD::FSETCCss;
17562          // FIXME: need symbolic constants for these magic numbers.
17563          // See X86ATTInstPrinter.cpp:printSSECC().
17564          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
17565          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
17566                                              DAG.getConstant(x86cc, MVT::i8));
17567          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
17568                                              OnesOrZeroesF);
17569          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
17570                                      DAG.getConstant(1, MVT::i32));
17571          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
17572          return OneBitOfTruth;
17573        }
17574      }
17575    }
17576  }
17577  return SDValue();
17578}
17579
17580/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
17581/// so it can be folded inside ANDNP.
17582static bool CanFoldXORWithAllOnes(const SDNode *N) {
17583  EVT VT = N->getValueType(0);
17584
17585  // Match direct AllOnes for 128 and 256-bit vectors
17586  if (ISD::isBuildVectorAllOnes(N))
17587    return true;
17588
17589  // Look through a bit convert.
17590  if (N->getOpcode() == ISD::BITCAST)
17591    N = N->getOperand(0).getNode();
17592
17593  // Sometimes the operand may come from a insert_subvector building a 256-bit
17594  // allones vector
17595  if (VT.is256BitVector() &&
17596      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
17597    SDValue V1 = N->getOperand(0);
17598    SDValue V2 = N->getOperand(1);
17599
17600    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
17601        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
17602        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
17603        ISD::isBuildVectorAllOnes(V2.getNode()))
17604      return true;
17605  }
17606
17607  return false;
17608}
17609
17610// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
17611// register. In most cases we actually compare or select YMM-sized registers
17612// and mixing the two types creates horrible code. This method optimizes
17613// some of the transition sequences.
17614static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
17615                                 TargetLowering::DAGCombinerInfo &DCI,
17616                                 const X86Subtarget *Subtarget) {
17617  EVT VT = N->getValueType(0);
17618  if (!VT.is256BitVector())
17619    return SDValue();
17620
17621  assert((N->getOpcode() == ISD::ANY_EXTEND ||
17622          N->getOpcode() == ISD::ZERO_EXTEND ||
17623          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
17624
17625  SDValue Narrow = N->getOperand(0);
17626  EVT NarrowVT = Narrow->getValueType(0);
17627  if (!NarrowVT.is128BitVector())
17628    return SDValue();
17629
17630  if (Narrow->getOpcode() != ISD::XOR &&
17631      Narrow->getOpcode() != ISD::AND &&
17632      Narrow->getOpcode() != ISD::OR)
17633    return SDValue();
17634
17635  SDValue N0  = Narrow->getOperand(0);
17636  SDValue N1  = Narrow->getOperand(1);
17637  SDLoc DL(Narrow);
17638
17639  // The Left side has to be a trunc.
17640  if (N0.getOpcode() != ISD::TRUNCATE)
17641    return SDValue();
17642
17643  // The type of the truncated inputs.
17644  EVT WideVT = N0->getOperand(0)->getValueType(0);
17645  if (WideVT != VT)
17646    return SDValue();
17647
17648  // The right side has to be a 'trunc' or a constant vector.
17649  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
17650  bool RHSConst = (isSplatVector(N1.getNode()) &&
17651                   isa<ConstantSDNode>(N1->getOperand(0)));
17652  if (!RHSTrunc && !RHSConst)
17653    return SDValue();
17654
17655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17656
17657  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
17658    return SDValue();
17659
17660  // Set N0 and N1 to hold the inputs to the new wide operation.
17661  N0 = N0->getOperand(0);
17662  if (RHSConst) {
17663    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
17664                     N1->getOperand(0));
17665    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
17666    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
17667  } else if (RHSTrunc) {
17668    N1 = N1->getOperand(0);
17669  }
17670
17671  // Generate the wide operation.
17672  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
17673  unsigned Opcode = N->getOpcode();
17674  switch (Opcode) {
17675  case ISD::ANY_EXTEND:
17676    return Op;
17677  case ISD::ZERO_EXTEND: {
17678    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
17679    APInt Mask = APInt::getAllOnesValue(InBits);
17680    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
17681    return DAG.getNode(ISD::AND, DL, VT,
17682                       Op, DAG.getConstant(Mask, VT));
17683  }
17684  case ISD::SIGN_EXTEND:
17685    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
17686                       Op, DAG.getValueType(NarrowVT));
17687  default:
17688    llvm_unreachable("Unexpected opcode");
17689  }
17690}
17691
17692static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
17693                                 TargetLowering::DAGCombinerInfo &DCI,
17694                                 const X86Subtarget *Subtarget) {
17695  EVT VT = N->getValueType(0);
17696  if (DCI.isBeforeLegalizeOps())
17697    return SDValue();
17698
17699  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17700  if (R.getNode())
17701    return R;
17702
17703  // Create BLSI, BLSR, and BZHI instructions
17704  // BLSI is X & (-X)
17705  // BLSR is X & (X-1)
17706  // BZHI is X & ((1 << Y) - 1)
17707  // BEXTR is ((X >> imm) & (2**size-1))
17708  if (VT == MVT::i32 || VT == MVT::i64) {
17709    SDValue N0 = N->getOperand(0);
17710    SDValue N1 = N->getOperand(1);
17711    SDLoc DL(N);
17712
17713    if (Subtarget->hasBMI()) {
17714      // Check LHS for neg
17715      if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
17716          isZero(N0.getOperand(0)))
17717        return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
17718
17719      // Check RHS for neg
17720      if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
17721          isZero(N1.getOperand(0)))
17722        return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
17723
17724      // Check LHS for X-1
17725      if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17726          isAllOnes(N0.getOperand(1)))
17727        return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
17728
17729      // Check RHS for X-1
17730      if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17731          isAllOnes(N1.getOperand(1)))
17732        return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
17733    }
17734
17735    if (Subtarget->hasBMI2()) {
17736      // Check for (and (add (shl 1, Y), -1), X)
17737      if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
17738        SDValue N00 = N0.getOperand(0);
17739        if (N00.getOpcode() == ISD::SHL) {
17740          SDValue N001 = N00.getOperand(1);
17741          assert(N001.getValueType() == MVT::i8 && "unexpected type");
17742          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
17743          if (C && C->getZExtValue() == 1)
17744            return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001);
17745        }
17746      }
17747
17748      // Check for (and X, (add (shl 1, Y), -1))
17749      if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
17750        SDValue N10 = N1.getOperand(0);
17751        if (N10.getOpcode() == ISD::SHL) {
17752          SDValue N101 = N10.getOperand(1);
17753          assert(N101.getValueType() == MVT::i8 && "unexpected type");
17754          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
17755          if (C && C->getZExtValue() == 1)
17756            return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101);
17757        }
17758      }
17759    }
17760
17761    // Check for BEXTR.
17762    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
17763        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
17764      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
17765      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17766      if (MaskNode && ShiftNode) {
17767        uint64_t Mask = MaskNode->getZExtValue();
17768        uint64_t Shift = ShiftNode->getZExtValue();
17769        if (isMask_64(Mask)) {
17770          uint64_t MaskSize = CountPopulation_64(Mask);
17771          if (Shift + MaskSize <= VT.getSizeInBits())
17772            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
17773                               DAG.getConstant(Shift | (MaskSize << 8), VT));
17774        }
17775      }
17776    } // BEXTR
17777
17778    return SDValue();
17779  }
17780
17781  // Want to form ANDNP nodes:
17782  // 1) In the hopes of then easily combining them with OR and AND nodes
17783  //    to form PBLEND/PSIGN.
17784  // 2) To match ANDN packed intrinsics
17785  if (VT != MVT::v2i64 && VT != MVT::v4i64)
17786    return SDValue();
17787
17788  SDValue N0 = N->getOperand(0);
17789  SDValue N1 = N->getOperand(1);
17790  SDLoc DL(N);
17791
17792  // Check LHS for vnot
17793  if (N0.getOpcode() == ISD::XOR &&
17794      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
17795      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
17796    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
17797
17798  // Check RHS for vnot
17799  if (N1.getOpcode() == ISD::XOR &&
17800      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
17801      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
17802    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
17803
17804  return SDValue();
17805}
17806
17807static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
17808                                TargetLowering::DAGCombinerInfo &DCI,
17809                                const X86Subtarget *Subtarget) {
17810  EVT VT = N->getValueType(0);
17811  if (DCI.isBeforeLegalizeOps())
17812    return SDValue();
17813
17814  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17815  if (R.getNode())
17816    return R;
17817
17818  SDValue N0 = N->getOperand(0);
17819  SDValue N1 = N->getOperand(1);
17820
17821  // look for psign/blend
17822  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
17823    if (!Subtarget->hasSSSE3() ||
17824        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
17825      return SDValue();
17826
17827    // Canonicalize pandn to RHS
17828    if (N0.getOpcode() == X86ISD::ANDNP)
17829      std::swap(N0, N1);
17830    // or (and (m, y), (pandn m, x))
17831    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
17832      SDValue Mask = N1.getOperand(0);
17833      SDValue X    = N1.getOperand(1);
17834      SDValue Y;
17835      if (N0.getOperand(0) == Mask)
17836        Y = N0.getOperand(1);
17837      if (N0.getOperand(1) == Mask)
17838        Y = N0.getOperand(0);
17839
17840      // Check to see if the mask appeared in both the AND and ANDNP and
17841      if (!Y.getNode())
17842        return SDValue();
17843
17844      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
17845      // Look through mask bitcast.
