X86ISelLowering.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86ISelLowering.h"
16#include "Utils/X86ShuffleDecode.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/StringSwitch.h"
26#include "llvm/ADT/VariadicFunction.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalAlias.h"
40#include "llvm/IR/GlobalVariable.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/MC/MCAsmInfo.h"
44#include "llvm/MC/MCContext.h"
45#include "llvm/MC/MCExpr.h"
46#include "llvm/MC/MCSymbol.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Target/TargetOptions.h"
52#include <bitset>
53#include <numeric>
54#include <cctype>
55using namespace llvm;
56
57#define DEBUG_TYPE "x86-isel"
58
59STATISTIC(NumTailCalls, "Number of tail calls");
60
61static cl::opt<bool> ExperimentalVectorWideningLegalization(
62    "x86-experimental-vector-widening-legalization", cl::init(false),
63    cl::desc("Enable an experimental vector type legalization through widening "
64             "rather than promotion."),
65    cl::Hidden);
66
67static cl::opt<bool> ExperimentalVectorShuffleLowering(
68    "x86-experimental-vector-shuffle-lowering", cl::init(false),
69    cl::desc("Enable an experimental vector shuffle lowering code path."),
70    cl::Hidden);
71
72// Forward declarations.
73static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
74                       SDValue V2);
75
76static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
77                                SelectionDAG &DAG, SDLoc dl,
78                                unsigned vectorWidth) {
79  assert((vectorWidth == 128 || vectorWidth == 256) &&
80         "Unsupported vector width");
81  EVT VT = Vec.getValueType();
82  EVT ElVT = VT.getVectorElementType();
83  unsigned Factor = VT.getSizeInBits()/vectorWidth;
84  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
85                                  VT.getVectorNumElements()/Factor);
86
87  // Extract from UNDEF is UNDEF.
88  if (Vec.getOpcode() == ISD::UNDEF)
89    return DAG.getUNDEF(ResultVT);
90
91  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
92  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
93
94  // This is the index of the first element of the vectorWidth-bit chunk
95  // we want.
96  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
97                               * ElemsPerChunk);
98
99  // If the input is a buildvector just emit a smaller one.
100  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
101    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
102                       makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
103                                    ElemsPerChunk));
104
105  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
106  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
107                               VecIdx);
108
109  return Result;
110
111}
112/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
113/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
114/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
115/// instructions or a simple subregister reference. Idx is an index in the
116/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
117/// lowering EXTRACT_VECTOR_ELT operations easier.
118static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
119                                   SelectionDAG &DAG, SDLoc dl) {
120  assert((Vec.getValueType().is256BitVector() ||
121          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
122  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
123}
124
125/// Generate a DAG to grab 256-bits from a 512-bit vector.
126static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
127                                   SelectionDAG &DAG, SDLoc dl) {
128  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
129  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
130}
131
132static SDValue InsertSubVector(SDValue Result, SDValue Vec,
133                               unsigned IdxVal, SelectionDAG &DAG,
134                               SDLoc dl, unsigned vectorWidth) {
135  assert((vectorWidth == 128 || vectorWidth == 256) &&
136         "Unsupported vector width");
137  // Inserting UNDEF is Result
138  if (Vec.getOpcode() == ISD::UNDEF)
139    return Result;
140  EVT VT = Vec.getValueType();
141  EVT ElVT = VT.getVectorElementType();
142  EVT ResultVT = Result.getValueType();
143
144  // Insert the relevant vectorWidth bits.
145  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
146
147  // This is the index of the first element of the vectorWidth-bit chunk
148  // we want.
149  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
150                               * ElemsPerChunk);
151
152  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
153  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
154                     VecIdx);
155}
156/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
157/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
158/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
159/// simple superregister reference.  Idx is an index in the 128 bits
160/// we want.  It need not be aligned to a 128-bit bounday.  That makes
161/// lowering INSERT_VECTOR_ELT operations easier.
162static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
163                                  unsigned IdxVal, SelectionDAG &DAG,
164                                  SDLoc dl) {
165  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
166  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
167}
168
169static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
170                                  unsigned IdxVal, SelectionDAG &DAG,
171                                  SDLoc dl) {
172  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
173  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
174}
175
176/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
177/// instructions. This is used because creating CONCAT_VECTOR nodes of
178/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
179/// large BUILD_VECTORS.
180static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
181                                   unsigned NumElems, SelectionDAG &DAG,
182                                   SDLoc dl) {
183  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
184  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
185}
186
187static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
188                                   unsigned NumElems, SelectionDAG &DAG,
189                                   SDLoc dl) {
190  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
191  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
192}
193
194static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
195  if (TT.isOSBinFormatMachO()) {
196    if (TT.getArch() == Triple::x86_64)
197      return new X86_64MachoTargetObjectFile();
198    return new TargetLoweringObjectFileMachO();
199  }
200
201  if (TT.isOSLinux())
202    return new X86LinuxTargetObjectFile();
203  if (TT.isOSBinFormatELF())
204    return new TargetLoweringObjectFileELF();
205  if (TT.isKnownWindowsMSVCEnvironment())
206    return new X86WindowsTargetObjectFile();
207  if (TT.isOSBinFormatCOFF())
208    return new TargetLoweringObjectFileCOFF();
209  llvm_unreachable("unknown subtarget type");
210}
211
212// FIXME: This should stop caching the target machine as soon as
213// we can remove resetOperationActions et al.
214X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
215  : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
216  Subtarget = &TM.getSubtarget<X86Subtarget>();
217  X86ScalarSSEf64 = Subtarget->hasSSE2();
218  X86ScalarSSEf32 = Subtarget->hasSSE1();
219  TD = getDataLayout();
220
221  resetOperationActions();
222}
223
224void X86TargetLowering::resetOperationActions() {
225  const TargetMachine &TM = getTargetMachine();
226  static bool FirstTimeThrough = true;
227
228  // If none of the target options have changed, then we don't need to reset the
229  // operation actions.
230  if (!FirstTimeThrough && TO == TM.Options) return;
231
232  if (!FirstTimeThrough) {
233    // Reinitialize the actions.
234    initActions();
235    FirstTimeThrough = false;
236  }
237
238  TO = TM.Options;
239
240  // Set up the TargetLowering object.
241  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
242
243  // X86 is weird, it always uses i8 for shift amounts and setcc results.
244  setBooleanContents(ZeroOrOneBooleanContent);
245  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
246  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
247
248  // For 64-bit since we have so many registers use the ILP scheduler, for
249  // 32-bit code use the register pressure specific scheduling.
250  // For Atom, always use ILP scheduling.
251  if (Subtarget->isAtom())
252    setSchedulingPreference(Sched::ILP);
253  else if (Subtarget->is64Bit())
254    setSchedulingPreference(Sched::ILP);
255  else
256    setSchedulingPreference(Sched::RegPressure);
257  const X86RegisterInfo *RegInfo =
258    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
259  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
260
261  // Bypass expensive divides on Atom when compiling with O2
262  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
263    addBypassSlowDiv(32, 8);
264    if (Subtarget->is64Bit())
265      addBypassSlowDiv(64, 16);
266  }
267
268  if (Subtarget->isTargetKnownWindowsMSVC()) {
269    // Setup Windows compiler runtime calls.
270    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
271    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
272    setLibcallName(RTLIB::SREM_I64, "_allrem");
273    setLibcallName(RTLIB::UREM_I64, "_aullrem");
274    setLibcallName(RTLIB::MUL_I64, "_allmul");
275    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
276    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
277    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
278    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
279    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
280
281    // The _ftol2 runtime function has an unusual calling conv, which
282    // is modeled by a special pseudo-instruction.
283    setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
284    setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
285    setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
286    setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
287  }
288
289  if (Subtarget->isTargetDarwin()) {
290    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
291    setUseUnderscoreSetJmp(false);
292    setUseUnderscoreLongJmp(false);
293  } else if (Subtarget->isTargetWindowsGNU()) {
294    // MS runtime is weird: it exports _setjmp, but longjmp!
295    setUseUnderscoreSetJmp(true);
296    setUseUnderscoreLongJmp(false);
297  } else {
298    setUseUnderscoreSetJmp(true);
299    setUseUnderscoreLongJmp(true);
300  }
301
302  // Set up the register classes.
303  addRegisterClass(MVT::i8, &X86::GR8RegClass);
304  addRegisterClass(MVT::i16, &X86::GR16RegClass);
305  addRegisterClass(MVT::i32, &X86::GR32RegClass);
306  if (Subtarget->is64Bit())
307    addRegisterClass(MVT::i64, &X86::GR64RegClass);
308
309  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
310
311  // We don't accept any truncstore of integer registers.
312  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
313  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
314  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
315  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
316  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
317  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
318
319  // SETOEQ and SETUNE require checking two conditions.
320  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
321  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
322  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
323  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
324  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
325  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
326
327  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
328  // operation.
329  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
330  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
331  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
332
333  if (Subtarget->is64Bit()) {
334    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
335    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
336  } else if (!TM.Options.UseSoftFloat) {
337    // We have an algorithm for SSE2->double, and we turn this into a
338    // 64-bit FILD followed by conditional FADD for other targets.
339    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
340    // We have an algorithm for SSE2, and we turn this into a 64-bit
341    // FILD for other targets.
342    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
343  }
344
345  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
346  // this operation.
347  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
348  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
349
350  if (!TM.Options.UseSoftFloat) {
351    // SSE has no i16 to fp conversion, only i32
352    if (X86ScalarSSEf32) {
353      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
354      // f32 and f64 cases are Legal, f80 case is not
355      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
356    } else {
357      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
358      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
359    }
360  } else {
361    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
362    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
363  }
364
365  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
366  // are Legal, f80 is custom lowered.
367  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
368  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
369
370  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
371  // this operation.
372  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
373  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
374
375  if (X86ScalarSSEf32) {
376    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
377    // f32 and f64 cases are Legal, f80 case is not
378    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
379  } else {
380    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
381    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
382  }
383
384  // Handle FP_TO_UINT by promoting the destination to a larger signed
385  // conversion.
386  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
387  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
388  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
389
390  if (Subtarget->is64Bit()) {
391    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
392    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
393  } else if (!TM.Options.UseSoftFloat) {
394    // Since AVX is a superset of SSE3, only check for SSE here.
395    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
396      // Expand FP_TO_UINT into a select.
397      // FIXME: We would like to use a Custom expander here eventually to do
398      // the optimal thing for SSE vs. the default expansion in the legalizer.
399      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
400    else
401      // With SSE3 we can use fisttpll to convert to a signed i64; without
402      // SSE, we're stuck with a fistpll.
403      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
404  }
405
406  if (isTargetFTOL()) {
407    // Use the _ftol2 runtime function, which has a pseudo-instruction
408    // to handle its weird calling convention.
409    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
410  }
411
412  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
413  if (!X86ScalarSSEf64) {
414    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
415    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
416    if (Subtarget->is64Bit()) {
417      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
418      // Without SSE, i64->f64 goes through memory.
419      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
420    }
421  }
422
423  // Scalar integer divide and remainder are lowered to use operations that
424  // produce two results, to match the available instructions. This exposes
425  // the two-result form to trivial CSE, which is able to combine x/y and x%y
426  // into a single instruction.
427  //
428  // Scalar integer multiply-high is also lowered to use two-result
429  // operations, to match the available instructions. However, plain multiply
430  // (low) operations are left as Legal, as there are single-result
431  // instructions for this in x86. Using the two-result multiply instructions
432  // when both high and low results are needed must be arranged by dagcombine.
433  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
434    MVT VT = IntVTs[i];
435    setOperationAction(ISD::MULHS, VT, Expand);
436    setOperationAction(ISD::MULHU, VT, Expand);
437    setOperationAction(ISD::SDIV, VT, Expand);
438    setOperationAction(ISD::UDIV, VT, Expand);
439    setOperationAction(ISD::SREM, VT, Expand);
440    setOperationAction(ISD::UREM, VT, Expand);
441
442    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
443    setOperationAction(ISD::ADDC, VT, Custom);
444    setOperationAction(ISD::ADDE, VT, Custom);
445    setOperationAction(ISD::SUBC, VT, Custom);
446    setOperationAction(ISD::SUBE, VT, Custom);
447  }
448
449  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
450  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
451  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
452  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
453  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
454  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
455  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
456  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
457  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
458  setOperationAction(ISD::SELECT_CC        , MVT::f32,   Expand);
459  setOperationAction(ISD::SELECT_CC        , MVT::f64,   Expand);
460  setOperationAction(ISD::SELECT_CC        , MVT::f80,   Expand);
461  setOperationAction(ISD::SELECT_CC        , MVT::i8,    Expand);
462  setOperationAction(ISD::SELECT_CC        , MVT::i16,   Expand);
463  setOperationAction(ISD::SELECT_CC        , MVT::i32,   Expand);
464  setOperationAction(ISD::SELECT_CC        , MVT::i64,   Expand);
465  if (Subtarget->is64Bit())
466    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
467  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
468  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
469  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
470  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
471  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
472  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
473  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
474  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
475
476  // Promote the i8 variants and force them on up to i32 which has a shorter
477  // encoding.
478  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
479  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
480  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
481  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
482  if (Subtarget->hasBMI()) {
483    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
484    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
485    if (Subtarget->is64Bit())
486      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
487  } else {
488    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
489    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
490    if (Subtarget->is64Bit())
491      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
492  }
493
494  if (Subtarget->hasLZCNT()) {
495    // When promoting the i8 variants, force them to i32 for a shorter
496    // encoding.
497    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
498    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
499    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
500    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
501    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
502    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
503    if (Subtarget->is64Bit())
504      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
505  } else {
506    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
507    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
508    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
509    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
510    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
511    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
512    if (Subtarget->is64Bit()) {
513      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
514      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
515    }
516  }
517
518  // Special handling for half-precision floating point conversions.
519  // If we don't have F16C support, then lower half float conversions
520  // into library calls.
521  if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
522    setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
523    setOperationAction(ISD::FP32_TO_FP16, MVT::i16, Expand);
524  }
525
526  if (Subtarget->hasPOPCNT()) {
527    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
528  } else {
529    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
530    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
531    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
532    if (Subtarget->is64Bit())
533      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
534  }
535
536  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
537
538  if (!Subtarget->hasMOVBE())
539    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
540
541  // These should be promoted to a larger select which is supported.
542  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
543  // X86 wants to expand cmov itself.
544  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
545  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
546  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
547  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
548  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
549  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
550  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
551  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
552  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
553  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
554  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
555  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
556  if (Subtarget->is64Bit()) {
557    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
558    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
559  }
560  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
561  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
562  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
563  // support continuation, user-level threading, and etc.. As a result, no
564  // other SjLj exception interfaces are implemented and please don't build
565  // your own exception handling based on them.
566  // LLVM/Clang supports zero-cost DWARF exception handling.
567  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
568  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
569
570  // Darwin ABI issue.
571  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
572  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
573  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
574  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
575  if (Subtarget->is64Bit())
576    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
577  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
578  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
579  if (Subtarget->is64Bit()) {
580    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
581    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
582    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
583    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
584    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
585  }
586  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
587  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
588  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
589  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
590  if (Subtarget->is64Bit()) {
591    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
592    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
593    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
594  }
595
596  if (Subtarget->hasSSE1())
597    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
598
599  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
600
601  // Expand certain atomics
602  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
603    MVT VT = IntVTs[i];
604    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
605    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
606    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
607  }
608
609  if (Subtarget->hasCmpxchg16b()) {
610    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
611  }
612
613  // FIXME - use subtarget debug flags
614  if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
615      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
616    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
617  }
618
619  if (Subtarget->is64Bit()) {
620    setExceptionPointerRegister(X86::RAX);
621    setExceptionSelectorRegister(X86::RDX);
622  } else {
623    setExceptionPointerRegister(X86::EAX);
624    setExceptionSelectorRegister(X86::EDX);
625  }
626  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
627  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
628
629  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
630  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
631
632  setOperationAction(ISD::TRAP, MVT::Other, Legal);
633  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
634
635  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
636  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
637  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
638  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
639    // TargetInfo::X86_64ABIBuiltinVaList
640    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
641    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
642  } else {
643    // TargetInfo::CharPtrBuiltinVaList
644    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
645    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
646  }
647
648  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
649  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
650
651  setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
652                     MVT::i64 : MVT::i32, Custom);
653
654  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
655    // f32 and f64 use SSE.
656    // Set up the FP register classes.
657    addRegisterClass(MVT::f32, &X86::FR32RegClass);
658    addRegisterClass(MVT::f64, &X86::FR64RegClass);
659
660    // Use ANDPD to simulate FABS.
661    setOperationAction(ISD::FABS , MVT::f64, Custom);
662    setOperationAction(ISD::FABS , MVT::f32, Custom);
663
664    // Use XORP to simulate FNEG.
665    setOperationAction(ISD::FNEG , MVT::f64, Custom);
666    setOperationAction(ISD::FNEG , MVT::f32, Custom);
667
668    // Use ANDPD and ORPD to simulate FCOPYSIGN.
669    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
670    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
671
672    // Lower this to FGETSIGNx86 plus an AND.
673    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
674    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
675
676    // We don't support sin/cos/fmod
677    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
678    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
679    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
680    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
681    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
682    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
683
684    // Expand FP immediates into loads from the stack, except for the special
685    // cases we handle.
686    addLegalFPImmediate(APFloat(+0.0)); // xorpd
687    addLegalFPImmediate(APFloat(+0.0f)); // xorps
688  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
689    // Use SSE for f32, x87 for f64.
690    // Set up the FP register classes.
691    addRegisterClass(MVT::f32, &X86::FR32RegClass);
692    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
693
694    // Use ANDPS to simulate FABS.
695    setOperationAction(ISD::FABS , MVT::f32, Custom);
696
697    // Use XORP to simulate FNEG.
698    setOperationAction(ISD::FNEG , MVT::f32, Custom);
699
700    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
701
702    // Use ANDPS and ORPS to simulate FCOPYSIGN.
703    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
704    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
705
706    // We don't support sin/cos/fmod
707    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
708    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
709    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
710
711    // Special cases we handle for FP constants.
712    addLegalFPImmediate(APFloat(+0.0f)); // xorps
713    addLegalFPImmediate(APFloat(+0.0)); // FLD0
714    addLegalFPImmediate(APFloat(+1.0)); // FLD1
715    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
716    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
717
718    if (!TM.Options.UnsafeFPMath) {
719      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
720      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
721      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
722    }
723  } else if (!TM.Options.UseSoftFloat) {
724    // f32 and f64 in x87.
725    // Set up the FP register classes.
726    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
727    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
728
729    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
730    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
731    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
732    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
733
734    if (!TM.Options.UnsafeFPMath) {
735      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
736      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
737      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
738      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
739      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
740      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
741    }
742    addLegalFPImmediate(APFloat(+0.0)); // FLD0
743    addLegalFPImmediate(APFloat(+1.0)); // FLD1
744    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
745    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
746    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
747    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
748    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
749    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
750  }
751
752  // We don't support FMA.
753  setOperationAction(ISD::FMA, MVT::f64, Expand);
754  setOperationAction(ISD::FMA, MVT::f32, Expand);
755
756  // Long double always uses X87.
757  if (!TM.Options.UseSoftFloat) {
758    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
759    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
760    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
761    {
762      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
763      addLegalFPImmediate(TmpFlt);  // FLD0
764      TmpFlt.changeSign();
765      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
766
767      bool ignored;
768      APFloat TmpFlt2(+1.0);
769      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
770                      &ignored);
771      addLegalFPImmediate(TmpFlt2);  // FLD1
772      TmpFlt2.changeSign();
773      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
774    }
775
776    if (!TM.Options.UnsafeFPMath) {
777      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
778      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
779      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
780    }
781
782    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
783    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
784    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
785    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
786    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
787    setOperationAction(ISD::FMA, MVT::f80, Expand);
788  }
789
790  // Always use a library call for pow.
791  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
792  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
793  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
794
795  setOperationAction(ISD::FLOG, MVT::f80, Expand);
796  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
797  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
798  setOperationAction(ISD::FEXP, MVT::f80, Expand);
799  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
800
801  // First set operation action for all vector types to either promote
802  // (for widening) or expand (for scalarization). Then we will selectively
803  // turn on ones that can be effectively codegen'd.
804  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
805           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
806    MVT VT = (MVT::SimpleValueType)i;
807    setOperationAction(ISD::ADD , VT, Expand);
808    setOperationAction(ISD::SUB , VT, Expand);
809    setOperationAction(ISD::FADD, VT, Expand);
810    setOperationAction(ISD::FNEG, VT, Expand);
811    setOperationAction(ISD::FSUB, VT, Expand);
812    setOperationAction(ISD::MUL , VT, Expand);
813    setOperationAction(ISD::FMUL, VT, Expand);
814    setOperationAction(ISD::SDIV, VT, Expand);
815    setOperationAction(ISD::UDIV, VT, Expand);
816    setOperationAction(ISD::FDIV, VT, Expand);
817    setOperationAction(ISD::SREM, VT, Expand);
818    setOperationAction(ISD::UREM, VT, Expand);
819    setOperationAction(ISD::LOAD, VT, Expand);
820    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
822    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
823    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
824    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
825    setOperationAction(ISD::FABS, VT, Expand);
826    setOperationAction(ISD::FSIN, VT, Expand);
827    setOperationAction(ISD::FSINCOS, VT, Expand);
828    setOperationAction(ISD::FCOS, VT, Expand);
829    setOperationAction(ISD::FSINCOS, VT, Expand);
830    setOperationAction(ISD::FREM, VT, Expand);
831    setOperationAction(ISD::FMA,  VT, Expand);
832    setOperationAction(ISD::FPOWI, VT, Expand);
833    setOperationAction(ISD::FSQRT, VT, Expand);
834    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
835    setOperationAction(ISD::FFLOOR, VT, Expand);
836    setOperationAction(ISD::FCEIL, VT, Expand);
837    setOperationAction(ISD::FTRUNC, VT, Expand);
838    setOperationAction(ISD::FRINT, VT, Expand);
839    setOperationAction(ISD::FNEARBYINT, VT, Expand);
840    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
841    setOperationAction(ISD::MULHS, VT, Expand);
842    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
843    setOperationAction(ISD::MULHU, VT, Expand);
844    setOperationAction(ISD::SDIVREM, VT, Expand);
845    setOperationAction(ISD::UDIVREM, VT, Expand);
846    setOperationAction(ISD::FPOW, VT, Expand);
847    setOperationAction(ISD::CTPOP, VT, Expand);
848    setOperationAction(ISD::CTTZ, VT, Expand);
849    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
850    setOperationAction(ISD::CTLZ, VT, Expand);
851    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
852    setOperationAction(ISD::SHL, VT, Expand);
853    setOperationAction(ISD::SRA, VT, Expand);
854    setOperationAction(ISD::SRL, VT, Expand);
855    setOperationAction(ISD::ROTL, VT, Expand);
856    setOperationAction(ISD::ROTR, VT, Expand);
857    setOperationAction(ISD::BSWAP, VT, Expand);
858    setOperationAction(ISD::SETCC, VT, Expand);
859    setOperationAction(ISD::FLOG, VT, Expand);
860    setOperationAction(ISD::FLOG2, VT, Expand);
861    setOperationAction(ISD::FLOG10, VT, Expand);
862    setOperationAction(ISD::FEXP, VT, Expand);
863    setOperationAction(ISD::FEXP2, VT, Expand);
864    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
865    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
866    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
867    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
868    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
869    setOperationAction(ISD::TRUNCATE, VT, Expand);
870    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
871    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
872    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
873    setOperationAction(ISD::VSELECT, VT, Expand);
874    setOperationAction(ISD::SELECT_CC, VT, Expand);
875    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
876             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
877      setTruncStoreAction(VT,
878                          (MVT::SimpleValueType)InnerVT, Expand);
879    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
880    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
881    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
882  }
883
884  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
885  // with -msoft-float, disable use of MMX as well.
886  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
887    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
888    // No operations on x86mmx supported, everything uses intrinsics.
889  }
890
891  // MMX-sized vectors (other than x86mmx) are expected to be expanded
892  // into smaller operations.
893  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
894  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
895  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
896  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
897  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
898  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
899  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
900  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
901  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
902  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
903  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
904  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
905  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
906  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
907  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
908  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
909  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
910  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
911  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
912  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
913  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
914  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
915  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
916  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
917  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
918  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
919  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
920  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
921  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
922
923  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
924    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
925
926    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
927    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
928    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
929    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
930    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
931    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
932    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
933    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
934    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
935    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
936    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
937    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
938  }
939
940  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
941    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
942
943    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
944    // registers cannot be used even for integer operations.
945    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
946    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
947    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
948    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
949
950    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
951    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
952    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
953    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
954    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
955    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
956    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
957    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
958    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
959    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
960    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
961    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
962    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
963    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
964    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
965    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
966    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
967    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
968    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
969    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
970    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
971    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
972
973    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
974    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
975    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
976    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
977
978    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
979    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
980    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
981    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
982    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
983
984    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
985    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
986      MVT VT = (MVT::SimpleValueType)i;
987      // Do not attempt to custom lower non-power-of-2 vectors
988      if (!isPowerOf2_32(VT.getVectorNumElements()))
989        continue;
990      // Do not attempt to custom lower non-128-bit vectors
991      if (!VT.is128BitVector())
992        continue;
993      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
994      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
995      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
996    }
997
998    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
999    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
1000    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
1001    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
1002    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
1003    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
1004
1005    if (Subtarget->is64Bit()) {
1006      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1007      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1008    }
1009
1010    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
1011    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
1012      MVT VT = (MVT::SimpleValueType)i;
1013
1014      // Do not attempt to promote non-128-bit vectors
1015      if (!VT.is128BitVector())
1016        continue;
1017
1018      setOperationAction(ISD::AND,    VT, Promote);
1019      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1020      setOperationAction(ISD::OR,     VT, Promote);
1021      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1022      setOperationAction(ISD::XOR,    VT, Promote);
1023      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1024      setOperationAction(ISD::LOAD,   VT, Promote);
1025      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1026      setOperationAction(ISD::SELECT, VT, Promote);
1027      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1028    }
1029
1030    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1031
1032    // Custom lower v2i64 and v2f64 selects.
1033    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1034    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1035    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1036    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1037
1038    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1039    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1040
1041    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1042    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1043    // As there is no 64-bit GPR available, we need build a special custom
1044    // sequence to convert from v2i32 to v2f32.
1045    if (!Subtarget->is64Bit())
1046      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1047
1048    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1049    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1050
1051    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1052
1053    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
1054    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
1055    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
1056  }
1057
1058  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1059    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1060    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1061    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1062    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1063    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1064    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1065    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1066    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1067    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1068    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1069
1070    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1071    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1072    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1073    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1074    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1075    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1076    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1077    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1078    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1079    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1080
1081    // FIXME: Do we need to handle scalar-to-vector here?
1082    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1083
1084    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
1085    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
1086    setOperationAction(ISD::VSELECT,            MVT::v4i32, Custom);
1087    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
1088    setOperationAction(ISD::VSELECT,            MVT::v8i16, Custom);
1089    // There is no BLENDI for byte vectors. We don't need to custom lower
1090    // some vselects for now.
1091    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1092
1093    // i8 and i16 vectors are custom , because the source register and source
1094    // source memory operand types are not the same width.  f32 vectors are
1095    // custom since the immediate controlling the insert encodes additional
1096    // information.
1097    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1098    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1099    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1100    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1101
1102    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1103    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1104    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1105    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1106
1107    // FIXME: these should be Legal but thats only for the case where
1108    // the index is constant.  For now custom expand to deal with that.
1109    if (Subtarget->is64Bit()) {
1110      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1111      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1112    }
1113  }
1114
1115  if (Subtarget->hasSSE2()) {
1116    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1117    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1118
1119    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1120    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1121
1122    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1123    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1124
1125    // In the customized shift lowering, the legal cases in AVX2 will be
1126    // recognized.
1127    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1128    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1129
1130    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1131    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1132
1133    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1134  }
1135
1136  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1137    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1138    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1139    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1140    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1141    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1142    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1143
1144    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1145    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1146    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1147
1148    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1149    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1150    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1151    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1152    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1153    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1154    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1155    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1156    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1157    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1158    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1159    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1160
1161    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1162    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1163    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1164    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1165    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1166    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1167    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1168    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1169    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1170    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1171    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1172    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1173
1174    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1175    // even though v8i16 is a legal type.
1176    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
1177    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
1178    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1179
1180    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1181    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1182    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1183
1184    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1185    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1186
1187    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1188
1189    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1190    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1191
1192    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1193    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1194
1195    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1196    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1197
1198    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1199    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1200    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1201    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1202
1203    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1204    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1205    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1206
1207    setOperationAction(ISD::VSELECT,           MVT::v4f64, Custom);
1208    setOperationAction(ISD::VSELECT,           MVT::v4i64, Custom);
1209    setOperationAction(ISD::VSELECT,           MVT::v8i32, Custom);
1210    setOperationAction(ISD::VSELECT,           MVT::v8f32, Custom);
1211
1212    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1213    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1214    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1215    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1216    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1217    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1218    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1219    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1220    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1221    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1222    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1223    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1224
1225    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1226      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1227      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1228      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1229      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1230      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1231      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1232    }
1233
1234    if (Subtarget->hasInt256()) {
1235      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1236      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1237      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1238      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1239
1240      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1241      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1242      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1243      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1244
1245      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1246      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1247      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1248      // Don't lower v32i8 because there is no 128-bit byte mul
1249
1250      setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
1251      setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
1252      setOperationAction(ISD::MULHU,           MVT::v16i16, Legal);
1253      setOperationAction(ISD::MULHS,           MVT::v16i16, Legal);
1254
1255      setOperationAction(ISD::VSELECT,         MVT::v16i16, Custom);
1256      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1257    } else {
1258      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1259      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1260      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1261      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1262
1263      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1264      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1265      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1266      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1267
1268      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1269      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1270      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1271      // Don't lower v32i8 because there is no 128-bit byte mul
1272    }
1273
1274    // In the customized shift lowering, the legal cases in AVX2 will be
1275    // recognized.
1276    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1277    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1278
1279    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1280    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1281
1282    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1283
1284    // Custom lower several nodes for 256-bit types.
1285    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1286             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1287      MVT VT = (MVT::SimpleValueType)i;
1288
1289      // Extract subvector is special because the value type
1290      // (result) is 128-bit but the source is 256-bit wide.
1291      if (VT.is128BitVector())
1292        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1293
1294      // Do not attempt to custom lower other non-256-bit vectors
1295      if (!VT.is256BitVector())
1296        continue;
1297
1298      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1299      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1300      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1301      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1302      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1303      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1304      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1305    }
1306
1307    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1308    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1309      MVT VT = (MVT::SimpleValueType)i;
1310
1311      // Do not attempt to promote non-256-bit vectors
1312      if (!VT.is256BitVector())
1313        continue;
1314
1315      setOperationAction(ISD::AND,    VT, Promote);
1316      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1317      setOperationAction(ISD::OR,     VT, Promote);
1318      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1319      setOperationAction(ISD::XOR,    VT, Promote);
1320      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1321      setOperationAction(ISD::LOAD,   VT, Promote);
1322      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1323      setOperationAction(ISD::SELECT, VT, Promote);
1324      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1325    }
1326  }
1327
1328  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1329    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1330    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1331    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1332    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1333
1334    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
1335    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1336    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1337
1338    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
1339    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
1340    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
1341    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
1342    setOperationAction(ISD::AND,                MVT::i1,    Legal);
1343    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1344    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1345    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1346    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1347    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1348    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1349
1350    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1351    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1352    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1353    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1354    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1355    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1356
1357    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1358    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1359    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1360    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1361    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1362    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1363    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1364    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1365
1366    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1367    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1368    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1369    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1370    if (Subtarget->is64Bit()) {
1371      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1372      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1373      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1374      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1375    }
1376    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1377    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1378    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1379    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
1380    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1381    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1382    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1383    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
1384    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1385    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1386
1387    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
1388    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1389    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1390    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1391    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1392    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1393    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1394    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1395    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1396    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1397    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1398    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1399    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1400
1401    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1402    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1403    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1404    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1405    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1406    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal);
1407
1408    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1409    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1410
1411    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1412
1413    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
1414    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1415    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
1416    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
1417    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1418    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1419    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1420    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1421    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1422
1423    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1424    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1425
1426    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1427    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1428
1429    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1430
1431    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1432    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1433
1434    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1435    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1436
1437    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1438    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1439
1440    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1441    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1442    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1443    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1444    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1445    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1446
1447    if (Subtarget->hasCDI()) {
1448      setOperationAction(ISD::CTLZ,             MVT::v8i64, Legal);
1449      setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
1450    }
1451
1452    // Custom lower several nodes.
1453    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1454             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1455      MVT VT = (MVT::SimpleValueType)i;
1456
1457      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1458      // Extract subvector is special because the value type
1459      // (result) is 256/128-bit but the source is 512-bit wide.
1460      if (VT.is128BitVector() || VT.is256BitVector())
1461        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1462
1463      if (VT.getVectorElementType() == MVT::i1)
1464        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1465
1466      // Do not attempt to custom lower other non-512-bit vectors
1467      if (!VT.is512BitVector())
1468        continue;
1469
1470      if ( EltSize >= 32) {
1471        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1472        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1473        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1474        setOperationAction(ISD::VSELECT,             VT, Legal);
1475        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1476        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1477        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1478      }
1479    }
1480    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1481      MVT VT = (MVT::SimpleValueType)i;
1482
1483      // Do not attempt to promote non-256-bit vectors
1484      if (!VT.is512BitVector())
1485        continue;
1486
1487      setOperationAction(ISD::SELECT, VT, Promote);
1488      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1489    }
1490  }// has  AVX-512
1491
1492  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1493  // of this type with custom code.
1494  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1495           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1496    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1497                       Custom);
1498  }
1499
1500  // We want to custom lower some of our intrinsics.
1501  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1502  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1503  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1504  if (!Subtarget->is64Bit())
1505    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1506
1507  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1508  // handle type legalization for these operations here.
1509  //
1510  // FIXME: We really should do custom legalization for addition and
1511  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1512  // than generic legalization for 64-bit multiplication-with-overflow, though.
1513  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1514    // Add/Sub/Mul with overflow operations are custom lowered.
1515    MVT VT = IntVTs[i];
1516    setOperationAction(ISD::SADDO, VT, Custom);
1517    setOperationAction(ISD::UADDO, VT, Custom);
1518    setOperationAction(ISD::SSUBO, VT, Custom);
1519    setOperationAction(ISD::USUBO, VT, Custom);
1520    setOperationAction(ISD::SMULO, VT, Custom);
1521    setOperationAction(ISD::UMULO, VT, Custom);
1522  }
1523
1524  // There are no 8-bit 3-address imul/mul instructions
1525  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1526  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1527
1528  if (!Subtarget->is64Bit()) {
1529    // These libcalls are not available in 32-bit.
1530    setLibcallName(RTLIB::SHL_I128, nullptr);
1531    setLibcallName(RTLIB::SRL_I128, nullptr);
1532    setLibcallName(RTLIB::SRA_I128, nullptr);
1533  }
1534
1535  // Combine sin / cos into one node or libcall if possible.
1536  if (Subtarget->hasSinCos()) {
1537    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1538    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1539    if (Subtarget->isTargetDarwin()) {
1540      // For MacOSX, we don't want to the normal expansion of a libcall to
1541      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1542      // traffic.
1543      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1544      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1545    }
1546  }
1547
1548  if (Subtarget->isTargetWin64()) {
1549    setOperationAction(ISD::SDIV, MVT::i128, Custom);
1550    setOperationAction(ISD::UDIV, MVT::i128, Custom);
1551    setOperationAction(ISD::SREM, MVT::i128, Custom);
1552    setOperationAction(ISD::UREM, MVT::i128, Custom);
1553    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1554    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1555  }
1556
1557  // We have target-specific dag combine patterns for the following nodes:
1558  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1559  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1560  setTargetDAGCombine(ISD::VSELECT);
1561  setTargetDAGCombine(ISD::SELECT);
1562  setTargetDAGCombine(ISD::SHL);
1563  setTargetDAGCombine(ISD::SRA);
1564  setTargetDAGCombine(ISD::SRL);
1565  setTargetDAGCombine(ISD::OR);
1566  setTargetDAGCombine(ISD::AND);
1567  setTargetDAGCombine(ISD::ADD);
1568  setTargetDAGCombine(ISD::FADD);
1569  setTargetDAGCombine(ISD::FSUB);
1570  setTargetDAGCombine(ISD::FMA);
1571  setTargetDAGCombine(ISD::SUB);
1572  setTargetDAGCombine(ISD::LOAD);
1573  setTargetDAGCombine(ISD::STORE);
1574  setTargetDAGCombine(ISD::ZERO_EXTEND);
1575  setTargetDAGCombine(ISD::ANY_EXTEND);
1576  setTargetDAGCombine(ISD::SIGN_EXTEND);
1577  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1578  setTargetDAGCombine(ISD::TRUNCATE);
1579  setTargetDAGCombine(ISD::SINT_TO_FP);
1580  setTargetDAGCombine(ISD::SETCC);
1581  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1582  setTargetDAGCombine(ISD::BUILD_VECTOR);
1583  if (Subtarget->is64Bit())
1584    setTargetDAGCombine(ISD::MUL);
1585  setTargetDAGCombine(ISD::XOR);
1586
1587  computeRegisterProperties();
1588
1589  // On Darwin, -Os means optimize for size without hurting performance,
1590  // do not reduce the limit.
1591  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1592  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1593  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1594  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1595  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1596  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1597  setPrefLoopAlignment(4); // 2^4 bytes.
1598
1599  // Predictable cmov don't hurt on atom because it's in-order.
1600  PredictableSelectIsExpensive = !Subtarget->isAtom();
1601
1602  setPrefFunctionAlignment(4); // 2^4 bytes.
1603}
1604
1605TargetLoweringBase::LegalizeTypeAction
1606X86TargetLowering::getPreferredVectorAction(EVT VT) const {
1607  if (ExperimentalVectorWideningLegalization &&
1608      VT.getVectorNumElements() != 1 &&
1609      VT.getVectorElementType().getSimpleVT() != MVT::i1)
1610    return TypeWidenVector;
1611
1612  return TargetLoweringBase::getPreferredVectorAction(VT);
1613}
1614
1615EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1616  if (!VT.isVector())
1617    return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1618
1619  if (Subtarget->hasAVX512())
1620    switch(VT.getVectorNumElements()) {
1621    case  8: return MVT::v8i1;
1622    case 16: return MVT::v16i1;
1623  }
1624
1625  return VT.changeVectorElementTypeToInteger();
1626}
1627
1628/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1629/// the desired ByVal argument alignment.
1630static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1631  if (MaxAlign == 16)
1632    return;
1633  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1634    if (VTy->getBitWidth() == 128)
1635      MaxAlign = 16;
1636  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1637    unsigned EltAlign = 0;
1638    getMaxByValAlign(ATy->getElementType(), EltAlign);
1639    if (EltAlign > MaxAlign)
1640      MaxAlign = EltAlign;
1641  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1642    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1643      unsigned EltAlign = 0;
1644      getMaxByValAlign(STy->getElementType(i), EltAlign);
1645      if (EltAlign > MaxAlign)
1646        MaxAlign = EltAlign;
1647      if (MaxAlign == 16)
1648        break;
1649    }
1650  }
1651}
1652
1653/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1654/// function arguments in the caller parameter area. For X86, aggregates
1655/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1656/// are at 4-byte boundaries.
1657unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1658  if (Subtarget->is64Bit()) {
1659    // Max of 8 and alignment of type.
1660    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1661    if (TyAlign > 8)
1662      return TyAlign;
1663    return 8;
1664  }
1665
1666  unsigned Align = 4;
1667  if (Subtarget->hasSSE1())
1668    getMaxByValAlign(Ty, Align);
1669  return Align;
1670}
1671
1672/// getOptimalMemOpType - Returns the target specific optimal type for load
1673/// and store operations as a result of memset, memcpy, and memmove
1674/// lowering. If DstAlign is zero that means it's safe to destination
1675/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1676/// means there isn't a need to check it against alignment requirement,
1677/// probably because the source does not need to be loaded. If 'IsMemset' is
1678/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1679/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1680/// source is constant so it does not need to be loaded.
1681/// It returns EVT::Other if the type should be determined using generic
1682/// target-independent logic.
1683EVT
1684X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1685                                       unsigned DstAlign, unsigned SrcAlign,
1686                                       bool IsMemset, bool ZeroMemset,
1687                                       bool MemcpyStrSrc,
1688                                       MachineFunction &MF) const {
1689  const Function *F = MF.getFunction();
1690  if ((!IsMemset || ZeroMemset) &&
1691      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1692                                       Attribute::NoImplicitFloat)) {
1693    if (Size >= 16 &&
1694        (Subtarget->isUnalignedMemAccessFast() ||
1695         ((DstAlign == 0 || DstAlign >= 16) &&
1696          (SrcAlign == 0 || SrcAlign >= 16)))) {
1697      if (Size >= 32) {
1698        if (Subtarget->hasInt256())
1699          return MVT::v8i32;
1700        if (Subtarget->hasFp256())
1701          return MVT::v8f32;
1702      }
1703      if (Subtarget->hasSSE2())
1704        return MVT::v4i32;
1705      if (Subtarget->hasSSE1())
1706        return MVT::v4f32;
1707    } else if (!MemcpyStrSrc && Size >= 8 &&
1708               !Subtarget->is64Bit() &&
1709               Subtarget->hasSSE2()) {
1710      // Do not use f64 to lower memcpy if source is string constant. It's
1711      // better to use i32 to avoid the loads.
1712      return MVT::f64;
1713    }
1714  }
1715  if (Subtarget->is64Bit() && Size >= 8)
1716    return MVT::i64;
1717  return MVT::i32;
1718}
1719
1720bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1721  if (VT == MVT::f32)
1722    return X86ScalarSSEf32;
1723  else if (VT == MVT::f64)
1724    return X86ScalarSSEf64;
1725  return true;
1726}
1727
1728bool
1729X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
1730                                                 unsigned,
1731                                                 bool *Fast) const {
1732  if (Fast)
1733    *Fast = Subtarget->isUnalignedMemAccessFast();
1734  return true;
1735}
1736
1737/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1738/// current function.  The returned value is a member of the
1739/// MachineJumpTableInfo::JTEntryKind enum.
1740unsigned X86TargetLowering::getJumpTableEncoding() const {
1741  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1742  // symbol.
1743  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1744      Subtarget->isPICStyleGOT())
1745    return MachineJumpTableInfo::EK_Custom32;
1746
1747  // Otherwise, use the normal jump table encoding heuristics.
1748  return TargetLowering::getJumpTableEncoding();
1749}
1750
1751const MCExpr *
1752X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1753                                             const MachineBasicBlock *MBB,
1754                                             unsigned uid,MCContext &Ctx) const{
1755  assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
1756         Subtarget->isPICStyleGOT());
1757  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1758  // entries.
1759  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1760                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1761}
1762
1763/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1764/// jumptable.
1765SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1766                                                    SelectionDAG &DAG) const {
1767  if (!Subtarget->is64Bit())
1768    // This doesn't have SDLoc associated with it, but is not really the
1769    // same as a Register.
1770    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1771  return Table;
1772}
1773
1774/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1775/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1776/// MCExpr.
1777const MCExpr *X86TargetLowering::
1778getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1779                             MCContext &Ctx) const {
1780  // X86-64 uses RIP relative addressing based on the jump table label.
1781  if (Subtarget->isPICStyleRIPRel())
1782    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1783
1784  // Otherwise, the reference is relative to the PIC base.
1785  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1786}
1787
1788// FIXME: Why this routine is here? Move to RegInfo!
1789std::pair<const TargetRegisterClass*, uint8_t>
1790X86TargetLowering::findRepresentativeClass(MVT VT) const{
1791  const TargetRegisterClass *RRC = nullptr;
1792  uint8_t Cost = 1;
1793  switch (VT.SimpleTy) {
1794  default:
1795    return TargetLowering::findRepresentativeClass(VT);
1796  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1797    RRC = Subtarget->is64Bit() ?