17846      if (Mask.getOpcode() == ISD::BITCAST)
17847        Mask = Mask.getOperand(0);
17848      if (X.getOpcode() == ISD::BITCAST)
17849        X = X.getOperand(0);
17850      if (Y.getOpcode() == ISD::BITCAST)
17851        Y = Y.getOperand(0);
17852
17853      EVT MaskVT = Mask.getValueType();
17854
17855      // Validate that the Mask operand is a vector sra node.
17856      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
17857      // there is no psrai.b
17858      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
17859      unsigned SraAmt = ~0;
17860      if (Mask.getOpcode() == ISD::SRA) {
17861        SDValue Amt = Mask.getOperand(1);
17862        if (isSplatVector(Amt.getNode())) {
17863          SDValue SclrAmt = Amt->getOperand(0);
17864          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
17865            SraAmt = C->getZExtValue();
17866        }
17867      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
17868        SDValue SraC = Mask.getOperand(1);
17869        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
17870      }
17871      if ((SraAmt + 1) != EltBits)
17872        return SDValue();
17873
17874      SDLoc DL(N);
17875
17876      // Now we know we at least have a plendvb with the mask val.  See if
17877      // we can form a psignb/w/d.
17878      // psign = x.type == y.type == mask.type && y = sub(0, x);
17879      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
17880          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
17881          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
17882        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
17883               "Unsupported VT for PSIGN");
17884        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
17885        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17886      }
17887      // PBLENDVB only available on SSE 4.1
17888      if (!Subtarget->hasSSE41())
17889        return SDValue();
17890
17891      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
17892
17893      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
17894      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
17895      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
17896      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
17897      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17898    }
17899  }
17900
17901  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
17902    return SDValue();
17903
17904  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
17905  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
17906    std::swap(N0, N1);
17907  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
17908    return SDValue();
17909  if (!N0.hasOneUse() || !N1.hasOneUse())
17910    return SDValue();
17911
17912  SDValue ShAmt0 = N0.getOperand(1);
17913  if (ShAmt0.getValueType() != MVT::i8)
17914    return SDValue();
17915  SDValue ShAmt1 = N1.getOperand(1);
17916  if (ShAmt1.getValueType() != MVT::i8)
17917    return SDValue();
17918  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
17919    ShAmt0 = ShAmt0.getOperand(0);
17920  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
17921    ShAmt1 = ShAmt1.getOperand(0);
17922
17923  SDLoc DL(N);
17924  unsigned Opc = X86ISD::SHLD;
17925  SDValue Op0 = N0.getOperand(0);
17926  SDValue Op1 = N1.getOperand(0);
17927  if (ShAmt0.getOpcode() == ISD::SUB) {
17928    Opc = X86ISD::SHRD;
17929    std::swap(Op0, Op1);
17930    std::swap(ShAmt0, ShAmt1);
17931  }
17932
17933  unsigned Bits = VT.getSizeInBits();
17934  if (ShAmt1.getOpcode() == ISD::SUB) {
17935    SDValue Sum = ShAmt1.getOperand(0);
17936    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
17937      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
17938      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
17939        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
17940      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
17941        return DAG.getNode(Opc, DL, VT,
17942                           Op0, Op1,
17943                           DAG.getNode(ISD::TRUNCATE, DL,
17944                                       MVT::i8, ShAmt0));
17945    }
17946  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
17947    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
17948    if (ShAmt0C &&
17949        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
17950      return DAG.getNode(Opc, DL, VT,
17951                         N0.getOperand(0), N1.getOperand(0),
17952                         DAG.getNode(ISD::TRUNCATE, DL,
17953                                       MVT::i8, ShAmt0));
17954  }
17955
17956  return SDValue();
17957}
17958
17959// Generate NEG and CMOV for integer abs.
17960static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
17961  EVT VT = N->getValueType(0);
17962
17963  // Since X86 does not have CMOV for 8-bit integer, we don't convert
17964  // 8-bit integer abs to NEG and CMOV.
17965  if (VT.isInteger() && VT.getSizeInBits() == 8)
17966    return SDValue();
17967
17968  SDValue N0 = N->getOperand(0);
17969  SDValue N1 = N->getOperand(1);
17970  SDLoc DL(N);
17971
17972  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
17973  // and change it to SUB and CMOV.
17974  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
17975      N0.getOpcode() == ISD::ADD &&
17976      N0.getOperand(1) == N1 &&
17977      N1.getOpcode() == ISD::SRA &&
17978      N1.getOperand(0) == N0.getOperand(0))
17979    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
17980      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
17981        // Generate SUB & CMOV.
17982        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
17983                                  DAG.getConstant(0, VT), N0.getOperand(0));
17984
17985        SDValue Ops[] = { N0.getOperand(0), Neg,
17986                          DAG.getConstant(X86::COND_GE, MVT::i8),
17987                          SDValue(Neg.getNode(), 1) };
17988        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
17989                           Ops, array_lengthof(Ops));
17990      }
17991  return SDValue();
17992}
17993
17994// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
17995static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
17996                                 TargetLowering::DAGCombinerInfo &DCI,
17997                                 const X86Subtarget *Subtarget) {
17998  EVT VT = N->getValueType(0);
17999  if (DCI.isBeforeLegalizeOps())
18000    return SDValue();
18001
18002  if (Subtarget->hasCMov()) {
18003    SDValue RV = performIntegerAbsCombine(N, DAG);
18004    if (RV.getNode())
18005      return RV;
18006  }
18007
18008  // Try forming BMI if it is available.
18009  if (!Subtarget->hasBMI())
18010    return SDValue();
18011
18012  if (VT != MVT::i32 && VT != MVT::i64)
18013    return SDValue();
18014
18015  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
18016
18017  // Create BLSMSK instructions by finding X ^ (X-1)
18018  SDValue N0 = N->getOperand(0);
18019  SDValue N1 = N->getOperand(1);
18020  SDLoc DL(N);
18021
18022  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
18023      isAllOnes(N0.getOperand(1)))
18024    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
18025
18026  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
18027      isAllOnes(N1.getOperand(1)))
18028    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
18029
18030  return SDValue();
18031}
18032
18033/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
18034static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
18035                                  TargetLowering::DAGCombinerInfo &DCI,
18036                                  const X86Subtarget *Subtarget) {
18037  LoadSDNode *Ld = cast<LoadSDNode>(N);
18038  EVT RegVT = Ld->getValueType(0);
18039  EVT MemVT = Ld->getMemoryVT();
18040  SDLoc dl(Ld);
18041  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18042  unsigned RegSz = RegVT.getSizeInBits();
18043
18044  // On Sandybridge unaligned 256bit loads are inefficient.
18045  ISD::LoadExtType Ext = Ld->getExtensionType();
18046  unsigned Alignment = Ld->getAlignment();
18047  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
18048  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
18049      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
18050    unsigned NumElems = RegVT.getVectorNumElements();
18051    if (NumElems < 2)
18052      return SDValue();
18053
18054    SDValue Ptr = Ld->getBasePtr();
18055    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
18056
18057    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18058                                  NumElems/2);
18059    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18060                                Ld->getPointerInfo(), Ld->isVolatile(),
18061                                Ld->isNonTemporal(), Ld->isInvariant(),
18062                                Alignment);
18063    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18064    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18065                                Ld->getPointerInfo(), Ld->isVolatile(),
18066                                Ld->isNonTemporal(), Ld->isInvariant(),
18067                                std::min(16U, Alignment));
18068    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18069                             Load1.getValue(1),
18070                             Load2.getValue(1));
18071
18072    SDValue NewVec = DAG.getUNDEF(RegVT);
18073    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
18074    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
18075    return DCI.CombineTo(N, NewVec, TF, true);
18076  }
18077
18078  // If this is a vector EXT Load then attempt to optimize it using a
18079  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
18080  // expansion is still better than scalar code.
18081  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
18082  // emit a shuffle and a arithmetic shift.
18083  // TODO: It is possible to support ZExt by zeroing the undef values
18084  // during the shuffle phase or after the shuffle.
18085  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
18086      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
18087    assert(MemVT != RegVT && "Cannot extend to the same type");
18088    assert(MemVT.isVector() && "Must load a vector from memory");
18089
18090    unsigned NumElems = RegVT.getVectorNumElements();
18091    unsigned MemSz = MemVT.getSizeInBits();
18092    assert(RegSz > MemSz && "Register size must be greater than the mem size");
18093
18094    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
18095      return SDValue();
18096
18097    // All sizes must be a power of two.
18098    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
18099      return SDValue();
18100
18101    // Attempt to load the original value using scalar loads.
18102    // Find the largest scalar type that divides the total loaded size.
18103    MVT SclrLoadTy = MVT::i8;
18104    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18105         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18106      MVT Tp = (MVT::SimpleValueType)tp;
18107      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
18108        SclrLoadTy = Tp;
18109      }
18110    }
18111
18112    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18113    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
18114        (64 <= MemSz))
18115      SclrLoadTy = MVT::f64;
18116
18117    // Calculate the number of scalar loads that we need to perform
18118    // in order to load our vector from memory.
18119    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
18120    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
18121      return SDValue();
18122
18123    unsigned loadRegZize = RegSz;
18124    if (Ext == ISD::SEXTLOAD && RegSz == 256)
18125      loadRegZize /= 2;
18126
18127    // Represent our vector as a sequence of elements which are the
18128    // largest scalar that we can load.
18129    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
18130      loadRegZize/SclrLoadTy.getSizeInBits());
18131
18132    // Represent the data using the same element type that is stored in
18133    // memory. In practice, we ''widen'' MemVT.