1798      (const TargetRegisterClass*)&X86::GR64RegClass :
1799      (const TargetRegisterClass*)&X86::GR32RegClass;
1800    break;
1801  case MVT::x86mmx:
1802    RRC = &X86::VR64RegClass;
1803    break;
1804  case MVT::f32: case MVT::f64:
1805  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1806  case MVT::v4f32: case MVT::v2f64:
1807  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1808  case MVT::v4f64:
1809    RRC = &X86::VR128RegClass;
1810    break;
1811  }
1812  return std::make_pair(RRC, Cost);
1813}
1814
1815bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1816                                               unsigned &Offset) const {
1817  if (!Subtarget->isTargetLinux())
1818    return false;
1819
1820  if (Subtarget->is64Bit()) {
1821    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1822    Offset = 0x28;
1823    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1824      AddressSpace = 256;
1825    else
1826      AddressSpace = 257;
1827  } else {
1828    // %gs:0x14 on i386
1829    Offset = 0x14;
1830    AddressSpace = 256;
1831  }
1832  return true;
1833}
1834
1835bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1836                                            unsigned DestAS) const {
1837  assert(SrcAS != DestAS && "Expected different address spaces!");
1838
1839  return SrcAS < 256 && DestAS < 256;
1840}
1841
1842//===----------------------------------------------------------------------===//
1843//               Return Value Calling Convention Implementation
1844//===----------------------------------------------------------------------===//
1845
1846#include "X86GenCallingConv.inc"
1847
1848bool
1849X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1850                                  MachineFunction &MF, bool isVarArg,
1851                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1852                        LLVMContext &Context) const {
1853  SmallVector<CCValAssign, 16> RVLocs;
1854  CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
1855                 RVLocs, Context);
1856  return CCInfo.CheckReturn(Outs, RetCC_X86);
1857}
1858
1859const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1860  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
1861  return ScratchRegs;
1862}
1863
1864SDValue
1865X86TargetLowering::LowerReturn(SDValue Chain,
1866                               CallingConv::ID CallConv, bool isVarArg,
1867                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1868                               const SmallVectorImpl<SDValue> &OutVals,
1869                               SDLoc dl, SelectionDAG &DAG) const {
1870  MachineFunction &MF = DAG.getMachineFunction();
1871  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1872
1873  SmallVector<CCValAssign, 16> RVLocs;
1874  CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
1875                 RVLocs, *DAG.getContext());
1876  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1877
1878  SDValue Flag;
1879  SmallVector<SDValue, 6> RetOps;
1880  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1881  // Operand #1 = Bytes To Pop
1882  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1883                   MVT::i16));
1884
1885  // Copy the result values into the output registers.
1886  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1887    CCValAssign &VA = RVLocs[i];
1888    assert(VA.isRegLoc() && "Can only return in registers!");
1889    SDValue ValToCopy = OutVals[i];
1890    EVT ValVT = ValToCopy.getValueType();
1891
1892    // Promote values to the appropriate types
1893    if (VA.getLocInfo() == CCValAssign::SExt)
1894      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1895    else if (VA.getLocInfo() == CCValAssign::ZExt)
1896      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1897    else if (VA.getLocInfo() == CCValAssign::AExt)
1898      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1899    else if (VA.getLocInfo() == CCValAssign::BCvt)
1900      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1901
1902    assert(VA.getLocInfo() != CCValAssign::FPExt &&
1903           "Unexpected FP-extend for return value.");
1904
1905    // If this is x86-64, and we disabled SSE, we can't return FP values,
1906    // or SSE or MMX vectors.
1907    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1908         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1909          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1910      report_fatal_error("SSE register return with SSE disabled");
1911    }
1912    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1913    // llvm-gcc has never done it right and no one has noticed, so this
1914    // should be OK for now.
1915    if (ValVT == MVT::f64 &&
1916        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1917      report_fatal_error("SSE2 register return with SSE2 disabled");
1918
1919    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1920    // the RET instruction and handled by the FP Stackifier.
1921    if (VA.getLocReg() == X86::ST0 ||
1922        VA.getLocReg() == X86::ST1) {
1923      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1924      // change the value to the FP stack register class.
1925      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1926        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1927      RetOps.push_back(ValToCopy);
1928      // Don't emit a copytoreg.
1929      continue;
1930    }
1931
1932    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1933    // which is returned in RAX / RDX.
1934    if (Subtarget->is64Bit()) {
1935      if (ValVT == MVT::x86mmx) {
1936        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1937          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1938          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1939                                  ValToCopy);
1940          // If we don't have SSE2 available, convert to v4f32 so the generated
1941          // register is legal.
1942          if (!Subtarget->hasSSE2())
1943            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1944        }
1945      }
1946    }
1947
1948    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1949    Flag = Chain.getValue(1);
1950    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1951  }
1952
1953  // The x86-64 ABIs require that for returning structs by value we copy
1954  // the sret argument into %rax/%eax (depending on ABI) for the return.
1955  // Win32 requires us to put the sret argument to %eax as well.
1956  // We saved the argument into a virtual register in the entry block,
1957  // so now we copy the value out and into %rax/%eax.
1958  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1959      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
1960    MachineFunction &MF = DAG.getMachineFunction();
1961    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1962    unsigned Reg = FuncInfo->getSRetReturnReg();
1963    assert(Reg &&
1964           "SRetReturnReg should have been set in LowerFormalArguments().");
1965    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1966
1967    unsigned RetValReg
1968        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1969          X86::RAX : X86::EAX;
1970    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1971    Flag = Chain.getValue(1);
1972
1973    // RAX/EAX now acts like a return value.
1974    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1975  }
1976
1977  RetOps[0] = Chain;  // Update chain.
1978
1979  // Add the flag if we have it.
1980  if (Flag.getNode())
1981    RetOps.push_back(Flag);
1982
1983  return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
1984}
1985
1986bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1987  if (N->getNumValues() != 1)
1988    return false;
1989  if (!N->hasNUsesOfValue(1, 0))
1990    return false;
1991
1992  SDValue TCChain = Chain;
1993  SDNode *Copy = *N->use_begin();
1994  if (Copy->getOpcode() == ISD::CopyToReg) {
1995    // If the copy has a glue operand, we conservatively assume it isn't safe to
1996    // perform a tail call.
1997    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1998      return false;
1999    TCChain = Copy->getOperand(0);
2000  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2001    return false;
2002
2003  bool HasRet = false;
2004  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2005       UI != UE; ++UI) {
2006    if (UI->getOpcode() != X86ISD::RET_FLAG)
2007      return false;
2008    HasRet = true;
2009  }
2010
2011  if (!HasRet)
2012    return false;
2013
2014  Chain = TCChain;
2015  return true;
2016}
2017
2018MVT
2019X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
2020                                            ISD::NodeType ExtendKind) const {
2021  MVT ReturnMVT;
2022  // TODO: Is this also valid on 32-bit?
2023  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
2024    ReturnMVT = MVT::i8;
2025  else
2026    ReturnMVT = MVT::i32;
2027
2028  MVT MinVT = getRegisterType(ReturnMVT);
2029  return VT.bitsLT(MinVT) ? MinVT : VT;
2030}
2031
2032/// LowerCallResult - Lower the result values of a call into the
2033/// appropriate copies out of appropriate physical registers.
2034///
2035SDValue
2036X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2037                                   CallingConv::ID CallConv, bool isVarArg,
2038                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2039                                   SDLoc dl, SelectionDAG &DAG,
2040                                   SmallVectorImpl<SDValue> &InVals) const {
2041
2042  // Assign locations to each value returned by this call.
2043  SmallVector<CCValAssign, 16> RVLocs;
2044  bool Is64Bit = Subtarget->is64Bit();
2045  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2046                 DAG.getTarget(), RVLocs, *DAG.getContext());
2047  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2048
2049  // Copy all of the result registers out of their specified physreg.
2050  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2051    CCValAssign &VA = RVLocs[i];
2052    EVT CopyVT = VA.getValVT();
2053
2054    // If this is x86-64, and we disabled SSE, we can't return FP values
2055    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
2056        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2057      report_fatal_error("SSE register return with SSE disabled");
2058    }
2059
2060    SDValue Val;
2061
2062    // If this is a call to a function that returns an fp value on the floating
2063    // point stack, we must guarantee the value is popped from the stack, so
2064    // a CopyFromReg is not good enough - the copy instruction may be eliminated
2065    // if the return value is not used. We use the FpPOP_RETVAL instruction
2066    // instead.
2067    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
2068      // If we prefer to use the value in xmm registers, copy it out as f80 and
2069      // use a truncate to move it from fp stack reg to xmm reg.
2070      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
2071      SDValue Ops[] = { Chain, InFlag };
2072      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
2073                                         MVT::Other, MVT::Glue, Ops), 1);
2074      Val = Chain.getValue(0);
2075
2076      // Round the f80 to the right size, which also moves it to the appropriate
2077      // xmm register.
2078      if (CopyVT != VA.getValVT())
2079        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2080                          // This truncation won't change the value.
2081                          DAG.getIntPtrConstant(1));
2082    } else {
2083      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2084                                 CopyVT, InFlag).getValue(1);
2085      Val = Chain.getValue(0);
2086    }
2087    InFlag = Chain.getValue(2);
2088    InVals.push_back(Val);
2089  }
2090
2091  return Chain;
2092}
2093
2094//===----------------------------------------------------------------------===//
2095//                C & StdCall & Fast Calling Convention implementation
2096//===----------------------------------------------------------------------===//
2097//  StdCall calling convention seems to be standard for many Windows' API
2098//  routines and around. It differs from C calling convention just a little:
2099//  callee should clean up the stack, not caller. Symbols should be also
2100//  decorated in some fancy way :) It doesn't support any vector arguments.
2101//  For info on fast calling convention see Fast Calling Convention (tail call)
2102//  implementation LowerX86_32FastCCCallTo.
2103
2104/// CallIsStructReturn - Determines whether a call uses struct return
2105/// semantics.
2106enum StructReturnType {
2107  NotStructReturn,
2108  RegStructReturn,
2109  StackStructReturn
2110};
2111static StructReturnType
2112callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2113  if (Outs.empty())
2114    return NotStructReturn;
2115
2116  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2117  if (!Flags.isSRet())
2118    return NotStructReturn;
2119  if (Flags.isInReg())
2120    return RegStructReturn;
2121  return StackStructReturn;
2122}
2123
2124/// ArgsAreStructReturn - Determines whether a function uses struct
2125/// return semantics.
2126static StructReturnType
2127argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2128  if (Ins.empty())
2129    return NotStructReturn;
2130
2131  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2132  if (!Flags.isSRet())
2133    return NotStructReturn;
2134  if (Flags.isInReg())
2135    return RegStructReturn;
2136  return StackStructReturn;
2137}
2138
2139/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2140/// by "Src" to address "Dst" with size and alignment information specified by
2141/// the specific parameter attribute. The copy will be passed as a byval
2142/// function parameter.
2143static SDValue
2144CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2145                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2146                          SDLoc dl) {
2147  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2148
2149  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2150                       /*isVolatile*/false, /*AlwaysInline=*/true,
2151                       MachinePointerInfo(), MachinePointerInfo());
2152}
2153
2154/// IsTailCallConvention - Return true if the calling convention is one that
2155/// supports tail call optimization.
2156static bool IsTailCallConvention(CallingConv::ID CC) {
2157  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2158          CC == CallingConv::HiPE);
2159}
2160
2161/// \brief Return true if the calling convention is a C calling convention.
2162static bool IsCCallConvention(CallingConv::ID CC) {
2163  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2164          CC == CallingConv::X86_64_SysV);
2165}
2166
2167bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2168  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2169    return false;
2170
2171  CallSite CS(CI);
2172  CallingConv::ID CalleeCC = CS.getCallingConv();
2173  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2174    return false;
2175
2176  return true;
2177}
2178
2179/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2180/// a tailcall target by changing its ABI.
2181static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2182                                   bool GuaranteedTailCallOpt) {
2183  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2184}
2185
2186SDValue
2187X86TargetLowering::LowerMemArgument(SDValue Chain,
2188                                    CallingConv::ID CallConv,
2189                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2190                                    SDLoc dl, SelectionDAG &DAG,
2191                                    const CCValAssign &VA,
2192                                    MachineFrameInfo *MFI,
2193                                    unsigned i) const {
2194  // Create the nodes corresponding to a load from this parameter slot.
2195  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2196  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
2197      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
2198  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2199  EVT ValVT;
2200
2201  // If value is passed by pointer we have address passed instead of the value
2202  // itself.
2203  if (VA.getLocInfo() == CCValAssign::Indirect)
2204    ValVT = VA.getLocVT();
2205  else
2206    ValVT = VA.getValVT();
2207
2208  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2209  // changed with more analysis.
2210  // In case of tail call optimization mark all arguments mutable. Since they
2211  // could be overwritten by lowering of arguments in case of a tail call.
2212  if (Flags.isByVal()) {
2213    unsigned Bytes = Flags.getByValSize();
2214    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2215    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2216    return DAG.getFrameIndex(FI, getPointerTy());
2217  } else {
2218    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2219                                    VA.getLocMemOffset(), isImmutable);
2220    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2221    return DAG.getLoad(ValVT, dl, Chain, FIN,
2222                       MachinePointerInfo::getFixedStack(FI),
2223                       false, false, false, 0);
2224  }
2225}
2226
2227SDValue
2228X86TargetLowering::LowerFormalArguments(SDValue Chain,
2229                                        CallingConv::ID CallConv,
2230                                        bool isVarArg,
2231                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2232                                        SDLoc dl,
2233                                        SelectionDAG &DAG,
2234                                        SmallVectorImpl<SDValue> &InVals)
2235                                          const {
2236  MachineFunction &MF = DAG.getMachineFunction();
2237  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2238
2239  const Function* Fn = MF.getFunction();
2240  if (Fn->hasExternalLinkage() &&
2241      Subtarget->isTargetCygMing() &&
2242      Fn->getName() == "main")
2243    FuncInfo->setForceFramePointer(true);
2244
2245  MachineFrameInfo *MFI = MF.getFrameInfo();
2246  bool Is64Bit = Subtarget->is64Bit();
2247  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2248
2249  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2250         "Var args not supported with calling convention fastcc, ghc or hipe");
2251
2252  // Assign locations to all of the incoming arguments.
2253  SmallVector<CCValAssign, 16> ArgLocs;
2254  CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
2255                 ArgLocs, *DAG.getContext());
2256
2257  // Allocate shadow area for Win64
2258  if (IsWin64)
2259    CCInfo.AllocateStack(32, 8);
2260
2261  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2262
2263  unsigned LastVal = ~0U;
2264  SDValue ArgValue;
2265  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2266    CCValAssign &VA = ArgLocs[i];
2267    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2268    // places.
2269    assert(VA.getValNo() != LastVal &&
2270           "Don't support value assigned to multiple locs yet");
2271    (void)LastVal;
2272    LastVal = VA.getValNo();
2273
2274    if (VA.isRegLoc()) {
2275      EVT RegVT = VA.getLocVT();
2276      const TargetRegisterClass *RC;
2277      if (RegVT == MVT::i32)
2278        RC = &X86::GR32RegClass;
2279      else if (Is64Bit && RegVT == MVT::i64)
2280        RC = &X86::GR64RegClass;
2281      else if (RegVT == MVT::f32)
2282        RC = &X86::FR32RegClass;
2283      else if (RegVT == MVT::f64)
2284        RC = &X86::FR64RegClass;
2285      else if (RegVT.is512BitVector())
2286        RC = &X86::VR512RegClass;
2287      else if (RegVT.is256BitVector())
2288        RC = &X86::VR256RegClass;
2289      else if (RegVT.is128BitVector())
2290        RC = &X86::VR128RegClass;
2291      else if (RegVT == MVT::x86mmx)
2292        RC = &X86::VR64RegClass;
2293      else if (RegVT == MVT::i1)
2294        RC = &X86::VK1RegClass;
2295      else if (RegVT == MVT::v8i1)
2296        RC = &X86::VK8RegClass;
2297      else if (RegVT == MVT::v16i1)
2298        RC = &X86::VK16RegClass;
2299      else
2300        llvm_unreachable("Unknown argument type!");
2301
2302      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2303      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2304
2305      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2306      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2307      // right size.
2308      if (VA.getLocInfo() == CCValAssign::SExt)
2309        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2310                               DAG.getValueType(VA.getValVT()));
2311      else if (VA.getLocInfo() == CCValAssign::ZExt)
2312        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2313                               DAG.getValueType(VA.getValVT()));
2314      else if (VA.getLocInfo() == CCValAssign::BCvt)
2315        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2316
2317      if (VA.isExtInLoc()) {
2318        // Handle MMX values passed in XMM regs.
2319        if (RegVT.isVector())
2320          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2321        else
2322          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2323      }
2324    } else {
2325      assert(VA.isMemLoc());
2326      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2327    }
2328
2329    // If value is passed via pointer - do a load.
2330    if (VA.getLocInfo() == CCValAssign::Indirect)
2331      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2332                             MachinePointerInfo(), false, false, false, 0);
2333
2334    InVals.push_back(ArgValue);
2335  }
2336
2337  if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
2338    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2339      // The x86-64 ABIs require that for returning structs by value we copy
2340      // the sret argument into %rax/%eax (depending on ABI) for the return.
2341      // Win32 requires us to put the sret argument to %eax as well.
2342      // Save the argument into a virtual register so that we can access it
2343      // from the return points.
2344      if (Ins[i].Flags.isSRet()) {
2345        unsigned Reg = FuncInfo->getSRetReturnReg();
2346        if (!Reg) {
2347          MVT PtrTy = getPointerTy();
2348          Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2349          FuncInfo->setSRetReturnReg(Reg);
2350        }
2351        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2352        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2353        break;
2354      }
2355    }
2356  }
2357
2358  unsigned StackSize = CCInfo.getNextStackOffset();
2359  // Align stack specially for tail calls.
2360  if (FuncIsMadeTailCallSafe(CallConv,
2361                             MF.getTarget().Options.GuaranteedTailCallOpt))
2362    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2363
2364  // If the function takes variable number of arguments, make a frame index for
2365  // the start of the first vararg value... for expansion of llvm.va_start.
2366  if (isVarArg) {
2367    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2368                    CallConv != CallingConv::X86_ThisCall)) {
2369      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2370    }
2371    if (Is64Bit) {
2372      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2373
2374      // FIXME: We should really autogenerate these arrays
2375      static const MCPhysReg GPR64ArgRegsWin64[] = {
2376        X86::RCX, X86::RDX, X86::R8,  X86::R9
2377      };
2378      static const MCPhysReg GPR64ArgRegs64Bit[] = {
2379        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2380      };
2381      static const MCPhysReg XMMArgRegs64Bit[] = {
2382        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2383        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2384      };
2385      const MCPhysReg *GPR64ArgRegs;
2386      unsigned NumXMMRegs = 0;
2387
2388      if (IsWin64) {
2389        // The XMM registers which might contain var arg parameters are shadowed
2390        // in their paired GPR.  So we only need to save the GPR to their home
2391        // slots.
2392        TotalNumIntRegs = 4;
2393        GPR64ArgRegs = GPR64ArgRegsWin64;
2394      } else {
2395        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2396        GPR64ArgRegs = GPR64ArgRegs64Bit;
2397
2398        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2399                                                TotalNumXMMRegs);
2400      }
2401      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2402                                                       TotalNumIntRegs);
2403
2404      bool NoImplicitFloatOps = Fn->getAttributes().
2405        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2406      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2407             "SSE register cannot be used when SSE is disabled!");
2408      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2409               NoImplicitFloatOps) &&
2410             "SSE register cannot be used when SSE is disabled!");
2411      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2412          !Subtarget->hasSSE1())
2413        // Kernel mode asks for SSE to be disabled, so don't push them
2414        // on the stack.
2415        TotalNumXMMRegs = 0;
2416
2417      if (IsWin64) {
2418        const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
2419        // Get to the caller-allocated home save location.  Add 8 to account
2420        // for the return address.
2421        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2422        FuncInfo->setRegSaveFrameIndex(
2423          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2424        // Fixup to set vararg frame on shadow area (4 x i64).
2425        if (NumIntRegs < 4)
2426          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2427      } else {
2428        // For X86-64, if there are vararg parameters that are passed via
2429        // registers, then we must store them to their spots on the stack so
2430        // they may be loaded by deferencing the result of va_next.
2431        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2432        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2433        FuncInfo->setRegSaveFrameIndex(
2434          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2435                               false));
2436      }
2437
2438      // Store the integer parameter registers.
2439      SmallVector<SDValue, 8> MemOps;
2440      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2441                                        getPointerTy());
2442      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2443      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2444        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2445                                  DAG.getIntPtrConstant(Offset));
2446        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2447                                     &X86::GR64RegClass);
2448        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2449        SDValue Store =
2450          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2451                       MachinePointerInfo::getFixedStack(
2452                         FuncInfo->getRegSaveFrameIndex(), Offset),
2453                       false, false, 0);
2454        MemOps.push_back(Store);
2455        Offset += 8;
2456      }
2457
2458      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2459        // Now store the XMM (fp + vector) parameter registers.
2460        SmallVector<SDValue, 11> SaveXMMOps;
2461        SaveXMMOps.push_back(Chain);
2462
2463        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2464        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2465        SaveXMMOps.push_back(ALVal);
2466
2467        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2468                               FuncInfo->getRegSaveFrameIndex()));
2469        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2470                               FuncInfo->getVarArgsFPOffset()));
2471
2472        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2473          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2474                                       &X86::VR128RegClass);
2475          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2476          SaveXMMOps.push_back(Val);
2477        }
2478        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2479                                     MVT::Other, SaveXMMOps));
2480      }
2481
2482      if (!MemOps.empty())
2483        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2484    }
2485  }
2486
2487  // Some CCs need callee pop.
2488  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2489                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2490    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2491  } else {
2492    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2493    // If this is an sret function, the return should pop the hidden pointer.
2494    if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2495        !Subtarget->getTargetTriple().isOSMSVCRT() &&
2496        argsAreStructReturn(Ins) == StackStructReturn)
2497      FuncInfo->setBytesToPopOnReturn(4);
2498  }
2499
2500  if (!Is64Bit) {
2501    // RegSaveFrameIndex is X86-64 only.
2502    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2503    if (CallConv == CallingConv::X86_FastCall ||
2504        CallConv == CallingConv::X86_ThisCall)
2505      // fastcc functions can't have varargs.
2506      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2507  }
2508
2509  FuncInfo->setArgumentStackSize(StackSize);
2510
2511  return Chain;
2512}
2513
2514SDValue
2515X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2516                                    SDValue StackPtr, SDValue Arg,
2517                                    SDLoc dl, SelectionDAG &DAG,
2518                                    const CCValAssign &VA,
2519                                    ISD::ArgFlagsTy Flags) const {
2520  unsigned LocMemOffset = VA.getLocMemOffset();
2521  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2522  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2523  if (Flags.isByVal())
2524    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2525
2526  return DAG.getStore(Chain, dl, Arg, PtrOff,
2527                      MachinePointerInfo::getStack(LocMemOffset),
2528                      false, false, 0);
2529}
2530
2531/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2532/// optimization is performed and it is required.
2533SDValue
2534X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2535                                           SDValue &OutRetAddr, SDValue Chain,
2536                                           bool IsTailCall, bool Is64Bit,
2537                                           int FPDiff, SDLoc dl) const {
2538  // Adjust the Return address stack slot.
2539  EVT VT = getPointerTy();
2540  OutRetAddr = getReturnAddressFrameIndex(DAG);
2541
2542  // Load the "old" Return address.
2543  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2544                           false, false, false, 0);
2545  return SDValue(OutRetAddr.getNode(), 1);
2546}
2547
2548/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2549/// optimization is performed and it is required (FPDiff!=0).
2550static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
2551                                        SDValue Chain, SDValue RetAddrFrIdx,
2552                                        EVT PtrVT, unsigned SlotSize,
2553                                        int FPDiff, SDLoc dl) {
2554  // Store the return address to the appropriate stack slot.
2555  if (!FPDiff) return Chain;
2556  // Calculate the new stack slot for the return address.
2557  int NewReturnAddrFI =
2558    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2559                                         false);
2560  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2561  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2562                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2563                       false, false, 0);
2564  return Chain;
2565}
2566
2567SDValue
2568X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2569                             SmallVectorImpl<SDValue> &InVals) const {
2570  SelectionDAG &DAG                     = CLI.DAG;
2571  SDLoc &dl                             = CLI.DL;
2572  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2573  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2574  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2575  SDValue Chain                         = CLI.Chain;
2576  SDValue Callee                        = CLI.Callee;
2577  CallingConv::ID CallConv              = CLI.CallConv;
2578  bool &isTailCall                      = CLI.IsTailCall;
2579  bool isVarArg                         = CLI.IsVarArg;
2580
2581  MachineFunction &MF = DAG.getMachineFunction();
2582  bool Is64Bit        = Subtarget->is64Bit();
2583  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2584  StructReturnType SR = callIsStructReturn(Outs);
2585  bool IsSibcall      = false;
2586
2587  if (MF.getTarget().Options.DisableTailCalls)
2588    isTailCall = false;
2589
2590  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
2591  if (IsMustTail) {
2592    // Force this to be a tail call.  The verifier rules are enough to ensure
2593    // that we can lower this successfully without moving the return address
2594    // around.
2595    isTailCall = true;
2596  } else if (isTailCall) {
2597    // Check if it's really possible to do a tail call.
2598    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2599                    isVarArg, SR != NotStructReturn,
2600                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2601                    Outs, OutVals, Ins, DAG);
2602
2603    // Sibcalls are automatically detected tailcalls which do not require
2604    // ABI changes.
2605    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2606      IsSibcall = true;
2607
2608    if (isTailCall)
2609      ++NumTailCalls;
2610  }
2611
2612  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2613         "Var args not supported with calling convention fastcc, ghc or hipe");
2614
2615  // Analyze operands of the call, assigning locations to each operand.
2616  SmallVector<CCValAssign, 16> ArgLocs;
2617  CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
2618                 ArgLocs, *DAG.getContext());
2619
2620  // Allocate shadow area for Win64
2621  if (IsWin64)
2622    CCInfo.AllocateStack(32, 8);
2623
2624  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2625
2626  // Get a count of how many bytes are to be pushed on the stack.
2627  unsigned NumBytes = CCInfo.getNextStackOffset();
2628  if (IsSibcall)
2629    // This is a sibcall. The memory operands are available in caller's
2630    // own caller's stack.
2631    NumBytes = 0;
2632  else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2633           IsTailCallConvention(CallConv))
2634    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2635
2636  int FPDiff = 0;
2637  if (isTailCall && !IsSibcall && !IsMustTail) {
2638    // Lower arguments at fp - stackoffset + fpdiff.
2639    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2640    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2641
2642    FPDiff = NumBytesCallerPushed - NumBytes;
2643
2644    // Set the delta of movement of the returnaddr stackslot.
2645    // But only set if delta is greater than previous delta.
2646    if (FPDiff < X86Info->getTCReturnAddrDelta())
2647      X86Info->setTCReturnAddrDelta(FPDiff);
2648  }
2649
2650  unsigned NumBytesToPush = NumBytes;
2651  unsigned NumBytesToPop = NumBytes;
2652
2653  // If we have an inalloca argument, all stack space has already been allocated
2654  // for us and be right at the top of the stack.  We don't support multiple
2655  // arguments passed in memory when using inalloca.
2656  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2657    NumBytesToPush = 0;
2658    assert(ArgLocs.back().getLocMemOffset() == 0 &&
2659           "an inalloca argument must be the only memory argument");
2660  }
2661
2662  if (!IsSibcall)
2663    Chain = DAG.getCALLSEQ_START(
2664        Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
2665
2666  SDValue RetAddrFrIdx;
2667  // Load return address for tail calls.
2668  if (isTailCall && FPDiff)
2669    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2670                                    Is64Bit, FPDiff, dl);
2671
2672  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2673  SmallVector<SDValue, 8> MemOpChains;
2674  SDValue StackPtr;
2675
2676  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2677  // of tail call optimization arguments are handle later.
2678  const X86RegisterInfo *RegInfo =
2679    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
2680  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2681    // Skip inalloca arguments, they have already been written.
2682    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2683    if (Flags.isInAlloca())
2684      continue;
2685
2686    CCValAssign &VA = ArgLocs[i];
2687    EVT RegVT = VA.getLocVT();
2688    SDValue Arg = OutVals[i];
2689    bool isByVal = Flags.isByVal();
2690
2691    // Promote the value if needed.
2692    switch (VA.getLocInfo()) {
2693    default: llvm_unreachable("Unknown loc info!");
2694    case CCValAssign::Full: break;
2695    case CCValAssign::SExt:
2696      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2697      break;
2698    case CCValAssign::ZExt:
2699      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2700      break;
2701    case CCValAssign::AExt:
2702      if (RegVT.is128BitVector()) {
2703        // Special case: passing MMX values in XMM registers.
2704        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2705        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2706        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2707      } else
2708        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2709      break;
2710    case CCValAssign::BCvt:
2711      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2712      break;
2713    case CCValAssign::Indirect: {
2714      // Store the argument.
2715      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2716      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2717      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2718                           MachinePointerInfo::getFixedStack(FI),
2719                           false, false, 0);
2720      Arg = SpillSlot;
2721      break;
2722    }
2723    }
2724
2725    if (VA.isRegLoc()) {
2726      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2727      if (isVarArg && IsWin64) {
2728        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2729        // shadow reg if callee is a varargs function.
2730        unsigned ShadowReg = 0;
2731        switch (VA.getLocReg()) {
2732        case X86::XMM0: ShadowReg = X86::RCX; break;
2733        case X86::XMM1: ShadowReg = X86::RDX; break;
2734        case X86::XMM2: ShadowReg = X86::R8; break;
2735        case X86::XMM3: ShadowReg = X86::R9; break;
2736        }
2737        if (ShadowReg)
2738          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2739      }
2740    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2741      assert(VA.isMemLoc());
2742      if (!StackPtr.getNode())
2743        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2744                                      getPointerTy());
2745      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2746                                             dl, DAG, VA, Flags));
2747    }
2748  }
2749
2750  if (!MemOpChains.empty())
2751    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2752
2753  if (Subtarget->isPICStyleGOT()) {
2754    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2755    // GOT pointer.
2756    if (!isTailCall) {
2757      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2758               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2759    } else {
2760      // If we are tail calling and generating PIC/GOT style code load the
2761      // address of the callee into ECX. The value in ecx is used as target of
2762      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2763      // for tail calls on PIC/GOT architectures. Normally we would just put the
2764      // address of GOT into ebx and then call target@PLT. But for tail calls
2765      // ebx would be restored (since ebx is callee saved) before jumping to the
2766      // target@PLT.
2767
2768      // Note: The actual moving to ECX is done further down.
2769      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2770      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2771          !G->getGlobal()->hasProtectedVisibility())
2772        Callee = LowerGlobalAddress(Callee, DAG);
2773      else if (isa<ExternalSymbolSDNode>(Callee))
2774        Callee = LowerExternalSymbol(Callee, DAG);
2775    }
2776  }
2777
2778  if (Is64Bit && isVarArg && !IsWin64) {
2779    // From AMD64 ABI document:
2780    // For calls that may call functions that use varargs or stdargs
2781    // (prototype-less calls or calls to functions containing ellipsis (...) in
2782    // the declaration) %al is used as hidden argument to specify the number
2783    // of SSE registers used. The contents of %al do not need to match exactly
2784    // the number of registers, but must be an ubound on the number of SSE
2785    // registers used and is in the range 0 - 8 inclusive.
2786
2787    // Count the number of XMM registers allocated.
2788    static const MCPhysReg XMMArgRegs[] = {
2789      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2790      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2791    };
2792    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2793    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2794           && "SSE registers cannot be used when SSE is disabled");
2795
2796    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2797                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2798  }
2799
2800  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
2801  // don't need this because the eligibility check rejects calls that require
2802  // shuffling arguments passed in memory.
2803  if (!IsSibcall && isTailCall) {
2804    // Force all the incoming stack arguments to be loaded from the stack
2805    // before any new outgoing arguments are stored to the stack, because the
2806    // outgoing stack slots may alias the incoming argument stack slots, and
2807    // the alias isn't otherwise explicit. This is slightly more conservative
2808    // than necessary, because it means that each store effectively depends
2809    // on every argument instead of just those arguments it would clobber.
2810    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2811
2812    SmallVector<SDValue, 8> MemOpChains2;
2813    SDValue FIN;
2814    int FI = 0;
2815    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2816      CCValAssign &VA = ArgLocs[i];
2817      if (VA.isRegLoc())
2818        continue;
2819      assert(VA.isMemLoc());
2820      SDValue Arg = OutVals[i];
2821      ISD::ArgFlagsTy Flags = Outs[i].Flags;
2822      // Skip inalloca arguments.  They don't require any work.
2823      if (Flags.isInAlloca())
2824        continue;
2825      // Create frame index.
2826      int32_t Offset = VA.getLocMemOffset()+FPDiff;
2827      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2828      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2829      FIN = DAG.getFrameIndex(FI, getPointerTy());
2830
2831      if (Flags.isByVal()) {
2832        // Copy relative to framepointer.
2833        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2834        if (!StackPtr.getNode())
2835          StackPtr = DAG.getCopyFromReg(Chain, dl,
2836                                        RegInfo->getStackRegister(),
2837                                        getPointerTy());
2838        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2839
2840        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2841                                                         ArgChain,
2842                                                         Flags, DAG, dl));
2843      } else {
2844        // Store relative to framepointer.
2845        MemOpChains2.push_back(
2846          DAG.getStore(ArgChain, dl, Arg, FIN,
2847                       MachinePointerInfo::getFixedStack(FI),
2848                       false, false, 0));
2849      }
2850    }
2851
2852    if (!MemOpChains2.empty())
2853      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
2854
2855    // Store the return address to the appropriate stack slot.
2856    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2857                                     getPointerTy(), RegInfo->getSlotSize(),
2858                                     FPDiff, dl);
2859  }
2860
2861  // Build a sequence of copy-to-reg nodes chained together with token chain
2862  // and flag operands which copy the outgoing args into registers.
2863  SDValue InFlag;
2864  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2865    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2866                             RegsToPass[i].second, InFlag);
2867    InFlag = Chain.getValue(1);
2868  }
2869
2870  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
2871    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2872    // In the 64-bit large code model, we have to make all calls
2873    // through a register, since the call instruction's 32-bit
2874    // pc-relative offset may not be large enough to hold the whole
2875    // address.
2876  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2877    // If the callee is a GlobalAddress node (quite common, every direct call
2878    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2879    // it.
2880
2881    // We should use extra load for direct calls to dllimported functions in
2882    // non-JIT mode.
2883    const GlobalValue *GV = G->getGlobal();
2884    if (!GV->hasDLLImportStorageClass()) {
2885      unsigned char OpFlags = 0;
2886      bool ExtraLoad = false;
2887      unsigned WrapperKind = ISD::DELETED_NODE;
2888
2889      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2890      // external symbols most go through the PLT in PIC mode.  If the symbol
2891      // has hidden or protected visibility, or if it is static or local, then
2892      // we don't need to use the PLT - we can directly call it.
2893      if (Subtarget->isTargetELF() &&
2894          DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
2895          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2896        OpFlags = X86II::MO_PLT;
2897      } else if (Subtarget->isPICStyleStubAny() &&
2898                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2899                 (!Subtarget->getTargetTriple().isMacOSX() ||
2900                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2901        // PC-relative references to external symbols should go through $stub,
2902        // unless we're building with the leopard linker or later, which
2903        // automatically synthesizes these stubs.
2904        OpFlags = X86II::MO_DARWIN_STUB;
2905      } else if (Subtarget->isPICStyleRIPRel() &&
2906                 isa<Function>(GV) &&
2907                 cast<Function>(GV)->getAttributes().
2908                   hasAttribute(AttributeSet::FunctionIndex,
2909                                Attribute::NonLazyBind)) {
2910        // If the function is marked as non-lazy, generate an indirect call
2911        // which loads from the GOT directly. This avoids runtime overhead
2912        // at the cost of eager binding (and one extra byte of encoding).
2913        OpFlags = X86II::MO_GOTPCREL;
2914        WrapperKind = X86ISD::WrapperRIP;
2915        ExtraLoad = true;
2916      }
2917
2918      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2919                                          G->getOffset(), OpFlags);
2920
2921      // Add a wrapper if needed.
2922      if (WrapperKind != ISD::DELETED_NODE)
2923        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2924      // Add extra indirection if needed.
2925      if (ExtraLoad)
2926        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2927                             MachinePointerInfo::getGOT(),
2928                             false, false, false, 0);
2929    }
2930  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2931    unsigned char OpFlags = 0;
2932
2933    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2934    // external symbols should go through the PLT.
2935    if (Subtarget->isTargetELF() &&
2936        DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
2937      OpFlags = X86II::MO_PLT;
2938    } else if (Subtarget->isPICStyleStubAny() &&
2939               (!Subtarget->getTargetTriple().isMacOSX() ||
2940                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2941      // PC-relative references to external symbols should go through $stub,
2942      // unless we're building with the leopard linker or later, which
2943      // automatically synthesizes these stubs.
2944      OpFlags = X86II::MO_DARWIN_STUB;
2945    }
2946
2947    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2948                                         OpFlags);
2949  }
2950
2951  // Returns a chain & a flag for retval copy to use.
2952  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2953  SmallVector<SDValue, 8> Ops;
2954
2955  if (!IsSibcall && isTailCall) {
2956    Chain = DAG.getCALLSEQ_END(Chain,
2957                               DAG.getIntPtrConstant(NumBytesToPop, true),
2958                               DAG.getIntPtrConstant(0, true), InFlag, dl);
2959    InFlag = Chain.getValue(1);
2960  }
2961
2962  Ops.push_back(Chain);
2963  Ops.push_back(Callee);
2964
2965  if (isTailCall)
2966    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2967
2968  // Add argument registers to the end of the list so that they are known live
2969  // into the call.
2970  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2971    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2972                                  RegsToPass[i].second.getValueType()));
2973
2974  // Add a register mask operand representing the call-preserved registers.
2975  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
2976  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2977  assert(Mask && "Missing call preserved mask for calling convention");
2978  Ops.push_back(DAG.getRegisterMask(Mask));
2979
2980  if (InFlag.getNode())
2981    Ops.push_back(InFlag);
2982
2983  if (isTailCall) {
2984    // We used to do:
2985    //// If this is the first return lowered for this function, add the regs
2986    //// to the liveout set for the function.
2987    // This isn't right, although it's probably harmless on x86; liveouts
2988    // should be computed from returns not tail calls.  Consider a void
2989    // function making a tail call to a function returning int.
2990    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
2991  }
2992
2993  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
2994  InFlag = Chain.getValue(1);
2995
2996  // Create the CALLSEQ_END node.
2997  unsigned NumBytesForCalleeToPop;
2998  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2999                       DAG.getTarget().Options.GuaranteedTailCallOpt))
3000    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
3001  else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
3002           !Subtarget->getTargetTriple().isOSMSVCRT() &&
3003           SR == StackStructReturn)
3004    // If this is a call to a struct-return function, the callee
3005    // pops the hidden struct pointer, so we have to push it back.
3006    // This is common for Darwin/X86, Linux & Mingw32 targets.
3007    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
3008    NumBytesForCalleeToPop = 4;
3009  else
3010    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
3011
3012  // Returns a flag for retval copy to use.
3013  if (!IsSibcall) {
3014    Chain = DAG.getCALLSEQ_END(Chain,
3015                               DAG.getIntPtrConstant(NumBytesToPop, true),
3016                               DAG.getIntPtrConstant(NumBytesForCalleeToPop,
3017                                                     true),
3018                               InFlag, dl);
3019    InFlag = Chain.getValue(1);
3020  }
3021
3022  // Handle result values, copying them out of physregs into vregs that we
3023  // return.
3024  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3025                         Ins, dl, DAG, InVals);
3026}
3027
3028//===----------------------------------------------------------------------===//
3029//                Fast Calling Convention (tail call) implementation
3030//===----------------------------------------------------------------------===//
3031
3032//  Like std call, callee cleans arguments, convention except that ECX is
3033//  reserved for storing the tail called function address. Only 2 registers are
3034//  free for argument passing (inreg). Tail call optimization is performed
3035//  provided:
3036//                * tailcallopt is enabled
3037//                * caller/callee are fastcc
3038//  On X86_64 architecture with GOT-style position independent code only local
3039//  (within module) calls are supported at the moment.
3040//  To keep the stack aligned according to platform abi the function
3041//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
3042//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3043//  If a tail called function callee has more arguments than the caller the
3044//  caller needs to make sure that there is room to move the RETADDR to. This is
3045//  achieved by reserving an area the size of the argument delta right after the
3046//  original REtADDR, but before the saved framepointer or the spilled registers
3047//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3048//  stack layout:
3049//    arg1
3050//    arg2
3051//    RETADDR
3052//    [ new RETADDR
3053//      move area ]
3054//    (possible EBP)
3055//    ESI
3056//    EDI
3057//    local1 ..
3058
3059/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
3060/// for a 16 byte align requirement.
3061unsigned
3062X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3063                                               SelectionDAG& DAG) const {
3064  MachineFunction &MF = DAG.getMachineFunction();
3065  const TargetMachine &TM = MF.getTarget();
3066  const X86RegisterInfo *RegInfo =
3067    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
3068  const TargetFrameLowering &TFI = *TM.getFrameLowering();
3069  unsigned StackAlignment = TFI.getStackAlignment();
3070  uint64_t AlignMask = StackAlignment - 1;
3071  int64_t Offset = StackSize;
3072  unsigned SlotSize = RegInfo->getSlotSize();
3073  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3074    // Number smaller than 12 so just add the difference.
3075    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3076  } else {
3077    // Mask out lower bits, add stackalignment once plus the 12 bytes.
3078    Offset = ((~AlignMask) & Offset) + StackAlignment +
3079      (StackAlignment-SlotSize);
3080  }
3081  return Offset;
3082}
3083
3084/// MatchingStackOffset - Return true if the given stack call argument is
3085/// already available in the same position (relatively) of the caller's
3086/// incoming argument stack.
3087static
3088bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3089                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3090                         const X86InstrInfo *TII) {
3091  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3092  int FI = INT_MAX;
3093  if (Arg.getOpcode() == ISD::CopyFromReg) {
3094    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3095    if (!TargetRegisterInfo::isVirtualRegister(VR))
3096      return false;
3097    MachineInstr *Def = MRI->getVRegDef(VR);
3098    if (!Def)
3099      return false;
3100    if (!Flags.isByVal()) {
3101      if (!TII->isLoadFromStackSlot(Def, FI))
3102        return false;
3103    } else {
3104      unsigned Opcode = Def->getOpcode();
3105      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3106          Def->getOperand(1).isFI()) {
3107        FI = Def->getOperand(1).getIndex();
3108        Bytes = Flags.getByValSize();
3109      } else
3110        return false;
3111    }
3112  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3113    if (Flags.isByVal())
3114      // ByVal argument is passed in as a pointer but it's now being
3115      // dereferenced. e.g.
3116      // define @foo(%struct.X* %A) {
3117      //   tail call @bar(%struct.X* byval %A)
3118      // }
3119      return false;
3120    SDValue Ptr = Ld->getBasePtr();
3121    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3122    if (!FINode)
3123      return false;
3124    FI = FINode->getIndex();
3125  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3126    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3127    FI = FINode->getIndex();
3128    Bytes = Flags.getByValSize();
3129  } else
3130    return false;
3131
3132  assert(FI != INT_MAX);
3133  if (!MFI->isFixedObjectIndex(FI))
3134    return false;
3135  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3136}
3137
3138/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3139/// for tail call optimization. Targets which want to do tail call
3140/// optimization should implement this function.
3141bool
3142X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3143                                                     CallingConv::ID CalleeCC,
3144                                                     bool isVarArg,
3145                                                     bool isCalleeStructRet,
3146                                                     bool isCallerStructRet,
3147                                                     Type *RetTy,
3148                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3149                                    const SmallVectorImpl<SDValue> &OutVals,
3150                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3151                                                     SelectionDAG &DAG) const {
3152  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3153    return false;
3154
3155  // If -tailcallopt is specified, make fastcc functions tail-callable.
3156  const MachineFunction &MF = DAG.getMachineFunction();
3157  const Function *CallerF = MF.getFunction();
3158
3159  // If the function return type is x86_fp80 and the callee return type is not,
3160  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3161  // perform a tailcall optimization here.
3162  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3163    return false;
3164
3165  CallingConv::ID CallerCC = CallerF->getCallingConv();
3166  bool CCMatch = CallerCC == CalleeCC;
3167  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3168  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3169
3170  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3171    if (IsTailCallConvention(CalleeCC) && CCMatch)
3172      return true;
3173    return false;
3174  }
3175
3176  // Look for obvious safe cases to perform tail call optimization that do not
3177  // require ABI changes. This is what gcc calls sibcall.
3178
3179  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3180  // emit a special epilogue.
3181  const X86RegisterInfo *RegInfo =
3182    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
3183  if (RegInfo->needsStackRealignment(MF))
3184    return false;
3185
3186  // Also avoid sibcall optimization if either caller or callee uses struct
3187  // return semantics.
3188  if (isCalleeStructRet || isCallerStructRet)
3189    return false;
3190
3191  // An stdcall/thiscall caller is expected to clean up its arguments; the
3192  // callee isn't going to do that.
3193  // FIXME: this is more restrictive than needed. We could produce a tailcall
3194  // when the stack adjustment matches. For example, with a thiscall that takes
3195  // only one argument.
3196  if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
3197                   CallerCC == CallingConv::X86_ThisCall))
3198    return false;
3199
3200  // Do not sibcall optimize vararg calls unless all arguments are passed via
3201  // registers.
3202  if (isVarArg && !Outs.empty()) {
3203
3204    // Optimizing for varargs on Win64 is unlikely to be safe without
3205    // additional testing.
3206    if (IsCalleeWin64 || IsCallerWin64)
3207      return false;
3208
3209    SmallVector<CCValAssign, 16> ArgLocs;
3210    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3211                   DAG.getTarget(), ArgLocs, *DAG.getContext());
3212
3213    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3214    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3215      if (!ArgLocs[i].isRegLoc())
3216        return false;
3217  }
3218
3219  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3220  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3221  // this into a sibcall.
3222  bool Unused = false;
3223  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3224    if (!Ins[i].Used) {
3225      Unused = true;
3226      break;
3227    }
3228  }
3229  if (Unused) {
3230    SmallVector<CCValAssign, 16> RVLocs;
3231    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3232                   DAG.getTarget(), RVLocs, *DAG.getContext());
3233    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3234    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3235      CCValAssign &VA = RVLocs[i];
3236      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3237        return false;
3238    }
3239  }
3240
3241  // If the calling conventions do not match, then we'd better make sure the
3242  // results are returned in the same way as what the caller expects.
3243  if (!CCMatch) {
3244    SmallVector<CCValAssign, 16> RVLocs1;
3245    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3246                    DAG.getTarget(), RVLocs1, *DAG.getContext());
3247    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3248
3249    SmallVector<CCValAssign, 16> RVLocs2;
3250    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3251                    DAG.getTarget(), RVLocs2, *DAG.getContext());
3252    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3253
3254    if (RVLocs1.size() != RVLocs2.size())
3255      return false;
3256    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3257      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3258        return false;
3259      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3260        return false;
3261      if (RVLocs1[i].isRegLoc()) {
3262        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3263          return false;
3264      } else {
3265        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3266          return false;
3267      }
3268    }
3269  }
3270
3271  // If the callee takes no arguments then go on to check the results of the
3272  // call.
3273  if (!Outs.empty()) {
3274    // Check if stack adjustment is needed. For now, do not do this if any
3275    // argument is passed on the stack.
3276    SmallVector<CCValAssign, 16> ArgLocs;
3277    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3278                   DAG.getTarget(), ArgLocs, *DAG.getContext());
3279
3280    // Allocate shadow area for Win64
3281    if (IsCalleeWin64)
3282      CCInfo.AllocateStack(32, 8);
3283
3284    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3285    if (CCInfo.getNextStackOffset()) {
3286      MachineFunction &MF = DAG.getMachineFunction();
3287      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3288        return false;
3289
3290      // Check if the arguments are already laid out in the right way as
3291      // the caller's fixed stack objects.
3292      MachineFrameInfo *MFI = MF.getFrameInfo();
3293      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3294      const X86InstrInfo *TII =
3295          static_cast<const X86InstrInfo *>(DAG.getTarget().getInstrInfo());
3296      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3297        CCValAssign &VA = ArgLocs[i];
3298        SDValue Arg = OutVals[i];
3299        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3300        if (VA.getLocInfo() == CCValAssign::Indirect)
3301          return false;
3302        if (!VA.isRegLoc()) {
3303          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3304                                   MFI, MRI, TII))
3305            return false;
3306        }
3307      }
3308    }
3309
3310    // If the tailcall address may be in a register, then make sure it's
3311    // possible to register allocate for it. In 32-bit, the call address can
3312    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3313    // callee-saved registers are restored. These happen to be the same
3314    // registers used to pass 'inreg' arguments so watch out for those.
3315    if (!Subtarget->is64Bit() &&
3316        ((!isa<GlobalAddressSDNode>(Callee) &&
3317          !isa<ExternalSymbolSDNode>(Callee)) ||
3318         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3319      unsigned NumInRegs = 0;
3320      // In PIC we need an extra register to formulate the address computation
3321      // for the callee.
3322      unsigned MaxInRegs =
3323	(DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3324
3325      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3326        CCValAssign &VA = ArgLocs[i];
3327        if (!VA.isRegLoc())
3328          continue;
3329        unsigned Reg = VA.getLocReg();
3330        switch (Reg) {
3331        default: break;
3332        case X86::EAX: case X86::EDX: case X86::ECX:
3333          if (++NumInRegs == MaxInRegs)
3334            return false;
3335          break;
3336        }
3337      }
3338    }
3339  }
3340
3341  return true;
3342}
3343
3344FastISel *
3345X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3346                                  const TargetLibraryInfo *libInfo) const {
3347  return X86::createFastISel(funcInfo, libInfo);
3348}
3349
3350//===----------------------------------------------------------------------===//
3351//                           Other Lowering Hooks
3352//===----------------------------------------------------------------------===//
3353
3354static bool MayFoldLoad(SDValue Op) {
3355  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3356}
3357
3358static bool MayFoldIntoStore(SDValue Op) {
3359  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3360}
3361
3362static bool isTargetShuffle(unsigned Opcode) {
3363  switch(Opcode) {
3364  default: return false;
3365  case X86ISD::PSHUFD:
3366  case X86ISD::PSHUFHW:
3367  case X86ISD::PSHUFLW:
3368  case X86ISD::SHUFP:
3369  case X86ISD::PALIGNR:
3370  case X86ISD::MOVLHPS:
3371  case X86ISD::MOVLHPD:
3372  case X86ISD::MOVHLPS:
3373  case X86ISD::MOVLPS:
3374  case X86ISD::MOVLPD:
3375  case X86ISD::MOVSHDUP:
3376  case X86ISD::MOVSLDUP:
3377  case X86ISD::MOVDDUP:
3378  case X86ISD::MOVSS:
3379  case X86ISD::MOVSD:
3380  case X86ISD::UNPCKL:
3381  case X86ISD::UNPCKH:
3382  case X86ISD::VPERMILP:
3383  case X86ISD::VPERM2X128:
3384  case X86ISD::VPERMI:
3385    return true;
3386  }
3387}
3388
3389static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3390                                    SDValue V1, SelectionDAG &DAG) {
3391  switch(Opc) {
3392  default: llvm_unreachable("Unknown x86 shuffle node");
3393  case X86ISD::MOVSHDUP:
3394  case X86ISD::MOVSLDUP:
3395  case X86ISD::MOVDDUP:
3396    return DAG.getNode(Opc, dl, VT, V1);
3397  }
3398}
3399
3400static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3401                                    SDValue V1, unsigned TargetMask,
3402                                    SelectionDAG &DAG) {
3403  switch(Opc) {
3404  default: llvm_unreachable("Unknown x86 shuffle node");
3405  case X86ISD::PSHUFD:
3406  case X86ISD::PSHUFHW:
3407  case X86ISD::PSHUFLW:
3408  case X86ISD::VPERMILP:
3409  case X86ISD::VPERMI:
3410    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3411  }
3412}
3413
3414static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3415                                    SDValue V1, SDValue V2, unsigned TargetMask,
3416                                    SelectionDAG &DAG) {
3417  switch(Opc) {
3418  default: llvm_unreachable("Unknown x86 shuffle node");
3419  case X86ISD::PALIGNR:
3420  case X86ISD::SHUFP:
3421  case X86ISD::VPERM2X128:
3422    return DAG.getNode(Opc, dl, VT, V1, V2,
3423                       DAG.getConstant(TargetMask, MVT::i8));
3424  }
3425}
3426
3427static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3428                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3429  switch(Opc) {
3430  default: llvm_unreachable("Unknown x86 shuffle node");
3431  case X86ISD::MOVLHPS:
3432  case X86ISD::MOVLHPD:
3433  case X86ISD::MOVHLPS:
3434  case X86ISD::MOVLPS:
3435  case X86ISD::MOVLPD:
3436  case X86ISD::MOVSS:
3437  case X86ISD::MOVSD:
3438  case X86ISD::UNPCKL:
3439  case X86ISD::UNPCKH:
3440    return DAG.getNode(Opc, dl, VT, V1, V2);
3441  }
3442}
3443
3444SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3445  MachineFunction &MF = DAG.getMachineFunction();
3446  const X86RegisterInfo *RegInfo =
3447    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
3448  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3449  int ReturnAddrIndex = FuncInfo->getRAIndex();
3450
3451  if (ReturnAddrIndex == 0) {
3452    // Set up a frame object for the return address.
3453    unsigned SlotSize = RegInfo->getSlotSize();
3454    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3455                                                           -(int64_t)SlotSize,
3456                                                           false);
3457    FuncInfo->setRAIndex(ReturnAddrIndex);
3458  }
3459
3460  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3461}
3462
3463bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3464                                       bool hasSymbolicDisplacement) {
3465  // Offset should fit into 32 bit immediate field.
3466  if (!isInt<32>(Offset))
3467    return false;
3468
3469  // If we don't have a symbolic displacement - we don't have any extra
3470  // restrictions.
3471  if (!hasSymbolicDisplacement)
3472    return true;
3473
3474  // FIXME: Some tweaks might be needed for medium code model.
3475  if (M != CodeModel::Small && M != CodeModel::Kernel)
3476    return false;
3477
3478  // For small code model we assume that latest object is 16MB before end of 31
3479  // bits boundary. We may also accept pretty large negative constants knowing
3480  // that all objects are in the positive half of address space.
3481  if (M == CodeModel::Small && Offset < 16*1024*1024)
3482    return true;
3483
3484  // For kernel code model we know that all object resist in the negative half
3485  // of 32bits address space. We may not accept negative offsets, since they may
3486  // be just off and we may accept pretty large positive ones.
3487  if (M == CodeModel::Kernel && Offset > 0)
3488    return true;
3489
3490  return false;
3491}
3492
3493/// isCalleePop - Determines whether the callee is required to pop its
3494/// own arguments. Callee pop is necessary to support tail calls.
3495bool X86::isCalleePop(CallingConv::ID CallingConv,
3496                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3497  if (IsVarArg)
3498    return false;
3499
3500  switch (CallingConv) {
3501  default:
3502    return false;
3503  case CallingConv::X86_StdCall:
3504    return !is64Bit;
3505  case CallingConv::X86_FastCall:
3506    return !is64Bit;
3507  case CallingConv::X86_ThisCall:
3508    return !is64Bit;
3509  case CallingConv::Fast:
3510    return TailCallOpt;
3511  case CallingConv::GHC:
3512    return TailCallOpt;
3513  case CallingConv::HiPE:
3514    return TailCallOpt;
3515  }
3516}
3517
3518/// \brief Return true if the condition is an unsigned comparison operation.
3519static bool isX86CCUnsigned(unsigned X86CC) {
3520  switch (X86CC) {
3521  default: llvm_unreachable("Invalid integer condition!");
3522  case X86::COND_E:     return true;
3523  case X86::COND_G:     return false;
3524  case X86::COND_GE:    return false;
3525  case X86::COND_L:     return false;
3526  case X86::COND_LE:    return false;
3527  case X86::COND_NE:    return true;
3528  case X86::COND_B:     return true;
3529  case X86::COND_A:     return true;
3530  case X86::COND_BE:    return true;
3531  case X86::COND_AE:    return true;
3532  }
3533  llvm_unreachable("covered switch fell through?!");
3534}
3535
3536/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3537/// specific condition code, returning the condition code and the LHS/RHS of the
3538/// comparison to make.
3539static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3540                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3541  if (!isFP) {
3542    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3543      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3544        // X > -1   -> X == 0, jump !sign.
3545        RHS = DAG.getConstant(0, RHS.getValueType());
3546        return X86::COND_NS;
3547      }
3548      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3549        // X < 0   -> X == 0, jump on sign.
3550        return X86::COND_S;
3551      }
3552      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3553        // X < 1   -> X <= 0
3554        RHS = DAG.getConstant(0, RHS.getValueType());
3555        return X86::COND_LE;
3556      }
3557    }
3558
3559    switch (SetCCOpcode) {
3560    default: llvm_unreachable("Invalid integer condition!");
3561    case ISD::SETEQ:  return X86::COND_E;
3562    case ISD::SETGT:  return X86::COND_G;
3563    case ISD::SETGE:  return X86::COND_GE;
3564    case ISD::SETLT:  return X86::COND_L;
3565    case ISD::SETLE:  return X86::COND_LE;
3566    case ISD::SETNE:  return X86::COND_NE;
3567    case ISD::SETULT: return X86::COND_B;
3568    case ISD::SETUGT: return X86::COND_A;
3569    case ISD::SETULE: return X86::COND_BE;
3570    case ISD::SETUGE: return X86::COND_AE;
3571    }
3572  }
3573
3574  // First determine if it is required or is profitable to flip the operands.
3575
3576  // If LHS is a foldable load, but RHS is not, flip the condition.
3577  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3578      !ISD::isNON_EXTLoad(RHS.getNode())) {
3579    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3580    std::swap(LHS, RHS);
3581  }
3582
3583  switch (SetCCOpcode) {
3584  default: break;
3585  case ISD::SETOLT:
3586  case ISD::SETOLE:
3587  case ISD::SETUGT:
3588  case ISD::SETUGE:
3589    std::swap(LHS, RHS);
3590    break;
3591  }
3592
3593  // On a floating point condition, the flags are set as follows:
3594  // ZF  PF  CF   op
3595  //  0 | 0 | 0 | X > Y
3596  //  0 | 0 | 1 | X < Y
3597  //  1 | 0 | 0 | X == Y
3598  //  1 | 1 | 1 | unordered
3599  switch (SetCCOpcode) {
3600  default: llvm_unreachable("Condcode should be pre-legalized away");
3601  case ISD::SETUEQ:
3602  case ISD::SETEQ:   return X86::COND_E;
3603  case ISD::SETOLT:              // flipped
3604  case ISD::SETOGT:
3605  case ISD::SETGT:   return X86::COND_A;
3606  case ISD::SETOLE:              // flipped
3607  case ISD::SETOGE:
3608  case ISD::SETGE:   return X86::COND_AE;
3609  case ISD::SETUGT:              // flipped
3610  case ISD::SETULT:
3611  case ISD::SETLT:   return X86::COND_B;
3612  case ISD::SETUGE:              // flipped
3613  case ISD::SETULE:
3614  case ISD::SETLE:   return X86::COND_BE;
3615  case ISD::SETONE:
3616  case ISD::SETNE:   return X86::COND_NE;
3617  case ISD::SETUO:   return X86::COND_P;
3618  case ISD::SETO:    return X86::COND_NP;
3619  case ISD::SETOEQ:
3620  case ISD::SETUNE:  return X86::COND_INVALID;
3621  }
3622}
3623
3624/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3625/// code. Current x86 isa includes the following FP cmov instructions:
3626/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3627static bool hasFPCMov(unsigned X86CC) {
3628  switch (X86CC) {
3629  default:
3630    return false;
3631  case X86::COND_B:
3632  case X86::COND_BE:
3633  case X86::COND_E:
3634  case X86::COND_P:
3635  case X86::COND_A:
3636  case X86::COND_AE:
3637  case X86::COND_NE:
3638  case X86::COND_NP:
3639    return true;
3640  }
3641}
3642
3643/// isFPImmLegal - Returns true if the target can instruction select the
3644/// specified FP immediate natively. If false, the legalizer will
3645/// materialize the FP immediate as a load from a constant pool.
3646bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3647  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3648    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3649      return true;
3650  }
3651  return false;
3652}
3653
3654/// \brief Returns true if it is beneficial to convert a load of a constant
3655/// to just the constant itself.
3656bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
3657                                                          Type *Ty) const {
3658  assert(Ty->isIntegerTy());
3659
3660  unsigned BitSize = Ty->getPrimitiveSizeInBits();
3661  if (BitSize == 0 || BitSize > 64)
3662    return false;
3663  return true;
3664}
3665
3666/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3667/// the specified range (L, H].
3668static bool isUndefOrInRange(int Val, int Low, int Hi) {
3669  return (Val < 0) || (Val >= Low && Val < Hi);
3670}
3671
3672/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3673/// specified value.
3674static bool isUndefOrEqual(int Val, int CmpVal) {
3675  return (Val < 0 || Val == CmpVal);
3676}
3677
3678/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3679/// from position Pos and ending in Pos+Size, falls within the specified
3680/// sequential range (L, L+Pos]. or is undef.
3681static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3682                                       unsigned Pos, unsigned Size, int Low) {
3683  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3684    if (!isUndefOrEqual(Mask[i], Low))
3685      return false;
3686  return true;
3687}
3688
3689/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3690/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3691/// the second operand.
3692static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3693  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3694    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3695  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3696    return (Mask[0] < 2 && Mask[1] < 2);
3697  return false;
3698}
3699
3700/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3701/// is suitable for input to PSHUFHW.
3702static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3703  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3704    return false;
3705
3706  // Lower quadword copied in order or undef.
3707  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3708    return false;
3709
3710  // Upper quadword shuffled.
3711  for (unsigned i = 4; i != 8; ++i)
3712    if (!isUndefOrInRange(Mask[i], 4, 8))
3713      return false;
3714
3715  if (VT == MVT::v16i16) {
3716    // Lower quadword copied in order or undef.
3717    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3718      return false;
3719
3720    // Upper quadword shuffled.
3721    for (unsigned i = 12; i != 16; ++i)
3722      if (!isUndefOrInRange(Mask[i], 12, 16))
3723        return false;
3724  }
3725
3726  return true;
3727}
3728
3729/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3730/// is suitable for input to PSHUFLW.
3731static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3732  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3733    return false;
3734
3735  // Upper quadword copied in order.
3736  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3737    return false;
3738
3739  // Lower quadword shuffled.
3740  for (unsigned i = 0; i != 4; ++i)
3741    if (!isUndefOrInRange(Mask[i], 0, 4))
3742      return false;
3743
3744  if (VT == MVT::v16i16) {
3745    // Upper quadword copied in order.
3746    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3747      return false;
3748
3749    // Lower quadword shuffled.
3750    for (unsigned i = 8; i != 12; ++i)
3751      if (!isUndefOrInRange(Mask[i], 8, 12))
3752        return false;
3753  }
3754
3755  return true;
3756}
3757
3758/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3759/// is suitable for input to PALIGNR.
3760static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3761                          const X86Subtarget *Subtarget) {
3762  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3763      (VT.is256BitVector() && !Subtarget->hasInt256()))
3764    return false;
3765
3766  unsigned NumElts = VT.getVectorNumElements();
3767  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3768  unsigned NumLaneElts = NumElts/NumLanes;
3769
3770  // Do not handle 64-bit element shuffles with palignr.
3771  if (NumLaneElts == 2)
3772    return false;
3773
3774  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3775    unsigned i;
3776    for (i = 0; i != NumLaneElts; ++i) {
3777      if (Mask[i+l] >= 0)
3778        break;
3779    }
3780
3781    // Lane is all undef, go to next lane
3782    if (i == NumLaneElts)
3783      continue;
3784
3785    int Start = Mask[i+l];
3786
3787    // Make sure its in this lane in one of the sources
3788    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3789        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3790      return false;
3791
3792    // If not lane 0, then we must match lane 0
3793    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3794      return false;
3795
3796    // Correct second source to be contiguous with first source
3797    if (Start >= (int)NumElts)
3798      Start -= NumElts - NumLaneElts;
3799
3800    // Make sure we're shifting in the right direction.
3801    if (Start <= (int)(i+l))
3802      return false;
3803
3804    Start -= i;
3805
3806    // Check the rest of the elements to see if they are consecutive.
3807    for (++i; i != NumLaneElts; ++i) {
3808      int Idx = Mask[i+l];
3809
3810      // Make sure its in this lane
3811      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3812          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3813        return false;
3814
3815      // If not lane 0, then we must match lane 0
3816      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3817        return false;
3818
3819      if (Idx >= (int)NumElts)
3820        Idx -= NumElts - NumLaneElts;
3821
3822      if (!isUndefOrEqual(Idx, Start+i))
3823        return false;
3824
3825    }
3826  }
3827
3828  return true;
3829}
3830
3831/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3832/// the two vector operands have swapped position.
3833static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3834                                     unsigned NumElems) {
3835  for (unsigned i = 0; i != NumElems; ++i) {
3836    int idx = Mask[i];
3837    if (idx < 0)
3838      continue;
3839    else if (idx < (int)NumElems)
3840      Mask[i] = idx + NumElems;
3841    else
3842      Mask[i] = idx - NumElems;
3843  }
3844}
3845
3846/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3847/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3848/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3849/// reverse of what x86 shuffles want.
3850static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3851
3852  unsigned NumElems = VT.getVectorNumElements();
3853  unsigned NumLanes = VT.getSizeInBits()/128;
3854  unsigned NumLaneElems = NumElems/NumLanes;
3855
3856  if (NumLaneElems != 2 && NumLaneElems != 4)
3857    return false;
3858
3859  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3860  bool symetricMaskRequired =
3861    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3862
3863  // VSHUFPSY divides the resulting vector into 4 chunks.
3864  // The sources are also splitted into 4 chunks, and each destination
3865  // chunk must come from a different source chunk.
3866  //
3867  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3868  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3869  //
3870  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3871  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3872  //
3873  // VSHUFPDY divides the resulting vector into 4 chunks.
3874  // The sources are also splitted into 4 chunks, and each destination
3875  // chunk must come from a different source chunk.
3876  //
3877  //  SRC1 =>      X3       X2       X1       X0
3878  //  SRC2 =>      Y3       Y2       Y1       Y0
3879  //
3880  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3881  //
3882  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3883  unsigned HalfLaneElems = NumLaneElems/2;
3884  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3885    for (unsigned i = 0; i != NumLaneElems; ++i) {
3886      int Idx = Mask[i+l];
3887      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3888      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3889        return false;
3890      // For VSHUFPSY, the mask of the second half must be the same as the
3891      // first but with the appropriate offsets. This works in the same way as
3892      // VPERMILPS works with masks.
3893      if (!symetricMaskRequired || Idx < 0)
3894        continue;
3895      if (MaskVal[i] < 0) {
3896        MaskVal[i] = Idx - l;
3897        continue;
3898      }
3899      if ((signed)(Idx - l) != MaskVal[i])
3900        return false;
3901    }
3902  }
3903
3904  return true;
3905}
3906
3907/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3908/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3909static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3910  if (!VT.is128BitVector())
3911    return false;
3912
3913  unsigned NumElems = VT.getVectorNumElements();
3914
3915  if (NumElems != 4)
3916    return false;
3917
3918  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3919  return isUndefOrEqual(Mask[0], 6) &&
3920         isUndefOrEqual(Mask[1], 7) &&
3921         isUndefOrEqual(Mask[2], 2) &&
3922         isUndefOrEqual(Mask[3], 3);
3923}
3924
3925/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3926/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3927/// <2, 3, 2, 3>
3928static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3929  if (!VT.is128BitVector())
3930    return false;
3931
3932  unsigned NumElems = VT.getVectorNumElements();
3933
3934  if (NumElems != 4)
3935    return false;
3936
3937  return isUndefOrEqual(Mask[0], 2) &&
3938         isUndefOrEqual(Mask[1], 3) &&
3939         isUndefOrEqual(Mask[2], 2) &&
3940         isUndefOrEqual(Mask[3], 3);
3941}
3942
3943/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3944/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3945static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3946  if (!VT.is128BitVector())
3947    return false;
3948
3949  unsigned NumElems = VT.getVectorNumElements();
3950
3951  if (NumElems != 2 && NumElems != 4)
3952    return false;
3953
3954  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3955    if (!isUndefOrEqual(Mask[i], i + NumElems))
3956      return false;
3957
3958  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3959    if (!isUndefOrEqual(Mask[i], i))
3960      return false;
3961
3962  return true;
3963}
3964
3965/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3966/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3967static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3968  if (!VT.is128BitVector())
3969    return false;
3970
3971  unsigned NumElems = VT.getVectorNumElements();
3972
3973  if (NumElems != 2 && NumElems != 4)
3974    return false;
3975
3976  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3977    if (!isUndefOrEqual(Mask[i], i))
3978      return false;
3979
3980  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3981    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3982      return false;
3983
3984  return true;
3985}
3986
3987/// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand
3988/// specifies a shuffle of elements that is suitable for input to INSERTPS.
3989/// i. e: If all but one element come from the same vector.
3990static bool isINSERTPSMask(ArrayRef<int> Mask, MVT VT) {
3991  // TODO: Deal with AVX's VINSERTPS
3992  if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32))
3993    return false;
3994
3995  unsigned CorrectPosV1 = 0;
3996  unsigned CorrectPosV2 = 0;
3997  for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i) {
3998    if (Mask[i] == -1) {
3999      ++CorrectPosV1;
4000      ++CorrectPosV2;
4001      continue;
4002    }
4003
4004    if (Mask[i] == i)
4005      ++CorrectPosV1;
4006    else if (Mask[i] == i + 4)
4007      ++CorrectPosV2;
4008  }
4009
4010  if (CorrectPosV1 == 3 || CorrectPosV2 == 3)
4011    // We have 3 elements (undefs count as elements from any vector) from one
4012    // vector, and one from another.
4013    return true;
4014
4015  return false;
4016}
4017
4018//
4019// Some special combinations that can be optimized.
4020//
4021static
4022SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
4023                               SelectionDAG &DAG) {
4024  MVT VT = SVOp->getSimpleValueType(0);
4025  SDLoc dl(SVOp);
4026
4027  if (VT != MVT::v8i32 && VT != MVT::v8f32)
4028    return SDValue();
4029
4030  ArrayRef<int> Mask = SVOp->getMask();
4031
4032  // These are the special masks that may be optimized.
4033  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
4034  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
4035  bool MatchEvenMask = true;
4036  bool MatchOddMask  = true;
4037  for (int i=0; i<8; ++i) {
4038    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
4039      MatchEvenMask = false;
4040    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
4041      MatchOddMask = false;
4042  }
4043
4044  if (!MatchEvenMask && !MatchOddMask)
4045    return SDValue();
4046
4047  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
4048
4049  SDValue Op0 = SVOp->getOperand(0);
4050  SDValue Op1 = SVOp->getOperand(1);
4051
4052  if (MatchEvenMask) {
4053    // Shift the second operand right to 32 bits.
4054    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
4055    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
4056  } else {
4057    // Shift the first operand left to 32 bits.
4058    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
4059    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
4060  }
4061  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
4062  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
4063}
4064
4065/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
4066/// specifies a shuffle of elements that is suitable for input to UNPCKL.
4067static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
4068                         bool HasInt256, bool V2IsSplat = false) {
4069
4070  assert(VT.getSizeInBits() >= 128 &&
4071         "Unsupported vector type for unpckl");
4072
4073  // AVX defines UNPCK* to operate independently on 128-bit lanes.
4074  unsigned NumLanes;
4075  unsigned NumOf256BitLanes;
4076  unsigned NumElts = VT.getVectorNumElements();
4077  if (VT.is256BitVector()) {
4078    if (NumElts != 4 && NumElts != 8 &&
4079        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4080    return false;
4081    NumLanes = 2;
4082    NumOf256BitLanes = 1;
4083  } else if (VT.is512BitVector()) {
4084    assert(VT.getScalarType().getSizeInBits() >= 32 &&
4085           "Unsupported vector type for unpckh");
4086    NumLanes = 2;
4087    NumOf256BitLanes = 2;
4088  } else {
4089    NumLanes = 1;
4090    NumOf256BitLanes = 1;
4091  }
4092
4093  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
4094  unsigned NumLaneElts = NumEltsInStride/NumLanes;
4095
4096  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
4097    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
4098      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4099        int BitI  = Mask[l256*NumEltsInStride+l+i];
4100        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
4101        if (!isUndefOrEqual(BitI, j+l256*NumElts))
4102          return false;
4103        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
4104          return false;
4105        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
4106          return false;
4107      }
4108    }
4109  }
4110  return true;
4111}
4112
4113/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
4114/// specifies a shuffle of elements that is suitable for input to UNPCKH.
4115static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
4116                         bool HasInt256, bool V2IsSplat = false) {
4117  assert(VT.getSizeInBits() >= 128 &&
4118         "Unsupported vector type for unpckh");
4119
4120  // AVX defines UNPCK* to operate independently on 128-bit lanes.
4121  unsigned NumLanes;
4122  unsigned NumOf256BitLanes;
4123  unsigned NumElts = VT.getVectorNumElements();
4124  if (VT.is256BitVector()) {
4125    if (NumElts != 4 && NumElts != 8 &&
4126        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4127    return false;
4128    NumLanes = 2;
4129    NumOf256BitLanes = 1;
4130  } else if (VT.is512BitVector()) {
4131    assert(VT.getScalarType().getSizeInBits() >= 32 &&
4132           "Unsupported vector type for unpckh");
4133    NumLanes = 2;
4134    NumOf256BitLanes = 2;
4135  } else {
4136    NumLanes = 1;
4137    NumOf256BitLanes = 1;
4138  }
4139
4140  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
4141  unsigned NumLaneElts = NumEltsInStride/NumLanes;
4142
4143  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
4144    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
4145      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4146        int BitI  = Mask[l256*NumEltsInStride+l+i];
4147        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
4148        if (!isUndefOrEqual(BitI, j+l256*NumElts))
4149          return false;
4150        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
4151          return false;
4152        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
4153          return false;
4154      }
4155    }
4156  }
4157  return true;
4158}
4159
4160/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4161/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4162/// <0, 0, 1, 1>
4163static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4164  unsigned NumElts = VT.getVectorNumElements();
4165  bool Is256BitVec = VT.is256BitVector();
4166
4167  if (VT.is512BitVector())
4168    return false;
4169  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4170         "Unsupported vector type for unpckh");
4171
4172  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4173      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4174    return false;
4175
4176  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4177  // FIXME: Need a better way to get rid of this, there's no latency difference
4178  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4179  // the former later. We should also remove the "_undef" special mask.
4180  if (NumElts == 4 && Is256BitVec)
4181    return false;
4182
4183  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4184  // independently on 128-bit lanes.
4185  unsigned NumLanes = VT.getSizeInBits()/128;
4186  unsigned NumLaneElts = NumElts/NumLanes;
4187
4188  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4189    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4190      int BitI  = Mask[l+i];
4191      int BitI1 = Mask[l+i+1];
4192
4193      if (!isUndefOrEqual(BitI, j))
4194        return false;
4195      if (!isUndefOrEqual(BitI1, j))
4196        return false;
4197    }
4198  }
4199
4200  return true;
4201}
4202
4203/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4204/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4205/// <2, 2, 3, 3>
4206static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4207  unsigned NumElts = VT.getVectorNumElements();
4208
4209  if (VT.is512BitVector())
4210    return false;
4211
4212  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4213         "Unsupported vector type for unpckh");
4214
4215  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4216      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4217    return false;
4218
4219  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4220  // independently on 128-bit lanes.
4221  unsigned NumLanes = VT.getSizeInBits()/128;
4222  unsigned NumLaneElts = NumElts/NumLanes;
4223
4224  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4225    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4226      int BitI  = Mask[l+i];
4227      int BitI1 = Mask[l+i+1];
4228      if (!isUndefOrEqual(BitI, j))
4229        return false;
4230      if (!isUndefOrEqual(BitI1, j))
4231        return false;
4232    }
4233  }
4234  return true;
4235}
4236
4237// Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or
4238// (src1[0], src0[1]), manipulation with 256-bit sub-vectors
4239static bool isINSERT64x4Mask(ArrayRef<int> Mask, MVT VT, unsigned int *Imm) {
4240  if (!VT.is512BitVector())
4241    return false;
4242
4243  unsigned NumElts = VT.getVectorNumElements();
4244  unsigned HalfSize = NumElts/2;
4245  if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) {
4246    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) {
4247      *Imm = 1;
4248      return true;
4249    }
4250  }
4251  if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) {
4252    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) {
4253      *Imm = 0;
4254      return true;
4255    }
4256  }
4257  return false;
4258}
4259
4260/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4261/// specifies a shuffle of elements that is suitable for input to MOVSS,
4262/// MOVSD, and MOVD, i.e. setting the lowest element.
4263static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4264  if (VT.getVectorElementType().getSizeInBits() < 32)
4265    return false;
4266  if (!VT.is128BitVector())
4267    return false;
4268
4269  unsigned NumElts = VT.getVectorNumElements();
4270
4271  if (!isUndefOrEqual(Mask[0], NumElts))
4272    return false;
4273
4274  for (unsigned i = 1; i != NumElts; ++i)
4275    if (!isUndefOrEqual(Mask[i], i))
4276      return false;
4277
4278  return true;
4279}
4280
4281/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4282/// as permutations between 128-bit chunks or halves. As an example: this
4283/// shuffle bellow:
4284///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4285/// The first half comes from the second half of V1 and the second half from the
4286/// the second half of V2.
4287static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4288  if (!HasFp256 || !VT.is256BitVector())
4289    return false;
4290
4291  // The shuffle result is divided into half A and half B. In total the two
4292  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4293  // B must come from C, D, E or F.
4294  unsigned HalfSize = VT.getVectorNumElements()/2;
4295  bool MatchA = false, MatchB = false;
4296
4297  // Check if A comes from one of C, D, E, F.
4298  for (unsigned Half = 0; Half != 4; ++Half) {
4299    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4300      MatchA = true;
4301      break;
4302    }
4303  }
4304
4305  // Check if B comes from one of C, D, E, F.
4306  for (unsigned Half = 0; Half != 4; ++Half) {
4307    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4308      MatchB = true;
4309      break;
4310    }
4311  }
4312
4313  return MatchA && MatchB;
4314}
4315
4316/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4317/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4318static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4319  MVT VT = SVOp->getSimpleValueType(0);
4320
4321  unsigned HalfSize = VT.getVectorNumElements()/2;
4322
4323  unsigned FstHalf = 0, SndHalf = 0;
4324  for (unsigned i = 0; i < HalfSize; ++i) {
4325    if (SVOp->getMaskElt(i) > 0) {
4326      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4327      break;
4328    }
4329  }
4330  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4331    if (SVOp->getMaskElt(i) > 0) {
4332      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4333      break;
4334    }
4335  }
4336
4337  return (FstHalf | (SndHalf << 4));
4338}
4339
4340// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4341static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4342  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4343  if (EltSize < 32)
4344    return false;
4345
4346  unsigned NumElts = VT.getVectorNumElements();
4347  Imm8 = 0;
4348  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4349    for (unsigned i = 0; i != NumElts; ++i) {
4350      if (Mask[i] < 0)
4351        continue;
4352      Imm8 |= Mask[i] << (i*2);
4353    }
4354    return true;
4355  }
4356
4357  unsigned LaneSize = 4;
4358  SmallVector<int, 4> MaskVal(LaneSize, -1);
4359
4360  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4361    for (unsigned i = 0; i != LaneSize; ++i) {
4362      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4363        return false;
4364      if (Mask[i+l] < 0)
4365        continue;
4366      if (MaskVal[i] < 0) {
4367        MaskVal[i] = Mask[i+l] - l;
4368        Imm8 |= MaskVal[i] << (i*2);
4369        continue;
4370      }
4371      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4372        return false;
4373    }
4374  }
4375  return true;
4376}
4377
4378/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4379/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4380/// Note that VPERMIL mask matching is different depending whether theunderlying
4381/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4382/// to the same elements of the low, but to the higher half of the source.
4383/// In VPERMILPD the two lanes could be shuffled independently of each other
4384/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4385static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4386  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4387  if (VT.getSizeInBits() < 256 || EltSize < 32)
4388    return false;
4389  bool symetricMaskRequired = (EltSize == 32);
4390  unsigned NumElts = VT.getVectorNumElements();
4391
4392  unsigned NumLanes = VT.getSizeInBits()/128;
4393  unsigned LaneSize = NumElts/NumLanes;
4394  // 2 or 4 elements in one lane
4395
4396  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4397  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4398    for (unsigned i = 0; i != LaneSize; ++i) {
4399      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4400        return false;
4401      if (symetricMaskRequired) {
4402        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4403          ExpectedMaskVal[i] = Mask[i+l] - l;
4404          continue;
4405        }
4406        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4407          return false;
4408      }
4409    }
4410  }
4411  return true;
4412}
4413
4414/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4415/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4416/// element of vector 2 and the other elements to come from vector 1 in order.
4417static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4418                               bool V2IsSplat = false, bool V2IsUndef = false) {
4419  if (!VT.is128BitVector())
4420    return false;
4421
4422  unsigned NumOps = VT.getVectorNumElements();
4423  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4424    return false;
4425
4426  if (!isUndefOrEqual(Mask[0], 0))
4427    return false;
4428
4429  for (unsigned i = 1; i != NumOps; ++i)
4430    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4431          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4432          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4433      return false;
4434
4435  return true;
4436}
4437
4438/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4439/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4440/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4441static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4442                           const X86Subtarget *Subtarget) {
4443  if (!Subtarget->hasSSE3())
4444    return false;
4445
4446  unsigned NumElems = VT.getVectorNumElements();
4447
4448  if ((VT.is128BitVector() && NumElems != 4) ||
4449      (VT.is256BitVector() && NumElems != 8) ||
4450      (VT.is512BitVector() && NumElems != 16))
4451    return false;
4452
4453  // "i+1" is the value the indexed mask element must have
4454  for (unsigned i = 0; i != NumElems; i += 2)
4455    if (!isUndefOrEqual(Mask[i], i+1) ||
4456        !isUndefOrEqual(Mask[i+1], i+1))
4457      return false;
4458
4459  return true;
4460}
4461
4462/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4463/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4464/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4465static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4466                           const X86Subtarget *Subtarget) {
4467  if (!Subtarget->hasSSE3())
4468    return false;
4469
4470  unsigned NumElems = VT.getVectorNumElements();
4471
4472  if ((VT.is128BitVector() && NumElems != 4) ||
4473      (VT.is256BitVector() && NumElems != 8) ||
4474      (VT.is512BitVector() && NumElems != 16))
4475    return false;
4476
4477  // "i" is the value the indexed mask element must have
4478  for (unsigned i = 0; i != NumElems; i += 2)
4479    if (!isUndefOrEqual(Mask[i], i) ||
4480        !isUndefOrEqual(Mask[i+1], i))
4481      return false;
4482
4483  return true;
4484}
4485
4486/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4487/// specifies a shuffle of elements that is suitable for input to 256-bit
4488/// version of MOVDDUP.
4489static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4490  if (!HasFp256 || !VT.is256BitVector())
4491    return false;
4492
4493  unsigned NumElts = VT.getVectorNumElements();
4494  if (NumElts != 4)
4495    return false;
4496
4497  for (unsigned i = 0; i != NumElts/2; ++i)
4498    if (!isUndefOrEqual(Mask[i], 0))
4499      return false;
4500  for (unsigned i = NumElts/2; i != NumElts; ++i)
4501    if (!isUndefOrEqual(Mask[i], NumElts/2))
4502      return false;
4503  return true;
4504}
4505
4506/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4507/// specifies a shuffle of elements that is suitable for input to 128-bit
4508/// version of MOVDDUP.
4509static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4510  if (!VT.is128BitVector())
4511    return false;
4512
4513  unsigned e = VT.getVectorNumElements() / 2;
4514  for (unsigned i = 0; i != e; ++i)
4515    if (!isUndefOrEqual(Mask[i], i))
4516      return false;
4517  for (unsigned i = 0; i != e; ++i)
4518    if (!isUndefOrEqual(Mask[e+i], i))
4519      return false;
4520  return true;
4521}
4522
4523/// isVEXTRACTIndex - Return true if the specified
4524/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4525/// suitable for instruction that extract 128 or 256 bit vectors
4526static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4527  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4528  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4529    return false;
4530
4531  // The index should be aligned on a vecWidth-bit boundary.
4532  uint64_t Index =
4533    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4534
4535  MVT VT = N->getSimpleValueType(0);
4536  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4537  bool Result = (Index * ElSize) % vecWidth == 0;
4538
4539  return Result;
4540}
4541
4542/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4543/// operand specifies a subvector insert that is suitable for input to
4544/// insertion of 128 or 256-bit subvectors
4545static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4546  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4547  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4548    return false;
4549  // The index should be aligned on a vecWidth-bit boundary.
4550  uint64_t Index =
4551    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4552
4553  MVT VT = N->getSimpleValueType(0);
4554  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4555  bool Result = (Index * ElSize) % vecWidth == 0;
4556
4557  return Result;
4558}
4559
4560bool X86::isVINSERT128Index(SDNode *N) {
4561  return isVINSERTIndex(N, 128);
4562}
4563
4564bool X86::isVINSERT256Index(SDNode *N) {
4565  return isVINSERTIndex(N, 256);
4566}
4567
4568bool X86::isVEXTRACT128Index(SDNode *N) {
4569  return isVEXTRACTIndex(N, 128);
4570}
4571
4572bool X86::isVEXTRACT256Index(SDNode *N) {
4573  return isVEXTRACTIndex(N, 256);
4574}
4575
4576/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4577/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4578/// Handles 128-bit and 256-bit.
4579static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4580  MVT VT = N->getSimpleValueType(0);
4581
4582  assert((VT.getSizeInBits() >= 128) &&
4583         "Unsupported vector type for PSHUF/SHUFP");
4584
4585  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4586  // independently on 128-bit lanes.
4587  unsigned NumElts = VT.getVectorNumElements();
4588  unsigned NumLanes = VT.getSizeInBits()/128;
4589  unsigned NumLaneElts = NumElts/NumLanes;
4590
4591  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4592         "Only supports 2, 4 or 8 elements per lane");
4593
4594  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4595  unsigned Mask = 0;
4596  for (unsigned i = 0; i != NumElts; ++i) {
4597    int Elt = N->getMaskElt(i);
4598    if (Elt < 0) continue;
4599    Elt &= NumLaneElts - 1;
4600    unsigned ShAmt = (i << Shift) % 8;
4601    Mask |= Elt << ShAmt;
4602  }
4603
4604  return Mask;
4605}
4606
4607/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4608/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4609static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4610  MVT VT = N->getSimpleValueType(0);
4611
4612  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4613         "Unsupported vector type for PSHUFHW");
4614
4615  unsigned NumElts = VT.getVectorNumElements();
4616
4617  unsigned Mask = 0;
4618  for (unsigned l = 0; l != NumElts; l += 8) {
4619    // 8 nodes per lane, but we only care about the last 4.