18134    EVT WideVecVT =
18135          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18136                       loadRegZize/MemVT.getScalarType().getSizeInBits());
18137
18138    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
18139      "Invalid vector type");
18140
18141    // We can't shuffle using an illegal type.
18142    if (!TLI.isTypeLegal(WideVecVT))
18143      return SDValue();
18144
18145    SmallVector<SDValue, 8> Chains;
18146    SDValue Ptr = Ld->getBasePtr();
18147    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
18148                                        TLI.getPointerTy());
18149    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
18150
18151    for (unsigned i = 0; i < NumLoads; ++i) {
18152      // Perform a single load.
18153      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
18154                                       Ptr, Ld->getPointerInfo(),
18155                                       Ld->isVolatile(), Ld->isNonTemporal(),
18156                                       Ld->isInvariant(), Ld->getAlignment());
18157      Chains.push_back(ScalarLoad.getValue(1));
18158      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
18159      // another round of DAGCombining.
18160      if (i == 0)
18161        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
18162      else
18163        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
18164                          ScalarLoad, DAG.getIntPtrConstant(i));
18165
18166      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18167    }
18168
18169    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18170                               Chains.size());
18171
18172    // Bitcast the loaded value to a vector of the original element type, in
18173    // the size of the target vector type.
18174    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
18175    unsigned SizeRatio = RegSz/MemSz;
18176
18177    if (Ext == ISD::SEXTLOAD) {
18178      // If we have SSE4.1 we can directly emit a VSEXT node.
18179      if (Subtarget->hasSSE41()) {
18180        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
18181        return DCI.CombineTo(N, Sext, TF, true);
18182      }
18183
18184      // Otherwise we'll shuffle the small elements in the high bits of the
18185      // larger type and perform an arithmetic shift. If the shift is not legal
18186      // it's better to scalarize.
18187      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
18188        return SDValue();
18189
18190      // Redistribute the loaded elements into the different locations.
18191      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18192      for (unsigned i = 0; i != NumElems; ++i)
18193        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
18194
18195      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18196                                           DAG.getUNDEF(WideVecVT),
18197                                           &ShuffleVec[0]);
18198
18199      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18200
18201      // Build the arithmetic shift.
18202      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
18203                     MemVT.getVectorElementType().getSizeInBits();
18204      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
18205                          DAG.getConstant(Amt, RegVT));
18206
18207      return DCI.CombineTo(N, Shuff, TF, true);
18208    }
18209
18210    // Redistribute the loaded elements into the different locations.
18211    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18212    for (unsigned i = 0; i != NumElems; ++i)
18213      ShuffleVec[i*SizeRatio] = i;
18214
18215    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18216                                         DAG.getUNDEF(WideVecVT),
18217                                         &ShuffleVec[0]);
18218
18219    // Bitcast to the requested type.
18220    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18221    // Replace the original load with the new sequence
18222    // and return the new chain.
18223    return DCI.CombineTo(N, Shuff, TF, true);
18224  }
18225
18226  return SDValue();
18227}
18228
18229/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
18230static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
18231                                   const X86Subtarget *Subtarget) {
18232  StoreSDNode *St = cast<StoreSDNode>(N);
18233  EVT VT = St->getValue().getValueType();
18234  EVT StVT = St->getMemoryVT();
18235  SDLoc dl(St);
18236  SDValue StoredVal = St->getOperand(1);
18237  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18238
18239  // If we are saving a concatenation of two XMM registers, perform two stores.
18240  // On Sandy Bridge, 256-bit memory operations are executed by two
18241  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
18242  // memory  operation.
18243  unsigned Alignment = St->getAlignment();
18244  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
18245  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
18246      StVT == VT && !IsAligned) {
18247    unsigned NumElems = VT.getVectorNumElements();
18248    if (NumElems < 2)
18249      return SDValue();
18250
18251    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
18252    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
18253
18254    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
18255    SDValue Ptr0 = St->getBasePtr();
18256    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
18257
18258    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
18259                                St->getPointerInfo(), St->isVolatile(),
18260                                St->isNonTemporal(), Alignment);
18261    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
18262                                St->getPointerInfo(), St->isVolatile(),
18263                                St->isNonTemporal(),
18264                                std::min(16U, Alignment));
18265    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
18266  }
18267
18268  // Optimize trunc store (of multiple scalars) to shuffle and store.
18269  // First, pack all of the elements in one place. Next, store to memory
18270  // in fewer chunks.
18271  if (St->isTruncatingStore() && VT.isVector()) {
18272    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18273    unsigned NumElems = VT.getVectorNumElements();
18274    assert(StVT != VT && "Cannot truncate to the same type");
18275    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
18276    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
18277
18278    // From, To sizes and ElemCount must be pow of two
18279    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
18280    // We are going to use the original vector elt for storing.
18281    // Accumulated smaller vector elements must be a multiple of the store size.
18282    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
18283
18284    unsigned SizeRatio  = FromSz / ToSz;
18285
18286    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
18287
18288    // Create a type on which we perform the shuffle
18289    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
18290            StVT.getScalarType(), NumElems*SizeRatio);
18291
18292    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
18293
18294    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
18295    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18296    for (unsigned i = 0; i != NumElems; ++i)
18297      ShuffleVec[i] = i * SizeRatio;
18298
18299    // Can't shuffle using an illegal type.
18300    if (!TLI.isTypeLegal(WideVecVT))
18301      return SDValue();
18302
18303    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
18304                                         DAG.getUNDEF(WideVecVT),
18305                                         &ShuffleVec[0]);
18306    // At this point all of the data is stored at the bottom of the
18307    // register. We now need to save it to mem.
18308
18309    // Find the largest store unit
18310    MVT StoreType = MVT::i8;
18311    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18312         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18313      MVT Tp = (MVT::SimpleValueType)tp;
18314      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
18315        StoreType = Tp;
18316    }
18317
18318    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18319    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
18320        (64 <= NumElems * ToSz))
18321      StoreType = MVT::f64;
18322
18323    // Bitcast the original vector into a vector of store-size units
18324    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
18325            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
18326    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
18327    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
18328    SmallVector<SDValue, 8> Chains;
18329    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
18330                                        TLI.getPointerTy());
18331    SDValue Ptr = St->getBasePtr();
18332
18333    // Perform one or more big stores into memory.
18334    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
18335      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
18336                                   StoreType, ShuffWide,
18337                                   DAG.getIntPtrConstant(i));
18338      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
18339                                St->getPointerInfo(), St->isVolatile(),
18340                                St->isNonTemporal(), St->getAlignment());
18341      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18342      Chains.push_back(Ch);
18343    }
18344
18345    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18346                               Chains.size());
18347  }
18348
18349  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
18350  // the FP state in cases where an emms may be missing.
18351  // A preferable solution to the general problem is to figure out the right
18352  // places to insert EMMS.  This qualifies as a quick hack.
18353
18354  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
18355  if (VT.getSizeInBits() != 64)
18356    return SDValue();
18357
18358  const Function *F = DAG.getMachineFunction().getFunction();
18359  bool NoImplicitFloatOps = F->getAttributes().
18360    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
18361  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
18362                     && Subtarget->hasSSE2();
18363  if ((VT.isVector() ||
18364       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
18365      isa<LoadSDNode>(St->getValue()) &&
18366      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
18367      St->getChain().hasOneUse() && !St->isVolatile()) {
18368    SDNode* LdVal = St->getValue().getNode();
18369    LoadSDNode *Ld = 0;
18370    int TokenFactorIndex = -1;
18371    SmallVector<SDValue, 8> Ops;
18372    SDNode* ChainVal = St->getChain().getNode();
18373    // Must be a store of a load.  We currently handle two cases:  the load
18374    // is a direct child, and it's under an intervening TokenFactor.  It is
18375    // possible to dig deeper under nested TokenFactors.
18376    if (ChainVal == LdVal)
18377      Ld = cast<LoadSDNode>(St->getChain());
18378    else if (St->getValue().hasOneUse() &&
18379             ChainVal->getOpcode() == ISD::TokenFactor) {
18380      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
18381        if (ChainVal->getOperand(i).getNode() == LdVal) {
18382          TokenFactorIndex = i;
18383          Ld = cast<LoadSDNode>(St->getValue());
18384        } else
18385          Ops.push_back(ChainVal->getOperand(i));
18386      }
18387    }
18388
18389    if (!Ld || !ISD::isNormalLoad(Ld))
18390      return SDValue();
18391
18392    // If this is not the MMX case, i.e. we are just turning i64 load/store
18393    // into f64 load/store, avoid the transformation if there are multiple
18394    // uses of the loaded value.
18395    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
18396      return SDValue();
18397
18398    SDLoc LdDL(Ld);
18399    SDLoc StDL(N);
18400    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
18401    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
18402    // pair instead.
18403    if (Subtarget->is64Bit() || F64IsLegal) {
18404      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
18405      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
18406                                  Ld->getPointerInfo(), Ld->isVolatile(),
18407                                  Ld->isNonTemporal(), Ld->isInvariant(),
18408                                  Ld->getAlignment());
18409      SDValue NewChain = NewLd.getValue(1);
18410      if (TokenFactorIndex != -1) {
18411        Ops.push_back(NewChain);
18412        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18413                               Ops.size());
18414      }
18415      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
18416                          St->getPointerInfo(),
18417                          St->isVolatile(), St->isNonTemporal(),
18418                          St->getAlignment());
18419    }
18420
18421    // Otherwise, lower to two pairs of 32-bit loads / stores.