4620    for (unsigned i = 0; i < 4; ++i) {
4621      int Elt = N->getMaskElt(l+i+4);
4622      if (Elt < 0) continue;
4623      Elt &= 0x3; // only 2-bits.
4624      Mask |= Elt << (i * 2);
4625    }
4626  }
4627
4628  return Mask;
4629}
4630
4631/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4632/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4633static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4634  MVT VT = N->getSimpleValueType(0);
4635
4636  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4637         "Unsupported vector type for PSHUFHW");
4638
4639  unsigned NumElts = VT.getVectorNumElements();
4640
4641  unsigned Mask = 0;
4642  for (unsigned l = 0; l != NumElts; l += 8) {
4643    // 8 nodes per lane, but we only care about the first 4.
4644    for (unsigned i = 0; i < 4; ++i) {
4645      int Elt = N->getMaskElt(l+i);
4646      if (Elt < 0) continue;
4647      Elt &= 0x3; // only 2-bits
4648      Mask |= Elt << (i * 2);
4649    }
4650  }
4651
4652  return Mask;
4653}
4654
4655/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4656/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4657static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4658  MVT VT = SVOp->getSimpleValueType(0);
4659  unsigned EltSize = VT.is512BitVector() ? 1 :
4660    VT.getVectorElementType().getSizeInBits() >> 3;
4661
4662  unsigned NumElts = VT.getVectorNumElements();
4663  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4664  unsigned NumLaneElts = NumElts/NumLanes;
4665
4666  int Val = 0;
4667  unsigned i;
4668  for (i = 0; i != NumElts; ++i) {
4669    Val = SVOp->getMaskElt(i);
4670    if (Val >= 0)
4671      break;
4672  }
4673  if (Val >= (int)NumElts)
4674    Val -= NumElts - NumLaneElts;
4675
4676  assert(Val - i > 0 && "PALIGNR imm should be positive");
4677  return (Val - i) * EltSize;
4678}
4679
4680static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4681  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4682  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4683    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4684
4685  uint64_t Index =
4686    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4687
4688  MVT VecVT = N->getOperand(0).getSimpleValueType();
4689  MVT ElVT = VecVT.getVectorElementType();
4690
4691  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4692  return Index / NumElemsPerChunk;
4693}
4694
4695static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4696  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4697  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4698    llvm_unreachable("Illegal insert subvector for VINSERT");
4699
4700  uint64_t Index =
4701    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4702
4703  MVT VecVT = N->getSimpleValueType(0);
4704  MVT ElVT = VecVT.getVectorElementType();
4705
4706  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4707  return Index / NumElemsPerChunk;
4708}
4709
4710/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4711/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4712/// and VINSERTI128 instructions.
4713unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4714  return getExtractVEXTRACTImmediate(N, 128);
4715}
4716
4717/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4718/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4719/// and VINSERTI64x4 instructions.
4720unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4721  return getExtractVEXTRACTImmediate(N, 256);
4722}
4723
4724/// getInsertVINSERT128Immediate - Return the appropriate immediate
4725/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4726/// and VINSERTI128 instructions.
4727unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4728  return getInsertVINSERTImmediate(N, 128);
4729}
4730
4731/// getInsertVINSERT256Immediate - Return the appropriate immediate
4732/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4733/// and VINSERTI64x4 instructions.
4734unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4735  return getInsertVINSERTImmediate(N, 256);
4736}
4737
4738/// isZero - Returns true if Elt is a constant integer zero
4739static bool isZero(SDValue V) {
4740  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
4741  return C && C->isNullValue();
4742}
4743
4744/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4745/// constant +0.0.
4746bool X86::isZeroNode(SDValue Elt) {
4747  if (isZero(Elt))
4748    return true;
4749  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4750    return CFP->getValueAPF().isPosZero();
4751  return false;
4752}
4753
4754/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4755/// their permute mask.
4756static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4757                                    SelectionDAG &DAG) {
4758  MVT VT = SVOp->getSimpleValueType(0);
4759  unsigned NumElems = VT.getVectorNumElements();
4760  SmallVector<int, 8> MaskVec;
4761
4762  for (unsigned i = 0; i != NumElems; ++i) {
4763    int Idx = SVOp->getMaskElt(i);
4764    if (Idx >= 0) {
4765      if (Idx < (int)NumElems)
4766        Idx += NumElems;
4767      else
4768        Idx -= NumElems;
4769    }
4770    MaskVec.push_back(Idx);
4771  }
4772  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4773                              SVOp->getOperand(0), &MaskVec[0]);
4774}
4775
4776/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4777/// match movhlps. The lower half elements should come from upper half of
4778/// V1 (and in order), and the upper half elements should come from the upper
4779/// half of V2 (and in order).
4780static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4781  if (!VT.is128BitVector())
4782    return false;
4783  if (VT.getVectorNumElements() != 4)
4784    return false;
4785  for (unsigned i = 0, e = 2; i != e; ++i)
4786    if (!isUndefOrEqual(Mask[i], i+2))
4787      return false;
4788  for (unsigned i = 2; i != 4; ++i)
4789    if (!isUndefOrEqual(Mask[i], i+4))
4790      return false;
4791  return true;
4792}
4793
4794/// isScalarLoadToVector - Returns true if the node is a scalar load that
4795/// is promoted to a vector. It also returns the LoadSDNode by reference if
4796/// required.
4797static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) {
4798  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4799    return false;
4800  N = N->getOperand(0).getNode();
4801  if (!ISD::isNON_EXTLoad(N))
4802    return false;
4803  if (LD)
4804    *LD = cast<LoadSDNode>(N);
4805  return true;
4806}
4807
4808// Test whether the given value is a vector value which will be legalized
4809// into a load.
4810static bool WillBeConstantPoolLoad(SDNode *N) {
4811  if (N->getOpcode() != ISD::BUILD_VECTOR)
4812    return false;
4813
4814  // Check for any non-constant elements.
4815  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4816    switch (N->getOperand(i).getNode()->getOpcode()) {
4817    case ISD::UNDEF:
4818    case ISD::ConstantFP:
4819    case ISD::Constant:
4820      break;
4821    default:
4822      return false;
4823    }
4824
4825  // Vectors of all-zeros and all-ones are materialized with special
4826  // instructions rather than being loaded.
4827  return !ISD::isBuildVectorAllZeros(N) &&
4828         !ISD::isBuildVectorAllOnes(N);
4829}
4830
4831/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4832/// match movlp{s|d}. The lower half elements should come from lower half of
4833/// V1 (and in order), and the upper half elements should come from the upper
4834/// half of V2 (and in order). And since V1 will become the source of the
4835/// MOVLP, it must be either a vector load or a scalar load to vector.
4836static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4837                               ArrayRef<int> Mask, MVT VT) {
4838  if (!VT.is128BitVector())
4839    return false;
4840
4841  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4842    return false;
4843  // Is V2 is a vector load, don't do this transformation. We will try to use
4844  // load folding shufps op.
4845  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4846    return false;
4847
4848  unsigned NumElems = VT.getVectorNumElements();
4849
4850  if (NumElems != 2 && NumElems != 4)
4851    return false;
4852  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4853    if (!isUndefOrEqual(Mask[i], i))
4854      return false;
4855  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4856    if (!isUndefOrEqual(Mask[i], i+NumElems))
4857      return false;
4858  return true;
4859}
4860
4861/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4862/// to an zero vector.
4863/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4864static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4865  SDValue V1 = N->getOperand(0);
4866  SDValue V2 = N->getOperand(1);
4867  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4868  for (unsigned i = 0; i != NumElems; ++i) {
4869    int Idx = N->getMaskElt(i);
4870    if (Idx >= (int)NumElems) {
4871      unsigned Opc = V2.getOpcode();
4872      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4873        continue;
4874      if (Opc != ISD::BUILD_VECTOR ||
4875          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4876        return false;
4877    } else if (Idx >= 0) {
4878      unsigned Opc = V1.getOpcode();
4879      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4880        continue;
4881      if (Opc != ISD::BUILD_VECTOR ||
4882          !X86::isZeroNode(V1.getOperand(Idx)))
4883        return false;
4884    }
4885  }
4886  return true;
4887}
4888
4889/// getZeroVector - Returns a vector of specified type with all zero elements.
4890///
4891static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4892                             SelectionDAG &DAG, SDLoc dl) {
4893  assert(VT.isVector() && "Expected a vector type");
4894
4895  // Always build SSE zero vectors as <4 x i32> bitcasted
4896  // to their dest type. This ensures they get CSE'd.
4897  SDValue Vec;
4898  if (VT.is128BitVector()) {  // SSE
4899    if (Subtarget->hasSSE2()) {  // SSE2
4900      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4901      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4902    } else { // SSE1
4903      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4904      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4905    }
4906  } else if (VT.is256BitVector()) { // AVX
4907    if (Subtarget->hasInt256()) { // AVX2
4908      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4909      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4910      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4911    } else {
4912      // 256-bit logic and arithmetic instructions in AVX are all
4913      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4914      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4915      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4916      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
4917    }
4918  } else if (VT.is512BitVector()) { // AVX-512
4919      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4920      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4921                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4922      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
4923  } else if (VT.getScalarType() == MVT::i1) {
4924    assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
4925    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
4926    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
4927    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
4928  } else
4929    llvm_unreachable("Unexpected vector type");
4930
4931  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4932}
4933
4934/// getOnesVector - Returns a vector of specified type with all bits set.
4935/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4936/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4937/// Then bitcast to their original type, ensuring they get CSE'd.
4938static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4939                             SDLoc dl) {
4940  assert(VT.isVector() && "Expected a vector type");
4941
4942  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4943  SDValue Vec;
4944  if (VT.is256BitVector()) {
4945    if (HasInt256) { // AVX2
4946      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4947      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4948    } else { // AVX
4949      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4950      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4951    }
4952  } else if (VT.is128BitVector()) {
4953    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4954  } else
4955    llvm_unreachable("Unexpected vector type");
4956
4957  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4958}
4959
4960/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4961/// that point to V2 points to its first element.
4962static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4963  for (unsigned i = 0; i != NumElems; ++i) {
4964    if (Mask[i] > (int)NumElems) {
4965      Mask[i] = NumElems;
4966    }
4967  }
4968}
4969
4970/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4971/// operation of specified width.
4972static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4973                       SDValue V2) {
4974  unsigned NumElems = VT.getVectorNumElements();
4975  SmallVector<int, 8> Mask;
4976  Mask.push_back(NumElems);
4977  for (unsigned i = 1; i != NumElems; ++i)
4978    Mask.push_back(i);
4979  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4980}
4981
4982/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4983static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4984                          SDValue V2) {
4985  unsigned NumElems = VT.getVectorNumElements();
4986  SmallVector<int, 8> Mask;
4987  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4988    Mask.push_back(i);
4989    Mask.push_back(i + NumElems);
4990  }
4991  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4992}
4993
4994/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4995static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4996                          SDValue V2) {
4997  unsigned NumElems = VT.getVectorNumElements();
4998  SmallVector<int, 8> Mask;
4999  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
5000    Mask.push_back(i + Half);
5001    Mask.push_back(i + NumElems + Half);
5002  }
5003  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
5004}
5005
5006// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
5007// a generic shuffle instruction because the target has no such instructions.
5008// Generate shuffles which repeat i16 and i8 several times until they can be
5009// represented by v4f32 and then be manipulated by target suported shuffles.
5010static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
5011  MVT VT = V.getSimpleValueType();
5012  int NumElems = VT.getVectorNumElements();
5013  SDLoc dl(V);
5014
5015  while (NumElems > 4) {
5016    if (EltNo < NumElems/2) {
5017      V = getUnpackl(DAG, dl, VT, V, V);
5018    } else {
5019      V = getUnpackh(DAG, dl, VT, V, V);
5020      EltNo -= NumElems/2;
5021    }
5022    NumElems >>= 1;
5023  }
5024  return V;
5025}
5026
5027/// getLegalSplat - Generate a legal splat with supported x86 shuffles
5028static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
5029  MVT VT = V.getSimpleValueType();
5030  SDLoc dl(V);
5031
5032  if (VT.is128BitVector()) {
5033    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
5034    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
5035    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
5036                             &SplatMask[0]);
5037  } else if (VT.is256BitVector()) {
5038    // To use VPERMILPS to splat scalars, the second half of indicies must
5039    // refer to the higher part, which is a duplication of the lower one,
5040    // because VPERMILPS can only handle in-lane permutations.
5041    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
5042                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
5043
5044    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
5045    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
5046                             &SplatMask[0]);
5047  } else
5048    llvm_unreachable("Vector size not supported");
5049
5050  return DAG.getNode(ISD::BITCAST, dl, VT, V);
5051}
5052
5053/// PromoteSplat - Splat is promoted to target supported vector shuffles.
5054static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
5055  MVT SrcVT = SV->getSimpleValueType(0);
5056  SDValue V1 = SV->getOperand(0);
5057  SDLoc dl(SV);
5058
5059  int EltNo = SV->getSplatIndex();
5060  int NumElems = SrcVT.getVectorNumElements();
5061  bool Is256BitVec = SrcVT.is256BitVector();
5062
5063  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
5064         "Unknown how to promote splat for type");
5065
5066  // Extract the 128-bit part containing the splat element and update
5067  // the splat element index when it refers to the higher register.
5068  if (Is256BitVec) {
5069    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
5070    if (EltNo >= NumElems/2)
5071      EltNo -= NumElems/2;
5072  }
5073
5074  // All i16 and i8 vector types can't be used directly by a generic shuffle
5075  // instruction because the target has no such instruction. Generate shuffles
5076  // which repeat i16 and i8 several times until they fit in i32, and then can
5077  // be manipulated by target suported shuffles.
5078  MVT EltVT = SrcVT.getVectorElementType();
5079  if (EltVT == MVT::i8 || EltVT == MVT::i16)
5080    V1 = PromoteSplati8i16(V1, DAG, EltNo);
5081
5082  // Recreate the 256-bit vector and place the same 128-bit vector
5083  // into the low and high part. This is necessary because we want
5084  // to use VPERM* to shuffle the vectors
5085  if (Is256BitVec) {
5086    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
5087  }
5088
5089  return getLegalSplat(DAG, V1, EltNo);
5090}
5091
5092/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
5093/// vector of zero or undef vector.  This produces a shuffle where the low
5094/// element of V2 is swizzled into the zero/undef vector, landing at element
5095/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
5096static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
5097                                           bool IsZero,
5098                                           const X86Subtarget *Subtarget,
5099                                           SelectionDAG &DAG) {
5100  MVT VT = V2.getSimpleValueType();
5101  SDValue V1 = IsZero
5102    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
5103  unsigned NumElems = VT.getVectorNumElements();
5104  SmallVector<int, 16> MaskVec;
5105  for (unsigned i = 0; i != NumElems; ++i)
5106    // If this is the insertion idx, put the low elt of V2 here.
5107    MaskVec.push_back(i == Idx ? NumElems : i);
5108  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
5109}
5110
5111/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
5112/// target specific opcode. Returns true if the Mask could be calculated.
5113/// Sets IsUnary to true if only uses one source.
5114static bool getTargetShuffleMask(SDNode *N, MVT VT,
5115                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
5116  unsigned NumElems = VT.getVectorNumElements();
5117  SDValue ImmN;
5118
5119  IsUnary = false;
5120  switch(N->getOpcode()) {
5121  case X86ISD::SHUFP:
5122    ImmN = N->getOperand(N->getNumOperands()-1);
5123    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5124    break;
5125  case X86ISD::UNPCKH:
5126    DecodeUNPCKHMask(VT, Mask);
5127    break;
5128  case X86ISD::UNPCKL:
5129    DecodeUNPCKLMask(VT, Mask);
5130    break;
5131  case X86ISD::MOVHLPS:
5132    DecodeMOVHLPSMask(NumElems, Mask);
5133    break;
5134  case X86ISD::MOVLHPS:
5135    DecodeMOVLHPSMask(NumElems, Mask);
5136    break;
5137  case X86ISD::PALIGNR:
5138    ImmN = N->getOperand(N->getNumOperands()-1);
5139    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5140    break;
5141  case X86ISD::PSHUFD:
5142  case X86ISD::VPERMILP:
5143    ImmN = N->getOperand(N->getNumOperands()-1);
5144    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5145    IsUnary = true;
5146    break;
5147  case X86ISD::PSHUFHW:
5148    ImmN = N->getOperand(N->getNumOperands()-1);
5149    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5150    IsUnary = true;
5151    break;
5152  case X86ISD::PSHUFLW:
5153    ImmN = N->getOperand(N->getNumOperands()-1);
5154    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5155    IsUnary = true;
5156    break;
5157  case X86ISD::VPERMI:
5158    ImmN = N->getOperand(N->getNumOperands()-1);
5159    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5160    IsUnary = true;
5161    break;
5162  case X86ISD::MOVSS:
5163  case X86ISD::MOVSD: {
5164    // The index 0 always comes from the first element of the second source,
5165    // this is why MOVSS and MOVSD are used in the first place. The other
5166    // elements come from the other positions of the first source vector
5167    Mask.push_back(NumElems);
5168    for (unsigned i = 1; i != NumElems; ++i) {
5169      Mask.push_back(i);
5170    }
5171    break;
5172  }
5173  case X86ISD::VPERM2X128:
5174    ImmN = N->getOperand(N->getNumOperands()-1);
5175    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5176    if (Mask.empty()) return false;
5177    break;
5178  case X86ISD::MOVDDUP:
5179  case X86ISD::MOVLHPD:
5180  case X86ISD::MOVLPD:
5181  case X86ISD::MOVLPS:
5182  case X86ISD::MOVSHDUP:
5183  case X86ISD::MOVSLDUP:
5184    // Not yet implemented
5185    return false;
5186  default: llvm_unreachable("unknown target shuffle node");
5187  }
5188
5189  return true;
5190}
5191
5192/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5193/// element of the result of the vector shuffle.
5194static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5195                                   unsigned Depth) {
5196  if (Depth == 6)
5197    return SDValue();  // Limit search depth.
5198
5199  SDValue V = SDValue(N, 0);
5200  EVT VT = V.getValueType();
5201  unsigned Opcode = V.getOpcode();
5202
5203  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5204  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5205    int Elt = SV->getMaskElt(Index);
5206
5207    if (Elt < 0)
5208      return DAG.getUNDEF(VT.getVectorElementType());
5209
5210    unsigned NumElems = VT.getVectorNumElements();
5211    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5212                                         : SV->getOperand(1);
5213    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5214  }
5215
5216  // Recurse into target specific vector shuffles to find scalars.
5217  if (isTargetShuffle(Opcode)) {
5218    MVT ShufVT = V.getSimpleValueType();
5219    unsigned NumElems = ShufVT.getVectorNumElements();
5220    SmallVector<int, 16> ShuffleMask;
5221    bool IsUnary;
5222
5223    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5224      return SDValue();
5225
5226    int Elt = ShuffleMask[Index];
5227    if (Elt < 0)
5228      return DAG.getUNDEF(ShufVT.getVectorElementType());
5229
5230    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5231                                         : N->getOperand(1);
5232    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5233                               Depth+1);
5234  }
5235
5236  // Actual nodes that may contain scalar elements
5237  if (Opcode == ISD::BITCAST) {
5238    V = V.getOperand(0);
5239    EVT SrcVT = V.getValueType();
5240    unsigned NumElems = VT.getVectorNumElements();
5241
5242    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5243      return SDValue();
5244  }
5245
5246  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5247    return (Index == 0) ? V.getOperand(0)
5248                        : DAG.getUNDEF(VT.getVectorElementType());
5249
5250  if (V.getOpcode() == ISD::BUILD_VECTOR)
5251    return V.getOperand(Index);
5252
5253  return SDValue();
5254}
5255
5256/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5257/// shuffle operation which come from a consecutively from a zero. The
5258/// search can start in two different directions, from left or right.
5259/// We count undefs as zeros until PreferredNum is reached.
5260static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5261                                         unsigned NumElems, bool ZerosFromLeft,
5262                                         SelectionDAG &DAG,
5263                                         unsigned PreferredNum = -1U) {
5264  unsigned NumZeros = 0;
5265  for (unsigned i = 0; i != NumElems; ++i) {
5266    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5267    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5268    if (!Elt.getNode())
5269      break;
5270
5271    if (X86::isZeroNode(Elt))
5272      ++NumZeros;
5273    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5274      NumZeros = std::min(NumZeros + 1, PreferredNum);
5275    else
5276      break;
5277  }
5278
5279  return NumZeros;
5280}
5281
5282/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5283/// correspond consecutively to elements from one of the vector operands,
5284/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5285static
5286bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5287                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5288                              unsigned NumElems, unsigned &OpNum) {
5289  bool SeenV1 = false;
5290  bool SeenV2 = false;
5291
5292  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5293    int Idx = SVOp->getMaskElt(i);
5294    // Ignore undef indicies
5295    if (Idx < 0)
5296      continue;
5297
5298    if (Idx < (int)NumElems)
5299      SeenV1 = true;
5300    else
5301      SeenV2 = true;
5302
5303    // Only accept consecutive elements from the same vector
5304    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5305      return false;
5306  }
5307
5308  OpNum = SeenV1 ? 0 : 1;
5309  return true;
5310}
5311
5312/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5313/// logical left shift of a vector.
5314static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5315                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5316  unsigned NumElems =
5317    SVOp->getSimpleValueType(0).getVectorNumElements();
5318  unsigned NumZeros = getNumOfConsecutiveZeros(
5319      SVOp, NumElems, false /* check zeros from right */, DAG,
5320      SVOp->getMaskElt(0));
5321  unsigned OpSrc;
5322
5323  if (!NumZeros)
5324    return false;
5325
5326  // Considering the elements in the mask that are not consecutive zeros,
5327  // check if they consecutively come from only one of the source vectors.
5328  //
5329  //               V1 = {X, A, B, C}     0
5330  //                         \  \  \    /
5331  //   vector_shuffle V1, V2 <1, 2, 3, X>
5332  //
5333  if (!isShuffleMaskConsecutive(SVOp,
5334            0,                   // Mask Start Index
5335            NumElems-NumZeros,   // Mask End Index(exclusive)
5336            NumZeros,            // Where to start looking in the src vector
5337            NumElems,            // Number of elements in vector
5338            OpSrc))              // Which source operand ?
5339    return false;
5340
5341  isLeft = false;
5342  ShAmt = NumZeros;
5343  ShVal = SVOp->getOperand(OpSrc);
5344  return true;
5345}
5346
5347/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5348/// logical left shift of a vector.
5349static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5350                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5351  unsigned NumElems =
5352    SVOp->getSimpleValueType(0).getVectorNumElements();
5353  unsigned NumZeros = getNumOfConsecutiveZeros(
5354      SVOp, NumElems, true /* check zeros from left */, DAG,
5355      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5356  unsigned OpSrc;
5357
5358  if (!NumZeros)
5359    return false;
5360
5361  // Considering the elements in the mask that are not consecutive zeros,
5362  // check if they consecutively come from only one of the source vectors.
5363  //
5364  //                           0    { A, B, X, X } = V2
5365  //                          / \    /  /
5366  //   vector_shuffle V1, V2 <X, X, 4, 5>
5367  //
5368  if (!isShuffleMaskConsecutive(SVOp,
5369            NumZeros,     // Mask Start Index
5370            NumElems,     // Mask End Index(exclusive)
5371            0,            // Where to start looking in the src vector
5372            NumElems,     // Number of elements in vector
5373            OpSrc))       // Which source operand ?
5374    return false;
5375
5376  isLeft = true;
5377  ShAmt = NumZeros;
5378  ShVal = SVOp->getOperand(OpSrc);
5379  return true;
5380}
5381
5382/// isVectorShift - Returns true if the shuffle can be implemented as a
5383/// logical left or right shift of a vector.
5384static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5385                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5386  // Although the logic below support any bitwidth size, there are no
5387  // shift instructions which handle more than 128-bit vectors.
5388  if (!SVOp->getSimpleValueType(0).is128BitVector())
5389    return false;
5390
5391  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5392      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5393    return true;
5394
5395  return false;
5396}
5397
5398/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5399///
5400static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5401                                       unsigned NumNonZero, unsigned NumZero,
5402                                       SelectionDAG &DAG,
5403                                       const X86Subtarget* Subtarget,
5404                                       const TargetLowering &TLI) {
5405  if (NumNonZero > 8)
5406    return SDValue();
5407
5408  SDLoc dl(Op);
5409  SDValue V;
5410  bool First = true;
5411  for (unsigned i = 0; i < 16; ++i) {
5412    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5413    if (ThisIsNonZero && First) {
5414      if (NumZero)
5415        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5416      else
5417        V = DAG.getUNDEF(MVT::v8i16);
5418      First = false;
5419    }
5420
5421    if ((i & 1) != 0) {
5422      SDValue ThisElt, LastElt;
5423      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5424      if (LastIsNonZero) {
5425        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5426                              MVT::i16, Op.getOperand(i-1));
5427      }
5428      if (ThisIsNonZero) {
5429        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5430        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5431                              ThisElt, DAG.getConstant(8, MVT::i8));
5432        if (LastIsNonZero)
5433          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5434      } else
5435        ThisElt = LastElt;
5436
5437      if (ThisElt.getNode())
5438        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5439                        DAG.getIntPtrConstant(i/2));
5440    }
5441  }
5442
5443  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5444}
5445
5446/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5447///
5448static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5449                                     unsigned NumNonZero, unsigned NumZero,
5450                                     SelectionDAG &DAG,
5451                                     const X86Subtarget* Subtarget,
5452                                     const TargetLowering &TLI) {
5453  if (NumNonZero > 4)
5454    return SDValue();
5455
5456  SDLoc dl(Op);
5457  SDValue V;
5458  bool First = true;
5459  for (unsigned i = 0; i < 8; ++i) {
5460    bool isNonZero = (NonZeros & (1 << i)) != 0;
5461    if (isNonZero) {
5462      if (First) {
5463        if (NumZero)
5464          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5465        else
5466          V = DAG.getUNDEF(MVT::v8i16);
5467        First = false;
5468      }
5469      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5470                      MVT::v8i16, V, Op.getOperand(i),
5471                      DAG.getIntPtrConstant(i));
5472    }
5473  }
5474
5475  return V;
5476}
5477
5478/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
5479static SDValue LowerBuildVectorv4x32(SDValue Op, unsigned NumElems,
5480                                     unsigned NonZeros, unsigned NumNonZero,
5481                                     unsigned NumZero, SelectionDAG &DAG,
5482                                     const X86Subtarget *Subtarget,
5483                                     const TargetLowering &TLI) {
5484  // We know there's at least one non-zero element
5485  unsigned FirstNonZeroIdx = 0;
5486  SDValue FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5487  while (FirstNonZero.getOpcode() == ISD::UNDEF ||
5488         X86::isZeroNode(FirstNonZero)) {
5489    ++FirstNonZeroIdx;
5490    FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5491  }
5492
5493  if (FirstNonZero.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5494      !isa<ConstantSDNode>(FirstNonZero.getOperand(1)))
5495    return SDValue();
5496
5497  SDValue V = FirstNonZero.getOperand(0);
5498  MVT VVT = V.getSimpleValueType();
5499  if (!Subtarget->hasSSE41() || (VVT != MVT::v4f32 && VVT != MVT::v4i32))
5500    return SDValue();
5501
5502  unsigned FirstNonZeroDst =
5503      cast<ConstantSDNode>(FirstNonZero.getOperand(1))->getZExtValue();
5504  unsigned CorrectIdx = FirstNonZeroDst == FirstNonZeroIdx;
5505  unsigned IncorrectIdx = CorrectIdx ? -1U : FirstNonZeroIdx;
5506  unsigned IncorrectDst = CorrectIdx ? -1U : FirstNonZeroDst;
5507
5508  for (unsigned Idx = FirstNonZeroIdx + 1; Idx < NumElems; ++Idx) {
5509    SDValue Elem = Op.getOperand(Idx);
5510    if (Elem.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elem))
5511      continue;
5512
5513    // TODO: What else can be here? Deal with it.
5514    if (Elem.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5515      return SDValue();
5516
5517    // TODO: Some optimizations are still possible here
5518    // ex: Getting one element from a vector, and the rest from another.
5519    if (Elem.getOperand(0) != V)
5520      return SDValue();
5521
5522    unsigned Dst = cast<ConstantSDNode>(Elem.getOperand(1))->getZExtValue();
5523    if (Dst == Idx)
5524      ++CorrectIdx;
5525    else if (IncorrectIdx == -1U) {
5526      IncorrectIdx = Idx;
5527      IncorrectDst = Dst;
5528    } else
5529      // There was already one element with an incorrect index.
5530      // We can't optimize this case to an insertps.
5531      return SDValue();
5532  }
5533
5534  if (NumNonZero == CorrectIdx || NumNonZero == CorrectIdx + 1) {
5535    SDLoc dl(Op);
5536    EVT VT = Op.getSimpleValueType();
5537    unsigned ElementMoveMask = 0;
5538    if (IncorrectIdx == -1U)
5539      ElementMoveMask = FirstNonZeroIdx << 6 | FirstNonZeroIdx << 4;
5540    else
5541      ElementMoveMask = IncorrectDst << 6 | IncorrectIdx << 4;
5542
5543    SDValue InsertpsMask =
5544        DAG.getIntPtrConstant(ElementMoveMask | (~NonZeros & 0xf));
5545    return DAG.getNode(X86ISD::INSERTPS, dl, VT, V, V, InsertpsMask);
5546  }
5547
5548  return SDValue();
5549}
5550
5551/// getVShift - Return a vector logical shift node.
5552///
5553static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5554                         unsigned NumBits, SelectionDAG &DAG,
5555                         const TargetLowering &TLI, SDLoc dl) {
5556  assert(VT.is128BitVector() && "Unknown type for VShift");
5557  EVT ShVT = MVT::v2i64;
5558  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5559  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5560  return DAG.getNode(ISD::BITCAST, dl, VT,
5561                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5562                             DAG.getConstant(NumBits,
5563                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5564}
5565
5566static SDValue
5567LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5568
5569  // Check if the scalar load can be widened into a vector load. And if
5570  // the address is "base + cst" see if the cst can be "absorbed" into
5571  // the shuffle mask.
5572  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5573    SDValue Ptr = LD->getBasePtr();
5574    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5575      return SDValue();
5576    EVT PVT = LD->getValueType(0);
5577    if (PVT != MVT::i32 && PVT != MVT::f32)
5578      return SDValue();
5579
5580    int FI = -1;
5581    int64_t Offset = 0;
5582    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5583      FI = FINode->getIndex();
5584      Offset = 0;
5585    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5586               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5587      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5588      Offset = Ptr.getConstantOperandVal(1);
5589      Ptr = Ptr.getOperand(0);
5590    } else {
5591      return SDValue();
5592    }
5593
5594    // FIXME: 256-bit vector instructions don't require a strict alignment,
5595    // improve this code to support it better.
5596    unsigned RequiredAlign = VT.getSizeInBits()/8;
5597    SDValue Chain = LD->getChain();
5598    // Make sure the stack object alignment is at least 16 or 32.
5599    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5600    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5601      if (MFI->isFixedObjectIndex(FI)) {
5602        // Can't change the alignment. FIXME: It's possible to compute
5603        // the exact stack offset and reference FI + adjust offset instead.
5604        // If someone *really* cares about this. That's the way to implement it.
5605        return SDValue();
5606      } else {
5607        MFI->setObjectAlignment(FI, RequiredAlign);
5608      }
5609    }
5610
5611    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5612    // Ptr + (Offset & ~15).
5613    if (Offset < 0)
5614      return SDValue();
5615    if ((Offset % RequiredAlign) & 3)
5616      return SDValue();
5617    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5618    if (StartOffset)
5619      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5620                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5621
5622    int EltNo = (Offset - StartOffset) >> 2;
5623    unsigned NumElems = VT.getVectorNumElements();
5624
5625    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5626    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5627                             LD->getPointerInfo().getWithOffset(StartOffset),
5628                             false, false, false, 0);
5629
5630    SmallVector<int, 8> Mask;
5631    for (unsigned i = 0; i != NumElems; ++i)
5632      Mask.push_back(EltNo);
5633
5634    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5635  }
5636
5637  return SDValue();
5638}
5639
5640/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5641/// vector of type 'VT', see if the elements can be replaced by a single large
5642/// load which has the same value as a build_vector whose operands are 'elts'.
5643///
5644/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5645///
5646/// FIXME: we'd also like to handle the case where the last elements are zero
5647/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5648/// There's even a handy isZeroNode for that purpose.
5649static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5650                                        SDLoc &DL, SelectionDAG &DAG,
5651                                        bool isAfterLegalize) {
5652  EVT EltVT = VT.getVectorElementType();
5653  unsigned NumElems = Elts.size();
5654
5655  LoadSDNode *LDBase = nullptr;
5656  unsigned LastLoadedElt = -1U;
5657
5658  // For each element in the initializer, see if we've found a load or an undef.
5659  // If we don't find an initial load element, or later load elements are
5660  // non-consecutive, bail out.
5661  for (unsigned i = 0; i < NumElems; ++i) {
5662    SDValue Elt = Elts[i];
5663
5664    if (!Elt.getNode() ||
5665        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5666      return SDValue();
5667    if (!LDBase) {
5668      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5669        return SDValue();
5670      LDBase = cast<LoadSDNode>(Elt.getNode());
5671      LastLoadedElt = i;
5672      continue;
5673    }
5674    if (Elt.getOpcode() == ISD::UNDEF)
5675      continue;
5676
5677    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5678    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5679      return SDValue();
5680    LastLoadedElt = i;
5681  }
5682
5683  // If we have found an entire vector of loads and undefs, then return a large
5684  // load of the entire vector width starting at the base pointer.  If we found
5685  // consecutive loads for the low half, generate a vzext_load node.
5686  if (LastLoadedElt == NumElems - 1) {
5687
5688    if (isAfterLegalize &&
5689        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
5690      return SDValue();
5691
5692    SDValue NewLd = SDValue();
5693
5694    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5695      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5696                          LDBase->getPointerInfo(),
5697                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5698                          LDBase->isInvariant(), 0);
5699    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5700                        LDBase->getPointerInfo(),
5701                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5702                        LDBase->isInvariant(), LDBase->getAlignment());
5703
5704    if (LDBase->hasAnyUseOfValue(1)) {
5705      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5706                                     SDValue(LDBase, 1),
5707                                     SDValue(NewLd.getNode(), 1));
5708      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5709      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5710                             SDValue(NewLd.getNode(), 1));
5711    }
5712
5713    return NewLd;
5714  }
5715  if (NumElems == 4 && LastLoadedElt == 1 &&
5716      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5717    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5718    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5719    SDValue ResNode =
5720        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
5721                                LDBase->getPointerInfo(),
5722                                LDBase->getAlignment(),
5723                                false/*isVolatile*/, true/*ReadMem*/,
5724                                false/*WriteMem*/);
5725
5726    // Make sure the newly-created LOAD is in the same position as LDBase in
5727    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5728    // update uses of LDBase's output chain to use the TokenFactor.
5729    if (LDBase->hasAnyUseOfValue(1)) {
5730      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5731                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5732      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5733      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5734                             SDValue(ResNode.getNode(), 1));
5735    }
5736
5737    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5738  }
5739  return SDValue();
5740}
5741
5742/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5743/// to generate a splat value for the following cases:
5744/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5745/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5746/// a scalar load, or a constant.
5747/// The VBROADCAST node is returned when a pattern is found,
5748/// or SDValue() otherwise.
5749static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5750                                    SelectionDAG &DAG) {
5751  if (!Subtarget->hasFp256())
5752    return SDValue();
5753
5754  MVT VT = Op.getSimpleValueType();
5755  SDLoc dl(Op);
5756
5757  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5758         "Unsupported vector type for broadcast.");
5759
5760  SDValue Ld;
5761  bool ConstSplatVal;
5762
5763  switch (Op.getOpcode()) {
5764    default:
5765      // Unknown pattern found.
5766      return SDValue();
5767
5768    case ISD::BUILD_VECTOR: {
5769      auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
5770      BitVector UndefElements;
5771      SDValue Splat = BVOp->getSplatValue(&UndefElements);
5772
5773      // We need a splat of a single value to use broadcast, and it doesn't
5774      // make any sense if the value is only in one element of the vector.
5775      if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
5776        return SDValue();
5777
5778      Ld = Splat;
5779      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5780                       Ld.getOpcode() == ISD::ConstantFP);
5781
5782      // Make sure that all of the users of a non-constant load are from the
5783      // BUILD_VECTOR node.
5784      if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
5785        return SDValue();
5786      break;
5787    }
5788
5789    case ISD::VECTOR_SHUFFLE: {
5790      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5791
5792      // Shuffles must have a splat mask where the first element is
5793      // broadcasted.
5794      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5795        return SDValue();
5796
5797      SDValue Sc = Op.getOperand(0);
5798      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5799          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5800
5801        if (!Subtarget->hasInt256())
5802          return SDValue();
5803
5804        // Use the register form of the broadcast instruction available on AVX2.
5805        if (VT.getSizeInBits() >= 256)
5806          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5807        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5808      }
5809
5810      Ld = Sc.getOperand(0);
5811      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5812                       Ld.getOpcode() == ISD::ConstantFP);
5813
5814      // The scalar_to_vector node and the suspected
5815      // load node must have exactly one user.
5816      // Constants may have multiple users.
5817
5818      // AVX-512 has register version of the broadcast
5819      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5820        Ld.getValueType().getSizeInBits() >= 32;
5821      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5822          !hasRegVer))
5823        return SDValue();
5824      break;
5825    }
5826  }
5827
5828  bool IsGE256 = (VT.getSizeInBits() >= 256);
5829
5830  // Handle the broadcasting a single constant scalar from the constant pool
5831  // into a vector. On Sandybridge it is still better to load a constant vector
5832  // from the constant pool and not to broadcast it from a scalar.
5833  if (ConstSplatVal && Subtarget->hasInt256()) {
5834    EVT CVT = Ld.getValueType();
5835    assert(!CVT.isVector() && "Must not broadcast a vector type");
5836    unsigned ScalarSize = CVT.getSizeInBits();
5837
5838    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5839      const Constant *C = nullptr;
5840      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5841        C = CI->getConstantIntValue();
5842      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5843        C = CF->getConstantFPValue();
5844
5845      assert(C && "Invalid constant type");
5846
5847      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5848      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5849      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5850      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5851                       MachinePointerInfo::getConstantPool(),
5852                       false, false, false, Alignment);
5853
5854      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5855    }
5856  }
5857
5858  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5859  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5860
5861  // Handle AVX2 in-register broadcasts.
5862  if (!IsLoad && Subtarget->hasInt256() &&
5863      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5864    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5865
5866  // The scalar source must be a normal load.
5867  if (!IsLoad)
5868    return SDValue();
5869
5870  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5871    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5872
5873  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5874  // double since there is no vbroadcastsd xmm
5875  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5876    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5877      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5878  }
5879
5880  // Unsupported broadcast.
5881  return SDValue();
5882}
5883
5884/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
5885/// underlying vector and index.
5886///
5887/// Modifies \p ExtractedFromVec to the real vector and returns the real
5888/// index.
5889static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
5890                                         SDValue ExtIdx) {
5891  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5892  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
5893    return Idx;
5894
5895  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
5896  // lowered this:
5897  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
5898  // to:
5899  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
5900  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
5901  //                           undef)
5902  //                       Constant<0>)
5903  // In this case the vector is the extract_subvector expression and the index
5904  // is 2, as specified by the shuffle.
5905  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
5906  SDValue ShuffleVec = SVOp->getOperand(0);
5907  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
5908  assert(ShuffleVecVT.getVectorElementType() ==
5909         ExtractedFromVec.getSimpleValueType().getVectorElementType());
5910
5911  int ShuffleIdx = SVOp->getMaskElt(Idx);
5912  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
5913    ExtractedFromVec = ShuffleVec;
5914    return ShuffleIdx;
5915  }
5916  return Idx;
5917}
5918
5919static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5920  MVT VT = Op.getSimpleValueType();
5921
5922  // Skip if insert_vec_elt is not supported.
5923  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5924  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5925    return SDValue();
5926
5927  SDLoc DL(Op);
5928  unsigned NumElems = Op.getNumOperands();
5929
5930  SDValue VecIn1;
5931  SDValue VecIn2;
5932  SmallVector<unsigned, 4> InsertIndices;
5933  SmallVector<int, 8> Mask(NumElems, -1);
5934
5935  for (unsigned i = 0; i != NumElems; ++i) {
5936    unsigned Opc = Op.getOperand(i).getOpcode();
5937
5938    if (Opc == ISD::UNDEF)
5939      continue;
5940
5941    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5942      // Quit if more than 1 elements need inserting.
5943      if (InsertIndices.size() > 1)
5944        return SDValue();
5945
5946      InsertIndices.push_back(i);
5947      continue;
5948    }
5949
5950    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5951    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5952    // Quit if non-constant index.
5953    if (!isa<ConstantSDNode>(ExtIdx))
5954      return SDValue();
5955    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
5956
5957    // Quit if extracted from vector of different type.
5958    if (ExtractedFromVec.getValueType() != VT)
5959      return SDValue();
5960
5961    if (!VecIn1.getNode())
5962      VecIn1 = ExtractedFromVec;
5963    else if (VecIn1 != ExtractedFromVec) {
5964      if (!VecIn2.getNode())
5965        VecIn2 = ExtractedFromVec;
5966      else if (VecIn2 != ExtractedFromVec)
5967        // Quit if more than 2 vectors to shuffle
5968        return SDValue();
5969    }
5970
5971    if (ExtractedFromVec == VecIn1)
5972      Mask[i] = Idx;
5973    else if (ExtractedFromVec == VecIn2)
5974      Mask[i] = Idx + NumElems;
5975  }
5976
5977  if (!VecIn1.getNode())
5978    return SDValue();
5979
5980  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5981  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5982  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5983    unsigned Idx = InsertIndices[i];
5984    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5985                     DAG.getIntPtrConstant(Idx));
5986  }
5987
5988  return NV;
5989}
5990
5991// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5992SDValue
5993X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5994
5995  MVT VT = Op.getSimpleValueType();
5996  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5997         "Unexpected type in LowerBUILD_VECTORvXi1!");
5998
5999  SDLoc dl(Op);
6000  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6001    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
6002    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
6003    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
6004  }
6005
6006  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
6007    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
6008    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
6009    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
6010  }
6011
6012  bool AllContants = true;
6013  uint64_t Immediate = 0;
6014  int NonConstIdx = -1;
6015  bool IsSplat = true;
6016  unsigned NumNonConsts = 0;
6017  unsigned NumConsts = 0;
6018  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
6019    SDValue In = Op.getOperand(idx);
6020    if (In.getOpcode() == ISD::UNDEF)
6021      continue;
6022    if (!isa<ConstantSDNode>(In)) {
6023      AllContants = false;
6024      NonConstIdx = idx;
6025      NumNonConsts++;
6026    }
6027    else {
6028      NumConsts++;
6029      if (cast<ConstantSDNode>(In)->getZExtValue())
6030      Immediate |= (1ULL << idx);
6031    }
6032    if (In != Op.getOperand(0))
6033      IsSplat = false;
6034  }
6035
6036  if (AllContants) {
6037    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
6038      DAG.getConstant(Immediate, MVT::i16));
6039    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
6040                       DAG.getIntPtrConstant(0));
6041  }
6042
6043  if (NumNonConsts == 1 && NonConstIdx != 0) {
6044    SDValue DstVec;
6045    if (NumConsts) {
6046      SDValue VecAsImm = DAG.getConstant(Immediate,
6047                                         MVT::getIntegerVT(VT.getSizeInBits()));
6048      DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
6049    }
6050    else
6051      DstVec = DAG.getUNDEF(VT);
6052    return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6053                       Op.getOperand(NonConstIdx),
6054                       DAG.getIntPtrConstant(NonConstIdx));
6055  }
6056  if (!IsSplat && (NonConstIdx != 0))
6057    llvm_unreachable("Unsupported BUILD_VECTOR operation");
6058  MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
6059  SDValue Select;
6060  if (IsSplat)
6061    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6062                          DAG.getConstant(-1, SelectVT),
6063                          DAG.getConstant(0, SelectVT));
6064  else
6065    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6066                         DAG.getConstant((Immediate | 1), SelectVT),
6067                         DAG.getConstant(Immediate, SelectVT));
6068  return DAG.getNode(ISD::BITCAST, dl, VT, Select);
6069}
6070
6071/// \brief Return true if \p N implements a horizontal binop and return the
6072/// operands for the horizontal binop into V0 and V1.
6073///
6074/// This is a helper function of PerformBUILD_VECTORCombine.
6075/// This function checks that the build_vector \p N in input implements a
6076/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
6077/// operation to match.
6078/// For example, if \p Opcode is equal to ISD::ADD, then this function
6079/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
6080/// is equal to ISD::SUB, then this function checks if this is a horizontal
6081/// arithmetic sub.
6082///
6083/// This function only analyzes elements of \p N whose indices are
6084/// in range [BaseIdx, LastIdx).
6085static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
6086                              SelectionDAG &DAG,
6087                              unsigned BaseIdx, unsigned LastIdx,
6088                              SDValue &V0, SDValue &V1) {
6089  EVT VT = N->getValueType(0);
6090
6091  assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
6092  assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
6093         "Invalid Vector in input!");
6094
6095  bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
6096  bool CanFold = true;
6097  unsigned ExpectedVExtractIdx = BaseIdx;
6098  unsigned NumElts = LastIdx - BaseIdx;
6099  V0 = DAG.getUNDEF(VT);
6100  V1 = DAG.getUNDEF(VT);
6101
6102  // Check if N implements a horizontal binop.
6103  for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
6104    SDValue Op = N->getOperand(i + BaseIdx);
6105
6106    // Skip UNDEFs.
6107    if (Op->getOpcode() == ISD::UNDEF) {
6108      // Update the expected vector extract index.
6109      if (i * 2 == NumElts)
6110        ExpectedVExtractIdx = BaseIdx;
6111      ExpectedVExtractIdx += 2;
6112      continue;
6113    }
6114
6115    CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
6116
6117    if (!CanFold)
6118      break;
6119
6120    SDValue Op0 = Op.getOperand(0);
6121    SDValue Op1 = Op.getOperand(1);
6122
6123    // Try to match the following pattern:
6124    // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
6125    CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6126        Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6127        Op0.getOperand(0) == Op1.getOperand(0) &&
6128        isa<ConstantSDNode>(Op0.getOperand(1)) &&
6129        isa<ConstantSDNode>(Op1.getOperand(1)));
6130    if (!CanFold)
6131      break;
6132
6133    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
6134    unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
6135
6136    if (i * 2 < NumElts) {
6137      if (V0.getOpcode() == ISD::UNDEF)
6138        V0 = Op0.getOperand(0);
6139    } else {
6140      if (V1.getOpcode() == ISD::UNDEF)
6141        V1 = Op0.getOperand(0);
6142      if (i * 2 == NumElts)
6143        ExpectedVExtractIdx = BaseIdx;
6144    }
6145
6146    SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
6147    if (I0 == ExpectedVExtractIdx)
6148      CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
6149    else if (IsCommutable && I1 == ExpectedVExtractIdx) {
6150      // Try to match the following dag sequence:
6151      // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
6152      CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
6153    } else
6154      CanFold = false;
6155
6156    ExpectedVExtractIdx += 2;
6157  }
6158
6159  return CanFold;
6160}
6161
6162/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
6163/// a concat_vector.
6164///
6165/// This is a helper function of PerformBUILD_VECTORCombine.
6166/// This function expects two 256-bit vectors called V0 and V1.
6167/// At first, each vector is split into two separate 128-bit vectors.
6168/// Then, the resulting 128-bit vectors are used to implement two
6169/// horizontal binary operations.
6170///
6171/// The kind of horizontal binary operation is defined by \p X86Opcode.
6172///
6173/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
6174/// the two new horizontal binop.
6175/// When Mode is set, the first horizontal binop dag node would take as input
6176/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
6177/// horizontal binop dag node would take as input the lower 128-bit of V1
6178/// and the upper 128-bit of V1.
6179///   Example:
6180///     HADD V0_LO, V0_HI
6181///     HADD V1_LO, V1_HI
6182///
6183/// Otherwise, the first horizontal binop dag node takes as input the lower
6184/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
6185/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
6186///   Example:
6187///     HADD V0_LO, V1_LO
6188///     HADD V0_HI, V1_HI
6189///
6190/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
6191/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
6192/// the upper 128-bits of the result.
6193static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
6194                                     SDLoc DL, SelectionDAG &DAG,
6195                                     unsigned X86Opcode, bool Mode,
6196                                     bool isUndefLO, bool isUndefHI) {
6197  EVT VT = V0.getValueType();
6198  assert(VT.is256BitVector() && VT == V1.getValueType() &&
6199         "Invalid nodes in input!");
6200
6201  unsigned NumElts = VT.getVectorNumElements();
6202  SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
6203  SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
6204  SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
6205  SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
6206  EVT NewVT = V0_LO.getValueType();
6207
6208  SDValue LO = DAG.getUNDEF(NewVT);
6209  SDValue HI = DAG.getUNDEF(NewVT);
6210
6211  if (Mode) {
6212    // Don't emit a horizontal binop if the result is expected to be UNDEF.
6213    if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
6214      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
6215    if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
6216      HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
6217  } else {
6218    // Don't emit a horizontal binop if the result is expected to be UNDEF.
6219    if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
6220                       V1_LO->getOpcode() != ISD::UNDEF))
6221      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
6222
6223    if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
6224                       V1_HI->getOpcode() != ISD::UNDEF))
6225      HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
6226  }
6227
6228  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
6229}
6230
6231/// \brief Try to fold a build_vector that performs an 'addsub' into the
6232/// sequence of 'vadd + vsub + blendi'.
6233static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
6234                           const X86Subtarget *Subtarget) {
6235  SDLoc DL(BV);
6236  EVT VT = BV->getValueType(0);
6237  unsigned NumElts = VT.getVectorNumElements();
6238  SDValue InVec0 = DAG.getUNDEF(VT);
6239  SDValue InVec1 = DAG.getUNDEF(VT);
6240
6241  assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
6242          VT == MVT::v2f64) && "build_vector with an invalid type found!");
6243
6244  // Don't try to emit a VSELECT that cannot be lowered into a blend.
6245  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6246  if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
6247    return SDValue();
6248
6249  // Odd-numbered elements in the input build vector are obtained from
6250  // adding two integer/float elements.
6251  // Even-numbered elements in the input build vector are obtained from
6252  // subtracting two integer/float elements.
6253  unsigned ExpectedOpcode = ISD::FSUB;
6254  unsigned NextExpectedOpcode = ISD::FADD;
6255  bool AddFound = false;
6256  bool SubFound = false;
6257
6258  for (unsigned i = 0, e = NumElts; i != e; i++) {
6259    SDValue Op = BV->getOperand(i);
6260
6261    // Skip 'undef' values.
6262    unsigned Opcode = Op.getOpcode();
6263    if (Opcode == ISD::UNDEF) {
6264      std::swap(ExpectedOpcode, NextExpectedOpcode);
6265      continue;
6266    }
6267
6268    // Early exit if we found an unexpected opcode.
6269    if (Opcode != ExpectedOpcode)
6270      return SDValue();
6271
6272    SDValue Op0 = Op.getOperand(0);
6273    SDValue Op1 = Op.getOperand(1);
6274
6275    // Try to match the following pattern:
6276    // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
6277    // Early exit if we cannot match that sequence.
6278    if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6279        Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6280        !isa<ConstantSDNode>(Op0.getOperand(1)) ||
6281        !isa<ConstantSDNode>(Op1.getOperand(1)) ||
6282        Op0.getOperand(1) != Op1.getOperand(1))
6283      return SDValue();
6284
6285    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
6286    if (I0 != i)
6287      return SDValue();
6288
6289    // We found a valid add/sub node. Update the information accordingly.
6290    if (i & 1)
6291      AddFound = true;
6292    else
6293      SubFound = true;
6294
6295    // Update InVec0 and InVec1.
6296    if (InVec0.getOpcode() == ISD::UNDEF)
6297      InVec0 = Op0.getOperand(0);
6298    if (InVec1.getOpcode() == ISD::UNDEF)
6299      InVec1 = Op1.getOperand(0);
6300
6301    // Make sure that operands in input to each add/sub node always
6302    // come from a same pair of vectors.
6303    if (InVec0 != Op0.getOperand(0)) {
6304      if (ExpectedOpcode == ISD::FSUB)
6305        return SDValue();
6306
6307      // FADD is commutable. Try to commute the operands
6308      // and then test again.
6309      std::swap(Op0, Op1);
6310      if (InVec0 != Op0.getOperand(0))
6311        return SDValue();
6312    }
6313
6314    if (InVec1 != Op1.getOperand(0))
6315      return SDValue();
6316
6317    // Update the pair of expected opcodes.
6318    std::swap(ExpectedOpcode, NextExpectedOpcode);
6319  }
6320
6321  // Don't try to fold this build_vector into a VSELECT if it has
6322  // too many UNDEF operands.
6323  if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
6324      InVec1.getOpcode() != ISD::UNDEF) {
6325    // Emit a sequence of vector add and sub followed by a VSELECT.
6326    // The new VSELECT will be lowered into a BLENDI.
6327    // At ISel stage, we pattern-match the sequence 'add + sub + BLENDI'
6328    // and emit a single ADDSUB instruction.
6329    SDValue Sub = DAG.getNode(ExpectedOpcode, DL, VT, InVec0, InVec1);
6330    SDValue Add = DAG.getNode(NextExpectedOpcode, DL, VT, InVec0, InVec1);
6331
6332    // Construct the VSELECT mask.
6333    EVT MaskVT = VT.changeVectorElementTypeToInteger();
6334    EVT SVT = MaskVT.getVectorElementType();
6335    unsigned SVTBits = SVT.getSizeInBits();
6336    SmallVector<SDValue, 8> Ops;
6337
6338    for (unsigned i = 0, e = NumElts; i != e; ++i) {
6339      APInt Value = i & 1 ? APInt::getNullValue(SVTBits) :
6340                            APInt::getAllOnesValue(SVTBits);
6341      SDValue Constant = DAG.getConstant(Value, SVT);
6342      Ops.push_back(Constant);
6343    }
6344
6345    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVT, Ops);
6346    return DAG.getSelect(DL, VT, Mask, Sub, Add);
6347  }
6348
6349  return SDValue();
6350}
6351
6352static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
6353                                          const X86Subtarget *Subtarget) {
6354  SDLoc DL(N);
6355  EVT VT = N->getValueType(0);
6356  unsigned NumElts = VT.getVectorNumElements();
6357  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
6358  SDValue InVec0, InVec1;
6359
6360  // Try to match an ADDSUB.
6361  if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
6362      (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
6363    SDValue Value = matchAddSub(BV, DAG, Subtarget);
6364    if (Value.getNode())
6365      return Value;
6366  }
6367
6368  // Try to match horizontal ADD/SUB.
6369  unsigned NumUndefsLO = 0;
6370  unsigned NumUndefsHI = 0;
6371  unsigned Half = NumElts/2;
6372
6373  // Count the number of UNDEF operands in the build_vector in input.
6374  for (unsigned i = 0, e = Half; i != e; ++i)
6375    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6376      NumUndefsLO++;
6377
6378  for (unsigned i = Half, e = NumElts; i != e; ++i)
6379    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6380      NumUndefsHI++;
6381
6382  // Early exit if this is either a build_vector of all UNDEFs or all the
6383  // operands but one are UNDEF.
6384  if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
6385    return SDValue();
6386
6387  if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
6388    // Try to match an SSE3 float HADD/HSUB.
6389    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6390      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6391
6392    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6393      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6394  } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
6395    // Try to match an SSSE3 integer HADD/HSUB.
6396    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6397      return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
6398
6399    if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6400      return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
6401  }
6402
6403  if (!Subtarget->hasAVX())
6404    return SDValue();
6405
6406  if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
6407    // Try to match an AVX horizontal add/sub of packed single/double
6408    // precision floating point values from 256-bit vectors.
6409    SDValue InVec2, InVec3;
6410    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
6411        isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
6412        ((InVec0.getOpcode() == ISD::UNDEF ||
6413          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6414        ((InVec1.getOpcode() == ISD::UNDEF ||
6415          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6416      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6417
6418    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
6419        isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
6420        ((InVec0.getOpcode() == ISD::UNDEF ||
6421          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6422        ((InVec1.getOpcode() == ISD::UNDEF ||
6423          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6424      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6425  } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
6426    // Try to match an AVX2 horizontal add/sub of signed integers.
6427    SDValue InVec2, InVec3;
6428    unsigned X86Opcode;
6429    bool CanFold = true;
6430
6431    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
6432        isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
6433        ((InVec0.getOpcode() == ISD::UNDEF ||
6434          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6435        ((InVec1.getOpcode() == ISD::UNDEF ||
6436          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6437      X86Opcode = X86ISD::HADD;
6438    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
6439        isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
6440        ((InVec0.getOpcode() == ISD::UNDEF ||
6441          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6442        ((InVec1.getOpcode() == ISD::UNDEF ||
6443          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6444      X86Opcode = X86ISD::HSUB;
6445    else
6446      CanFold = false;
6447
6448    if (CanFold) {
6449      // Fold this build_vector into a single horizontal add/sub.
6450      // Do this only if the target has AVX2.
6451      if (Subtarget->hasAVX2())
6452        return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
6453
6454      // Do not try to expand this build_vector into a pair of horizontal
6455      // add/sub if we can emit a pair of scalar add/sub.
6456      if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6457        return SDValue();
6458
6459      // Convert this build_vector into a pair of horizontal binop followed by
6460      // a concat vector.
6461      bool isUndefLO = NumUndefsLO == Half;
6462      bool isUndefHI = NumUndefsHI == Half;
6463      return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
6464                                   isUndefLO, isUndefHI);
6465    }
6466  }
6467
6468  if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
6469       VT == MVT::v16i16) && Subtarget->hasAVX()) {
6470    unsigned X86Opcode;
6471    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6472      X86Opcode = X86ISD::HADD;
6473    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6474      X86Opcode = X86ISD::HSUB;
6475    else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6476      X86Opcode = X86ISD::FHADD;
6477    else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6478      X86Opcode = X86ISD::FHSUB;
6479    else
6480      return SDValue();
6481
6482    // Don't try to expand this build_vector into a pair of horizontal add/sub
6483    // if we can simply emit a pair of scalar add/sub.
6484    if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6485      return SDValue();
6486
6487    // Convert this build_vector into two horizontal add/sub followed by
6488    // a concat vector.
6489    bool isUndefLO = NumUndefsLO == Half;
6490    bool isUndefHI = NumUndefsHI == Half;
6491    return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
6492                                 isUndefLO, isUndefHI);
6493  }
6494
6495  return SDValue();
6496}
6497
6498SDValue
6499X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6500  SDLoc dl(Op);
6501
6502  MVT VT = Op.getSimpleValueType();
6503  MVT ExtVT = VT.getVectorElementType();
6504  unsigned NumElems = Op.getNumOperands();
6505
6506  // Generate vectors for predicate vectors.
6507  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
6508    return LowerBUILD_VECTORvXi1(Op, DAG);
6509
6510  // Vectors containing all zeros can be matched by pxor and xorps later
6511  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6512    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
6513    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
6514    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
6515      return Op;
6516
6517    return getZeroVector(VT, Subtarget, DAG, dl);
6518  }
6519
6520  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
6521  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
6522  // vpcmpeqd on 256-bit vectors.
6523  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
6524    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
6525      return Op;
6526
6527    if (!VT.is512BitVector())
6528      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
6529  }
6530
6531  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
6532  if (Broadcast.getNode())
6533    return Broadcast;
6534
6535  unsigned EVTBits = ExtVT.getSizeInBits();
6536
6537  unsigned NumZero  = 0;
6538  unsigned NumNonZero = 0;
6539  unsigned NonZeros = 0;
6540  bool IsAllConstants = true;
6541  SmallSet<SDValue, 8> Values;
6542  for (unsigned i = 0; i < NumElems; ++i) {
6543    SDValue Elt = Op.getOperand(i);
6544    if (Elt.getOpcode() == ISD::UNDEF)
6545      continue;
6546    Values.insert(Elt);
6547    if (Elt.getOpcode() != ISD::Constant &&
6548        Elt.getOpcode() != ISD::ConstantFP)
6549      IsAllConstants = false;
6550    if (X86::isZeroNode(Elt))
6551      NumZero++;
6552    else {
6553      NonZeros |= (1 << i);
6554      NumNonZero++;
6555    }
6556  }
6557
6558  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
6559  if (NumNonZero == 0)
6560    return DAG.getUNDEF(VT);
6561
6562  // Special case for single non-zero, non-undef, element.
6563  if (NumNonZero == 1) {
6564    unsigned Idx = countTrailingZeros(NonZeros);
6565    SDValue Item = Op.getOperand(Idx);
6566
6567    // If this is an insertion of an i64 value on x86-32, and if the top bits of
6568    // the value are obviously zero, truncate the value to i32 and do the
6569    // insertion that way.  Only do this if the value is non-constant or if the
6570    // value is a constant being inserted into element 0.  It is cheaper to do
6571    // a constant pool load than it is to do a movd + shuffle.
6572    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
6573        (!IsAllConstants || Idx == 0)) {
6574      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
6575        // Handle SSE only.
6576        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
6577        EVT VecVT = MVT::v4i32;
6578        unsigned VecElts = 4;
6579
6580        // Truncate the value (which may itself be a constant) to i32, and
6581        // convert it to a vector with movd (S2V+shuffle to zero extend).
6582        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
6583        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
6584        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6585
6586        // Now we have our 32-bit value zero extended in the low element of
6587        // a vector.  If Idx != 0, swizzle it into place.
6588        if (Idx != 0) {
6589          SmallVector<int, 4> Mask;
6590          Mask.push_back(Idx);
6591          for (unsigned i = 1; i != VecElts; ++i)
6592            Mask.push_back(i);
6593          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
6594                                      &Mask[0]);
6595        }
6596        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6597      }
6598    }
6599
6600    // If we have a constant or non-constant insertion into the low element of
6601    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
6602    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
6603    // depending on what the source datatype is.
6604    if (Idx == 0) {
6605      if (NumZero == 0)
6606        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6607
6608      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
6609          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
6610        if (VT.is256BitVector() || VT.is512BitVector()) {
6611          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
6612          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
6613                             Item, DAG.getIntPtrConstant(0));
6614        }
6615        assert(VT.is128BitVector() && "Expected an SSE value type!");
6616        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6617        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
6618        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6619      }
6620
6621      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
6622        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
6623        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
6624        if (VT.is256BitVector()) {
6625          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
6626          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
6627        } else {
6628          assert(VT.is128BitVector() && "Expected an SSE value type!");
6629          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6630        }
6631        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6632      }
6633    }
6634
6635    // Is it a vector logical left shift?
6636    if (NumElems == 2 && Idx == 1 &&
6637        X86::isZeroNode(Op.getOperand(0)) &&
6638        !X86::isZeroNode(Op.getOperand(1))) {
6639      unsigned NumBits = VT.getSizeInBits();
6640      return getVShift(true, VT,
6641                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6642                                   VT, Op.getOperand(1)),
6643                       NumBits/2, DAG, *this, dl);
6644    }
6645
6646    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
6647      return SDValue();
6648
6649    // Otherwise, if this is a vector with i32 or f32 elements, and the element
6650    // is a non-constant being inserted into an element other than the low one,
6651    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
6652    // movd/movss) to move this into the low element, then shuffle it into
6653    // place.
6654    if (EVTBits == 32) {
6655      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6656
6657      // Turn it into a shuffle of zero and zero-extended scalar to vector.
6658      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
6659      SmallVector<int, 8> MaskVec;
6660      for (unsigned i = 0; i != NumElems; ++i)
6661        MaskVec.push_back(i == Idx ? 0 : 1);
6662      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
6663    }
6664  }
6665
6666  // Splat is obviously ok. Let legalizer expand it to a shuffle.
6667  if (Values.size() == 1) {
6668    if (EVTBits == 32) {
6669      // Instead of a shuffle like this:
6670      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
6671      // Check if it's possible to issue this instead.
6672      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
6673      unsigned Idx = countTrailingZeros(NonZeros);
6674      SDValue Item = Op.getOperand(Idx);
6675      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
6676        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
6677    }
6678    return SDValue();
6679  }
6680
6681  // A vector full of immediates; various special cases are already
6682  // handled, so this is best done with a single constant-pool load.
6683  if (IsAllConstants)
6684    return SDValue();
6685
6686  // For AVX-length vectors, build the individual 128-bit pieces and use
6687  // shuffles to put them in place.
6688  if (VT.is256BitVector() || VT.is512BitVector()) {
6689    SmallVector<SDValue, 64> V;
6690    for (unsigned i = 0; i != NumElems; ++i)
6691      V.push_back(Op.getOperand(i));
6692
6693    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
6694
6695    // Build both the lower and upper subvector.
6696    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6697                                makeArrayRef(&V[0], NumElems/2));
6698    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6699                                makeArrayRef(&V[NumElems / 2], NumElems/2));
6700
6701    // Recreate the wider vector with the lower and upper part.
6702    if (VT.is256BitVector())
6703      return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6704    return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6705  }
6706
6707  // Let legalizer expand 2-wide build_vectors.
6708  if (EVTBits == 64) {
6709    if (NumNonZero == 1) {
6710      // One half is zero or undef.
6711      unsigned Idx = countTrailingZeros(NonZeros);
6712      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6713                                 Op.getOperand(Idx));
6714      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6715    }
6716    return SDValue();
6717  }
6718
6719  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6720  if (EVTBits == 8 && NumElems == 16) {
6721    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6722                                        Subtarget, *this);
6723    if (V.getNode()) return V;
6724  }
6725
6726  if (EVTBits == 16 && NumElems == 8) {
6727    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6728                                      Subtarget, *this);
6729    if (V.getNode()) return V;
6730  }
6731
6732  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
6733  if (EVTBits == 32 && NumElems == 4) {
6734    SDValue V = LowerBuildVectorv4x32(Op, NumElems, NonZeros, NumNonZero,
6735                                      NumZero, DAG, Subtarget, *this);
6736    if (V.getNode())
6737      return V;
6738  }
6739
6740  // If element VT is == 32 bits, turn it into a number of shuffles.
6741  SmallVector<SDValue, 8> V(NumElems);
6742  if (NumElems == 4 && NumZero > 0) {
6743    for (unsigned i = 0; i < 4; ++i) {
6744      bool isZero = !(NonZeros & (1 << i));
6745      if (isZero)
6746        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6747      else
6748        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6749    }
6750
6751    for (unsigned i = 0; i < 2; ++i) {
6752      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6753        default: break;
6754        case 0:
6755          V[i] = V[i*2];  // Must be a zero vector.
6756          break;
6757        case 1:
6758          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6759          break;
6760        case 2:
6761          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6762          break;
6763        case 3:
6764          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6765          break;
6766      }
6767    }
6768
6769    bool Reverse1 = (NonZeros & 0x3) == 2;
6770    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6771    int MaskVec[] = {
6772      Reverse1 ? 1 : 0,
6773      Reverse1 ? 0 : 1,
6774      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6775      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6776    };
6777    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6778  }
6779
6780  if (Values.size() > 1 && VT.is128BitVector()) {
6781    // Check for a build vector of consecutive loads.
6782    for (unsigned i = 0; i < NumElems; ++i)
6783      V[i] = Op.getOperand(i);
6784
6785    // Check for elements which are consecutive loads.
6786    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
6787    if (LD.getNode())
6788      return LD;
6789
6790    // Check for a build vector from mostly shuffle plus few inserting.
6791    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6792    if (Sh.getNode())
6793      return Sh;
6794
6795    // For SSE 4.1, use insertps to put the high elements into the low element.
6796    if (getSubtarget()->hasSSE41()) {
6797      SDValue Result;
6798      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6799        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6800      else
6801        Result = DAG.getUNDEF(VT);
6802
6803      for (unsigned i = 1; i < NumElems; ++i) {
6804        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6805        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6806                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6807      }
6808      return Result;
6809    }
6810
6811    // Otherwise, expand into a number of unpckl*, start by extending each of
6812    // our (non-undef) elements to the full vector width with the element in the
6813    // bottom slot of the vector (which generates no code for SSE).
6814    for (unsigned i = 0; i < NumElems; ++i) {
6815      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6816        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6817      else
6818        V[i] = DAG.getUNDEF(VT);
6819    }
6820
6821    // Next, we iteratively mix elements, e.g. for v4f32:
6822    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6823    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6824    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6825    unsigned EltStride = NumElems >> 1;
6826    while (EltStride != 0) {
6827      for (unsigned i = 0; i < EltStride; ++i) {
6828        // If V[i+EltStride] is undef and this is the first round of mixing,
6829        // then it is safe to just drop this shuffle: V[i] is already in the
6830        // right place, the one element (since it's the first round) being
6831        // inserted as undef can be dropped.  This isn't safe for successive
6832        // rounds because they will permute elements within both vectors.
6833        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6834            EltStride == NumElems/2)
6835          continue;
6836
6837        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6838      }
6839      EltStride >>= 1;
6840    }
6841    return V[0];
6842  }
6843  return SDValue();
6844}
6845
6846// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6847// to create 256-bit vectors from two other 128-bit ones.
6848static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6849  SDLoc dl(Op);
6850  MVT ResVT = Op.getSimpleValueType();
6851
6852  assert((ResVT.is256BitVector() ||
6853          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6854
6855  SDValue V1 = Op.getOperand(0);
6856  SDValue V2 = Op.getOperand(1);
6857  unsigned NumElems = ResVT.getVectorNumElements();
6858  if(ResVT.is256BitVector())
6859    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6860
6861  if (Op.getNumOperands() == 4) {
6862    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
6863                                ResVT.getVectorNumElements()/2);
6864    SDValue V3 = Op.getOperand(2);
6865    SDValue V4 = Op.getOperand(3);
6866    return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
6867      Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
6868  }
6869  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6870}
6871
6872static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6873  MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
6874  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
6875         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
6876          Op.getNumOperands() == 4)));
6877
6878  // AVX can use the vinsertf128 instruction to create 256-bit vectors
6879  // from two other 128-bit ones.
6880
6881  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
6882  return LowerAVXCONCAT_VECTORS(Op, DAG);
6883}
6884
6885
6886//===----------------------------------------------------------------------===//
6887// Vector shuffle lowering
6888//
6889// This is an experimental code path for lowering vector shuffles on x86. It is
6890// designed to handle arbitrary vector shuffles and blends, gracefully
6891// degrading performance as necessary. It works hard to recognize idiomatic
6892// shuffles and lower them to optimal instruction patterns without leaving
6893// a framework that allows reasonably efficient handling of all vector shuffle
6894// patterns.
6895//===----------------------------------------------------------------------===//
6896
6897/// \brief Tiny helper function to identify a no-op mask.
6898///
6899/// This is a somewhat boring predicate function. It checks whether the mask
6900/// array input, which is assumed to be a single-input shuffle mask of the kind
6901/// used by the X86 shuffle instructions (not a fully general
6902/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
6903/// in-place shuffle are 'no-op's.
6904static bool isNoopShuffleMask(ArrayRef<int> Mask) {
6905  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6906    if (Mask[i] != -1 && Mask[i] != i)
6907      return false;
6908  return true;
6909}
6910
6911/// \brief Helper function to classify a mask as a single-input mask.
6912///
6913/// This isn't a generic single-input test because in the vector shuffle
6914/// lowering we canonicalize single inputs to be the first input operand. This
6915/// means we can more quickly test for a single input by only checking whether
6916/// an input from the second operand exists. We also assume that the size of
6917/// mask corresponds to the size of the input vectors which isn't true in the
6918/// fully general case.
6919static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
6920  for (int M : Mask)
6921    if (M >= (int)Mask.size())
6922      return false;
6923  return true;
6924}
6925
6926/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
6927///
6928/// This helper function produces an 8-bit shuffle immediate corresponding to
6929/// the ubiquitous shuffle encoding scheme used in x86 instructions for
6930/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
6931/// example.
6932///
6933/// NB: We rely heavily on "undef" masks preserving the input lane.
6934static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
6935                                          SelectionDAG &DAG) {
6936  assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
6937  assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
6938  assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
6939  assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
6940  assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
6941
6942  unsigned Imm = 0;
6943  Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
6944  Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
6945  Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
6946  Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
6947  return DAG.getConstant(Imm, MVT::i8);
6948}
6949
6950/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
6951///
6952/// This is the basis function for the 2-lane 64-bit shuffles as we have full
6953/// support for floating point shuffles but not integer shuffles. These
6954/// instructions will incur a domain crossing penalty on some chips though so
6955/// it is better to avoid lowering through this for integer vectors where
6956/// possible.
6957static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
6958                                       const X86Subtarget *Subtarget,
6959                                       SelectionDAG &DAG) {
6960  SDLoc DL(Op);
6961  assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
6962  assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
6963  assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
6964  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6965  ArrayRef<int> Mask = SVOp->getMask();
6966  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
6967
6968  if (isSingleInputShuffleMask(Mask)) {
6969    // Straight shuffle of a single input vector. Simulate this by using the
6970    // single input as both of the "inputs" to this instruction..
6971    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
6972    return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
6973                       DAG.getConstant(SHUFPDMask, MVT::i8));
6974  }
6975  assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
6976  assert(Mask[1] >= 2 && "Non-canonicalized blend!");
6977
6978  unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
6979  return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
6980                     DAG.getConstant(SHUFPDMask, MVT::i8));
6981}
6982
6983/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
6984///
6985/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
6986/// the integer unit to minimize domain crossing penalties. However, for blends
6987/// it falls back to the floating point shuffle operation with appropriate bit
6988/// casting.
6989static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
6990                                       const X86Subtarget *Subtarget,
6991                                       SelectionDAG &DAG) {
6992  SDLoc DL(Op);
6993  assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
6994  assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
6995  assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
6996  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6997  ArrayRef<int> Mask = SVOp->getMask();
6998  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
6999
7000  if (isSingleInputShuffleMask(Mask)) {
7001    // Straight shuffle of a single input vector. For everything from SSE2
7002    // onward this has a single fast instruction with no scary immediates.
7003    // We have to map the mask as it is actually a v4i32 shuffle instruction.
7004    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
7005    int WidenedMask[4] = {
7006        std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
7007        std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
7008    return DAG.getNode(
7009        ISD::BITCAST, DL, MVT::v2i64,
7010        DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
7011                    getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
7012  }
7013
7014  // We implement this with SHUFPD which is pretty lame because it will likely
7015  // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
7016  // However, all the alternatives are still more cycles and newer chips don't
7017  // have this problem. It would be really nice if x86 had better shuffles here.
7018  V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
7019  V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
7020  return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7021                     DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
7022}
7023
7024/// \brief Lower 4-lane 32-bit floating point shuffles.
7025///
7026/// Uses instructions exclusively from the floating point unit to minimize
7027/// domain crossing penalties, as these are sufficient to implement all v4f32
7028/// shuffles.
7029static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7030                                       const X86Subtarget *Subtarget,
7031                                       SelectionDAG &DAG) {
7032  SDLoc DL(Op);
7033  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
7034  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7035  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7036  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7037  ArrayRef<int> Mask = SVOp->getMask();
7038  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7039
7040  SDValue LowV = V1, HighV = V2;
7041  int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
7042
7043  int NumV2Elements =
7044      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7045
7046  if (NumV2Elements == 0)
7047    // Straight shuffle of a single input vector. We pass the input vector to
7048    // both operands to simulate this with a SHUFPS.
7049    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
7050                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7051
7052  if (NumV2Elements == 1) {
7053    int V2Index =
7054        std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
7055        Mask.begin();
7056    // Compute the index adjacent to V2Index and in the same half by toggling
7057    // the low bit.
7058    int V2AdjIndex = V2Index ^ 1;
7059
7060    if (Mask[V2AdjIndex] == -1) {
7061      // Handles all the cases where we have a single V2 element and an undef.
7062      // This will only ever happen in the high lanes because we commute the
7063      // vector otherwise.
7064      if (V2Index < 2)
7065        std::swap(LowV, HighV);
7066      NewMask[V2Index] -= 4;
7067    } else {
7068      // Handle the case where the V2 element ends up adjacent to a V1 element.
7069      // To make this work, blend them together as the first step.
7070      int V1Index = V2AdjIndex;
7071      int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
7072      V2 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V2, V1,
7073                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7074
7075      // Now proceed to reconstruct the final blend as we have the necessary
7076      // high or low half formed.
7077      if (V2Index < 2) {
7078        LowV = V2;
7079        HighV = V1;
7080      } else {
7081        HighV = V2;
7082      }
7083      NewMask[V1Index] = 2; // We put the V1 element in V2[2].
7084      NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
7085    }
7086  } else if (NumV2Elements == 2) {
7087    if (Mask[0] < 4 && Mask[1] < 4) {
7088      // Handle the easy case where we have V1 in the low lanes and V2 in the
7089      // high lanes. We never see this reversed because we sort the shuffle.
7090      NewMask[2] -= 4;
7091      NewMask[3] -= 4;
7092    } else {
7093      // We have a mixture of V1 and V2 in both low and high lanes. Rather than
7094      // trying to place elements directly, just blend them and set up the final
7095      // shuffle to place them.
7096
7097      // The first two blend mask elements are for V1, the second two are for
7098      // V2.
7099      int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
7100                          Mask[2] < 4 ? Mask[2] : Mask[3],
7101                          (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
7102                          (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
7103      V1 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V2,
7104                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7105
7106      // Now we do a normal shuffle of V1 by giving V1 as both operands to
7107      // a blend.
7108      LowV = HighV = V1;
7109      NewMask[0] = Mask[0] < 4 ? 0 : 2;
7110      NewMask[1] = Mask[0] < 4 ? 2 : 0;
7111      NewMask[2] = Mask[2] < 4 ? 1 : 3;
7112      NewMask[3] = Mask[2] < 4 ? 3 : 1;
7113    }
7114  }
7115  return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, LowV, HighV,
7116                     getV4X86ShuffleImm8ForMask(NewMask, DAG));
7117}
7118
7119/// \brief Lower 4-lane i32 vector shuffles.
7120///
7121/// We try to handle these with integer-domain shuffles where we can, but for
7122/// blends we use the floating point domain blend instructions.
7123static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7124                                       const X86Subtarget *Subtarget,
7125                                       SelectionDAG &DAG) {
7126  SDLoc DL(Op);
7127  assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
7128  assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7129  assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7130  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7131  ArrayRef<int> Mask = SVOp->getMask();
7132  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7133
7134  if (isSingleInputShuffleMask(Mask))
7135    // Straight shuffle of a single input vector. For everything from SSE2
7136    // onward this has a single fast instruction with no scary immediates.
7137    return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
7138                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7139
7140  // We implement this with SHUFPS because it can blend from two vectors.
7141  // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
7142  // up the inputs, bypassing domain shift penalties that we would encur if we
7143  // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
7144  // relevant.
7145  return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
7146                     DAG.getVectorShuffle(
7147                         MVT::v4f32, DL,
7148                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
7149                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
7150}
7151
7152/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
7153/// shuffle lowering, and the most complex part.
7154///
7155/// The lowering strategy is to try to form pairs of input lanes which are
7156/// targeted at the same half of the final vector, and then use a dword shuffle
7157/// to place them onto the right half, and finally unpack the paired lanes into
7158/// their final position.
7159///
7160/// The exact breakdown of how to form these dword pairs and align them on the
7161/// correct sides is really tricky. See the comments within the function for
7162/// more of the details.
7163static SDValue lowerV8I16SingleInputVectorShuffle(
7164    SDLoc DL, SDValue V, MutableArrayRef<int> Mask,
7165    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7166  assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
7167  MutableArrayRef<int> LoMask = Mask.slice(0, 4);
7168  MutableArrayRef<int> HiMask = Mask.slice(4, 4);
7169
7170  SmallVector<int, 4> LoInputs;
7171  std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
7172               [](int M) { return M >= 0; });
7173  std::sort(LoInputs.begin(), LoInputs.end());
7174  LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
7175  SmallVector<int, 4> HiInputs;
7176  std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
7177               [](int M) { return M >= 0; });
7178  std::sort(HiInputs.begin(), HiInputs.end());
7179  HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
7180  int NumLToL =
7181      std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
7182  int NumHToL = LoInputs.size() - NumLToL;
7183  int NumLToH =
7184      std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
7185  int NumHToH = HiInputs.size() - NumLToH;
7186  MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
7187  MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
7188  MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
7189  MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
7190
7191  // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
7192  // such inputs we can swap two of the dwords across the half mark and end up
7193  // with <=2 inputs to each half in each half. Once there, we can fall through
7194  // to the generic code below. For example:
7195  //
7196  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
7197  // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
7198  //
7199  // Before we had 3-1 in the low half and 3-1 in the high half. Afterward, 2-2
7200  // and 2-2.
7201  auto balanceSides = [&](ArrayRef<int> ThreeInputs, int OneInput,
7202                          int ThreeInputHalfSum, int OneInputHalfOffset) {
7203    // Compute the index of dword with only one word among the three inputs in
7204    // a half by taking the sum of the half with three inputs and subtracting
7205    // the sum of the actual three inputs. The difference is the remaining
7206    // slot.
7207    int DWordA = (ThreeInputHalfSum -
7208                  std::accumulate(ThreeInputs.begin(), ThreeInputs.end(), 0)) /
7209                 2;
7210    int DWordB = OneInputHalfOffset / 2 + (OneInput / 2 + 1) % 2;
7211
7212    int PSHUFDMask[] = {0, 1, 2, 3};
7213    PSHUFDMask[DWordA] = DWordB;
7214    PSHUFDMask[DWordB] = DWordA;
7215    V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
7216                    DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7217                                DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
7218                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
7219
7220    // Adjust the mask to match the new locations of A and B.
7221    for (int &M : Mask)
7222      if (M != -1 && M/2 == DWordA)
7223        M = 2 * DWordB + M % 2;
7224      else if (M != -1 && M/2 == DWordB)
7225        M = 2 * DWordA + M % 2;
7226
7227    // Recurse back into this routine to re-compute state now that this isn't
7228    // a 3 and 1 problem.
7229    return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
7230                                Mask);
7231  };
7232  if (NumLToL == 3 && NumHToL == 1)
7233    return balanceSides(LToLInputs, HToLInputs[0], 0 + 1 + 2 + 3, 4);
7234  else if (NumLToL == 1 && NumHToL == 3)
7235    return balanceSides(HToLInputs, LToLInputs[0], 4 + 5 + 6 + 7, 0);
7236  else if (NumLToH == 1 && NumHToH == 3)
7237    return balanceSides(HToHInputs, LToHInputs[0], 4 + 5 + 6 + 7, 0);
7238  else if (NumLToH == 3 && NumHToH == 1)
7239    return balanceSides(LToHInputs, HToHInputs[0], 0 + 1 + 2 + 3, 4);
7240
7241  // At this point there are at most two inputs to the low and high halves from
7242  // each half. That means the inputs can always be grouped into dwords and
7243  // those dwords can then be moved to the correct half with a dword shuffle.
7244  // We use at most one low and one high word shuffle to collect these paired
7245  // inputs into dwords, and finally a dword shuffle to place them.
7246  int PSHUFLMask[4] = {-1, -1, -1, -1};
7247  int PSHUFHMask[4] = {-1, -1, -1, -1};
7248  int PSHUFDMask[4] = {-1, -1, -1, -1};
7249
7250  // First fix the masks for all the inputs that are staying in their
7251  // original halves. This will then dictate the targets of the cross-half
7252  // shuffles.
7253  auto fixInPlaceInputs = [&PSHUFDMask](
7254      ArrayRef<int> InPlaceInputs, MutableArrayRef<int> SourceHalfMask,
7255      MutableArrayRef<int> HalfMask, int HalfOffset) {
7256    if (InPlaceInputs.empty())
7257      return;
7258    if (InPlaceInputs.size() == 1) {
7259      SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
7260          InPlaceInputs[0] - HalfOffset;
7261      PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
7262      return;
7263    }
7264
7265    assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
7266    SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
7267        InPlaceInputs[0] - HalfOffset;
7268    // Put the second input next to the first so that they are packed into
7269    // a dword. We find the adjacent index by toggling the low bit.
7270    int AdjIndex = InPlaceInputs[0] ^ 1;
7271    SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
7272    std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
7273    PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
7274  };
7275  if (!HToLInputs.empty())
7276    fixInPlaceInputs(LToLInputs, PSHUFLMask, LoMask, 0);
7277  if (!LToHInputs.empty())
7278    fixInPlaceInputs(HToHInputs, PSHUFHMask, HiMask, 4);
7279
7280  // Now gather the cross-half inputs and place them into a free dword of
7281  // their target half.
7282  // FIXME: This operation could almost certainly be simplified dramatically to
7283  // look more like the 3-1 fixing operation.
7284  auto moveInputsToRightHalf = [&PSHUFDMask](
7285      MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
7286      MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
7287      int SourceOffset, int DestOffset) {
7288    auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
7289      return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
7290    };
7291    auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
7292                                               int Word) {
7293      int LowWord = Word & ~1;
7294      int HighWord = Word | 1;
7295      return isWordClobbered(SourceHalfMask, LowWord) ||
7296             isWordClobbered(SourceHalfMask, HighWord);
7297    };
7298
7299    if (IncomingInputs.empty())
7300      return;
7301
7302    if (ExistingInputs.empty()) {
7303      // Map any dwords with inputs from them into the right half.
7304      for (int Input : IncomingInputs) {
7305        // If the source half mask maps over the inputs, turn those into
7306        // swaps and use the swapped lane.
7307        if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
7308          if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
7309            SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
7310                Input - SourceOffset;
7311            // We have to swap the uses in our half mask in one sweep.
7312            for (int &M : HalfMask)
7313              if (M == SourceHalfMask[Input - SourceOffset])
7314                M = Input;
7315              else if (M == Input)
7316                M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
7317          } else {
7318            assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
7319                       Input - SourceOffset &&
7320                   "Previous placement doesn't match!");
7321          }
7322          // Note that this correctly re-maps both when we do a swap and when
7323          // we observe the other side of the swap above. We rely on that to
7324          // avoid swapping the members of the input list directly.
7325          Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
7326        }
7327
7328        // Map the input's dword into the correct half.
7329        if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
7330          PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
7331        else
7332          assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
7333                     Input / 2 &&
7334                 "Previous placement doesn't match!");
7335      }
7336
7337      // And just directly shift any other-half mask elements to be same-half
7338      // as we will have mirrored the dword containing the element into the
7339      // same position within that half.
7340      for (int &M : HalfMask)
7341        if (M >= SourceOffset && M < SourceOffset + 4) {
7342          M = M - SourceOffset + DestOffset;
7343          assert(M >= 0 && "This should never wrap below zero!");
7344        }
7345      return;
7346    }
7347
7348    // Ensure we have the input in a viable dword of its current half. This
7349    // is particularly tricky because the original position may be clobbered
7350    // by inputs being moved and *staying* in that half.
7351    if (IncomingInputs.size() == 1) {
7352      if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
7353        int InputFixed = std::find(std::begin(SourceHalfMask),
7354                                   std::end(SourceHalfMask), -1) -
7355                         std::begin(SourceHalfMask) + SourceOffset;
7356        SourceHalfMask[InputFixed - SourceOffset] =
7357            IncomingInputs[0] - SourceOffset;
7358        std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
7359                     InputFixed);
7360        IncomingInputs[0] = InputFixed;
7361      }
7362    } else if (IncomingInputs.size() == 2) {
7363      if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
7364          isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
7365        int SourceDWordBase = !isDWordClobbered(SourceHalfMask, 0) ? 0 : 2;
7366        assert(!isDWordClobbered(SourceHalfMask, SourceDWordBase) &&
7367               "Not all dwords can be clobbered!");
7368        SourceHalfMask[SourceDWordBase] = IncomingInputs[0] - SourceOffset;
7369        SourceHalfMask[SourceDWordBase + 1] = IncomingInputs[1] - SourceOffset;
7370        for (int &M : HalfMask)
7371          if (M == IncomingInputs[0])
7372            M = SourceDWordBase + SourceOffset;
7373          else if (M == IncomingInputs[1])
7374            M = SourceDWordBase + 1 + SourceOffset;
7375        IncomingInputs[0] = SourceDWordBase + SourceOffset;
7376        IncomingInputs[1] = SourceDWordBase + 1 + SourceOffset;
7377      }
7378    } else {
7379      llvm_unreachable("Unhandled input size!");
7380    }
7381
7382    // Now hoist the DWord down to the right half.