18422    SDValue LoAddr = Ld->getBasePtr();
18423    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
18424                                 DAG.getConstant(4, MVT::i32));
18425
18426    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
18427                               Ld->getPointerInfo(),
18428                               Ld->isVolatile(), Ld->isNonTemporal(),
18429                               Ld->isInvariant(), Ld->getAlignment());
18430    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
18431                               Ld->getPointerInfo().getWithOffset(4),
18432                               Ld->isVolatile(), Ld->isNonTemporal(),
18433                               Ld->isInvariant(),
18434                               MinAlign(Ld->getAlignment(), 4));
18435
18436    SDValue NewChain = LoLd.getValue(1);
18437    if (TokenFactorIndex != -1) {
18438      Ops.push_back(LoLd);
18439      Ops.push_back(HiLd);
18440      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18441                             Ops.size());
18442    }
18443
18444    LoAddr = St->getBasePtr();
18445    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
18446                         DAG.getConstant(4, MVT::i32));
18447
18448    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
18449                                St->getPointerInfo(),
18450                                St->isVolatile(), St->isNonTemporal(),
18451                                St->getAlignment());
18452    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
18453                                St->getPointerInfo().getWithOffset(4),
18454                                St->isVolatile(),
18455                                St->isNonTemporal(),
18456                                MinAlign(St->getAlignment(), 4));
18457    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
18458  }
18459  return SDValue();
18460}
18461
18462/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
18463/// and return the operands for the horizontal operation in LHS and RHS.  A
18464/// horizontal operation performs the binary operation on successive elements
18465/// of its first operand, then on successive elements of its second operand,
18466/// returning the resulting values in a vector.  For example, if
18467///   A = < float a0, float a1, float a2, float a3 >
18468/// and
18469///   B = < float b0, float b1, float b2, float b3 >
18470/// then the result of doing a horizontal operation on A and B is
18471///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
18472/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
18473/// A horizontal-op B, for some already available A and B, and if so then LHS is
18474/// set to A, RHS to B, and the routine returns 'true'.
18475/// Note that the binary operation should have the property that if one of the
18476/// operands is UNDEF then the result is UNDEF.
18477static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
18478  // Look for the following pattern: if
18479  //   A = < float a0, float a1, float a2, float a3 >
18480  //   B = < float b0, float b1, float b2, float b3 >
18481  // and
18482  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
18483  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
18484  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
18485  // which is A horizontal-op B.
18486
18487  // At least one of the operands should be a vector shuffle.
18488  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
18489      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
18490    return false;
18491
18492  MVT VT = LHS.getSimpleValueType();
18493
18494  assert((VT.is128BitVector() || VT.is256BitVector()) &&
18495         "Unsupported vector type for horizontal add/sub");
18496
18497  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
18498  // operate independently on 128-bit lanes.
18499  unsigned NumElts = VT.getVectorNumElements();
18500  unsigned NumLanes = VT.getSizeInBits()/128;
18501  unsigned NumLaneElts = NumElts / NumLanes;
18502  assert((NumLaneElts % 2 == 0) &&
18503         "Vector type should have an even number of elements in each lane");
18504  unsigned HalfLaneElts = NumLaneElts/2;
18505
18506  // View LHS in the form
18507  //   LHS = VECTOR_SHUFFLE A, B, LMask
18508  // If LHS is not a shuffle then pretend it is the shuffle
18509  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
18510  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
18511  // type VT.
18512  SDValue A, B;
18513  SmallVector<int, 16> LMask(NumElts);
18514  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18515    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
18516      A = LHS.getOperand(0);
18517    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
18518      B = LHS.getOperand(1);
18519    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
18520    std::copy(Mask.begin(), Mask.end(), LMask.begin());
18521  } else {
18522    if (LHS.getOpcode() != ISD::UNDEF)
18523      A = LHS;
18524    for (unsigned i = 0; i != NumElts; ++i)
18525      LMask[i] = i;
18526  }
18527
18528  // Likewise, view RHS in the form
18529  //   RHS = VECTOR_SHUFFLE C, D, RMask
18530  SDValue C, D;
18531  SmallVector<int, 16> RMask(NumElts);
18532  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18533    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
18534      C = RHS.getOperand(0);
18535    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
18536      D = RHS.getOperand(1);
18537    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
18538    std::copy(Mask.begin(), Mask.end(), RMask.begin());
18539  } else {
18540    if (RHS.getOpcode() != ISD::UNDEF)
18541      C = RHS;
18542    for (unsigned i = 0; i != NumElts; ++i)
18543      RMask[i] = i;
18544  }
18545
18546  // Check that the shuffles are both shuffling the same vectors.
18547  if (!(A == C && B == D) && !(A == D && B == C))
18548    return false;
18549
18550  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
18551  if (!A.getNode() && !B.getNode())
18552    return false;
18553
18554  // If A and B occur in reverse order in RHS, then "swap" them (which means
18555  // rewriting the mask).
18556  if (A != C)
18557    CommuteVectorShuffleMask(RMask, NumElts);
18558
18559  // At this point LHS and RHS are equivalent to
18560  //   LHS = VECTOR_SHUFFLE A, B, LMask
18561  //   RHS = VECTOR_SHUFFLE A, B, RMask
18562  // Check that the masks correspond to performing a horizontal operation.
18563  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
18564    for (unsigned i = 0; i != NumLaneElts; ++i) {
18565      int LIdx = LMask[i+l], RIdx = RMask[i+l];
18566
18567      // Ignore any UNDEF components.
18568      if (LIdx < 0 || RIdx < 0 ||
18569          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
18570          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
18571        continue;
18572
18573      // Check that successive elements are being operated on.  If not, this is
18574      // not a horizontal operation.
18575      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
18576      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
18577      if (!(LIdx == Index && RIdx == Index + 1) &&
18578          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
18579        return false;
18580    }
18581  }
18582
18583  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
18584  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
18585  return true;
18586}
18587
18588/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
18589static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
18590                                  const X86Subtarget *Subtarget) {
18591  EVT VT = N->getValueType(0);
18592  SDValue LHS = N->getOperand(0);
18593  SDValue RHS = N->getOperand(1);
18594
18595  // Try to synthesize horizontal adds from adds of shuffles.
18596  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18597       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18598      isHorizontalBinOp(LHS, RHS, true))
18599    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
18600  return SDValue();
18601}
18602
18603/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
18604static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
18605                                  const X86Subtarget *Subtarget) {
18606  EVT VT = N->getValueType(0);
18607  SDValue LHS = N->getOperand(0);
18608  SDValue RHS = N->getOperand(1);
18609
18610  // Try to synthesize horizontal subs from subs of shuffles.
18611  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18612       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18613      isHorizontalBinOp(LHS, RHS, false))
18614    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
18615  return SDValue();
18616}
18617
18618/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
18619/// X86ISD::FXOR nodes.
18620static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
18621  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
18622  // F[X]OR(0.0, x) -> x
18623  // F[X]OR(x, 0.0) -> x
18624  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18625    if (C->getValueAPF().isPosZero())
18626      return N->getOperand(1);
18627  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18628    if (C->getValueAPF().isPosZero())
18629      return N->getOperand(0);
18630  return SDValue();
18631}
18632
18633/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
18634/// X86ISD::FMAX nodes.
18635static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
18636  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
18637
18638  // Only perform optimizations if UnsafeMath is used.
18639  if (!DAG.getTarget().Options.UnsafeFPMath)
18640    return SDValue();
18641
18642  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
18643  // into FMINC and FMAXC, which are Commutative operations.
18644  unsigned NewOp = 0;
18645  switch (N->getOpcode()) {
18646    default: llvm_unreachable("unknown opcode");
18647    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
18648    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
18649  }
18650
18651  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
18652                     N->getOperand(0), N->getOperand(1));
18653}
18654
18655/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
18656static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
18657  // FAND(0.0, x) -> 0.0
18658  // FAND(x, 0.0) -> 0.0
18659  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18660    if (C->getValueAPF().isPosZero())
18661      return N->getOperand(0);
18662  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18663    if (C->getValueAPF().isPosZero())
18664      return N->getOperand(1);
18665  return SDValue();
18666}
18667
18668/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
18669static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
18670  // FANDN(x, 0.0) -> 0.0
18671  // FANDN(0.0, x) -> x
18672  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18673    if (C->getValueAPF().isPosZero())
18674      return N->getOperand(1);
18675  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18676    if (C->getValueAPF().isPosZero())
18677      return N->getOperand(1);
18678  return SDValue();
18679}
18680
18681static SDValue PerformBTCombine(SDNode *N,
18682                                SelectionDAG &DAG,
18683                                TargetLowering::DAGCombinerInfo &DCI) {
18684  // BT ignores high bits in the bit index operand.
18685  SDValue Op1 = N->getOperand(1);
18686  if (Op1.hasOneUse()) {
18687    unsigned BitWidth = Op1.getValueSizeInBits();
18688    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
18689    APInt KnownZero, KnownOne;
18690    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
18691                                          !DCI.isBeforeLegalizeOps());
18692    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18693    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
18694        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
18695      DCI.CommitTargetLoweringOpt(TLO);
18696  }
18697  return SDValue();
18698}
18699
18700static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
18701  SDValue Op = N->getOperand(0);
18702  if (Op.getOpcode() == ISD::BITCAST)
18703    Op = Op.getOperand(0);
18704  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
18705  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
18706      VT.getVectorElementType().getSizeInBits() ==
18707      OpVT.getVectorElementType().getSizeInBits()) {
18708    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
18709  }
18710  return SDValue();
18711}
18712
18713static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
18714                                               const X86Subtarget *Subtarget) {
18715  EVT VT = N->getValueType(0);
18716  if (!VT.isVector())
18717    return SDValue();
18718
18719  SDValue N0 = N->getOperand(0);
18720  SDValue N1 = N->getOperand(1);
18721  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
18722  SDLoc dl(N);
18723
18724  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
18725  // both SSE and AVX2 since there is no sign-extended shift right
18726  // operation on a vector with 64-bit elements.