7383    int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
7384    assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
7385    PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
7386    for (int Input : IncomingInputs)
7387      std::replace(HalfMask.begin(), HalfMask.end(), Input,
7388                   FreeDWord * 2 + Input % 2);
7389  };
7390  moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask,
7391                        /*SourceOffset*/ 4, /*DestOffset*/ 0);
7392  moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask,
7393                        /*SourceOffset*/ 0, /*DestOffset*/ 4);
7394
7395  // Now enact all the shuffles we've computed to move the inputs into their
7396  // target half.
7397  if (!isNoopShuffleMask(PSHUFLMask))
7398    V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
7399                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
7400  if (!isNoopShuffleMask(PSHUFHMask))
7401    V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
7402                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
7403  if (!isNoopShuffleMask(PSHUFDMask))
7404    V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
7405                    DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7406                                DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
7407                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
7408
7409  // At this point, each half should contain all its inputs, and we can then
7410  // just shuffle them into their final position.
7411  assert(std::count_if(LoMask.begin(), LoMask.end(),
7412                       [](int M) { return M >= 4; }) == 0 &&
7413         "Failed to lift all the high half inputs to the low mask!");
7414  assert(std::count_if(HiMask.begin(), HiMask.end(),
7415                       [](int M) { return M >= 0 && M < 4; }) == 0 &&
7416         "Failed to lift all the low half inputs to the high mask!");
7417
7418  // Do a half shuffle for the low mask.
7419  if (!isNoopShuffleMask(LoMask))
7420    V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
7421                    getV4X86ShuffleImm8ForMask(LoMask, DAG));
7422
7423  // Do a half shuffle with the high mask after shifting its values down.
7424  for (int &M : HiMask)
7425    if (M >= 0)
7426      M -= 4;
7427  if (!isNoopShuffleMask(HiMask))
7428    V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
7429                    getV4X86ShuffleImm8ForMask(HiMask, DAG));
7430
7431  return V;
7432}
7433
7434/// \brief Detect whether the mask pattern should be lowered through
7435/// interleaving.
7436///
7437/// This essentially tests whether viewing the mask as an interleaving of two
7438/// sub-sequences reduces the cross-input traffic of a blend operation. If so,
7439/// lowering it through interleaving is a significantly better strategy.
7440static bool shouldLowerAsInterleaving(ArrayRef<int> Mask) {
7441  int NumEvenInputs[2] = {0, 0};
7442  int NumOddInputs[2] = {0, 0};
7443  int NumLoInputs[2] = {0, 0};
7444  int NumHiInputs[2] = {0, 0};
7445  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7446    if (Mask[i] < 0)
7447      continue;
7448
7449    int InputIdx = Mask[i] >= Size;
7450
7451    if (i < Size / 2)
7452      ++NumLoInputs[InputIdx];
7453    else
7454      ++NumHiInputs[InputIdx];
7455
7456    if ((i % 2) == 0)
7457      ++NumEvenInputs[InputIdx];
7458    else
7459      ++NumOddInputs[InputIdx];
7460  }
7461
7462  // The minimum number of cross-input results for both the interleaved and
7463  // split cases. If interleaving results in fewer cross-input results, return
7464  // true.
7465  int InterleavedCrosses = std::min(NumEvenInputs[1] + NumOddInputs[0],
7466                                    NumEvenInputs[0] + NumOddInputs[1]);
7467  int SplitCrosses = std::min(NumLoInputs[1] + NumHiInputs[0],
7468                              NumLoInputs[0] + NumHiInputs[1]);
7469  return InterleavedCrosses < SplitCrosses;
7470}
7471
7472/// \brief Blend two v8i16 vectors using a naive unpack strategy.
7473///
7474/// This strategy only works when the inputs from each vector fit into a single
7475/// half of that vector, and generally there are not so many inputs as to leave
7476/// the in-place shuffles required highly constrained (and thus expensive). It
7477/// shifts all the inputs into a single side of both input vectors and then
7478/// uses an unpack to interleave these inputs in a single vector. At that
7479/// point, we will fall back on the generic single input shuffle lowering.
7480static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1,
7481                                                 SDValue V2,
7482                                                 MutableArrayRef<int> Mask,
7483                                                 const X86Subtarget *Subtarget,
7484                                                 SelectionDAG &DAG) {
7485  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
7486  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
7487  SmallVector<int, 3> LoV1Inputs, HiV1Inputs, LoV2Inputs, HiV2Inputs;
7488  for (int i = 0; i < 8; ++i)
7489    if (Mask[i] >= 0 && Mask[i] < 4)
7490      LoV1Inputs.push_back(i);
7491    else if (Mask[i] >= 4 && Mask[i] < 8)
7492      HiV1Inputs.push_back(i);
7493    else if (Mask[i] >= 8 && Mask[i] < 12)
7494      LoV2Inputs.push_back(i);
7495    else if (Mask[i] >= 12)
7496      HiV2Inputs.push_back(i);
7497
7498  int NumV1Inputs = LoV1Inputs.size() + HiV1Inputs.size();
7499  int NumV2Inputs = LoV2Inputs.size() + HiV2Inputs.size();
7500  (void)NumV1Inputs;
7501  (void)NumV2Inputs;
7502  assert(NumV1Inputs > 0 && NumV1Inputs <= 3 && "At most 3 inputs supported");
7503  assert(NumV2Inputs > 0 && NumV2Inputs <= 3 && "At most 3 inputs supported");
7504  assert(NumV1Inputs + NumV2Inputs <= 4 && "At most 4 combined inputs");
7505
7506  bool MergeFromLo = LoV1Inputs.size() + LoV2Inputs.size() >=
7507                     HiV1Inputs.size() + HiV2Inputs.size();
7508
7509  auto moveInputsToHalf = [&](SDValue V, ArrayRef<int> LoInputs,
7510                              ArrayRef<int> HiInputs, bool MoveToLo,
7511                              int MaskOffset) {
7512    ArrayRef<int> GoodInputs = MoveToLo ? LoInputs : HiInputs;
7513    ArrayRef<int> BadInputs = MoveToLo ? HiInputs : LoInputs;
7514    if (BadInputs.empty())
7515      return V;
7516
7517    int MoveMask[] = {-1, -1, -1, -1, -1, -1, -1, -1};
7518    int MoveOffset = MoveToLo ? 0 : 4;
7519
7520    if (GoodInputs.empty()) {
7521      for (int BadInput : BadInputs) {
7522        MoveMask[Mask[BadInput] % 4 + MoveOffset] = Mask[BadInput] - MaskOffset;
7523        Mask[BadInput] = Mask[BadInput] % 4 + MoveOffset + MaskOffset;
7524      }
7525    } else {
7526      if (GoodInputs.size() == 2) {
7527        // If the low inputs are spread across two dwords, pack them into
7528        // a single dword.
7529        MoveMask[Mask[GoodInputs[0]] % 2 + MoveOffset] =
7530            Mask[GoodInputs[0]] - MaskOffset;
7531        MoveMask[Mask[GoodInputs[1]] % 2 + MoveOffset] =
7532            Mask[GoodInputs[1]] - MaskOffset;
7533        Mask[GoodInputs[0]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
7534        Mask[GoodInputs[1]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
7535      } else {
7536        // Otherwise pin the low inputs.
7537        for (int GoodInput : GoodInputs)
7538          MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset;
7539      }
7540
7541      int MoveMaskIdx =
7542          std::find(std::begin(MoveMask) + MoveOffset, std::end(MoveMask), -1) -
7543          std::begin(MoveMask);
7544      assert(MoveMaskIdx >= MoveOffset && "Established above");
7545
7546      if (BadInputs.size() == 2) {
7547        assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot");
7548        assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot");
7549        MoveMask[MoveMaskIdx + Mask[BadInputs[0]] % 2] =
7550            Mask[BadInputs[0]] - MaskOffset;
7551        MoveMask[MoveMaskIdx + Mask[BadInputs[1]] % 2] =
7552            Mask[BadInputs[1]] - MaskOffset;
7553        Mask[BadInputs[0]] = MoveMaskIdx + Mask[BadInputs[0]] % 2 + MaskOffset;
7554        Mask[BadInputs[1]] = MoveMaskIdx + Mask[BadInputs[1]] % 2 + MaskOffset;
7555      } else {
7556        assert(BadInputs.size() == 1 && "All sizes handled");
7557        MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
7558        Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
7559      }
7560    }
7561
7562    return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
7563                                MoveMask);
7564  };
7565  V1 = moveInputsToHalf(V1, LoV1Inputs, HiV1Inputs, MergeFromLo,
7566                        /*MaskOffset*/ 0);
7567  V2 = moveInputsToHalf(V2, LoV2Inputs, HiV2Inputs, MergeFromLo,
7568                        /*MaskOffset*/ 8);
7569
7570  // FIXME: Select an interleaving of the merge of V1 and V2 that minimizes
7571  // cross-half traffic in the final shuffle.
7572
7573  // Munge the mask to be a single-input mask after the unpack merges the
7574  // results.
7575  for (int &M : Mask)
7576    if (M != -1)
7577      M = 2 * (M % 4) + (M / 8);
7578
7579  return DAG.getVectorShuffle(
7580      MVT::v8i16, DL, DAG.getNode(MergeFromLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
7581                                  DL, MVT::v8i16, V1, V2),
7582      DAG.getUNDEF(MVT::v8i16), Mask);
7583}
7584
7585/// \brief Generic lowering of 8-lane i16 shuffles.
7586///
7587/// This handles both single-input shuffles and combined shuffle/blends with
7588/// two inputs. The single input shuffles are immediately delegated to
7589/// a dedicated lowering routine.
7590///
7591/// The blends are lowered in one of three fundamental ways. If there are few
7592/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
7593/// of the input is significantly cheaper when lowered as an interleaving of
7594/// the two inputs, try to interleave them. Otherwise, blend the low and high
7595/// halves of the inputs separately (making them have relatively few inputs)
7596/// and then concatenate them.
7597static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7598                                       const X86Subtarget *Subtarget,
7599                                       SelectionDAG &DAG) {
7600  SDLoc DL(Op);
7601  assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
7602  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
7603  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
7604  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7605  ArrayRef<int> OrigMask = SVOp->getMask();
7606  int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
7607                        OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
7608  MutableArrayRef<int> Mask(MaskStorage);
7609
7610  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
7611
7612  auto isV1 = [](int M) { return M >= 0 && M < 8; };
7613  auto isV2 = [](int M) { return M >= 8; };
7614
7615  int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1);
7616  int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
7617
7618  if (NumV2Inputs == 0)
7619    return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG);
7620
7621  assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
7622                            "to be V1-input shuffles.");
7623
7624  if (NumV1Inputs + NumV2Inputs <= 4)
7625    return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG);
7626
7627  // Check whether an interleaving lowering is likely to be more efficient.
7628  // This isn't perfect but it is a strong heuristic that tends to work well on
7629  // the kinds of shuffles that show up in practice.
7630  //
7631  // FIXME: Handle 1x, 2x, and 4x interleaving.
7632  if (shouldLowerAsInterleaving(Mask)) {
7633    // FIXME: Figure out whether we should pack these into the low or high
7634    // halves.
7635
7636    int EMask[8], OMask[8];
7637    for (int i = 0; i < 4; ++i) {
7638      EMask[i] = Mask[2*i];
7639      OMask[i] = Mask[2*i + 1];
7640      EMask[i + 4] = -1;
7641      OMask[i + 4] = -1;
7642    }
7643
7644    SDValue Evens = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, EMask);
7645    SDValue Odds = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, OMask);
7646
7647    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, Evens, Odds);
7648  }
7649
7650  int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7651  int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7652
7653  for (int i = 0; i < 4; ++i) {
7654    LoBlendMask[i] = Mask[i];
7655    HiBlendMask[i] = Mask[i + 4];
7656  }
7657
7658  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
7659  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
7660  LoV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, LoV);
7661  HiV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, HiV);
7662
7663  return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
7664                     DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV));
7665}
7666
7667/// \brief Generic lowering of v16i8 shuffles.
7668///
7669/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
7670/// detect any complexity reducing interleaving. If that doesn't help, it uses
7671/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
7672/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
7673/// back together.
7674static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7675                                       const X86Subtarget *Subtarget,
7676                                       SelectionDAG &DAG) {
7677  SDLoc DL(Op);
7678  assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
7679  assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
7680  assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
7681  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7682  ArrayRef<int> OrigMask = SVOp->getMask();
7683  assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!");
7684  int MaskStorage[16] = {
7685      OrigMask[0],  OrigMask[1],  OrigMask[2],  OrigMask[3],
7686      OrigMask[4],  OrigMask[5],  OrigMask[6],  OrigMask[7],
7687      OrigMask[8],  OrigMask[9],  OrigMask[10], OrigMask[11],
7688      OrigMask[12], OrigMask[13], OrigMask[14], OrigMask[15]};
7689  MutableArrayRef<int> Mask(MaskStorage);
7690  MutableArrayRef<int> LoMask = Mask.slice(0, 8);
7691  MutableArrayRef<int> HiMask = Mask.slice(8, 8);
7692
7693  // For single-input shuffles, there are some nicer lowering tricks we can use.
7694  if (isSingleInputShuffleMask(Mask)) {
7695    // Check whether we can widen this to an i16 shuffle by duplicating bytes.
7696    // Notably, this handles splat and partial-splat shuffles more efficiently.
7697    // However, it only makes sense if the pre-duplication shuffle simplifies
7698    // things significantly. Currently, this means we need to be able to
7699    // express the pre-duplication shuffle as an i16 shuffle.
7700    //
7701    // FIXME: We should check for other patterns which can be widened into an
7702    // i16 shuffle as well.
7703    auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
7704      for (int i = 0; i < 16; i += 2) {
7705        if (Mask[i] != Mask[i + 1])
7706          return false;
7707      }
7708      return true;
7709    };
7710    auto tryToWidenViaDuplication = [&]() -> SDValue {
7711      if (!canWidenViaDuplication(Mask))
7712        return SDValue();
7713      SmallVector<int, 4> LoInputs;
7714      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
7715                   [](int M) { return M >= 0 && M < 8; });
7716      std::sort(LoInputs.begin(), LoInputs.end());
7717      LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
7718                     LoInputs.end());
7719      SmallVector<int, 4> HiInputs;
7720      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
7721                   [](int M) { return M >= 8; });
7722      std::sort(HiInputs.begin(), HiInputs.end());
7723      HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
7724                     HiInputs.end());
7725
7726      bool TargetLo = LoInputs.size() >= HiInputs.size();
7727      ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
7728      ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
7729
7730      int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
7731      SmallDenseMap<int, int, 8> LaneMap;
7732      for (int I : InPlaceInputs) {
7733        PreDupI16Shuffle[I/2] = I/2;
7734        LaneMap[I] = I;
7735      }
7736      int j = TargetLo ? 0 : 4, je = j + 4;
7737      for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
7738        // Check if j is already a shuffle of this input. This happens when
7739        // there are two adjacent bytes after we move the low one.
7740        if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
7741          // If we haven't yet mapped the input, search for a slot into which
7742          // we can map it.
7743          while (j < je && PreDupI16Shuffle[j] != -1)
7744            ++j;
7745
7746          if (j == je)
7747            // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
7748            return SDValue();
7749
7750          // Map this input with the i16 shuffle.
7751          PreDupI16Shuffle[j] = MovingInputs[i] / 2;
7752        }
7753
7754        // Update the lane map based on the mapping we ended up with.
7755        LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
7756      }
7757      V1 = DAG.getNode(
7758          ISD::BITCAST, DL, MVT::v16i8,
7759          DAG.getVectorShuffle(MVT::v8i16, DL,
7760                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
7761                               DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
7762
7763      // Unpack the bytes to form the i16s that will be shuffled into place.
7764      V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
7765                       MVT::v16i8, V1, V1);
7766
7767      int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7768      for (int i = 0; i < 16; i += 2) {
7769        if (Mask[i] != -1)
7770          PostDupI16Shuffle[i / 2] = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
7771        assert(PostDupI16Shuffle[i / 2] < 8 && "Invalid v8 shuffle mask!");
7772      }
7773      return DAG.getNode(
7774          ISD::BITCAST, DL, MVT::v16i8,
7775          DAG.getVectorShuffle(MVT::v8i16, DL,
7776                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
7777                               DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
7778    };
7779    if (SDValue V = tryToWidenViaDuplication())
7780      return V;
7781  }
7782
7783  // Check whether an interleaving lowering is likely to be more efficient.
7784  // This isn't perfect but it is a strong heuristic that tends to work well on
7785  // the kinds of shuffles that show up in practice.
7786  //
7787  // FIXME: We need to handle other interleaving widths (i16, i32, ...).
7788  if (shouldLowerAsInterleaving(Mask)) {
7789    // FIXME: Figure out whether we should pack these into the low or high
7790    // halves.
7791
7792    int EMask[16], OMask[16];
7793    for (int i = 0; i < 8; ++i) {
7794      EMask[i] = Mask[2*i];
7795      OMask[i] = Mask[2*i + 1];
7796      EMask[i + 8] = -1;
7797      OMask[i + 8] = -1;
7798    }
7799
7800    SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask);
7801    SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask);
7802
7803    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, Evens, Odds);
7804  }
7805
7806  int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7807  int V1HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7808  int V2LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7809  int V2HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
7810
7811  auto buildBlendMasks = [](MutableArrayRef<int> HalfMask,
7812                            MutableArrayRef<int> V1HalfBlendMask,
7813                            MutableArrayRef<int> V2HalfBlendMask) {
7814    for (int i = 0; i < 8; ++i)
7815      if (HalfMask[i] >= 0 && HalfMask[i] < 16) {
7816        V1HalfBlendMask[i] = HalfMask[i];
7817        HalfMask[i] = i;
7818      } else if (HalfMask[i] >= 16) {
7819        V2HalfBlendMask[i] = HalfMask[i] - 16;
7820        HalfMask[i] = i + 8;
7821      }
7822  };
7823  buildBlendMasks(LoMask, V1LoBlendMask, V2LoBlendMask);
7824  buildBlendMasks(HiMask, V1HiBlendMask, V2HiBlendMask);
7825
7826  SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
7827
7828  auto buildLoAndHiV8s = [&](SDValue V, MutableArrayRef<int> LoBlendMask,
7829                             MutableArrayRef<int> HiBlendMask) {
7830    SDValue V1, V2;
7831    // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
7832    // them out and avoid using UNPCK{L,H} to extract the elements of V as
7833    // i16s.
7834    if (std::none_of(LoBlendMask.begin(), LoBlendMask.end(),
7835                     [](int M) { return M >= 0 && M % 2 == 1; }) &&
7836        std::none_of(HiBlendMask.begin(), HiBlendMask.end(),
7837                     [](int M) { return M >= 0 && M % 2 == 1; })) {
7838      // Use a mask to drop the high bytes.
7839      V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
7840      V1 = DAG.getNode(ISD::AND, DL, MVT::v8i16, V1,
7841                       DAG.getConstant(0x00FF, MVT::v8i16));
7842
7843      // This will be a single vector shuffle instead of a blend so nuke V2.
7844      V2 = DAG.getUNDEF(MVT::v8i16);
7845
7846      // Squash the masks to point directly into V1.
7847      for (int &M : LoBlendMask)
7848        if (M >= 0)
7849          M /= 2;
7850      for (int &M : HiBlendMask)
7851        if (M >= 0)
7852          M /= 2;
7853    } else {
7854      // Otherwise just unpack the low half of V into V1 and the high half into
7855      // V2 so that we can blend them as i16s.
7856      V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
7857                       DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
7858      V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
7859                       DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
7860    }
7861
7862    SDValue BlendedLo = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
7863    SDValue BlendedHi = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
7864    return std::make_pair(BlendedLo, BlendedHi);
7865  };
7866  SDValue V1Lo, V1Hi, V2Lo, V2Hi;
7867  std::tie(V1Lo, V1Hi) = buildLoAndHiV8s(V1, V1LoBlendMask, V1HiBlendMask);
7868  std::tie(V2Lo, V2Hi) = buildLoAndHiV8s(V2, V2LoBlendMask, V2HiBlendMask);
7869
7870  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Lo, V2Lo, LoMask);
7871  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Hi, V2Hi, HiMask);
7872
7873  return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
7874}
7875
7876/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
7877///
7878/// This routine breaks down the specific type of 128-bit shuffle and
7879/// dispatches to the lowering routines accordingly.
7880static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7881                                        MVT VT, const X86Subtarget *Subtarget,
7882                                        SelectionDAG &DAG) {
7883  switch (VT.SimpleTy) {
7884  case MVT::v2i64:
7885    return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
7886  case MVT::v2f64:
7887    return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
7888  case MVT::v4i32:
7889    return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
7890  case MVT::v4f32:
7891    return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
7892  case MVT::v8i16:
7893    return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
7894  case MVT::v16i8:
7895    return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
7896
7897  default:
7898    llvm_unreachable("Unimplemented!");
7899  }
7900}
7901
7902/// \brief Tiny helper function to test whether adjacent masks are sequential.
7903static bool areAdjacentMasksSequential(ArrayRef<int> Mask) {
7904  for (int i = 0, Size = Mask.size(); i < Size; i += 2)
7905    if (Mask[i] + 1 != Mask[i+1])
7906      return false;
7907
7908  return true;
7909}
7910
7911/// \brief Top-level lowering for x86 vector shuffles.
7912///
7913/// This handles decomposition, canonicalization, and lowering of all x86
7914/// vector shuffles. Most of the specific lowering strategies are encapsulated
7915/// above in helper routines. The canonicalization attempts to widen shuffles
7916/// to involve fewer lanes of wider elements, consolidate symmetric patterns
7917/// s.t. only one of the two inputs needs to be tested, etc.
7918static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7919                                  SelectionDAG &DAG) {
7920  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7921  ArrayRef<int> Mask = SVOp->getMask();
7922  SDValue V1 = Op.getOperand(0);
7923  SDValue V2 = Op.getOperand(1);
7924  MVT VT = Op.getSimpleValueType();
7925  int NumElements = VT.getVectorNumElements();
7926  SDLoc dl(Op);
7927
7928  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7929
7930  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7931  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7932  if (V1IsUndef && V2IsUndef)
7933    return DAG.getUNDEF(VT);
7934
7935  // When we create a shuffle node we put the UNDEF node to second operand,
7936  // but in some cases the first operand may be transformed to UNDEF.
7937  // In this case we should just commute the node.
7938  if (V1IsUndef)
7939    return CommuteVectorShuffle(SVOp, DAG);
7940
7941  // Check for non-undef masks pointing at an undef vector and make the masks
7942  // undef as well. This makes it easier to match the shuffle based solely on
7943  // the mask.
7944  if (V2IsUndef)
7945    for (int M : Mask)
7946      if (M >= NumElements) {
7947        SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
7948        for (int &M : NewMask)
7949          if (M >= NumElements)
7950            M = -1;
7951        return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
7952      }
7953
7954  // For integer vector shuffles, try to collapse them into a shuffle of fewer
7955  // lanes but wider integers. We cap this to not form integers larger than i64
7956  // but it might be interesting to form i128 integers to handle flipping the
7957  // low and high halves of AVX 256-bit vectors.
7958  if (VT.isInteger() && VT.getScalarSizeInBits() < 64 &&
7959      areAdjacentMasksSequential(Mask)) {
7960    SmallVector<int, 8> NewMask;
7961    for (int i = 0, Size = Mask.size(); i < Size; i += 2)
7962      NewMask.push_back(Mask[i] / 2);
7963    MVT NewVT =
7964        MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() * 2),
7965                         VT.getVectorNumElements() / 2);
7966    V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
7967    V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
7968    return DAG.getNode(ISD::BITCAST, dl, VT,
7969                       DAG.getVectorShuffle(NewVT, dl, V1, V2, NewMask));
7970  }
7971
7972  int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
7973  for (int M : SVOp->getMask())
7974    if (M < 0)
7975      ++NumUndefElements;
7976    else if (M < NumElements)
7977      ++NumV1Elements;
7978    else
7979      ++NumV2Elements;
7980
7981  // Commute the shuffle as needed such that more elements come from V1 than
7982  // V2. This allows us to match the shuffle pattern strictly on how many
7983  // elements come from V1 without handling the symmetric cases.
7984  if (NumV2Elements > NumV1Elements)
7985    return CommuteVectorShuffle(SVOp, DAG);
7986
7987  // When the number of V1 and V2 elements are the same, try to minimize the
7988  // number of uses of V2 in the low half of the vector.
7989  if (NumV1Elements == NumV2Elements) {
7990    int LowV1Elements = 0, LowV2Elements = 0;
7991    for (int M : SVOp->getMask().slice(0, NumElements / 2))
7992      if (M >= NumElements)
7993        ++LowV2Elements;
7994      else if (M >= 0)
7995        ++LowV1Elements;
7996    if (LowV2Elements > LowV1Elements)
7997      return CommuteVectorShuffle(SVOp, DAG);
7998  }
7999
8000  // For each vector width, delegate to a specialized lowering routine.
8001  if (VT.getSizeInBits() == 128)
8002    return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
8003
8004  llvm_unreachable("Unimplemented!");
8005}
8006
8007
8008//===----------------------------------------------------------------------===//
8009// Legacy vector shuffle lowering
8010//
8011// This code is the legacy code handling vector shuffles until the above
8012// replaces its functionality and performance.
8013//===----------------------------------------------------------------------===//
8014
8015static bool isBlendMask(ArrayRef<int> MaskVals, MVT VT, bool hasSSE41,
8016                        bool hasInt256, unsigned *MaskOut = nullptr) {
8017  MVT EltVT = VT.getVectorElementType();
8018
8019  // There is no blend with immediate in AVX-512.
8020  if (VT.is512BitVector())
8021    return false;
8022
8023  if (!hasSSE41 || EltVT == MVT::i8)
8024    return false;
8025  if (!hasInt256 && VT == MVT::v16i16)
8026    return false;
8027
8028  unsigned MaskValue = 0;
8029  unsigned NumElems = VT.getVectorNumElements();
8030  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
8031  unsigned NumLanes = (NumElems - 1) / 8 + 1;
8032  unsigned NumElemsInLane = NumElems / NumLanes;
8033
8034  // Blend for v16i16 should be symetric for the both lanes.
8035  for (unsigned i = 0; i < NumElemsInLane; ++i) {
8036
8037    int SndLaneEltIdx = (NumLanes == 2) ? MaskVals[i + NumElemsInLane] : -1;
8038    int EltIdx = MaskVals[i];
8039
8040    if ((EltIdx < 0 || EltIdx == (int)i) &&
8041        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
8042      continue;
8043
8044    if (((unsigned)EltIdx == (i + NumElems)) &&
8045        (SndLaneEltIdx < 0 ||
8046         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
8047      MaskValue |= (1 << i);
8048    else
8049      return false;
8050  }
8051
8052  if (MaskOut)
8053    *MaskOut = MaskValue;
8054  return true;
8055}
8056
8057// Try to lower a shuffle node into a simple blend instruction.
8058// This function assumes isBlendMask returns true for this
8059// SuffleVectorSDNode
8060static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
8061                                          unsigned MaskValue,
8062                                          const X86Subtarget *Subtarget,
8063                                          SelectionDAG &DAG) {
8064  MVT VT = SVOp->getSimpleValueType(0);
8065  MVT EltVT = VT.getVectorElementType();
8066  assert(isBlendMask(SVOp->getMask(), VT, Subtarget->hasSSE41(),
8067                     Subtarget->hasInt256() && "Trying to lower a "
8068                                               "VECTOR_SHUFFLE to a Blend but "
8069                                               "with the wrong mask"));
8070  SDValue V1 = SVOp->getOperand(0);
8071  SDValue V2 = SVOp->getOperand(1);
8072  SDLoc dl(SVOp);
8073  unsigned NumElems = VT.getVectorNumElements();
8074
8075  // Convert i32 vectors to floating point if it is not AVX2.
8076  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
8077  MVT BlendVT = VT;
8078  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
8079    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
8080                               NumElems);
8081    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
8082    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
8083  }
8084
8085  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
8086                            DAG.getConstant(MaskValue, MVT::i32));
8087  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
8088}
8089
8090/// In vector type \p VT, return true if the element at index \p InputIdx
8091/// falls on a different 128-bit lane than \p OutputIdx.
8092static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx,
8093                                     unsigned OutputIdx) {
8094  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
8095  return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128;
8096}
8097
8098/// Generate a PSHUFB if possible.  Selects elements from \p V1 according to
8099/// \p MaskVals.  MaskVals[OutputIdx] = InputIdx specifies that we want to
8100/// shuffle the element at InputIdx in V1 to OutputIdx in the result.  If \p
8101/// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a
8102/// zero.
8103static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl,
8104                         SelectionDAG &DAG) {
8105  MVT VT = V1.getSimpleValueType();
8106  assert(VT.is128BitVector() || VT.is256BitVector());
8107
8108  MVT EltVT = VT.getVectorElementType();
8109  unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8;
8110  unsigned NumElts = VT.getVectorNumElements();
8111
8112  SmallVector<SDValue, 32> PshufbMask;
8113  for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) {
8114    int InputIdx = MaskVals[OutputIdx];
8115    unsigned InputByteIdx;
8116
8117    if (InputIdx < 0 || NumElts <= (unsigned)InputIdx)
8118      InputByteIdx = 0x80;
8119    else {
8120      // Cross lane is not allowed.
8121      if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx))
8122        return SDValue();
8123      InputByteIdx = InputIdx * EltSizeInBytes;
8124      // Index is an byte offset within the 128-bit lane.
8125      InputByteIdx &= 0xf;
8126    }
8127
8128    for (unsigned j = 0; j < EltSizeInBytes; ++j) {
8129      PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8));
8130      if (InputByteIdx != 0x80)
8131        ++InputByteIdx;
8132    }
8133  }
8134
8135  MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size());
8136  if (ShufVT != VT)
8137    V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1);
8138  return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1,
8139                     DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask));
8140}
8141
8142// v8i16 shuffles - Prefer shuffles in the following order:
8143// 1. [all]   pshuflw, pshufhw, optional move
8144// 2. [ssse3] 1 x pshufb
8145// 3. [ssse3] 2 x pshufb + 1 x por
8146// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
8147static SDValue
8148LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
8149                         SelectionDAG &DAG) {
8150  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8151  SDValue V1 = SVOp->getOperand(0);
8152  SDValue V2 = SVOp->getOperand(1);
8153  SDLoc dl(SVOp);
8154  SmallVector<int, 8> MaskVals;
8155
8156  // Determine if more than 1 of the words in each of the low and high quadwords
8157  // of the result come from the same quadword of one of the two inputs.  Undef
8158  // mask values count as coming from any quadword, for better codegen.
8159  //
8160  // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input
8161  // feeds this quad.  For i, 0 and 1 refer to V1, 2 and 3 refer to V2.
8162  unsigned LoQuad[] = { 0, 0, 0, 0 };
8163  unsigned HiQuad[] = { 0, 0, 0, 0 };
8164  // Indices of quads used.
8165  std::bitset<4> InputQuads;
8166  for (unsigned i = 0; i < 8; ++i) {
8167    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
8168    int EltIdx = SVOp->getMaskElt(i);
8169    MaskVals.push_back(EltIdx);
8170    if (EltIdx < 0) {
8171      ++Quad[0];
8172      ++Quad[1];
8173      ++Quad[2];
8174      ++Quad[3];
8175      continue;
8176    }
8177    ++Quad[EltIdx / 4];
8178    InputQuads.set(EltIdx / 4);
8179  }
8180
8181  int BestLoQuad = -1;
8182  unsigned MaxQuad = 1;
8183  for (unsigned i = 0; i < 4; ++i) {
8184    if (LoQuad[i] > MaxQuad) {
8185      BestLoQuad = i;
8186      MaxQuad = LoQuad[i];
8187    }
8188  }
8189
8190  int BestHiQuad = -1;
8191  MaxQuad = 1;
8192  for (unsigned i = 0; i < 4; ++i) {
8193    if (HiQuad[i] > MaxQuad) {
8194      BestHiQuad = i;
8195      MaxQuad = HiQuad[i];
8196    }
8197  }
8198
8199  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
8200  // of the two input vectors, shuffle them into one input vector so only a
8201  // single pshufb instruction is necessary. If there are more than 2 input
8202  // quads, disable the next transformation since it does not help SSSE3.
8203  bool V1Used = InputQuads[0] || InputQuads[1];
8204  bool V2Used = InputQuads[2] || InputQuads[3];
8205  if (Subtarget->hasSSSE3()) {
8206    if (InputQuads.count() == 2 && V1Used && V2Used) {
8207      BestLoQuad = InputQuads[0] ? 0 : 1;
8208      BestHiQuad = InputQuads[2] ? 2 : 3;
8209    }
8210    if (InputQuads.count() > 2) {
8211      BestLoQuad = -1;
8212      BestHiQuad = -1;
8213    }
8214  }
8215
8216  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
8217  // the shuffle mask.  If a quad is scored as -1, that means that it contains
8218  // words from all 4 input quadwords.
8219  SDValue NewV;
8220  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
8221    int MaskV[] = {
8222      BestLoQuad < 0 ? 0 : BestLoQuad,
8223      BestHiQuad < 0 ? 1 : BestHiQuad
8224    };
8225    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
8226                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
8227                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
8228    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
8229
8230    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
8231    // source words for the shuffle, to aid later transformations.
8232    bool AllWordsInNewV = true;
8233    bool InOrder[2] = { true, true };
8234    for (unsigned i = 0; i != 8; ++i) {
8235      int idx = MaskVals[i];
8236      if (idx != (int)i)
8237        InOrder[i/4] = false;
8238      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
8239        continue;
8240      AllWordsInNewV = false;
8241      break;
8242    }
8243
8244    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
8245    if (AllWordsInNewV) {
8246      for (int i = 0; i != 8; ++i) {
8247        int idx = MaskVals[i];
8248        if (idx < 0)
8249          continue;
8250        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
8251        if ((idx != i) && idx < 4)
8252          pshufhw = false;
8253        if ((idx != i) && idx > 3)
8254          pshuflw = false;
8255      }
8256      V1 = NewV;
8257      V2Used = false;
8258      BestLoQuad = 0;
8259      BestHiQuad = 1;
8260    }
8261
8262    // If we've eliminated the use of V2, and the new mask is a pshuflw or
8263    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
8264    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
8265      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
8266      unsigned TargetMask = 0;
8267      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
8268                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
8269      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
8270      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
8271                             getShufflePSHUFLWImmediate(SVOp);
8272      V1 = NewV.getOperand(0);
8273      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
8274    }
8275  }
8276
8277  // Promote splats to a larger type which usually leads to more efficient code.
8278  // FIXME: Is this true if pshufb is available?
8279  if (SVOp->isSplat())
8280    return PromoteSplat(SVOp, DAG);
8281
8282  // If we have SSSE3, and all words of the result are from 1 input vector,
8283  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
8284  // is present, fall back to case 4.
8285  if (Subtarget->hasSSSE3()) {
8286    SmallVector<SDValue,16> pshufbMask;
8287
8288    // If we have elements from both input vectors, set the high bit of the
8289    // shuffle mask element to zero out elements that come from V2 in the V1
8290    // mask, and elements that come from V1 in the V2 mask, so that the two
8291    // results can be OR'd together.
8292    bool TwoInputs = V1Used && V2Used;
8293    V1 = getPSHUFB(MaskVals, V1, dl, DAG);
8294    if (!TwoInputs)
8295      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8296
8297    // Calculate the shuffle mask for the second input, shuffle it, and
8298    // OR it with the first shuffled input.
8299    CommuteVectorShuffleMask(MaskVals, 8);
8300    V2 = getPSHUFB(MaskVals, V2, dl, DAG);
8301    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
8302    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8303  }
8304
8305  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
8306  // and update MaskVals with new element order.
8307  std::bitset<8> InOrder;
8308  if (BestLoQuad >= 0) {
8309    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
8310    for (int i = 0; i != 4; ++i) {
8311      int idx = MaskVals[i];
8312      if (idx < 0) {
8313        InOrder.set(i);
8314      } else if ((idx / 4) == BestLoQuad) {
8315        MaskV[i] = idx & 3;
8316        InOrder.set(i);
8317      }
8318    }
8319    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
8320                                &MaskV[0]);
8321
8322    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
8323      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
8324      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
8325                                  NewV.getOperand(0),
8326                                  getShufflePSHUFLWImmediate(SVOp), DAG);
8327    }
8328  }
8329
8330  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
8331  // and update MaskVals with the new element order.
8332  if (BestHiQuad >= 0) {
8333    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
8334    for (unsigned i = 4; i != 8; ++i) {
8335      int idx = MaskVals[i];
8336      if (idx < 0) {
8337        InOrder.set(i);
8338      } else if ((idx / 4) == BestHiQuad) {
8339        MaskV[i] = (idx & 3) + 4;
8340        InOrder.set(i);
8341      }
8342    }
8343    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
8344                                &MaskV[0]);
8345
8346    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
8347      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
8348      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
8349                                  NewV.getOperand(0),
8350                                  getShufflePSHUFHWImmediate(SVOp), DAG);
8351    }
8352  }
8353
8354  // In case BestHi & BestLo were both -1, which means each quadword has a word
8355  // from each of the four input quadwords, calculate the InOrder bitvector now
8356  // before falling through to the insert/extract cleanup.
8357  if (BestLoQuad == -1 && BestHiQuad == -1) {
8358    NewV = V1;
8359    for (int i = 0; i != 8; ++i)
8360      if (MaskVals[i] < 0 || MaskVals[i] == i)
8361        InOrder.set(i);
8362  }
8363
8364  // The other elements are put in the right place using pextrw and pinsrw.
8365  for (unsigned i = 0; i != 8; ++i) {
8366    if (InOrder[i])
8367      continue;
8368    int EltIdx = MaskVals[i];
8369    if (EltIdx < 0)
8370      continue;
8371    SDValue ExtOp = (EltIdx < 8) ?
8372      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
8373                  DAG.getIntPtrConstant(EltIdx)) :
8374      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
8375                  DAG.getIntPtrConstant(EltIdx - 8));
8376    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
8377                       DAG.getIntPtrConstant(i));
8378  }
8379  return NewV;
8380}
8381
8382/// \brief v16i16 shuffles
8383///
8384/// FIXME: We only support generation of a single pshufb currently.  We can
8385/// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as
8386/// well (e.g 2 x pshufb + 1 x por).
8387static SDValue
8388LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) {
8389  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8390  SDValue V1 = SVOp->getOperand(0);
8391  SDValue V2 = SVOp->getOperand(1);
8392  SDLoc dl(SVOp);
8393
8394  if (V2.getOpcode() != ISD::UNDEF)
8395    return SDValue();
8396
8397  SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
8398  return getPSHUFB(MaskVals, V1, dl, DAG);
8399}
8400
8401// v16i8 shuffles - Prefer shuffles in the following order:
8402// 1. [ssse3] 1 x pshufb
8403// 2. [ssse3] 2 x pshufb + 1 x por
8404// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
8405static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
8406                                        const X86Subtarget* Subtarget,
8407                                        SelectionDAG &DAG) {
8408  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8409  SDValue V1 = SVOp->getOperand(0);
8410  SDValue V2 = SVOp->getOperand(1);
8411  SDLoc dl(SVOp);
8412  ArrayRef<int> MaskVals = SVOp->getMask();
8413
8414  // Promote splats to a larger type which usually leads to more efficient code.
8415  // FIXME: Is this true if pshufb is available?
8416  if (SVOp->isSplat())
8417    return PromoteSplat(SVOp, DAG);
8418
8419  // If we have SSSE3, case 1 is generated when all result bytes come from
8420  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
8421  // present, fall back to case 3.
8422
8423  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
8424  if (Subtarget->hasSSSE3()) {
8425    SmallVector<SDValue,16> pshufbMask;
8426
8427    // If all result elements are from one input vector, then only translate
8428    // undef mask values to 0x80 (zero out result) in the pshufb mask.
8429    //
8430    // Otherwise, we have elements from both input vectors, and must zero out
8431    // elements that come from V2 in the first mask, and V1 in the second mask
8432    // so that we can OR them together.
8433    for (unsigned i = 0; i != 16; ++i) {
8434      int EltIdx = MaskVals[i];
8435      if (EltIdx < 0 || EltIdx >= 16)
8436        EltIdx = 0x80;
8437      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
8438    }
8439    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
8440                     DAG.getNode(ISD::BUILD_VECTOR, dl,
8441                                 MVT::v16i8, pshufbMask));
8442
8443    // As PSHUFB will zero elements with negative indices, it's safe to ignore
8444    // the 2nd operand if it's undefined or zero.
8445    if (V2.getOpcode() == ISD::UNDEF ||
8446        ISD::isBuildVectorAllZeros(V2.getNode()))
8447      return V1;
8448
8449    // Calculate the shuffle mask for the second input, shuffle it, and
8450    // OR it with the first shuffled input.
8451    pshufbMask.clear();
8452    for (unsigned i = 0; i != 16; ++i) {
8453      int EltIdx = MaskVals[i];
8454      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
8455      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
8456    }
8457    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
8458                     DAG.getNode(ISD::BUILD_VECTOR, dl,
8459                                 MVT::v16i8, pshufbMask));
8460    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
8461  }
8462
8463  // No SSSE3 - Calculate in place words and then fix all out of place words
8464  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
8465  // the 16 different words that comprise the two doublequadword input vectors.
8466  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8467  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8468  SDValue NewV = V1;
8469  for (int i = 0; i != 8; ++i) {
8470    int Elt0 = MaskVals[i*2];
8471    int Elt1 = MaskVals[i*2+1];
8472
8473    // This word of the result is all undef, skip it.
8474    if (Elt0 < 0 && Elt1 < 0)
8475      continue;
8476
8477    // This word of the result is already in the correct place, skip it.
8478    if ((Elt0 == i*2) && (Elt1 == i*2+1))
8479      continue;
8480
8481    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
8482    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
8483    SDValue InsElt;
8484
8485    // If Elt0 and Elt1 are defined, are consecutive, and can be load
8486    // using a single extract together, load it and store it.
8487    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
8488      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
8489                           DAG.getIntPtrConstant(Elt1 / 2));
8490      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
8491                        DAG.getIntPtrConstant(i));
8492      continue;
8493    }
8494
8495    // If Elt1 is defined, extract it from the appropriate source.  If the
8496    // source byte is not also odd, shift the extracted word left 8 bits
8497    // otherwise clear the bottom 8 bits if we need to do an or.
8498    if (Elt1 >= 0) {
8499      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
8500                           DAG.getIntPtrConstant(Elt1 / 2));
8501      if ((Elt1 & 1) == 0)
8502        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
8503                             DAG.getConstant(8,
8504                                  TLI.getShiftAmountTy(InsElt.getValueType())));
8505      else if (Elt0 >= 0)
8506        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
8507                             DAG.getConstant(0xFF00, MVT::i16));
8508    }
8509    // If Elt0 is defined, extract it from the appropriate source.  If the
8510    // source byte is not also even, shift the extracted word right 8 bits. If
8511    // Elt1 was also defined, OR the extracted values together before
8512    // inserting them in the result.