18727  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
18728  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
18729  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
18730      N0.getOpcode() == ISD::SIGN_EXTEND)) {
18731    SDValue N00 = N0.getOperand(0);
18732
18733    // EXTLOAD has a better solution on AVX2,
18734    // it may be replaced with X86ISD::VSEXT node.
18735    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
18736      if (!ISD::isNormalLoad(N00.getNode()))
18737        return SDValue();
18738
18739    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
18740        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
18741                                  N00, N1);
18742      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
18743    }
18744  }
18745  return SDValue();
18746}
18747
18748static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
18749                                  TargetLowering::DAGCombinerInfo &DCI,
18750                                  const X86Subtarget *Subtarget) {
18751  if (!DCI.isBeforeLegalizeOps())
18752    return SDValue();
18753
18754  if (!Subtarget->hasFp256())
18755    return SDValue();
18756
18757  EVT VT = N->getValueType(0);
18758  if (VT.isVector() && VT.getSizeInBits() == 256) {
18759    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18760    if (R.getNode())
18761      return R;
18762  }
18763
18764  return SDValue();
18765}
18766
18767static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
18768                                 const X86Subtarget* Subtarget) {
18769  SDLoc dl(N);
18770  EVT VT = N->getValueType(0);
18771
18772  // Let legalize expand this if it isn't a legal type yet.
18773  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18774    return SDValue();
18775
18776  EVT ScalarVT = VT.getScalarType();
18777  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
18778      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
18779    return SDValue();
18780
18781  SDValue A = N->getOperand(0);
18782  SDValue B = N->getOperand(1);
18783  SDValue C = N->getOperand(2);
18784
18785  bool NegA = (A.getOpcode() == ISD::FNEG);
18786  bool NegB = (B.getOpcode() == ISD::FNEG);
18787  bool NegC = (C.getOpcode() == ISD::FNEG);
18788
18789  // Negative multiplication when NegA xor NegB
18790  bool NegMul = (NegA != NegB);
18791  if (NegA)
18792    A = A.getOperand(0);
18793  if (NegB)
18794    B = B.getOperand(0);
18795  if (NegC)
18796    C = C.getOperand(0);
18797
18798  unsigned Opcode;
18799  if (!NegMul)
18800    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
18801  else
18802    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
18803
18804  return DAG.getNode(Opcode, dl, VT, A, B, C);
18805}
18806
18807static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
18808                                  TargetLowering::DAGCombinerInfo &DCI,
18809                                  const X86Subtarget *Subtarget) {
18810  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
18811  //           (and (i32 x86isd::setcc_carry), 1)
18812  // This eliminates the zext. This transformation is necessary because
18813  // ISD::SETCC is always legalized to i8.
18814  SDLoc dl(N);
18815  SDValue N0 = N->getOperand(0);
18816  EVT VT = N->getValueType(0);
18817
18818  if (N0.getOpcode() == ISD::AND &&
18819      N0.hasOneUse() &&
18820      N0.getOperand(0).hasOneUse()) {
18821    SDValue N00 = N0.getOperand(0);
18822    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
18823      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
18824      if (!C || C->getZExtValue() != 1)
18825        return SDValue();
18826      return DAG.getNode(ISD::AND, dl, VT,
18827                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
18828                                     N00.getOperand(0), N00.getOperand(1)),
18829                         DAG.getConstant(1, VT));
18830    }
18831  }
18832
18833  if (VT.is256BitVector()) {
18834    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18835    if (R.getNode())
18836      return R;
18837  }
18838
18839  return SDValue();
18840}
18841
18842// Optimize x == -y --> x+y == 0
18843//          x != -y --> x+y != 0
18844static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
18845  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
18846  SDValue LHS = N->getOperand(0);
18847  SDValue RHS = N->getOperand(1);
18848
18849  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
18850    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
18851      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
18852        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18853                                   LHS.getValueType(), RHS, LHS.getOperand(1));
18854        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18855                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18856      }
18857  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
18858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
18859      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
18860        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18861                                   RHS.getValueType(), LHS, RHS.getOperand(1));
18862        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18863                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18864      }
18865  return SDValue();
18866}
18867
18868// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
18869// as "sbb reg,reg", since it can be extended without zext and produces
18870// an all-ones bit which is more useful than 0/1 in some cases.
18871static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
18872  return DAG.getNode(ISD::AND, DL, MVT::i8,
18873                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
18874                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
18875                     DAG.getConstant(1, MVT::i8));
18876}
18877
18878// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
18879static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
18880                                   TargetLowering::DAGCombinerInfo &DCI,
18881                                   const X86Subtarget *Subtarget) {
18882  SDLoc DL(N);
18883  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
18884  SDValue EFLAGS = N->getOperand(1);
18885
18886  if (CC == X86::COND_A) {
18887    // Try to convert COND_A into COND_B in an attempt to facilitate
18888    // materializing "setb reg".
18889    //
18890    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
18891    // cannot take an immediate as its first operand.
18892    //
18893    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
18894        EFLAGS.getValueType().isInteger() &&
18895        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
18896      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
18897                                   EFLAGS.getNode()->getVTList(),
18898                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
18899      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
18900      return MaterializeSETB(DL, NewEFLAGS, DAG);
18901    }
18902  }
18903
18904  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
18905  // a zext and produces an all-ones bit which is more useful than 0/1 in some
18906  // cases.
18907  if (CC == X86::COND_B)
18908    return MaterializeSETB(DL, EFLAGS, DAG);
18909
18910  SDValue Flags;
18911
18912  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18913  if (Flags.getNode()) {
18914    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18915    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
18916  }
18917
18918  return SDValue();
18919}
18920
18921// Optimize branch condition evaluation.
18922//
18923static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
18924                                    TargetLowering::DAGCombinerInfo &DCI,
18925                                    const X86Subtarget *Subtarget) {
18926  SDLoc DL(N);
18927  SDValue Chain = N->getOperand(0);
18928  SDValue Dest = N->getOperand(1);
18929  SDValue EFLAGS = N->getOperand(3);
18930  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
18931
18932  SDValue Flags;
18933
18934  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18935  if (Flags.getNode()) {
18936    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18937    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
18938                       Flags);
18939  }
18940
18941  return SDValue();
18942}
18943
18944static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
18945                                        const X86TargetLowering *XTLI) {
18946  SDValue Op0 = N->getOperand(0);
18947  EVT InVT = Op0->getValueType(0);
18948
18949  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
18950  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
18951    SDLoc dl(N);
18952    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
18953    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
18954    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
18955  }
18956
18957  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
18958  // a 32-bit target where SSE doesn't support i64->FP operations.
18959  if (Op0.getOpcode() == ISD::LOAD) {
18960    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
18961    EVT VT = Ld->getValueType(0);
18962    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
18963        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
18964        !XTLI->getSubtarget()->is64Bit() &&
18965        VT == MVT::i64) {
18966      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
18967                                          Ld->getChain(), Op0, DAG);
18968      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
18969      return FILDChain;
18970    }
18971  }
18972  return SDValue();
18973}
18974
18975// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
18976static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
18977                                 X86TargetLowering::DAGCombinerInfo &DCI) {
18978  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
18979  // the result is either zero or one (depending on the input carry bit).
18980  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
18981  if (X86::isZeroNode(N->getOperand(0)) &&
18982      X86::isZeroNode(N->getOperand(1)) &&
18983      // We don't have a good way to replace an EFLAGS use, so only do this when
18984      // dead right now.
18985      SDValue(N, 1).use_empty()) {
18986    SDLoc DL(N);
18987    EVT VT = N->getValueType(0);
18988    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
18989    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
18990                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
18991                                           DAG.getConstant(X86::COND_B,MVT::i8),
18992                                           N->getOperand(2)),
18993                               DAG.getConstant(1, VT));
18994    return DCI.CombineTo(N, Res1, CarryOut);
18995  }
18996
18997  return SDValue();
18998}
18999
19000// fold (add Y, (sete  X, 0)) -> adc  0, Y
19001//      (add Y, (setne X, 0)) -> sbb -1, Y
19002//      (sub (sete  X, 0), Y) -> sbb  0, Y
19003//      (sub (setne X, 0), Y) -> adc -1, Y
19004static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
19005  SDLoc DL(N);
19006
19007  // Look through ZExts.
19008  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
19009  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
19010    return SDValue();
19011
19012  SDValue SetCC = Ext.getOperand(0);
19013  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
19014    return SDValue();
19015
19016  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
19017  if (CC != X86::COND_E && CC != X86::COND_NE)
19018    return SDValue();
19019
19020  SDValue Cmp = SetCC.getOperand(1);
19021  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
19022      !X86::isZeroNode(Cmp.getOperand(1)) ||
19023      !Cmp.getOperand(0).getValueType().isInteger())
19024    return SDValue();
19025
19026  SDValue CmpOp0 = Cmp.getOperand(0);
19027  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
19028                               DAG.getConstant(1, CmpOp0.getValueType()));
19029
19030  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
19031  if (CC == X86::COND_NE)
19032    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
19033                       DL, OtherVal.getValueType(), OtherVal,
19034                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
19035  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
19036                     DL, OtherVal.getValueType(), OtherVal,
19037                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
19038}
19039
19040/// PerformADDCombine - Do target-specific dag combines on integer adds.