8513    if (Elt0 >= 0) {
8514      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
8515                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
8516      if ((Elt0 & 1) != 0)
8517        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
8518                              DAG.getConstant(8,
8519                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
8520      else if (Elt1 >= 0)
8521        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
8522                             DAG.getConstant(0x00FF, MVT::i16));
8523      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
8524                         : InsElt0;
8525    }
8526    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
8527                       DAG.getIntPtrConstant(i));
8528  }
8529  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
8530}
8531
8532// v32i8 shuffles - Translate to VPSHUFB if possible.
8533static
8534SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
8535                                 const X86Subtarget *Subtarget,
8536                                 SelectionDAG &DAG) {
8537  MVT VT = SVOp->getSimpleValueType(0);
8538  SDValue V1 = SVOp->getOperand(0);
8539  SDValue V2 = SVOp->getOperand(1);
8540  SDLoc dl(SVOp);
8541  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
8542
8543  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
8544  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
8545  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
8546
8547  // VPSHUFB may be generated if
8548  // (1) one of input vector is undefined or zeroinitializer.
8549  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
8550  // And (2) the mask indexes don't cross the 128-bit lane.
8551  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
8552      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
8553    return SDValue();
8554
8555  if (V1IsAllZero && !V2IsAllZero) {
8556    CommuteVectorShuffleMask(MaskVals, 32);
8557    V1 = V2;
8558  }
8559  return getPSHUFB(MaskVals, V1, dl, DAG);
8560}
8561
8562/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
8563/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
8564/// done when every pair / quad of shuffle mask elements point to elements in
8565/// the right sequence. e.g.
8566/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
8567static
8568SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
8569                                 SelectionDAG &DAG) {
8570  MVT VT = SVOp->getSimpleValueType(0);
8571  SDLoc dl(SVOp);
8572  unsigned NumElems = VT.getVectorNumElements();
8573  MVT NewVT;
8574  unsigned Scale;
8575  switch (VT.SimpleTy) {
8576  default: llvm_unreachable("Unexpected!");
8577  case MVT::v2i64:
8578  case MVT::v2f64:
8579           return SDValue(SVOp, 0);
8580  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
8581  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
8582  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
8583  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
8584  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
8585  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
8586  }
8587
8588  SmallVector<int, 8> MaskVec;
8589  for (unsigned i = 0; i != NumElems; i += Scale) {
8590    int StartIdx = -1;
8591    for (unsigned j = 0; j != Scale; ++j) {
8592      int EltIdx = SVOp->getMaskElt(i+j);
8593      if (EltIdx < 0)
8594        continue;
8595      if (StartIdx < 0)
8596        StartIdx = (EltIdx / Scale);
8597      if (EltIdx != (int)(StartIdx*Scale + j))
8598        return SDValue();
8599    }
8600    MaskVec.push_back(StartIdx);
8601  }
8602
8603  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
8604  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
8605  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
8606}
8607
8608/// getVZextMovL - Return a zero-extending vector move low node.
8609///
8610static SDValue getVZextMovL(MVT VT, MVT OpVT,
8611                            SDValue SrcOp, SelectionDAG &DAG,
8612                            const X86Subtarget *Subtarget, SDLoc dl) {
8613  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
8614    LoadSDNode *LD = nullptr;
8615    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
8616      LD = dyn_cast<LoadSDNode>(SrcOp);
8617    if (!LD) {
8618      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
8619      // instead.
8620      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
8621      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
8622          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8623          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
8624          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
8625        // PR2108
8626        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
8627        return DAG.getNode(ISD::BITCAST, dl, VT,
8628                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
8629                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8630                                                   OpVT,
8631                                                   SrcOp.getOperand(0)
8632                                                          .getOperand(0))));
8633      }
8634    }
8635  }
8636
8637  return DAG.getNode(ISD::BITCAST, dl, VT,
8638                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
8639                                 DAG.getNode(ISD::BITCAST, dl,
8640                                             OpVT, SrcOp)));
8641}
8642
8643/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
8644/// which could not be matched by any known target speficic shuffle
8645static SDValue
8646LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
8647
8648  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
8649  if (NewOp.getNode())
8650    return NewOp;
8651
8652  MVT VT = SVOp->getSimpleValueType(0);
8653
8654  unsigned NumElems = VT.getVectorNumElements();
8655  unsigned NumLaneElems = NumElems / 2;
8656
8657  SDLoc dl(SVOp);
8658  MVT EltVT = VT.getVectorElementType();
8659  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
8660  SDValue Output[2];
8661
8662  SmallVector<int, 16> Mask;
8663  for (unsigned l = 0; l < 2; ++l) {
8664    // Build a shuffle mask for the output, discovering on the fly which
8665    // input vectors to use as shuffle operands (recorded in InputUsed).
8666    // If building a suitable shuffle vector proves too hard, then bail
8667    // out with UseBuildVector set.
8668    bool UseBuildVector = false;
8669    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
8670    unsigned LaneStart = l * NumLaneElems;
8671    for (unsigned i = 0; i != NumLaneElems; ++i) {
8672      // The mask element.  This indexes into the input.
8673      int Idx = SVOp->getMaskElt(i+LaneStart);
8674      if (Idx < 0) {
8675        // the mask element does not index into any input vector.
8676        Mask.push_back(-1);
8677        continue;
8678      }
8679
8680      // The input vector this mask element indexes into.
8681      int Input = Idx / NumLaneElems;
8682
8683      // Turn the index into an offset from the start of the input vector.
8684      Idx -= Input * NumLaneElems;
8685
8686      // Find or create a shuffle vector operand to hold this input.
8687      unsigned OpNo;
8688      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
8689        if (InputUsed[OpNo] == Input)
8690          // This input vector is already an operand.
8691          break;
8692        if (InputUsed[OpNo] < 0) {
8693          // Create a new operand for this input vector.
8694          InputUsed[OpNo] = Input;
8695          break;
8696        }
8697      }
8698
8699      if (OpNo >= array_lengthof(InputUsed)) {
8700        // More than two input vectors used!  Give up on trying to create a
8701        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
8702        UseBuildVector = true;
8703        break;
8704      }
8705
8706      // Add the mask index for the new shuffle vector.
8707      Mask.push_back(Idx + OpNo * NumLaneElems);
8708    }
8709
8710    if (UseBuildVector) {
8711      SmallVector<SDValue, 16> SVOps;
8712      for (unsigned i = 0; i != NumLaneElems; ++i) {
8713        // The mask element.  This indexes into the input.
8714        int Idx = SVOp->getMaskElt(i+LaneStart);
8715        if (Idx < 0) {
8716          SVOps.push_back(DAG.getUNDEF(EltVT));
8717          continue;
8718        }
8719
8720        // The input vector this mask element indexes into.
8721        int Input = Idx / NumElems;
8722
8723        // Turn the index into an offset from the start of the input vector.
8724        Idx -= Input * NumElems;
8725
8726        // Extract the vector element by hand.
8727        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8728                                    SVOp->getOperand(Input),
8729                                    DAG.getIntPtrConstant(Idx)));
8730      }
8731
8732      // Construct the output using a BUILD_VECTOR.
8733      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps);
8734    } else if (InputUsed[0] < 0) {
8735      // No input vectors were used! The result is undefined.
8736      Output[l] = DAG.getUNDEF(NVT);
8737    } else {
8738      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
8739                                        (InputUsed[0] % 2) * NumLaneElems,
8740                                        DAG, dl);
8741      // If only one input was used, use an undefined vector for the other.
8742      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
8743        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
8744                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
8745      // At least one input vector was used. Create a new shuffle vector.
8746      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
8747    }
8748
8749    Mask.clear();
8750  }
8751
8752  // Concatenate the result back
8753  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
8754}
8755
8756/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
8757/// 4 elements, and match them with several different shuffle types.
8758static SDValue
8759LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
8760  SDValue V1 = SVOp->getOperand(0);
8761  SDValue V2 = SVOp->getOperand(1);
8762  SDLoc dl(SVOp);
8763  MVT VT = SVOp->getSimpleValueType(0);
8764
8765  assert(VT.is128BitVector() && "Unsupported vector size");
8766
8767  std::pair<int, int> Locs[4];
8768  int Mask1[] = { -1, -1, -1, -1 };
8769  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
8770
8771  unsigned NumHi = 0;
8772  unsigned NumLo = 0;
8773  for (unsigned i = 0; i != 4; ++i) {
8774    int Idx = PermMask[i];
8775    if (Idx < 0) {
8776      Locs[i] = std::make_pair(-1, -1);
8777    } else {
8778      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
8779      if (Idx < 4) {
8780        Locs[i] = std::make_pair(0, NumLo);
8781        Mask1[NumLo] = Idx;
8782        NumLo++;
8783      } else {
8784        Locs[i] = std::make_pair(1, NumHi);
8785        if (2+NumHi < 4)
8786          Mask1[2+NumHi] = Idx;
8787        NumHi++;
8788      }
8789    }
8790  }
8791
8792  if (NumLo <= 2 && NumHi <= 2) {
8793    // If no more than two elements come from either vector. This can be
8794    // implemented with two shuffles. First shuffle gather the elements.
8795    // The second shuffle, which takes the first shuffle as both of its
8796    // vector operands, put the elements into the right order.
8797    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
8798
8799    int Mask2[] = { -1, -1, -1, -1 };
8800
8801    for (unsigned i = 0; i != 4; ++i)
8802      if (Locs[i].first != -1) {
8803        unsigned Idx = (i < 2) ? 0 : 4;
8804        Idx += Locs[i].first * 2 + Locs[i].second;
8805        Mask2[i] = Idx;
8806      }
8807
8808    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
8809  }
8810
8811  if (NumLo == 3 || NumHi == 3) {
8812    // Otherwise, we must have three elements from one vector, call it X, and
8813    // one element from the other, call it Y.  First, use a shufps to build an
8814    // intermediate vector with the one element from Y and the element from X
8815    // that will be in the same half in the final destination (the indexes don't
8816    // matter). Then, use a shufps to build the final vector, taking the half
8817    // containing the element from Y from the intermediate, and the other half
8818    // from X.
8819    if (NumHi == 3) {
8820      // Normalize it so the 3 elements come from V1.
8821      CommuteVectorShuffleMask(PermMask, 4);
8822      std::swap(V1, V2);
8823    }
8824
8825    // Find the element from V2.
8826    unsigned HiIndex;
8827    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
8828      int Val = PermMask[HiIndex];
8829      if (Val < 0)
8830        continue;
8831      if (Val >= 4)
8832        break;
8833    }
8834
8835    Mask1[0] = PermMask[HiIndex];
8836    Mask1[1] = -1;
8837    Mask1[2] = PermMask[HiIndex^1];
8838    Mask1[3] = -1;
8839    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
8840
8841    if (HiIndex >= 2) {
8842      Mask1[0] = PermMask[0];
8843      Mask1[1] = PermMask[1];
8844      Mask1[2] = HiIndex & 1 ? 6 : 4;
8845      Mask1[3] = HiIndex & 1 ? 4 : 6;
8846      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
8847    }
8848
8849    Mask1[0] = HiIndex & 1 ? 2 : 0;
8850    Mask1[1] = HiIndex & 1 ? 0 : 2;
8851    Mask1[2] = PermMask[2];
8852    Mask1[3] = PermMask[3];
8853    if (Mask1[2] >= 0)
8854      Mask1[2] += 4;
8855    if (Mask1[3] >= 0)
8856      Mask1[3] += 4;
8857    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
8858  }
8859
8860  // Break it into (shuffle shuffle_hi, shuffle_lo).
8861  int LoMask[] = { -1, -1, -1, -1 };
8862  int HiMask[] = { -1, -1, -1, -1 };
8863
8864  int *MaskPtr = LoMask;
8865  unsigned MaskIdx = 0;
8866  unsigned LoIdx = 0;
8867  unsigned HiIdx = 2;
8868  for (unsigned i = 0; i != 4; ++i) {
8869    if (i == 2) {
8870      MaskPtr = HiMask;
8871      MaskIdx = 1;
8872      LoIdx = 0;
8873      HiIdx = 2;
8874    }
8875    int Idx = PermMask[i];
8876    if (Idx < 0) {
8877      Locs[i] = std::make_pair(-1, -1);
8878    } else if (Idx < 4) {
8879      Locs[i] = std::make_pair(MaskIdx, LoIdx);
8880      MaskPtr[LoIdx] = Idx;
8881      LoIdx++;
8882    } else {
8883      Locs[i] = std::make_pair(MaskIdx, HiIdx);
8884      MaskPtr[HiIdx] = Idx;
8885      HiIdx++;
8886    }
8887  }
8888
8889  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
8890  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
8891  int MaskOps[] = { -1, -1, -1, -1 };
8892  for (unsigned i = 0; i != 4; ++i)
8893    if (Locs[i].first != -1)
8894      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
8895  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
8896}
8897
8898static bool MayFoldVectorLoad(SDValue V) {
8899  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
8900    V = V.getOperand(0);
8901
8902  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
8903    V = V.getOperand(0);
8904  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
8905      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
8906    // BUILD_VECTOR (load), undef
8907    V = V.getOperand(0);
8908
8909  return MayFoldLoad(V);
8910}
8911
8912static
8913SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
8914  MVT VT = Op.getSimpleValueType();
8915
8916  // Canonizalize to v2f64.
8917  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8918  return DAG.getNode(ISD::BITCAST, dl, VT,
8919                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
8920                                          V1, DAG));
8921}
8922
8923static
8924SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
8925                        bool HasSSE2) {
8926  SDValue V1 = Op.getOperand(0);
8927  SDValue V2 = Op.getOperand(1);
8928  MVT VT = Op.getSimpleValueType();
8929
8930  assert(VT != MVT::v2i64 && "unsupported shuffle type");
8931
8932  if (HasSSE2 && VT == MVT::v2f64)
8933    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
8934
8935  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
8936  return DAG.getNode(ISD::BITCAST, dl, VT,
8937                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
8938                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
8939                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
8940}
8941
8942static
8943SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
8944  SDValue V1 = Op.getOperand(0);
8945  SDValue V2 = Op.getOperand(1);
8946  MVT VT = Op.getSimpleValueType();
8947
8948  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
8949         "unsupported shuffle type");
8950
8951  if (V2.getOpcode() == ISD::UNDEF)
8952    V2 = V1;
8953
8954  // v4i32 or v4f32
8955  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
8956}
8957
8958static
8959SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
8960  SDValue V1 = Op.getOperand(0);
8961  SDValue V2 = Op.getOperand(1);
8962  MVT VT = Op.getSimpleValueType();
8963  unsigned NumElems = VT.getVectorNumElements();
8964
8965  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
8966  // operand of these instructions is only memory, so check if there's a
8967  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
8968  // same masks.
8969  bool CanFoldLoad = false;
8970
8971  // Trivial case, when V2 comes from a load.
8972  if (MayFoldVectorLoad(V2))
8973    CanFoldLoad = true;
8974
8975  // When V1 is a load, it can be folded later into a store in isel, example:
8976  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
8977  //    turns into:
8978  //  (MOVLPSmr addr:$src1, VR128:$src2)
8979  // So, recognize this potential and also use MOVLPS or MOVLPD
8980  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
8981    CanFoldLoad = true;
8982
8983  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8984  if (CanFoldLoad) {
8985    if (HasSSE2 && NumElems == 2)
8986      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
8987
8988    if (NumElems == 4)
8989      // If we don't care about the second element, proceed to use movss.
8990      if (SVOp->getMaskElt(1) != -1)
8991        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
8992  }
8993
8994  // movl and movlp will both match v2i64, but v2i64 is never matched by
8995  // movl earlier because we make it strict to avoid messing with the movlp load
8996  // folding logic (see the code above getMOVLP call). Match it here then,
8997  // this is horrible, but will stay like this until we move all shuffle
8998  // matching to x86 specific nodes. Note that for the 1st condition all
8999  // types are matched with movsd.
9000  if (HasSSE2) {
9001    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
9002    // as to remove this logic from here, as much as possible
9003    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
9004      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
9005    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
9006  }
9007
9008  assert(VT != MVT::v4i32 && "unsupported shuffle type");
9009
9010  // Invert the operand order and use SHUFPS to match it.
9011  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
9012                              getShuffleSHUFImmediate(SVOp), DAG);
9013}
9014
9015static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
9016                                         SelectionDAG &DAG) {
9017  SDLoc dl(Load);
9018  MVT VT = Load->getSimpleValueType(0);
9019  MVT EVT = VT.getVectorElementType();
9020  SDValue Addr = Load->getOperand(1);
9021  SDValue NewAddr = DAG.getNode(
9022      ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
9023      DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
9024
9025  SDValue NewLoad =
9026      DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
9027                  DAG.getMachineFunction().getMachineMemOperand(
9028                      Load->getMemOperand(), 0, EVT.getStoreSize()));
9029  return NewLoad;
9030}
9031
9032// It is only safe to call this function if isINSERTPSMask is true for
9033// this shufflevector mask.
9034static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
9035                           SelectionDAG &DAG) {
9036  // Generate an insertps instruction when inserting an f32 from memory onto a
9037  // v4f32 or when copying a member from one v4f32 to another.
9038  // We also use it for transferring i32 from one register to another,
9039  // since it simply copies the same bits.
9040  // If we're transferring an i32 from memory to a specific element in a
9041  // register, we output a generic DAG that will match the PINSRD
9042  // instruction.
9043  MVT VT = SVOp->getSimpleValueType(0);
9044  MVT EVT = VT.getVectorElementType();
9045  SDValue V1 = SVOp->getOperand(0);
9046  SDValue V2 = SVOp->getOperand(1);
9047  auto Mask = SVOp->getMask();
9048  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
9049         "unsupported vector type for insertps/pinsrd");
9050
9051  auto FromV1Predicate = [](const int &i) { return i < 4 && i > -1; };
9052  auto FromV2Predicate = [](const int &i) { return i >= 4; };
9053  int FromV1 = std::count_if(Mask.begin(), Mask.end(), FromV1Predicate);
9054
9055  SDValue From;
9056  SDValue To;
9057  unsigned DestIndex;
9058  if (FromV1 == 1) {
9059    From = V1;
9060    To = V2;
9061    DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV1Predicate) -
9062                Mask.begin();
9063  } else {
9064    assert(std::count_if(Mask.begin(), Mask.end(), FromV2Predicate) == 1 &&
9065           "More than one element from V1 and from V2, or no elements from one "
9066           "of the vectors. This case should not have returned true from "
9067           "isINSERTPSMask");
9068    From = V2;
9069    To = V1;
9070    DestIndex =
9071        std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
9072  }
9073
9074  unsigned SrcIndex = Mask[DestIndex] % 4;
9075  if (MayFoldLoad(From)) {
9076    // Trivial case, when From comes from a load and is only used by the
9077    // shuffle. Make it use insertps from the vector that we need from that
9078    // load.
9079    SDValue NewLoad =
9080        NarrowVectorLoadToElement(cast<LoadSDNode>(From), SrcIndex, DAG);
9081    if (!NewLoad.getNode())
9082      return SDValue();
9083
9084    if (EVT == MVT::f32) {
9085      // Create this as a scalar to vector to match the instruction pattern.
9086      SDValue LoadScalarToVector =
9087          DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad);
9088      SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4);
9089      return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector,
9090                         InsertpsMask);
9091    } else { // EVT == MVT::i32
9092      // If we're getting an i32 from memory, use an INSERT_VECTOR_ELT
9093      // instruction, to match the PINSRD instruction, which loads an i32 to a
9094      // certain vector element.
9095      return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad,
9096                         DAG.getConstant(DestIndex, MVT::i32));
9097    }
9098  }
9099
9100  // Vector-element-to-vector
9101  SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6);
9102  return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask);
9103}
9104
9105// Reduce a vector shuffle to zext.
9106static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
9107                                    SelectionDAG &DAG) {
9108  // PMOVZX is only available from SSE41.
9109  if (!Subtarget->hasSSE41())
9110    return SDValue();
9111
9112  MVT VT = Op.getSimpleValueType();
9113
9114  // Only AVX2 support 256-bit vector integer extending.
9115  if (!Subtarget->hasInt256() && VT.is256BitVector())
9116    return SDValue();
9117
9118  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9119  SDLoc DL(Op);
9120  SDValue V1 = Op.getOperand(0);
9121  SDValue V2 = Op.getOperand(1);
9122  unsigned NumElems = VT.getVectorNumElements();
9123
9124  // Extending is an unary operation and the element type of the source vector
9125  // won't be equal to or larger than i64.
9126  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
9127      VT.getVectorElementType() == MVT::i64)
9128    return SDValue();
9129
9130  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
9131  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
9132  while ((1U << Shift) < NumElems) {
9133    if (SVOp->getMaskElt(1U << Shift) == 1)
9134      break;
9135    Shift += 1;
9136    // The maximal ratio is 8, i.e. from i8 to i64.
9137    if (Shift > 3)
9138      return SDValue();
9139  }
9140
9141  // Check the shuffle mask.
9142  unsigned Mask = (1U << Shift) - 1;
9143  for (unsigned i = 0; i != NumElems; ++i) {
9144    int EltIdx = SVOp->getMaskElt(i);
9145    if ((i & Mask) != 0 && EltIdx != -1)
9146      return SDValue();
9147    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
9148      return SDValue();
9149  }
9150
9151  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
9152  MVT NeVT = MVT::getIntegerVT(NBits);
9153  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
9154
9155  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
9156    return SDValue();
9157
9158  // Simplify the operand as it's prepared to be fed into shuffle.
9159  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
9160  if (V1.getOpcode() == ISD::BITCAST &&
9161      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
9162      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
9163      V1.getOperand(0).getOperand(0)
9164        .getSimpleValueType().getSizeInBits() == SignificantBits) {
9165    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
9166    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
9167    ConstantSDNode *CIdx =
9168      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
9169    // If it's foldable, i.e. normal load with single use, we will let code
9170    // selection to fold it. Otherwise, we will short the conversion sequence.
9171    if (CIdx && CIdx->getZExtValue() == 0 &&
9172        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
9173      MVT FullVT = V.getSimpleValueType();
9174      MVT V1VT = V1.getSimpleValueType();
9175      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
9176        // The "ext_vec_elt" node is wider than the result node.
9177        // In this case we should extract subvector from V.
9178        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
9179        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
9180        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
9181                                        FullVT.getVectorNumElements()/Ratio);
9182        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
9183                        DAG.getIntPtrConstant(0));
9184      }
9185      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
9186    }
9187  }
9188
9189  return DAG.getNode(ISD::BITCAST, DL, VT,
9190                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
9191}
9192
9193static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
9194                                      SelectionDAG &DAG) {
9195  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9196  MVT VT = Op.getSimpleValueType();
9197  SDLoc dl(Op);
9198  SDValue V1 = Op.getOperand(0);
9199  SDValue V2 = Op.getOperand(1);
9200
9201  if (isZeroShuffle(SVOp))
9202    return getZeroVector(VT, Subtarget, DAG, dl);
9203
9204  // Handle splat operations
9205  if (SVOp->isSplat()) {
9206    // Use vbroadcast whenever the splat comes from a foldable load
9207    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
9208    if (Broadcast.getNode())
9209      return Broadcast;
9210  }
9211
9212  // Check integer expanding shuffles.
9213  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
9214  if (NewOp.getNode())
9215    return NewOp;
9216
9217  // If the shuffle can be profitably rewritten as a narrower shuffle, then
9218  // do it!
9219  if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 ||
9220      VT == MVT::v32i8) {
9221    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
9222    if (NewOp.getNode())
9223      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
9224  } else if (VT.is128BitVector() && Subtarget->hasSSE2()) {
9225    // FIXME: Figure out a cleaner way to do this.
9226    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
9227      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
9228      if (NewOp.getNode()) {
9229        MVT NewVT = NewOp.getSimpleValueType();
9230        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
9231                               NewVT, true, false))
9232          return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget,
9233                              dl);
9234      }
9235    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
9236      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
9237      if (NewOp.getNode()) {
9238        MVT NewVT = NewOp.getSimpleValueType();
9239        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
9240          return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget,
9241                              dl);
9242      }
9243    }
9244  }
9245  return SDValue();
9246}
9247
9248SDValue
9249X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
9250  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9251  SDValue V1 = Op.getOperand(0);
9252  SDValue V2 = Op.getOperand(1);
9253  MVT VT = Op.getSimpleValueType();
9254  SDLoc dl(Op);
9255  unsigned NumElems = VT.getVectorNumElements();
9256  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
9257  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
9258  bool V1IsSplat = false;
9259  bool V2IsSplat = false;
9260  bool HasSSE2 = Subtarget->hasSSE2();
9261  bool HasFp256    = Subtarget->hasFp256();
9262  bool HasInt256   = Subtarget->hasInt256();
9263  MachineFunction &MF = DAG.getMachineFunction();
9264  bool OptForSize = MF.getFunction()->getAttributes().
9265    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
9266
9267  // Check if we should use the experimental vector shuffle lowering. If so,
9268  // delegate completely to that code path.
9269  if (ExperimentalVectorShuffleLowering)
9270    return lowerVectorShuffle(Op, Subtarget, DAG);
9271
9272  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
9273
9274  if (V1IsUndef && V2IsUndef)
9275    return DAG.getUNDEF(VT);
9276
9277  // When we create a shuffle node we put the UNDEF node to second operand,
9278  // but in some cases the first operand may be transformed to UNDEF.
9279  // In this case we should just commute the node.
9280  if (V1IsUndef)
9281    return CommuteVectorShuffle(SVOp, DAG);
9282
9283  // Vector shuffle lowering takes 3 steps:
9284  //
9285  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
9286  //    narrowing and commutation of operands should be handled.
9287  // 2) Matching of shuffles with known shuffle masks to x86 target specific
9288  //    shuffle nodes.
9289  // 3) Rewriting of unmatched masks into new generic shuffle operations,
9290  //    so the shuffle can be broken into other shuffles and the legalizer can
9291  //    try the lowering again.
9292  //
9293  // The general idea is that no vector_shuffle operation should be left to
9294  // be matched during isel, all of them must be converted to a target specific
9295  // node here.
9296
9297  // Normalize the input vectors. Here splats, zeroed vectors, profitable
9298  // narrowing and commutation of operands should be handled. The actual code
9299  // doesn't include all of those, work in progress...
9300  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
9301  if (NewOp.getNode())
9302    return NewOp;
9303
9304  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
9305
9306  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
9307  // unpckh_undef). Only use pshufd if speed is more important than size.
9308  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
9309    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
9310  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
9311    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
9312
9313  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
9314      V2IsUndef && MayFoldVectorLoad(V1))
9315    return getMOVDDup(Op, dl, V1, DAG);
9316
9317  if (isMOVHLPS_v_undef_Mask(M, VT))
9318    return getMOVHighToLow(Op, dl, DAG);
9319
9320  // Use to match splats
9321  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
9322      (VT == MVT::v2f64 || VT == MVT::v2i64))
9323    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
9324
9325  if (isPSHUFDMask(M, VT)) {
9326    // The actual implementation will match the mask in the if above and then
9327    // during isel it can match several different instructions, not only pshufd
9328    // as its name says, sad but true, emulate the behavior for now...
9329    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
9330      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
9331
9332    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
9333
9334    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
9335      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
9336
9337    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
9338      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
9339                                  DAG);
9340
9341    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
9342                                TargetMask, DAG);
9343  }
9344
9345  if (isPALIGNRMask(M, VT, Subtarget))
9346    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
9347                                getShufflePALIGNRImmediate(SVOp),
9348                                DAG);
9349
9350  // Check if this can be converted into a logical shift.
9351  bool isLeft = false;
9352  unsigned ShAmt = 0;
9353  SDValue ShVal;
9354  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
9355  if (isShift && ShVal.hasOneUse()) {
9356    // If the shifted value has multiple uses, it may be cheaper to use
9357    // v_set0 + movlhps or movhlps, etc.
9358    MVT EltVT = VT.getVectorElementType();
9359    ShAmt *= EltVT.getSizeInBits();
9360    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
9361  }
9362
9363  if (isMOVLMask(M, VT)) {
9364    if (ISD::isBuildVectorAllZeros(V1.getNode()))
9365      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
9366    if (!isMOVLPMask(M, VT)) {
9367      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
9368        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
9369
9370      if (VT == MVT::v4i32 || VT == MVT::v4f32)
9371        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
9372    }
9373  }
9374
9375  // FIXME: fold these into legal mask.
9376  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
9377    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
9378
9379  if (isMOVHLPSMask(M, VT))
9380    return getMOVHighToLow(Op, dl, DAG);
9381
9382  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
9383    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
9384
9385  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
9386    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
9387
9388  if (isMOVLPMask(M, VT))
9389    return getMOVLP(Op, dl, DAG, HasSSE2);
9390
9391  if (ShouldXformToMOVHLPS(M, VT) ||
9392      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
9393    return CommuteVectorShuffle(SVOp, DAG);
9394
9395  if (isShift) {
9396    // No better options. Use a vshldq / vsrldq.
9397    MVT EltVT = VT.getVectorElementType();
9398    ShAmt *= EltVT.getSizeInBits();
9399    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
9400  }
9401
9402  bool Commuted = false;
9403  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
9404  // 1,1,1,1 -> v8i16 though.
9405  BitVector UndefElements;
9406  if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V1.getNode()))
9407    if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
9408      V1IsSplat = true;
9409  if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V2.getNode()))
9410    if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
9411      V2IsSplat = true;
9412
9413  // Canonicalize the splat or undef, if present, to be on the RHS.
9414  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
9415    CommuteVectorShuffleMask(M, NumElems);
9416    std::swap(V1, V2);
9417    std::swap(V1IsSplat, V2IsSplat);
9418    Commuted = true;
9419  }
9420
9421  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
9422    // Shuffling low element of v1 into undef, just return v1.
9423    if (V2IsUndef)
9424      return V1;
9425    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
9426    // the instruction selector will not match, so get a canonical MOVL with
9427    // swapped operands to undo the commute.
9428    return getMOVL(DAG, dl, VT, V2, V1);
9429  }
9430
9431  if (isUNPCKLMask(M, VT, HasInt256))
9432    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
9433
9434  if (isUNPCKHMask(M, VT, HasInt256))
9435    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
9436
9437  if (V2IsSplat) {
9438    // Normalize mask so all entries that point to V2 points to its first
9439    // element then try to match unpck{h|l} again. If match, return a
9440    // new vector_shuffle with the corrected mask.p
9441    SmallVector<int, 8> NewMask(M.begin(), M.end());
9442    NormalizeMask(NewMask, NumElems);
9443    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
9444      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
9445    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
9446      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
9447  }
9448
9449  if (Commuted) {
9450    // Commute is back and try unpck* again.
9451    // FIXME: this seems wrong.
9452    CommuteVectorShuffleMask(M, NumElems);
9453    std::swap(V1, V2);
9454    std::swap(V1IsSplat, V2IsSplat);
9455
9456    if (isUNPCKLMask(M, VT, HasInt256))
9457      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
9458
9459    if (isUNPCKHMask(M, VT, HasInt256))
9460      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
9461  }
9462
9463  // Normalize the node to match x86 shuffle ops if needed
9464  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
9465    return CommuteVectorShuffle(SVOp, DAG);
9466
9467  // The checks below are all present in isShuffleMaskLegal, but they are
9468  // inlined here right now to enable us to directly emit target specific
9469  // nodes, and remove one by one until they don't return Op anymore.
9470
9471  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
9472      SVOp->getSplatIndex() == 0 && V2IsUndef) {
9473    if (VT == MVT::v2f64 || VT == MVT::v2i64)
9474      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
9475  }
9476
9477  if (isPSHUFHWMask(M, VT, HasInt256))
9478    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
9479                                getShufflePSHUFHWImmediate(SVOp),
9480                                DAG);
9481
9482  if (isPSHUFLWMask(M, VT, HasInt256))
9483    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
9484                                getShufflePSHUFLWImmediate(SVOp),
9485                                DAG);
9486
9487  unsigned MaskValue;
9488  if (isBlendMask(M, VT, Subtarget->hasSSE41(), Subtarget->hasInt256(),
9489                  &MaskValue))
9490    return LowerVECTOR_SHUFFLEtoBlend(SVOp, MaskValue, Subtarget, DAG);
9491
9492  if (isSHUFPMask(M, VT))
9493    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
9494                                getShuffleSHUFImmediate(SVOp), DAG);
9495
9496  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
9497    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
9498  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
9499    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
9500
9501  //===--------------------------------------------------------------------===//
9502  // Generate target specific nodes for 128 or 256-bit shuffles only
9503  // supported in the AVX instruction set.
9504  //
9505
9506  // Handle VMOVDDUPY permutations
9507  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
9508    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
9509
9510  // Handle VPERMILPS/D* permutations
9511  if (isVPERMILPMask(M, VT)) {
9512    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
9513      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
9514                                  getShuffleSHUFImmediate(SVOp), DAG);
9515    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
9516                                getShuffleSHUFImmediate(SVOp), DAG);
9517  }
9518
9519  unsigned Idx;
9520  if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx))
9521    return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl),
9522                              Idx*(NumElems/2), DAG, dl);
9523
9524  // Handle VPERM2F128/VPERM2I128 permutations
9525  if (isVPERM2X128Mask(M, VT, HasFp256))
9526    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
9527                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
9528
9529  if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT))
9530    return getINSERTPS(SVOp, dl, DAG);
9531
9532  unsigned Imm8;
9533  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
9534    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
9535
9536  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
9537      VT.is512BitVector()) {
9538    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
9539    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
9540    SmallVector<SDValue, 16> permclMask;
9541    for (unsigned i = 0; i != NumElems; ++i) {
9542      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
9543    }
9544
9545    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask);
9546    if (V2IsUndef)
9547      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
9548      return DAG.getNode(X86ISD::VPERMV, dl, VT,
9549                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
9550    return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1,
9551                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2);
9552  }
9553
9554  //===--------------------------------------------------------------------===//
9555  // Since no target specific shuffle was selected for this generic one,
9556  // lower it into other known shuffles. FIXME: this isn't true yet, but
9557  // this is the plan.
9558  //
9559
9560  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
9561  if (VT == MVT::v8i16) {
9562    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
9563    if (NewOp.getNode())
9564      return NewOp;
9565  }
9566
9567  if (VT == MVT::v16i16 && Subtarget->hasInt256()) {
9568    SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG);
9569    if (NewOp.getNode())
9570      return NewOp;
9571  }
9572
9573  if (VT == MVT::v16i8) {
9574    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
9575    if (NewOp.getNode())
9576      return NewOp;
9577  }
9578
9579  if (VT == MVT::v32i8) {
9580    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
9581    if (NewOp.getNode())
9582      return NewOp;
9583  }
9584
9585  // Handle all 128-bit wide vectors with 4 elements, and match them with
9586  // several different shuffle types.
9587  if (NumElems == 4 && VT.is128BitVector())
9588    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
9589
9590  // Handle general 256-bit shuffles
9591  if (VT.is256BitVector())
9592    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
9593
9594  return SDValue();
9595}
9596
9597// This function assumes its argument is a BUILD_VECTOR of constants or
9598// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
9599// true.
9600static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
9601                                    unsigned &MaskValue) {
9602  MaskValue = 0;
9603  unsigned NumElems = BuildVector->getNumOperands();
9604  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
9605  unsigned NumLanes = (NumElems - 1) / 8 + 1;
9606  unsigned NumElemsInLane = NumElems / NumLanes;
9607
9608  // Blend for v16i16 should be symetric for the both lanes.
9609  for (unsigned i = 0; i < NumElemsInLane; ++i) {
9610    SDValue EltCond = BuildVector->getOperand(i);
9611    SDValue SndLaneEltCond =
9612        (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
9613
9614    int Lane1Cond = -1, Lane2Cond = -1;
9615    if (isa<ConstantSDNode>(EltCond))
9616      Lane1Cond = !isZero(EltCond);
9617    if (isa<ConstantSDNode>(SndLaneEltCond))
9618      Lane2Cond = !isZero(SndLaneEltCond);
9619
9620    if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
9621      // Lane1Cond != 0, means we want the first argument.
9622      // Lane1Cond == 0, means we want the second argument.
9623      // The encoding of this argument is 0 for the first argument, 1
9624      // for the second. Therefore, invert the condition.
9625      MaskValue |= !Lane1Cond << i;
9626    else if (Lane1Cond < 0)
9627      MaskValue |= !Lane2Cond << i;
9628    else
9629      return false;
9630  }
9631  return true;
9632}
9633
9634// Try to lower a vselect node into a simple blend instruction.
9635static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
9636                                   SelectionDAG &DAG) {
9637  SDValue Cond = Op.getOperand(0);
9638  SDValue LHS = Op.getOperand(1);
9639  SDValue RHS = Op.getOperand(2);
9640  SDLoc dl(Op);
9641  MVT VT = Op.getSimpleValueType();
9642  MVT EltVT = VT.getVectorElementType();
9643  unsigned NumElems = VT.getVectorNumElements();
9644
9645  // There is no blend with immediate in AVX-512.
9646  if (VT.is512BitVector())
9647    return SDValue();
9648
9649  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
9650    return SDValue();
9651  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
9652    return SDValue();
9653
9654  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
9655    return SDValue();
9656
9657  // Check the mask for BLEND and build the value.
9658  unsigned MaskValue = 0;
9659  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
9660    return SDValue();
9661
9662  // Convert i32 vectors to floating point if it is not AVX2.
9663  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
9664  MVT BlendVT = VT;
9665  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
9666    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
9667                               NumElems);
9668    LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS);
9669    RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS);
9670  }
9671
9672  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS,
9673                            DAG.getConstant(MaskValue, MVT::i32));
9674  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
9675}
9676
9677SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
9678  SDValue BlendOp = LowerVSELECTtoBlend(Op, Subtarget, DAG);
9679  if (BlendOp.getNode())
9680    return BlendOp;
9681
9682  // Some types for vselect were previously set to Expand, not Legal or
9683  // Custom. Return an empty SDValue so we fall-through to Expand, after
9684  // the Custom lowering phase.
9685  MVT VT = Op.getSimpleValueType();
9686  switch (VT.SimpleTy) {
9687  default:
9688    break;
9689  case MVT::v8i16:
9690  case MVT::v16i16:
9691    return SDValue();
9692  }
9693
9694  // We couldn't create a "Blend with immediate" node.
9695  // This node should still be legal, but we'll have to emit a blendv*
9696  // instruction.
9697  return Op;
9698}
9699
9700static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
9701  MVT VT = Op.getSimpleValueType();
9702  SDLoc dl(Op);
9703
9704  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
9705    return SDValue();
9706
9707  if (VT.getSizeInBits() == 8) {
9708    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
9709                                  Op.getOperand(0), Op.getOperand(1));
9710    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
9711                                  DAG.getValueType(VT));
9712    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
9713  }
9714
9715  if (VT.getSizeInBits() == 16) {
9716    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9717    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
9718    if (Idx == 0)
9719      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
9720                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
9721                                     DAG.getNode(ISD::BITCAST, dl,
9722                                                 MVT::v4i32,
9723                                                 Op.getOperand(0)),
9724                                     Op.getOperand(1)));
9725    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
9726                                  Op.getOperand(0), Op.getOperand(1));
9727    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
9728                                  DAG.getValueType(VT));
9729    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
9730  }
9731
9732  if (VT == MVT::f32) {
9733    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
9734    // the result back to FR32 register. It's only worth matching if the
9735    // result has a single use which is a store or a bitcast to i32.  And in
9736    // the case of a store, it's not worth it if the index is a constant 0,
9737    // because a MOVSSmr can be used instead, which is smaller and faster.
9738    if (!Op.hasOneUse())
9739      return SDValue();
9740    SDNode *User = *Op.getNode()->use_begin();
9741    if ((User->getOpcode() != ISD::STORE ||
9742         (isa<ConstantSDNode>(Op.getOperand(1)) &&
9743          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
9744        (User->getOpcode() != ISD::BITCAST ||
9745         User->getValueType(0) != MVT::i32))
9746      return SDValue();
9747    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
9748                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
9749                                              Op.getOperand(0)),
9750                                              Op.getOperand(1));
9751    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
9752  }
9753
9754  if (VT == MVT::i32 || VT == MVT::i64) {
9755    // ExtractPS/pextrq works with constant index.
9756    if (isa<ConstantSDNode>(Op.getOperand(1)))
9757      return Op;
9758  }
9759  return SDValue();
9760}
9761
9762/// Extract one bit from mask vector, like v16i1 or v8i1.
9763/// AVX-512 feature.
9764SDValue
9765X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
9766  SDValue Vec = Op.getOperand(0);
9767  SDLoc dl(Vec);
9768  MVT VecVT = Vec.getSimpleValueType();
9769  SDValue Idx = Op.getOperand(1);
9770  MVT EltVT = Op.getSimpleValueType();
9771
9772  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
9773
9774  // variable index can't be handled in mask registers,
9775  // extend vector to VR512
9776  if (!isa<ConstantSDNode>(Idx)) {
9777    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
9778    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
9779    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
9780                              ExtVT.getVectorElementType(), Ext, Idx);
9781    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
9782  }
9783
9784  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
9785  const TargetRegisterClass* rc = getRegClassFor(VecVT);
9786  unsigned MaxSift = rc->getSize()*8 - 1;
9787  Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
9788                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
9789  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
9790                    DAG.getConstant(MaxSift, MVT::i8));
9791  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
9792                       DAG.getIntPtrConstant(0));
9793}
9794
9795SDValue
9796X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9797                                           SelectionDAG &DAG) const {
9798  SDLoc dl(Op);
9799  SDValue Vec = Op.getOperand(0);
9800  MVT VecVT = Vec.getSimpleValueType();
9801  SDValue Idx = Op.getOperand(1);
9802
9803  if (Op.getSimpleValueType() == MVT::i1)
9804    return ExtractBitFromMaskVector(Op, DAG);
9805
9806  if (!isa<ConstantSDNode>(Idx)) {
9807    if (VecVT.is512BitVector() ||
9808        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
9809         VecVT.getVectorElementType().getSizeInBits() == 32)) {
9810
9811      MVT MaskEltVT =
9812        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
9813      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
9814                                    MaskEltVT.getSizeInBits());
9815
9816      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
9817      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
9818                                getZeroVector(MaskVT, Subtarget, DAG, dl),
9819                                Idx, DAG.getConstant(0, getPointerTy()));
9820      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
9821      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
9822                        Perm, DAG.getConstant(0, getPointerTy()));
9823    }
9824    return SDValue();
9825  }
9826
9827  // If this is a 256-bit vector result, first extract the 128-bit vector and
9828  // then extract the element from the 128-bit vector.
9829  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
9830
9831    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
9832    // Get the 128-bit vector.
9833    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
9834    MVT EltVT = VecVT.getVectorElementType();
9835
9836    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
9837
9838    //if (IdxVal >= NumElems/2)
9839    //  IdxVal -= NumElems/2;
9840    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
9841    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
9842                       DAG.getConstant(IdxVal, MVT::i32));
9843  }
9844
9845  assert(VecVT.is128BitVector() && "Unexpected vector length");
9846
9847  if (Subtarget->hasSSE41()) {
9848    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
9849    if (Res.getNode())
9850      return Res;
9851  }
9852
9853  MVT VT = Op.getSimpleValueType();
9854  // TODO: handle v16i8.
9855  if (VT.getSizeInBits() == 16) {
9856    SDValue Vec = Op.getOperand(0);
9857    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9858    if (Idx == 0)
9859      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
9860                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
9861                                     DAG.getNode(ISD::BITCAST, dl,
9862                                                 MVT::v4i32, Vec),
9863                                     Op.getOperand(1)));
9864    // Transform it so it match pextrw which produces a 32-bit result.
9865    MVT EltVT = MVT::i32;
9866    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
9867                                  Op.getOperand(0), Op.getOperand(1));
9868    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
9869                                  DAG.getValueType(VT));
9870    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
9871  }
9872
9873  if (VT.getSizeInBits() == 32) {
9874    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9875    if (Idx == 0)
9876      return Op;
9877
9878    // SHUFPS the element to the lowest double word, then movss.