19041static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
19042                                 const X86Subtarget *Subtarget) {
19043  EVT VT = N->getValueType(0);
19044  SDValue Op0 = N->getOperand(0);
19045  SDValue Op1 = N->getOperand(1);
19046
19047  // Try to synthesize horizontal adds from adds of shuffles.
19048  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19049       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19050      isHorizontalBinOp(Op0, Op1, true))
19051    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
19052
19053  return OptimizeConditionalInDecrement(N, DAG);
19054}
19055
19056static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
19057                                 const X86Subtarget *Subtarget) {
19058  SDValue Op0 = N->getOperand(0);
19059  SDValue Op1 = N->getOperand(1);
19060
19061  // X86 can't encode an immediate LHS of a sub. See if we can push the
19062  // negation into a preceding instruction.
19063  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
19064    // If the RHS of the sub is a XOR with one use and a constant, invert the
19065    // immediate. Then add one to the LHS of the sub so we can turn
19066    // X-Y -> X+~Y+1, saving one register.
19067    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
19068        isa<ConstantSDNode>(Op1.getOperand(1))) {
19069      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
19070      EVT VT = Op0.getValueType();
19071      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
19072                                   Op1.getOperand(0),
19073                                   DAG.getConstant(~XorC, VT));
19074      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
19075                         DAG.getConstant(C->getAPIntValue()+1, VT));
19076    }
19077  }
19078
19079  // Try to synthesize horizontal adds from adds of shuffles.
19080  EVT VT = N->getValueType(0);
19081  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19082       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19083      isHorizontalBinOp(Op0, Op1, true))
19084    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
19085
19086  return OptimizeConditionalInDecrement(N, DAG);
19087}
19088
19089/// performVZEXTCombine - Performs build vector combines
19090static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
19091                                        TargetLowering::DAGCombinerInfo &DCI,
19092                                        const X86Subtarget *Subtarget) {
19093  // (vzext (bitcast (vzext (x)) -> (vzext x)
19094  SDValue In = N->getOperand(0);
19095  while (In.getOpcode() == ISD::BITCAST)
19096    In = In.getOperand(0);
19097
19098  if (In.getOpcode() != X86ISD::VZEXT)
19099    return SDValue();
19100
19101  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
19102                     In.getOperand(0));
19103}
19104
19105SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
19106                                             DAGCombinerInfo &DCI) const {
19107  SelectionDAG &DAG = DCI.DAG;
19108  switch (N->getOpcode()) {
19109  default: break;
19110  case ISD::EXTRACT_VECTOR_ELT:
19111    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
19112  case ISD::VSELECT:
19113  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
19114  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
19115  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
19116  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
19117  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
19118  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
19119  case ISD::SHL:
19120  case ISD::SRA:
19121  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
19122  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
19123  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
19124  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
19125  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
19126  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
19127  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
19128  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
19129  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
19130  case X86ISD::FXOR:
19131  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
19132  case X86ISD::FMIN:
19133  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
19134  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
19135  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
19136  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
19137  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
19138  case ISD::ANY_EXTEND:
19139  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
19140  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
19141  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
19142  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
19143  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
19144  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
19145  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
19146  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
19147  case X86ISD::SHUFP:       // Handle all target specific shuffles
19148  case X86ISD::PALIGNR:
19149  case X86ISD::UNPCKH:
19150  case X86ISD::UNPCKL:
19151  case X86ISD::MOVHLPS:
19152  case X86ISD::MOVLHPS:
19153  case X86ISD::PSHUFD:
19154  case X86ISD::PSHUFHW:
19155  case X86ISD::PSHUFLW:
19156  case X86ISD::MOVSS:
19157  case X86ISD::MOVSD:
19158  case X86ISD::VPERMILP:
19159  case X86ISD::VPERM2X128:
19160  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
19161  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
19162  }
19163
19164  return SDValue();
19165}
19166
19167/// isTypeDesirableForOp - Return true if the target has native support for
19168/// the specified value type and it is 'desirable' to use the type for the
19169/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
19170/// instruction encodings are longer and some i16 instructions are slow.
19171bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
19172  if (!isTypeLegal(VT))
19173    return false;
19174  if (VT != MVT::i16)
19175    return true;
19176
19177  switch (Opc) {
19178  default:
19179    return true;
19180  case ISD::LOAD:
19181  case ISD::SIGN_EXTEND:
19182  case ISD::ZERO_EXTEND:
19183  case ISD::ANY_EXTEND:
19184  case ISD::SHL:
19185  case ISD::SRL:
19186  case ISD::SUB:
19187  case ISD::ADD:
19188  case ISD::MUL:
19189  case ISD::AND:
19190  case ISD::OR:
19191  case ISD::XOR:
19192    return false;
19193  }
19194}
19195
19196/// IsDesirableToPromoteOp - This method query the target whether it is
19197/// beneficial for dag combiner to promote the specified node. If true, it
19198/// should return the desired promotion type by reference.
19199bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
19200  EVT VT = Op.getValueType();
19201  if (VT != MVT::i16)
19202    return false;
19203
19204  bool Promote = false;
19205  bool Commute = false;
19206  switch (Op.getOpcode()) {
19207  default: break;
19208  case ISD::LOAD: {
19209    LoadSDNode *LD = cast<LoadSDNode>(Op);
19210    // If the non-extending load has a single use and it's not live out, then it
19211    // might be folded.
19212    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
19213                                                     Op.hasOneUse()*/) {
19214      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
19215             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
19216        // The only case where we'd want to promote LOAD (rather then it being
19217        // promoted as an operand is when it's only use is liveout.
19218        if (UI->getOpcode() != ISD::CopyToReg)
19219          return false;
19220      }
19221    }
19222    Promote = true;
19223    break;
19224  }
19225  case ISD::SIGN_EXTEND:
19226  case ISD::ZERO_EXTEND:
19227  case ISD::ANY_EXTEND:
19228    Promote = true;
19229    break;
19230  case ISD::SHL:
19231  case ISD::SRL: {
19232    SDValue N0 = Op.getOperand(0);
19233    // Look out for (store (shl (load), x)).
19234    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
19235      return false;
19236    Promote = true;
19237    break;
19238  }
19239  case ISD::ADD:
19240  case ISD::MUL:
19241  case ISD::AND:
19242  case ISD::OR:
19243  case ISD::XOR:
19244    Commute = true;
19245    // fallthrough
19246  case ISD::SUB: {
19247    SDValue N0 = Op.getOperand(0);
19248    SDValue N1 = Op.getOperand(1);
19249    if (!Commute && MayFoldLoad(N1))
19250      return false;
19251    // Avoid disabling potential load folding opportunities.
19252    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
19253      return false;
19254    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
19255      return false;
19256    Promote = true;
19257  }
19258  }
19259
19260  PVT = MVT::i32;
19261  return Promote;
19262}
19263
19264//===----------------------------------------------------------------------===//
19265//                           X86 Inline Assembly Support
19266//===----------------------------------------------------------------------===//
19267
19268namespace {
19269  // Helper to match a string separated by whitespace.
19270  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
19271    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
19272
19273    for (unsigned i = 0, e = args.size(); i != e; ++i) {
19274      StringRef piece(*args[i]);
19275      if (!s.startswith(piece)) // Check if the piece matches.
19276        return false;
19277
19278      s = s.substr(piece.size());
19279      StringRef::size_type pos = s.find_first_not_of(" \t");
19280      if (pos == 0) // We matched a prefix.
19281        return false;
19282
19283      s = s.substr(pos);
19284    }
19285
19286    return s.empty();
19287  }
19288  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
19289}
19290
19291static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
19292
19293  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
19294    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
19295        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
19296        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
19297
19298      if (AsmPieces.size() == 3)
19299        return true;
19300      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
19301        return true;
19302    }
19303  }
19304  return false;
19305}
19306
19307bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
19308  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
19309
19310  std::string AsmStr = IA->getAsmString();
19311
19312  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
19313  if (!Ty || Ty->getBitWidth() % 16 != 0)
19314    return false;
19315
19316  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
19317  SmallVector<StringRef, 4> AsmPieces;
19318  SplitString(AsmStr, AsmPieces, ";\n");
19319
19320  switch (AsmPieces.size()) {
19321  default: return false;
19322  case 1:
19323    // FIXME: this should verify that we are targeting a 486 or better.  If not,
19324    // we will turn this bswap into something that will be lowered to logical
19325    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
19326    // lower so don't worry about this.
19327    // bswap $0
19328    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
19329        matchAsm(AsmPieces[0], "bswapl", "$0") ||
19330        matchAsm(AsmPieces[0], "bswapq", "$0") ||
19331        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
19332        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
19333        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
19334      // No need to check constraints, nothing other than the equivalent of
19335      // "=r,0" would be valid here.
19336      return IntrinsicLowering::LowerToByteSwap(CI);
19337    }
19338
19339    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
19340    if (CI->getType()->isIntegerTy(16) &&
19341        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19342        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
19343         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
19344      AsmPieces.clear();
19345      const std::string &ConstraintsStr = IA->getConstraintString();
19346      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19347      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19348      if (clobbersFlagRegisters(AsmPieces))
19349        return IntrinsicLowering::LowerToByteSwap(CI);
19350    }
19351    break;
19352  case 3:
19353    if (CI->getType()->isIntegerTy(32) &&
19354        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19355        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
19356        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
19357        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
19358      AsmPieces.clear();
19359      const std::string &ConstraintsStr = IA->getConstraintString();
19360      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19361      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19362      if (clobbersFlagRegisters(AsmPieces))
19363        return IntrinsicLowering::LowerToByteSwap(CI);
19364    }
19365
19366    if (CI->getType()->isIntegerTy(64)) {
19367      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
19368      if (Constraints.size() >= 2 &&
19369          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
19370          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
19371        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
19372        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
19373            matchAsm(AsmPieces[1], "bswap", "%edx") &&
19374            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
19375          return IntrinsicLowering::LowerToByteSwap(CI);
19376      }
19377    }
19378    break;
19379  }
19380  return false;
19381}
19382
19383/// getConstraintType - Given a constraint letter, return the type of
19384/// constraint it is for this target.
19385X86TargetLowering::ConstraintType
19386X86TargetLowering::getConstraintType(const std::string &Constraint) const {
19387  if (Constraint.size() == 1) {
19388    switch (Constraint[0]) {
19389    case 'R':
19390    case 'q':
19391    case 'Q':
19392    case 'f':
19393    case 't':
19394    case 'u':
19395    case 'y':
19396    case 'x':
19397    case 'Y':
19398    case 'l':
19399      return C_RegisterClass;
19400    case 'a':
19401    case 'b':
19402    case 'c':
19403    case 'd':
19404    case 'S':
19405    case 'D':
19406    case 'A':
19407      return C_Register;
19408    case 'I':
19409    case 'J':
19410    case 'K':
19411    case 'L':
19412    case 'M':
19413    case 'N':
19414    case 'G':
19415    case 'C':
19416    case 'e':
19417    case 'Z':
19418      return C_Other;
19419    default:
19420      break;
19421    }
19422  }
19423  return TargetLowering::getConstraintType(Constraint);
19424}
19425
19426/// Examine constraint type and operand type and determine a weight value.
19427/// This object must already have been set up with the operand type
19428/// and the current alternative constraint selected.
19429TargetLowering::ConstraintWeight
19430  X86TargetLowering::getSingleConstraintMatchWeight(
19431    AsmOperandInfo &info, const char *constraint) const {
19432  ConstraintWeight weight = CW_Invalid;
19433  Value *CallOperandVal = info.CallOperandVal;
19434    // If we don't have a value, we can't do a match,
19435    // but allow it at the lowest weight.
19436  if (CallOperandVal == NULL)
19437    return CW_Default;
19438  Type *type = CallOperandVal->getType();
19439  // Look at the constraint type.
19440  switch (*constraint) {
19441  default:
19442    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
19443  case 'R':
19444  case 'q':
19445  case 'Q':
19446  case 'a':
19447  case 'b':
19448  case 'c':
19449  case 'd':
19450  case 'S':
19451  case 'D':
19452  case 'A':
19453    if (CallOperandVal->getType()->isIntegerTy())
19454      weight = CW_SpecificReg;
19455    break;
19456  case 'f':
19457  case 't':
19458  case 'u':
19459    if (type->isFloatingPointTy())
19460      weight = CW_SpecificReg;
19461    break;
19462  case 'y':
19463    if (type->isX86_MMXTy() && Subtarget->hasMMX())
19464      weight = CW_SpecificReg;
19465    break;
19466  case 'x':
19467  case 'Y':
19468    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
19469        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
19470      weight = CW_Register;
19471    break;
19472  case 'I':
19473    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
19474      if (C->getZExtValue() <= 31)
19475        weight = CW_Constant;
19476    }
19477    break;
19478  case 'J':
19479    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19480      if (C->getZExtValue() <= 63)
19481        weight = CW_Constant;
19482    }
19483    break;
19484  case 'K':
19485    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19486      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
19487        weight = CW_Constant;
19488    }
19489    break;
19490  case 'L':
19491    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19492      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
19493        weight = CW_Constant;
19494    }
19495    break;
19496  case 'M':
19497    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19498      if (C->getZExtValue() <= 3)
19499        weight = CW_Constant;
19500    }
19501    break;
19502  case 'N':
19503    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19504      if (C->getZExtValue() <= 0xff)
19505        weight = CW_Constant;
19506    }
19507    break;
19508  case 'G':
19509  case 'C':
19510    if (dyn_cast<ConstantFP>(CallOperandVal)) {
19511      weight = CW_Constant;
19512    }
19513    break;
19514  case 'e':
19515    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19516      if ((C->getSExtValue() >= -0x80000000LL) &&
19517          (C->getSExtValue() <= 0x7fffffffLL))
19518        weight = CW_Constant;
19519    }
19520    break;
19521  case 'Z':
19522    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19523      if (C->getZExtValue() <= 0xffffffff)
19524        weight = CW_Constant;
19525    }
19526    break;
19527  }
19528  return weight;
19529}
19530
19531/// LowerXConstraint - try to replace an X constraint, which matches anything,
19532/// with another that has more specific requirements based on the type of the
19533/// corresponding operand.
19534const char *X86TargetLowering::
19535LowerXConstraint(EVT ConstraintVT) const {
19536  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
19537  // 'f' like normal targets.
19538  if (ConstraintVT.isFloatingPoint()) {
19539    if (Subtarget->hasSSE2())
19540      return "Y";
19541    if (Subtarget->hasSSE1())
19542      return "x";
19543  }
19544
19545  return TargetLowering::LowerXConstraint(ConstraintVT);
19546}
19547
19548/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
19549/// vector.  If it is invalid, don't add anything to Ops.
19550void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
19551                                                     std::string &Constraint,
19552                                                     std::vector<SDValue>&Ops,
19553                                                     SelectionDAG &DAG) const {
19554  SDValue Result(0, 0);
19555
19556  // Only support length 1 constraints for now.
19557  if (Constraint.length() > 1) return;
19558
19559  char ConstraintLetter = Constraint[0];
19560  switch (ConstraintLetter) {
19561  default: break;
19562  case 'I':
19563    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19564      if (C->getZExtValue() <= 31) {
19565        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19566        break;
19567      }
19568    }
19569    return;
19570  case 'J':
19571    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19572      if (C->getZExtValue() <= 63) {
19573        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19574        break;
19575      }
19576    }
19577    return;
19578  case 'K':
19579    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19580      if (isInt<8>(C->getSExtValue())) {
19581        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19582        break;
19583      }
19584    }
19585    return;
19586  case 'N':
19587    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19588      if (C->getZExtValue() <= 255) {
19589        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19590        break;
19591      }
19592    }
19593    return;
19594  case 'e': {
19595    // 32-bit signed value
19596    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19597      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19598                                           C->getSExtValue())) {
19599        // Widen to 64 bits here to get it sign extended.
19600        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
19601        break;
19602      }
19603    // FIXME gcc accepts some relocatable values here too, but only in certain
19604    // memory models; it's complicated.
19605    }
19606    return;
19607  }
19608  case 'Z': {
19609    // 32-bit unsigned value
19610    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19611      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19612                                           C->getZExtValue())) {
19613        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19614        break;
19615      }
19616    }
19617    // FIXME gcc accepts some relocatable values here too, but only in certain
19618    // memory models; it's complicated.
19619    return;
19620  }
19621  case 'i': {
19622    // Literal immediates are always ok.
19623    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
19624      // Widen to 64 bits here to get it sign extended.
19625      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
19626      break;
19627    }
19628
19629    // In any sort of PIC mode addresses need to be computed at runtime by
19630    // adding in a register or some sort of table lookup.  These can't
19631    // be used as immediates.
19632    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
19633      return;
19634
19635    // If we are in non-pic codegen mode, we allow the address of a global (with
19636    // an optional displacement) to be used with 'i'.
19637    GlobalAddressSDNode *GA = 0;
19638    int64_t Offset = 0;
19639
19640    // Match either (GA), (GA+C), (GA+C1+C2), etc.
19641    while (1) {
19642      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
19643        Offset += GA->getOffset();
19644        break;
19645      } else if (Op.getOpcode() == ISD::ADD) {
19646        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19647          Offset += C->getZExtValue();
19648          Op = Op.getOperand(0);
19649          continue;
19650        }
19651      } else if (Op.getOpcode() == ISD::SUB) {
19652        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19653          Offset += -C->getZExtValue();
19654          Op = Op.getOperand(0);
19655          continue;
19656        }
19657      }
19658
19659      // Otherwise, this isn't something we can handle, reject it.
19660      return;
19661    }
19662
19663    const GlobalValue *GV = GA->getGlobal();
19664    // If we require an extra load to get this address, as in PIC mode, we
19665    // can't accept it.
19666    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
19667                                                        getTargetMachine())))
19668      return;
19669
19670    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
19671                                        GA->getValueType(0), Offset);
19672    break;
19673  }
19674  }
19675
19676  if (Result.getNode()) {
19677    Ops.push_back(Result);
19678    return;
19679  }
19680  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
19681}
19682
19683std::pair<unsigned, const TargetRegisterClass*>
19684X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
19685                                                MVT VT) const {
19686  // First, see if this is a constraint that directly corresponds to an LLVM
19687  // register class.
19688  if (Constraint.size() == 1) {
19689    // GCC Constraint Letters
19690    switch (Constraint[0]) {
19691    default: break;
19692      // TODO: Slight differences here in allocation order and leaving
19693      // RIP in the class. Do they matter any more here than they do
19694      // in the normal allocation?
19695    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
19696      if (Subtarget->is64Bit()) {
19697        if (VT == MVT::i32 || VT == MVT::f32)
19698          return std::make_pair(0U, &X86::GR32RegClass);
19699        if (VT == MVT::i16)
19700          return std::make_pair(0U, &X86::GR16RegClass);
19701        if (VT == MVT::i8 || VT == MVT::i1)
19702          return std::make_pair(0U, &X86::GR8RegClass);
19703        if (VT == MVT::i64 || VT == MVT::f64)
19704          return std::make_pair(0U, &X86::GR64RegClass);
19705        break;
19706      }
19707      // 32-bit fallthrough
19708    case 'Q':   // Q_REGS
19709      if (VT == MVT::i32 || VT == MVT::f32)
19710        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
19711      if (VT == MVT::i16)
19712        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
19713      if (VT == MVT::i8 || VT == MVT::i1)
19714        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
19715      if (VT == MVT::i64)
19716        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
19717      break;
19718    case 'r':   // GENERAL_REGS
19719    case 'l':   // INDEX_REGS
19720      if (VT == MVT::i8 || VT == MVT::i1)
19721        return std::make_pair(0U, &X86::GR8RegClass);
19722      if (VT == MVT::i16)
19723        return std::make_pair(0U, &X86::GR16RegClass);
19724      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
19725        return std::make_pair(0U, &X86::GR32RegClass);
19726      return std::make_pair(0U, &X86::GR64RegClass);
19727    case 'R':   // LEGACY_REGS
19728      if (VT == MVT::i8 || VT == MVT::i1)
19729        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
19730      if (VT == MVT::i16)
19731        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
19732      if (VT == MVT::i32 || !Subtarget->is64Bit())
19733        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
19734      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
19735    case 'f':  // FP Stack registers.
19736      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
19737      // value to the correct fpstack register class.
19738      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
19739        return std::make_pair(0U, &X86::RFP32RegClass);
19740      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
19741        return std::make_pair(0U, &X86::RFP64RegClass);
19742      return std::make_pair(0U, &X86::RFP80RegClass);
19743    case 'y':   // MMX_REGS if MMX allowed.
19744      if (!Subtarget->hasMMX()) break;
19745      return std::make_pair(0U, &X86::VR64RegClass);
19746    case 'Y':   // SSE_REGS if SSE2 allowed
19747      if (!Subtarget->hasSSE2()) break;
19748      // FALL THROUGH.
19749    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
19750      if (!Subtarget->hasSSE1()) break;
19751
19752      switch (VT.SimpleTy) {
19753      default: break;
19754      // Scalar SSE types.
19755      case MVT::f32:
19756      case MVT::i32:
19757        return std::make_pair(0U, &X86::FR32RegClass);
19758      case MVT::f64:
19759      case MVT::i64:
19760        return std::make_pair(0U, &X86::FR64RegClass);
19761      // Vector types.
19762      case MVT::v16i8:
19763      case MVT::v8i16:
19764      case MVT::v4i32:
19765      case MVT::v2i64:
19766      case MVT::v4f32:
19767      case MVT::v2f64:
19768        return std::make_pair(0U, &X86::VR128RegClass);
19769      // AVX types.
19770      case MVT::v32i8:
19771      case MVT::v16i16:
19772      case MVT::v8i32:
19773      case MVT::v4i64:
19774      case MVT::v8f32:
19775      case MVT::v4f64:
19776        return std::make_pair(0U, &X86::VR256RegClass);
19777      case MVT::v8f64:
19778      case MVT::v16f32:
19779      case MVT::v16i32:
19780      case MVT::v8i64:
19781        return std::make_pair(0U, &X86::VR512RegClass);
19782      }
19783      break;
19784    }
19785  }
19786
19787  // Use the default implementation in TargetLowering to convert the register
19788  // constraint into a member of a register class.
19789  std::pair<unsigned, const TargetRegisterClass*> Res;
19790  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
19791
19792  // Not found as a standard register?
19793  if (Res.second == 0) {
19794    // Map st(0) -> st(7) -> ST0
19795    if (Constraint.size() == 7 && Constraint[0] == '{' &&
19796        tolower(Constraint[1]) == 's' &&
19797        tolower(Constraint[2]) == 't' &&
19798        Constraint[3] == '(' &&
19799        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
19800        Constraint[5] == ')' &&
19801        Constraint[6] == '}') {
19802
19803      Res.first = X86::ST0+Constraint[4]-'0';
19804      Res.second = &X86::RFP80RegClass;
19805      return Res;
19806    }
19807
19808    // GCC allows "st(0)" to be called just plain "st".
19809    if (StringRef("{st}").equals_lower(Constraint)) {
19810      Res.first = X86::ST0;
19811      Res.second = &X86::RFP80RegClass;
19812      return Res;
19813    }
19814
19815    // flags -> EFLAGS
19816    if (StringRef("{flags}").equals_lower(Constraint)) {
19817      Res.first = X86::EFLAGS;
19818      Res.second = &X86::CCRRegClass;
19819      return Res;
19820    }
19821
19822    // 'A' means EAX + EDX.
19823    if (Constraint == "A") {
19824      Res.first = X86::EAX;
19825      Res.second = &X86::GR32_ADRegClass;
19826      return Res;
19827    }
19828    return Res;
19829  }
19830
19831  // Otherwise, check to see if this is a register class of the wrong value
19832  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
19833  // turn into {ax},{dx}.
19834  if (Res.second->hasType(VT))
19835    return Res;   // Correct type already, nothing to do.
19836
19837  // All of the single-register GCC register classes map their values onto
19838  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
19839  // really want an 8-bit or 32-bit register, map to the appropriate register
19840  // class and return the appropriate register.
19841  if (Res.second == &X86::GR16RegClass) {
19842    if (VT == MVT::i8 || VT == MVT::i1) {
19843      unsigned DestReg = 0;
19844      switch (Res.first) {
19845      default: break;
19846      case X86::AX: DestReg = X86::AL; break;
19847      case X86::DX: DestReg = X86::DL; break;
19848      case X86::CX: DestReg = X86::CL; break;
19849      case X86::BX: DestReg = X86::BL; break;
19850      }
19851      if (DestReg) {
19852        Res.first = DestReg;
19853        Res.second = &X86::GR8RegClass;
19854      }
19855    } else if (VT == MVT::i32 || VT == MVT::f32) {
19856      unsigned DestReg = 0;
19857      switch (Res.first) {
19858      default: break;
19859      case X86::AX: DestReg = X86::EAX; break;
19860      case X86::DX: DestReg = X86::EDX; break;
19861      case X86::CX: DestReg = X86::ECX; break;
19862      case X86::BX: DestReg = X86::EBX; break;
19863      case X86::SI: DestReg = X86::ESI; break;
19864      case X86::DI: DestReg = X86::EDI; break;
19865      case X86::BP: DestReg = X86::EBP; break;
19866      case X86::SP: DestReg = X86::ESP; break;
19867      }
19868      if (DestReg) {
19869        Res.first = DestReg;
19870        Res.second = &X86::GR32RegClass;
19871      }
19872    } else if (VT == MVT::i64 || VT == MVT::f64) {
19873      unsigned DestReg = 0;
19874      switch (Res.first) {
19875      default: break;
19876      case X86::AX: DestReg = X86::RAX; break;
19877      case X86::DX: DestReg = X86::RDX; break;
19878      case X86::CX: DestReg = X86::RCX; break;
19879      case X86::BX: DestReg = X86::RBX; break;
19880      case X86::SI: DestReg = X86::RSI; break;
19881      case X86::DI: DestReg = X86::RDI; break;
19882      case X86::BP: DestReg = X86::RBP; break;
19883      case X86::SP: DestReg = X86::RSP; break;
19884      }
19885      if (DestReg) {
19886        Res.first = DestReg;
19887        Res.second = &X86::GR64RegClass;
19888      }
19889    }
19890  } else if (Res.second == &X86::FR32RegClass ||
19891             Res.second == &X86::FR64RegClass ||
19892             Res.second == &X86::VR128RegClass ||
19893             Res.second == &X86::VR256RegClass ||
19894             Res.second == &X86::FR32XRegClass ||
19895             Res.second == &X86::FR64XRegClass ||
19896             Res.second == &X86::VR128XRegClass ||
19897             Res.second == &X86::VR256XRegClass ||
19898             Res.second == &X86::VR512RegClass) {
19899    // Handle references to XMM physical registers that got mapped into the
19900    // wrong class.  This can happen with constraints like {xmm0} where the
19901    // target independent register mapper will just pick the first match it can
19902    // find, ignoring the required type.
19903
19904    if (VT == MVT::f32 || VT == MVT::i32)
19905      Res.second = &X86::FR32RegClass;
19906    else if (VT == MVT::f64 || VT == MVT::i64)
19907      Res.second = &X86::FR64RegClass;
19908    else if (X86::VR128RegClass.hasType(VT))
19909      Res.second = &X86::VR128RegClass;
19910    else if (X86::VR256RegClass.hasType(VT))
19911      Res.second = &X86::VR256RegClass;
19912    else if (X86::VR512RegClass.hasType(VT))
19913      Res.second = &X86::VR512RegClass;
19914  }
19915
19916  return Res;
19917}
19918