9879    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
9880    MVT VVT = Op.getOperand(0).getSimpleValueType();
9881    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
9882                                       DAG.getUNDEF(VVT), Mask);
9883    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
9884                       DAG.getIntPtrConstant(0));
9885  }
9886
9887  if (VT.getSizeInBits() == 64) {
9888    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
9889    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
9890    //        to match extract_elt for f64.
9891    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9892    if (Idx == 0)
9893      return Op;
9894
9895    // UNPCKHPD the element to the lowest double word, then movsd.
9896    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
9897    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
9898    int Mask[2] = { 1, -1 };
9899    MVT VVT = Op.getOperand(0).getSimpleValueType();
9900    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
9901                                       DAG.getUNDEF(VVT), Mask);
9902    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
9903                       DAG.getIntPtrConstant(0));
9904  }
9905
9906  return SDValue();
9907}
9908
9909static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
9910  MVT VT = Op.getSimpleValueType();
9911  MVT EltVT = VT.getVectorElementType();
9912  SDLoc dl(Op);
9913
9914  SDValue N0 = Op.getOperand(0);
9915  SDValue N1 = Op.getOperand(1);
9916  SDValue N2 = Op.getOperand(2);
9917
9918  if (!VT.is128BitVector())
9919    return SDValue();
9920
9921  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
9922      isa<ConstantSDNode>(N2)) {
9923    unsigned Opc;
9924    if (VT == MVT::v8i16)
9925      Opc = X86ISD::PINSRW;
9926    else if (VT == MVT::v16i8)
9927      Opc = X86ISD::PINSRB;
9928    else
9929      Opc = X86ISD::PINSRB;
9930
9931    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
9932    // argument.
9933    if (N1.getValueType() != MVT::i32)
9934      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
9935    if (N2.getValueType() != MVT::i32)
9936      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
9937    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
9938  }
9939
9940  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
9941    // Bits [7:6] of the constant are the source select.  This will always be
9942    //  zero here.  The DAG Combiner may combine an extract_elt index into these
9943    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
9944    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
9945    // Bits [5:4] of the constant are the destination select.  This is the
9946    //  value of the incoming immediate.
9947    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
9948    //   combine either bitwise AND or insert of float 0.0 to set these bits.
9949    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
9950    // Create this as a scalar to vector..
9951    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
9952    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
9953  }
9954
9955  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
9956    // PINSR* works with constant index.
9957    return Op;
9958  }
9959  return SDValue();
9960}
9961
9962/// Insert one bit to mask vector, like v16i1 or v8i1.
9963/// AVX-512 feature.
9964SDValue
9965X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
9966  SDLoc dl(Op);
9967  SDValue Vec = Op.getOperand(0);
9968  SDValue Elt = Op.getOperand(1);
9969  SDValue Idx = Op.getOperand(2);
9970  MVT VecVT = Vec.getSimpleValueType();
9971
9972  if (!isa<ConstantSDNode>(Idx)) {
9973    // Non constant index. Extend source and destination,
9974    // insert element and then truncate the result.
9975    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
9976    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
9977    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
9978      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
9979      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
9980    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
9981  }
9982
9983  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
9984  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
9985  if (Vec.getOpcode() == ISD::UNDEF)
9986    return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
9987                       DAG.getConstant(IdxVal, MVT::i8));
9988  const TargetRegisterClass* rc = getRegClassFor(VecVT);
9989  unsigned MaxSift = rc->getSize()*8 - 1;
9990  EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
9991                    DAG.getConstant(MaxSift, MVT::i8));
9992  EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
9993                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
9994  return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
9995}
9996SDValue
9997X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
9998  MVT VT = Op.getSimpleValueType();
9999  MVT EltVT = VT.getVectorElementType();
10000
10001  if (EltVT == MVT::i1)
10002    return InsertBitToMaskVector(Op, DAG);
10003
10004  SDLoc dl(Op);
10005  SDValue N0 = Op.getOperand(0);
10006  SDValue N1 = Op.getOperand(1);
10007  SDValue N2 = Op.getOperand(2);
10008
10009  // If this is a 256-bit vector result, first extract the 128-bit vector,
10010  // insert the element into the extracted half and then place it back.
10011  if (VT.is256BitVector() || VT.is512BitVector()) {
10012    if (!isa<ConstantSDNode>(N2))
10013      return SDValue();
10014
10015    // Get the desired 128-bit vector half.
10016    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
10017    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
10018
10019    // Insert the element into the desired half.
10020    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
10021    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
10022
10023    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
10024                    DAG.getConstant(IdxIn128, MVT::i32));
10025
10026    // Insert the changed part back to the 256-bit vector
10027    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
10028  }
10029
10030  if (Subtarget->hasSSE41())
10031    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
10032
10033  if (EltVT == MVT::i8)
10034    return SDValue();
10035
10036  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
10037    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
10038    // as its second argument.
10039    if (N1.getValueType() != MVT::i32)
10040      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
10041    if (N2.getValueType() != MVT::i32)
10042      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
10043    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
10044  }
10045  return SDValue();
10046}
10047
10048static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
10049  SDLoc dl(Op);
10050  MVT OpVT = Op.getSimpleValueType();
10051
10052  // If this is a 256-bit vector result, first insert into a 128-bit
10053  // vector and then insert into the 256-bit vector.
10054  if (!OpVT.is128BitVector()) {
10055    // Insert into a 128-bit vector.
10056    unsigned SizeFactor = OpVT.getSizeInBits()/128;
10057    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
10058                                 OpVT.getVectorNumElements() / SizeFactor);
10059
10060    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
10061
10062    // Insert the 128-bit vector.
10063    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
10064  }
10065
10066  if (OpVT == MVT::v1i64 &&
10067      Op.getOperand(0).getValueType() == MVT::i64)
10068    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
10069
10070  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
10071  assert(OpVT.is128BitVector() && "Expected an SSE type!");
10072  return DAG.getNode(ISD::BITCAST, dl, OpVT,
10073                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
10074}
10075
10076// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
10077// a simple subregister reference or explicit instructions to grab
10078// upper bits of a vector.
10079static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10080                                      SelectionDAG &DAG) {
10081  SDLoc dl(Op);
10082  SDValue In =  Op.getOperand(0);
10083  SDValue Idx = Op.getOperand(1);
10084  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10085  MVT ResVT   = Op.getSimpleValueType();
10086  MVT InVT    = In.getSimpleValueType();
10087
10088  if (Subtarget->hasFp256()) {
10089    if (ResVT.is128BitVector() &&
10090        (InVT.is256BitVector() || InVT.is512BitVector()) &&
10091        isa<ConstantSDNode>(Idx)) {
10092      return Extract128BitVector(In, IdxVal, DAG, dl);
10093    }
10094    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
10095        isa<ConstantSDNode>(Idx)) {
10096      return Extract256BitVector(In, IdxVal, DAG, dl);
10097    }
10098  }
10099  return SDValue();
10100}
10101
10102// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
10103// simple superregister reference or explicit instructions to insert
10104// the upper bits of a vector.
10105static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10106                                     SelectionDAG &DAG) {
10107  if (Subtarget->hasFp256()) {
10108    SDLoc dl(Op.getNode());
10109    SDValue Vec = Op.getNode()->getOperand(0);
10110    SDValue SubVec = Op.getNode()->getOperand(1);
10111    SDValue Idx = Op.getNode()->getOperand(2);
10112
10113    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
10114         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
10115        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
10116        isa<ConstantSDNode>(Idx)) {
10117      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10118      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
10119    }
10120
10121    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
10122        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
10123        isa<ConstantSDNode>(Idx)) {
10124      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10125      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
10126    }
10127  }
10128  return SDValue();
10129}
10130
10131// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
10132// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
10133// one of the above mentioned nodes. It has to be wrapped because otherwise
10134// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
10135// be used to form addressing mode. These wrapped nodes will be selected
10136// into MOV32ri.
10137SDValue
10138X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
10139  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
10140
10141  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10142  // global base reg.
10143  unsigned char OpFlag = 0;
10144  unsigned WrapperKind = X86ISD::Wrapper;
10145  CodeModel::Model M = DAG.getTarget().getCodeModel();
10146
10147  if (Subtarget->isPICStyleRIPRel() &&
10148      (M == CodeModel::Small || M == CodeModel::Kernel))
10149    WrapperKind = X86ISD::WrapperRIP;
10150  else if (Subtarget->isPICStyleGOT())
10151    OpFlag = X86II::MO_GOTOFF;
10152  else if (Subtarget->isPICStyleStubPIC())
10153    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10154
10155  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
10156                                             CP->getAlignment(),
10157                                             CP->getOffset(), OpFlag);
10158  SDLoc DL(CP);
10159  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10160  // With PIC, the address is actually $g + Offset.
10161  if (OpFlag) {
10162    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10163                         DAG.getNode(X86ISD::GlobalBaseReg,
10164                                     SDLoc(), getPointerTy()),
10165                         Result);
10166  }
10167
10168  return Result;
10169}
10170
10171SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
10172  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
10173
10174  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10175  // global base reg.
10176  unsigned char OpFlag = 0;
10177  unsigned WrapperKind = X86ISD::Wrapper;
10178  CodeModel::Model M = DAG.getTarget().getCodeModel();
10179
10180  if (Subtarget->isPICStyleRIPRel() &&
10181      (M == CodeModel::Small || M == CodeModel::Kernel))
10182    WrapperKind = X86ISD::WrapperRIP;
10183  else if (Subtarget->isPICStyleGOT())
10184    OpFlag = X86II::MO_GOTOFF;
10185  else if (Subtarget->isPICStyleStubPIC())
10186    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10187
10188  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
10189                                          OpFlag);
10190  SDLoc DL(JT);
10191  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10192
10193  // With PIC, the address is actually $g + Offset.
10194  if (OpFlag)
10195    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10196                         DAG.getNode(X86ISD::GlobalBaseReg,
10197                                     SDLoc(), getPointerTy()),
10198                         Result);
10199
10200  return Result;
10201}
10202
10203SDValue
10204X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
10205  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10206
10207  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10208  // global base reg.
10209  unsigned char OpFlag = 0;
10210  unsigned WrapperKind = X86ISD::Wrapper;
10211  CodeModel::Model M = DAG.getTarget().getCodeModel();
10212
10213  if (Subtarget->isPICStyleRIPRel() &&
10214      (M == CodeModel::Small || M == CodeModel::Kernel)) {
10215    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
10216      OpFlag = X86II::MO_GOTPCREL;
10217    WrapperKind = X86ISD::WrapperRIP;
10218  } else if (Subtarget->isPICStyleGOT()) {
10219    OpFlag = X86II::MO_GOT;
10220  } else if (Subtarget->isPICStyleStubPIC()) {
10221    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
10222  } else if (Subtarget->isPICStyleStubNoDynamic()) {
10223    OpFlag = X86II::MO_DARWIN_NONLAZY;
10224  }
10225
10226  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
10227
10228  SDLoc DL(Op);
10229  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10230
10231  // With PIC, the address is actually $g + Offset.
10232  if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
10233      !Subtarget->is64Bit()) {
10234    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10235                         DAG.getNode(X86ISD::GlobalBaseReg,
10236                                     SDLoc(), getPointerTy()),
10237                         Result);
10238  }
10239
10240  // For symbols that require a load from a stub to get the address, emit the
10241  // load.
10242  if (isGlobalStubReference(OpFlag))
10243    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
10244                         MachinePointerInfo::getGOT(), false, false, false, 0);
10245
10246  return Result;
10247}
10248
10249SDValue
10250X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
10251  // Create the TargetBlockAddressAddress node.
10252  unsigned char OpFlags =
10253    Subtarget->ClassifyBlockAddressReference();
10254  CodeModel::Model M = DAG.getTarget().getCodeModel();
10255  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
10256  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
10257  SDLoc dl(Op);
10258  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
10259                                             OpFlags);
10260
10261  if (Subtarget->isPICStyleRIPRel() &&
10262      (M == CodeModel::Small || M == CodeModel::Kernel))
10263    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
10264  else
10265    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
10266
10267  // With PIC, the address is actually $g + Offset.
10268  if (isGlobalRelativeToPICBase(OpFlags)) {
10269    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
10270                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
10271                         Result);
10272  }
10273
10274  return Result;
10275}
10276
10277SDValue
10278X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
10279                                      int64_t Offset, SelectionDAG &DAG) const {
10280  // Create the TargetGlobalAddress node, folding in the constant
10281  // offset if it is legal.
10282  unsigned char OpFlags =
10283      Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
10284  CodeModel::Model M = DAG.getTarget().getCodeModel();
10285  SDValue Result;
10286  if (OpFlags == X86II::MO_NO_FLAG &&
10287      X86::isOffsetSuitableForCodeModel(Offset, M)) {
10288    // A direct static reference to a global.
10289    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
10290    Offset = 0;
10291  } else {
10292    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
10293  }
10294
10295  if (Subtarget->isPICStyleRIPRel() &&
10296      (M == CodeModel::Small || M == CodeModel::Kernel))
10297    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
10298  else
10299    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
10300
10301  // With PIC, the address is actually $g + Offset.
10302  if (isGlobalRelativeToPICBase(OpFlags)) {
10303    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
10304                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
10305                         Result);
10306  }
10307
10308  // For globals that require a load from a stub to get the address, emit the
10309  // load.
10310  if (isGlobalStubReference(OpFlags))
10311    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
10312                         MachinePointerInfo::getGOT(), false, false, false, 0);
10313
10314  // If there was a non-zero offset that we didn't fold, create an explicit
10315  // addition for it.
10316  if (Offset != 0)
10317    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
10318                         DAG.getConstant(Offset, getPointerTy()));
10319
10320  return Result;
10321}
10322
10323SDValue
10324X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
10325  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
10326  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
10327  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
10328}
10329
10330static SDValue
10331GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
10332           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
10333           unsigned char OperandFlags, bool LocalDynamic = false) {
10334  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10335  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10336  SDLoc dl(GA);
10337  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
10338                                           GA->getValueType(0),
10339                                           GA->getOffset(),
10340                                           OperandFlags);
10341
10342  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
10343                                           : X86ISD::TLSADDR;
10344
10345  if (InFlag) {
10346    SDValue Ops[] = { Chain,  TGA, *InFlag };
10347    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
10348  } else {
10349    SDValue Ops[]  = { Chain, TGA };
10350    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
10351  }
10352
10353  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10354  MFI->setAdjustsStack(true);
10355
10356  SDValue Flag = Chain.getValue(1);
10357  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
10358}
10359
10360// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
10361static SDValue
10362LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
10363                                const EVT PtrVT) {
10364  SDValue InFlag;
10365  SDLoc dl(GA);  // ? function entry point might be better
10366  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
10367                                   DAG.getNode(X86ISD::GlobalBaseReg,
10368                                               SDLoc(), PtrVT), InFlag);
10369  InFlag = Chain.getValue(1);
10370
10371  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
10372}
10373
10374// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
10375static SDValue
10376LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
10377                                const EVT PtrVT) {
10378  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
10379                    X86::RAX, X86II::MO_TLSGD);
10380}
10381
10382static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
10383                                           SelectionDAG &DAG,
10384                                           const EVT PtrVT,
10385                                           bool is64Bit) {
10386  SDLoc dl(GA);
10387
10388  // Get the start address of the TLS block for this module.
10389  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
10390      .getInfo<X86MachineFunctionInfo>();
10391  MFI->incNumLocalDynamicTLSAccesses();
10392
10393  SDValue Base;
10394  if (is64Bit) {
10395    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
10396                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
10397  } else {
10398    SDValue InFlag;
10399    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
10400        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
10401    InFlag = Chain.getValue(1);
10402    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
10403                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
10404  }
10405
10406  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
10407  // of Base.
10408
10409  // Build x@dtpoff.
10410  unsigned char OperandFlags = X86II::MO_DTPOFF;
10411  unsigned WrapperKind = X86ISD::Wrapper;
10412  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
10413                                           GA->getValueType(0),
10414                                           GA->getOffset(), OperandFlags);
10415  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
10416
10417  // Add x@dtpoff with the base.
10418  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
10419}
10420
10421// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
10422static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
10423                                   const EVT PtrVT, TLSModel::Model model,
10424                                   bool is64Bit, bool isPIC) {
10425  SDLoc dl(GA);
10426
10427  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
10428  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
10429                                                         is64Bit ? 257 : 256));
10430
10431  SDValue ThreadPointer =
10432      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
10433                  MachinePointerInfo(Ptr), false, false, false, 0);
10434
10435  unsigned char OperandFlags = 0;
10436  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
10437  // initialexec.
10438  unsigned WrapperKind = X86ISD::Wrapper;
10439  if (model == TLSModel::LocalExec) {
10440    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
10441  } else if (model == TLSModel::InitialExec) {
10442    if (is64Bit) {
10443      OperandFlags = X86II::MO_GOTTPOFF;
10444      WrapperKind = X86ISD::WrapperRIP;
10445    } else {
10446      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
10447    }
10448  } else {
10449    llvm_unreachable("Unexpected model");
10450  }
10451
10452  // emit "addl x@ntpoff,%eax" (local exec)
10453  // or "addl x@indntpoff,%eax" (initial exec)
10454  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
10455  SDValue TGA =
10456      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
10457                                 GA->getOffset(), OperandFlags);
10458  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
10459
10460  if (model == TLSModel::InitialExec) {
10461    if (isPIC && !is64Bit) {
10462      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
10463                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
10464                           Offset);
10465    }
10466
10467    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
10468                         MachinePointerInfo::getGOT(), false, false, false, 0);
10469  }
10470
10471  // The address of the thread local variable is the add of the thread
10472  // pointer with the offset of the variable.
10473  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
10474}
10475
10476SDValue
10477X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
10478
10479  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
10480  const GlobalValue *GV = GA->getGlobal();
10481
10482  if (Subtarget->isTargetELF()) {
10483    TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
10484
10485    switch (model) {
10486      case TLSModel::GeneralDynamic:
10487        if (Subtarget->is64Bit())
10488          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
10489        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
10490      case TLSModel::LocalDynamic:
10491        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
10492                                           Subtarget->is64Bit());
10493      case TLSModel::InitialExec:
10494      case TLSModel::LocalExec:
10495        return LowerToTLSExecModel(
10496            GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
10497            DAG.getTarget().getRelocationModel() == Reloc::PIC_);
10498    }
10499    llvm_unreachable("Unknown TLS model.");
10500  }
10501
10502  if (Subtarget->isTargetDarwin()) {
10503    // Darwin only has one model of TLS.  Lower to that.
10504    unsigned char OpFlag = 0;
10505    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
10506                           X86ISD::WrapperRIP : X86ISD::Wrapper;
10507
10508    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10509    // global base reg.
10510    bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
10511                 !Subtarget->is64Bit();
10512    if (PIC32)
10513      OpFlag = X86II::MO_TLVP_PIC_BASE;
10514    else
10515      OpFlag = X86II::MO_TLVP;
10516    SDLoc DL(Op);
10517    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
10518                                                GA->getValueType(0),
10519                                                GA->getOffset(), OpFlag);
10520    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10521
10522    // With PIC32, the address is actually $g + Offset.
10523    if (PIC32)
10524      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10525                           DAG.getNode(X86ISD::GlobalBaseReg,
10526                                       SDLoc(), getPointerTy()),
10527                           Offset);
10528
10529    // Lowering the machine isd will make sure everything is in the right
10530    // location.
10531    SDValue Chain = DAG.getEntryNode();
10532    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10533    SDValue Args[] = { Chain, Offset };
10534    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
10535
10536    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
10537    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10538    MFI->setAdjustsStack(true);
10539
10540    // And our return value (tls address) is in the standard call return value
10541    // location.
10542    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10543    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
10544                              Chain.getValue(1));
10545  }
10546
10547  if (Subtarget->isTargetKnownWindowsMSVC() ||
10548      Subtarget->isTargetWindowsGNU()) {
10549    // Just use the implicit TLS architecture
10550    // Need to generate someting similar to:
10551    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
10552    //                                  ; from TEB
10553    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
10554    //   mov     rcx, qword [rdx+rcx*8]
10555    //   mov     eax, .tls$:tlsvar
10556    //   [rax+rcx] contains the address
10557    // Windows 64bit: gs:0x58
10558    // Windows 32bit: fs:__tls_array
10559
10560    SDLoc dl(GA);
10561    SDValue Chain = DAG.getEntryNode();
10562
10563    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
10564    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
10565    // use its literal value of 0x2C.
10566    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
10567                                        ? Type::getInt8PtrTy(*DAG.getContext(),
10568                                                             256)
10569                                        : Type::getInt32PtrTy(*DAG.getContext(),
10570                                                              257));
10571
10572    SDValue TlsArray =
10573        Subtarget->is64Bit()
10574            ? DAG.getIntPtrConstant(0x58)
10575            : (Subtarget->isTargetWindowsGNU()
10576                   ? DAG.getIntPtrConstant(0x2C)
10577                   : DAG.getExternalSymbol("_tls_array", getPointerTy()));
10578
10579    SDValue ThreadPointer =
10580        DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
10581                    MachinePointerInfo(Ptr), false, false, false, 0);
10582
10583    // Load the _tls_index variable
10584    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
10585    if (Subtarget->is64Bit())
10586      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
10587                           IDX, MachinePointerInfo(), MVT::i32,
10588                           false, false, 0);
10589    else
10590      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
10591                        false, false, false, 0);
10592
10593    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
10594                                    getPointerTy());
10595    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
10596
10597    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
10598    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
10599                      false, false, false, 0);
10600
10601    // Get the offset of start of .tls section
10602    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
10603                                             GA->getValueType(0),
10604                                             GA->getOffset(), X86II::MO_SECREL);
10605    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
10606
10607    // The address of the thread local variable is the add of the thread
10608    // pointer with the offset of the variable.
10609    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
10610  }
10611
10612  llvm_unreachable("TLS not implemented for this target.");
10613}
10614
10615/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
10616/// and take a 2 x i32 value to shift plus a shift amount.
10617static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
10618  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
10619  MVT VT = Op.getSimpleValueType();
10620  unsigned VTBits = VT.getSizeInBits();
10621  SDLoc dl(Op);
10622  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
10623  SDValue ShOpLo = Op.getOperand(0);
10624  SDValue ShOpHi = Op.getOperand(1);
10625  SDValue ShAmt  = Op.getOperand(2);
10626  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
10627  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
10628  // during isel.
10629  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
10630                                  DAG.getConstant(VTBits - 1, MVT::i8));
10631  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
10632                                     DAG.getConstant(VTBits - 1, MVT::i8))
10633                       : DAG.getConstant(0, VT);
10634
10635  SDValue Tmp2, Tmp3;
10636  if (Op.getOpcode() == ISD::SHL_PARTS) {
10637    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
10638    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
10639  } else {
10640    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
10641    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
10642  }
10643
10644  // If the shift amount is larger or equal than the width of a part we can't
10645  // rely on the results of shld/shrd. Insert a test and select the appropriate
10646  // values for large shift amounts.
10647  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
10648                                DAG.getConstant(VTBits, MVT::i8));
10649  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10650                             AndNode, DAG.getConstant(0, MVT::i8));
10651
10652  SDValue Hi, Lo;
10653  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10654  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
10655  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
10656
10657  if (Op.getOpcode() == ISD::SHL_PARTS) {
10658    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
10659    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
10660  } else {
10661    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
10662    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
10663  }
10664
10665  SDValue Ops[2] = { Lo, Hi };
10666  return DAG.getMergeValues(Ops, dl);
10667}
10668
10669SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
10670                                           SelectionDAG &DAG) const {
10671  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
10672
10673  if (SrcVT.isVector())
10674    return SDValue();
10675
10676  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
10677         "Unknown SINT_TO_FP to lower!");
10678
10679  // These are really Legal; return the operand so the caller accepts it as
10680  // Legal.
10681  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
10682    return Op;
10683  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
10684      Subtarget->is64Bit()) {
10685    return Op;
10686  }
10687
10688  SDLoc dl(Op);
10689  unsigned Size = SrcVT.getSizeInBits()/8;
10690  MachineFunction &MF = DAG.getMachineFunction();
10691  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
10692  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10693  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
10694                               StackSlot,
10695                               MachinePointerInfo::getFixedStack(SSFI),
10696                               false, false, 0);
10697  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
10698}
10699
10700SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
10701                                     SDValue StackSlot,
10702                                     SelectionDAG &DAG) const {
10703  // Build the FILD
10704  SDLoc DL(Op);
10705  SDVTList Tys;
10706  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
10707  if (useSSE)
10708    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
10709  else
10710    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
10711
10712  unsigned ByteSize = SrcVT.getSizeInBits()/8;
10713
10714  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
10715  MachineMemOperand *MMO;
10716  if (FI) {
10717    int SSFI = FI->getIndex();
10718    MMO =
10719      DAG.getMachineFunction()
10720      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10721                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
10722  } else {
10723    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
10724    StackSlot = StackSlot.getOperand(1);
10725  }
10726  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
10727  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
10728                                           X86ISD::FILD, DL,
10729                                           Tys, Ops, SrcVT, MMO);
10730
10731  if (useSSE) {
10732    Chain = Result.getValue(1);
10733    SDValue InFlag = Result.getValue(2);
10734
10735    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
10736    // shouldn't be necessary except that RFP cannot be live across
10737    // multiple blocks. When stackifier is fixed, they can be uncoupled.
10738    MachineFunction &MF = DAG.getMachineFunction();
10739    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
10740    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
10741    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10742    Tys = DAG.getVTList(MVT::Other);
10743    SDValue Ops[] = {
10744      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
10745    };
10746    MachineMemOperand *MMO =
10747      DAG.getMachineFunction()
10748      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10749                            MachineMemOperand::MOStore, SSFISize, SSFISize);
10750
10751    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
10752                                    Ops, Op.getValueType(), MMO);
10753    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
10754                         MachinePointerInfo::getFixedStack(SSFI),
10755                         false, false, false, 0);
10756  }
10757
10758  return Result;
10759}
10760
10761// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
10762SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
10763                                               SelectionDAG &DAG) const {
10764  // This algorithm is not obvious. Here it is what we're trying to output:
10765  /*
10766     movq       %rax,  %xmm0
10767     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
10768     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
10769     #ifdef __SSE3__
10770       haddpd   %xmm0, %xmm0
10771     #else
10772       pshufd   $0x4e, %xmm0, %xmm1
10773       addpd    %xmm1, %xmm0
10774     #endif
10775  */
10776
10777  SDLoc dl(Op);
10778  LLVMContext *Context = DAG.getContext();
10779
10780  // Build some magic constants.
10781  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
10782  Constant *C0 = ConstantDataVector::get(*Context, CV0);
10783  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
10784
10785  SmallVector<Constant*,2> CV1;
10786  CV1.push_back(
10787    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
10788                                      APInt(64, 0x4330000000000000ULL))));
10789  CV1.push_back(
10790    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
10791                                      APInt(64, 0x4530000000000000ULL))));
10792  Constant *C1 = ConstantVector::get(CV1);
10793  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
10794
10795  // Load the 64-bit value into an XMM register.
10796  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
10797                            Op.getOperand(0));
10798  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
10799                              MachinePointerInfo::getConstantPool(),
10800                              false, false, false, 16);
10801  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
10802                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
10803                              CLod0);
10804
10805  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
10806                              MachinePointerInfo::getConstantPool(),
10807                              false, false, false, 16);
10808  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
10809  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
10810  SDValue Result;
10811
10812  if (Subtarget->hasSSE3()) {
10813    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
10814    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
10815  } else {
10816    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
10817    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
10818                                           S2F, 0x4E, DAG);
10819    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
10820                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
10821                         Sub);
10822  }
10823
10824  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
10825                     DAG.getIntPtrConstant(0));
10826}
10827
10828// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
10829SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
10830                                               SelectionDAG &DAG) const {
10831  SDLoc dl(Op);
10832  // FP constant to bias correct the final result.
10833  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
10834                                   MVT::f64);
10835
10836  // Load the 32-bit value into an XMM register.
10837  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
10838                             Op.getOperand(0));
10839
10840  // Zero out the upper parts of the register.
10841  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
10842
10843  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10844                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
10845                     DAG.getIntPtrConstant(0));
10846
10847  // Or the load with the bias.
10848  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
10849                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
10850                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
10851                                                   MVT::v2f64, Load)),
10852                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
10853                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
10854                                                   MVT::v2f64, Bias)));
10855  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10856                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
10857                   DAG.getIntPtrConstant(0));
10858
10859  // Subtract the bias.
10860  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
10861
10862  // Handle final rounding.
10863  EVT DestVT = Op.getValueType();
10864
10865  if (DestVT.bitsLT(MVT::f64))
10866    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
10867                       DAG.getIntPtrConstant(0));
10868  if (DestVT.bitsGT(MVT::f64))
10869    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
10870
10871  // Handle final rounding.
10872  return Sub;
10873}
10874
10875SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
10876                                               SelectionDAG &DAG) const {
10877  SDValue N0 = Op.getOperand(0);
10878  MVT SVT = N0.getSimpleValueType();
10879  SDLoc dl(Op);
10880
10881  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
10882          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
10883         "Custom UINT_TO_FP is not supported!");
10884
10885  MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
10886  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
10887                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
10888}
10889
10890SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
10891                                           SelectionDAG &DAG) const {
10892  SDValue N0 = Op.getOperand(0);
10893  SDLoc dl(Op);
10894
10895  if (Op.getValueType().isVector())
10896    return lowerUINT_TO_FP_vec(Op, DAG);
10897
10898  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
10899  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
10900  // the optimization here.
10901  if (DAG.SignBitIsZero(N0))
10902    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
10903
10904  MVT SrcVT = N0.getSimpleValueType();
10905  MVT DstVT = Op.getSimpleValueType();
10906  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
10907    return LowerUINT_TO_FP_i64(Op, DAG);
10908  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
10909    return LowerUINT_TO_FP_i32(Op, DAG);
10910  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
10911    return SDValue();
10912
10913  // Make a 64-bit buffer, and use it to build an FILD.
10914  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
10915  if (SrcVT == MVT::i32) {
10916    SDValue WordOff = DAG.getConstant(4, getPointerTy());
10917    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
10918                                     getPointerTy(), StackSlot, WordOff);
10919    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
10920                                  StackSlot, MachinePointerInfo(),
10921                                  false, false, 0);
10922    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
10923                                  OffsetSlot, MachinePointerInfo(),
10924                                  false, false, 0);
10925    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
10926    return Fild;
10927  }
10928
10929  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
10930  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
10931                               StackSlot, MachinePointerInfo(),
10932                               false, false, 0);
10933  // For i64 source, we need to add the appropriate power of 2 if the input
10934  // was negative.  This is the same as the optimization in
10935  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
10936  // we must be careful to do the computation in x87 extended precision, not
10937  // in SSE. (The generic code can't know it's OK to do this, or how to.)
10938  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
10939  MachineMemOperand *MMO =
10940    DAG.getMachineFunction()
10941    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10942                          MachineMemOperand::MOLoad, 8, 8);
10943
10944  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
10945  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
10946  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
10947                                         MVT::i64, MMO);
10948
10949  APInt FF(32, 0x5F800000ULL);
10950
10951  // Check whether the sign bit is set.
10952  SDValue SignSet = DAG.getSetCC(dl,
10953                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
10954                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
10955                                 ISD::SETLT);
10956
10957  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
10958  SDValue FudgePtr = DAG.getConstantPool(
10959                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
10960                                         getPointerTy());
10961
10962  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
10963  SDValue Zero = DAG.getIntPtrConstant(0);
10964  SDValue Four = DAG.getIntPtrConstant(4);
10965  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
10966                               Zero, Four);
10967  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
10968
10969  // Load the value out, extending it from f32 to f80.
10970  // FIXME: Avoid the extend by constructing the right constant pool?
10971  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
10972                                 FudgePtr, MachinePointerInfo::getConstantPool(),
10973                                 MVT::f32, false, false, 4);
10974  // Extend everything to 80 bits to force it to be done on x87.
10975  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
10976  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
10977}
10978
10979std::pair<SDValue,SDValue>
10980X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
10981                                    bool IsSigned, bool IsReplace) const {
10982  SDLoc DL(Op);
10983
10984  EVT DstTy = Op.getValueType();
10985
10986  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
10987    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
10988    DstTy = MVT::i64;
10989  }
10990
10991  assert(DstTy.getSimpleVT() <= MVT::i64 &&
10992         DstTy.getSimpleVT() >= MVT::i16 &&
10993         "Unknown FP_TO_INT to lower!");
10994
10995  // These are really Legal.
10996  if (DstTy == MVT::i32 &&
10997      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
10998    return std::make_pair(SDValue(), SDValue());
10999  if (Subtarget->is64Bit() &&
11000      DstTy == MVT::i64 &&
11001      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
11002    return std::make_pair(SDValue(), SDValue());
11003
11004  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
11005  // stack slot, or into the FTOL runtime function.
11006  MachineFunction &MF = DAG.getMachineFunction();
11007  unsigned MemSize = DstTy.getSizeInBits()/8;
11008  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11009  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11010
11011  unsigned Opc;
11012  if (!IsSigned && isIntegerTypeFTOL(DstTy))
11013    Opc = X86ISD::WIN_FTOL;
11014  else
11015    switch (DstTy.getSimpleVT().SimpleTy) {
11016    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
11017    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
11018    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
11019    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
11020    }
11021
11022  SDValue Chain = DAG.getEntryNode();
11023  SDValue Value = Op.getOperand(0);
11024  EVT TheVT = Op.getOperand(0).getValueType();
11025  // FIXME This causes a redundant load/store if the SSE-class value is already
11026  // in memory, such as if it is on the callstack.
11027  if (isScalarFPTypeInSSEReg(TheVT)) {
11028    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
11029    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
11030                         MachinePointerInfo::getFixedStack(SSFI),
11031                         false, false, 0);
11032    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
11033    SDValue Ops[] = {
11034      Chain, StackSlot, DAG.getValueType(TheVT)
11035    };
11036
11037    MachineMemOperand *MMO =
11038      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11039                              MachineMemOperand::MOLoad, MemSize, MemSize);
11040    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
11041    Chain = Value.getValue(1);
11042    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11043    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11044  }
11045
11046  MachineMemOperand *MMO =
11047    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11048                            MachineMemOperand::MOStore, MemSize, MemSize);
11049
11050  if (Opc != X86ISD::WIN_FTOL) {
11051    // Build the FP_TO_INT*_IN_MEM
11052    SDValue Ops[] = { Chain, Value, StackSlot };
11053    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
11054                                           Ops, DstTy, MMO);
11055    return std::make_pair(FIST, StackSlot);
11056  } else {
11057    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
11058      DAG.getVTList(MVT::Other, MVT::Glue),
11059      Chain, Value);
11060    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
11061      MVT::i32, ftol.getValue(1));
11062    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
11063      MVT::i32, eax.getValue(2));
11064    SDValue Ops[] = { eax, edx };
11065    SDValue pair = IsReplace
11066      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
11067      : DAG.getMergeValues(Ops, DL);
11068    return std::make_pair(pair, SDValue());
11069  }
11070}
11071
11072static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
11073                              const X86Subtarget *Subtarget) {
11074  MVT VT = Op->getSimpleValueType(0);
11075  SDValue In = Op->getOperand(0);
11076  MVT InVT = In.getSimpleValueType();
11077  SDLoc dl(Op);
11078
11079  // Optimize vectors in AVX mode:
11080  //
11081  //   v8i16 -> v8i32
11082  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
11083  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
11084  //   Concat upper and lower parts.
11085  //
11086  //   v4i32 -> v4i64
11087  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
11088  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
11089  //   Concat upper and lower parts.
11090  //
11091
11092  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
11093      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
11094      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
11095    return SDValue();
11096
11097  if (Subtarget->hasInt256())
11098    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
11099
11100  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
11101  SDValue Undef = DAG.getUNDEF(InVT);
11102  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
11103  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11104  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11105
11106  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
11107                             VT.getVectorNumElements()/2);
11108
11109  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
11110  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
11111
11112  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
11113}
11114
11115static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
11116                                        SelectionDAG &DAG) {
11117  MVT VT = Op->getSimpleValueType(0);
11118  SDValue In = Op->getOperand(0);
11119  MVT InVT = In.getSimpleValueType();
11120  SDLoc DL(Op);
11121  unsigned int NumElts = VT.getVectorNumElements();
11122  if (NumElts != 8 && NumElts != 16)
11123    return SDValue();
11124
11125  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
11126    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
11127
11128  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
11129  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11130  // Now we have only mask extension
11131  assert(InVT.getVectorElementType() == MVT::i1);
11132  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
11133  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
11134  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
11135  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11136  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
11137                           MachinePointerInfo::getConstantPool(),
11138                           false, false, false, Alignment);
11139
11140  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
11141  if (VT.is512BitVector())
11142    return Brcst;
11143  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
11144}
11145
11146static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11147                               SelectionDAG &DAG) {
11148  if (Subtarget->hasFp256()) {
11149    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
11150    if (Res.getNode())
11151      return Res;
11152  }
11153
11154  return SDValue();
11155}
11156
11157static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11158                                SelectionDAG &DAG) {
11159  SDLoc DL(Op);
11160  MVT VT = Op.getSimpleValueType();
11161  SDValue In = Op.getOperand(0);
11162  MVT SVT = In.getSimpleValueType();
11163
11164  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
11165    return LowerZERO_EXTEND_AVX512(Op, DAG);
11166
11167  if (Subtarget->hasFp256()) {
11168    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
11169    if (Res.getNode())
11170      return Res;
11171  }
11172
11173  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
11174         VT.getVectorNumElements() != SVT.getVectorNumElements());
11175  return SDValue();
11176}
11177
11178SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
11179  SDLoc DL(Op);
11180  MVT VT = Op.getSimpleValueType();
11181  SDValue In = Op.getOperand(0);
11182  MVT InVT = In.getSimpleValueType();
11183
11184  if (VT == MVT::i1) {
11185    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
11186           "Invalid scalar TRUNCATE operation");
11187    if (InVT == MVT::i32)
11188      return SDValue();
11189    if (InVT.getSizeInBits() == 64)
11190      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::i32, In);
11191    else if (InVT.getSizeInBits() < 32)
11192      In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
11193    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
11194  }
11195  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
11196         "Invalid TRUNCATE operation");
11197
11198  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
11199    if (VT.getVectorElementType().getSizeInBits() >=8)
11200      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
11201
11202    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
11203    unsigned NumElts = InVT.getVectorNumElements();
11204    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
11205    if (InVT.getSizeInBits() < 512) {
11206      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
11207      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
11208      InVT = ExtVT;
11209    }
11210
11211    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
11212    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
11213    SDValue CP = DAG.getConstantPool(C, getPointerTy());
11214    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11215    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
11216                           MachinePointerInfo::getConstantPool(),
11217                           false, false, false, Alignment);
11218    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
11219    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
11220    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
11221  }
11222
11223  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
11224    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
11225    if (Subtarget->hasInt256()) {
11226      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
11227      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
11228      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
11229                                ShufMask);
11230      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
11231                         DAG.getIntPtrConstant(0));
11232    }
11233
11234    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
11235                               DAG.getIntPtrConstant(0));
11236    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
11237                               DAG.getIntPtrConstant(2));
11238    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
11239    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
11240    static const int ShufMask[] = {0, 2, 4, 6};
11241    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
11242  }
11243
11244  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
11245    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
11246    if (Subtarget->hasInt256()) {
11247      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
11248
11249      SmallVector<SDValue,32> pshufbMask;
11250      for (unsigned i = 0; i < 2; ++i) {
11251        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
11252        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
11253        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
11254        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
11255        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
11256        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
11257        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
11258        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
11259        for (unsigned j = 0; j < 8; ++j)
11260          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
11261      }
11262      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
11263      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
11264      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
11265
11266      static const int ShufMask[] = {0,  2,  -1,  -1};
11267      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
11268                                &ShufMask[0]);
11269      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
11270                       DAG.getIntPtrConstant(0));
11271      return DAG.getNode(ISD::BITCAST, DL, VT, In);
11272    }
11273
11274    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
11275                               DAG.getIntPtrConstant(0));
11276
11277    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
11278                               DAG.getIntPtrConstant(4));
11279
11280    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
11281    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
11282
11283    // The PSHUFB mask:
11284    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
11285                                   -1, -1, -1, -1, -1, -1, -1, -1};
11286
11287    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
11288    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
11289    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
11290
11291    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
11292    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
11293
11294    // The MOVLHPS Mask:
11295    static const int ShufMask2[] = {0, 1, 4, 5};
11296    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
11297    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
11298  }
11299
11300  // Handle truncation of V256 to V128 using shuffles.
11301  if (!VT.is128BitVector() || !InVT.is256BitVector())
11302    return SDValue();
11303
11304  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
11305
11306  unsigned NumElems = VT.getVectorNumElements();
11307  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
11308
11309  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
11310  // Prepare truncation shuffle mask
11311  for (unsigned i = 0; i != NumElems; ++i)
11312    MaskVec[i] = i * 2;
11313  SDValue V = DAG.getVectorShuffle(NVT, DL,
11314                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
11315                                   DAG.getUNDEF(NVT), &MaskVec[0]);
11316  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
11317                     DAG.getIntPtrConstant(0));
11318}
11319
11320SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
11321                                           SelectionDAG &DAG) const {
11322  assert(!Op.getSimpleValueType().isVector());
11323
11324  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
11325    /*IsSigned=*/ true, /*IsReplace=*/ false);
11326  SDValue FIST = Vals.first, StackSlot = Vals.second;
11327  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
11328  if (!FIST.getNode()) return Op;
11329
11330  if (StackSlot.getNode())
11331    // Load the result.
11332    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
11333                       FIST, StackSlot, MachinePointerInfo(),
11334                       false, false, false, 0);
11335
11336  // The node is the result.
11337  return FIST;
11338}
11339
11340SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
11341                                           SelectionDAG &DAG) const {
11342  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
11343    /*IsSigned=*/ false, /*IsReplace=*/ false);
11344  SDValue FIST = Vals.first, StackSlot = Vals.second;
11345  assert(FIST.getNode() && "Unexpected failure");
11346
11347  if (StackSlot.getNode())
11348    // Load the result.
11349    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
11350                       FIST, StackSlot, MachinePointerInfo(),
11351                       false, false, false, 0);
11352
11353  // The node is the result.
11354  return FIST;
11355}
11356
11357static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
11358  SDLoc DL(Op);
11359  MVT VT = Op.getSimpleValueType();
11360  SDValue In = Op.getOperand(0);
11361  MVT SVT = In.getSimpleValueType();
11362
11363  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
11364
11365  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
11366                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
11367                                 In, DAG.getUNDEF(SVT)));
11368}
11369
11370static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) {
11371  LLVMContext *Context = DAG.getContext();
11372  SDLoc dl(Op);
11373  MVT VT = Op.getSimpleValueType();
11374  MVT EltVT = VT;
11375  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
11376  if (VT.isVector()) {
11377    EltVT = VT.getVectorElementType();
11378    NumElts = VT.getVectorNumElements();
11379  }
11380  Constant *C;
11381  if (EltVT == MVT::f64)
11382    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11383                                          APInt(64, ~(1ULL << 63))));
11384  else
11385    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
11386                                          APInt(32, ~(1U << 31))));
11387  C = ConstantVector::getSplat(NumElts, C);
11388  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11389  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
11390  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
11391  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11392                             MachinePointerInfo::getConstantPool(),
11393                             false, false, false, Alignment);
11394  if (VT.isVector()) {
11395    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
11396    return DAG.getNode(ISD::BITCAST, dl, VT,
11397                       DAG.getNode(ISD::AND, dl, ANDVT,
11398                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
11399                                               Op.getOperand(0)),
11400                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
11401  }
11402  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
11403}
11404
11405static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) {
11406  LLVMContext *Context = DAG.getContext();
11407  SDLoc dl(Op);
11408  MVT VT = Op.getSimpleValueType();
11409  MVT EltVT = VT;
11410  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
11411  if (VT.isVector()) {
11412    EltVT = VT.getVectorElementType();
11413    NumElts = VT.getVectorNumElements();
11414  }
11415  Constant *C;
11416  if (EltVT == MVT::f64)
11417    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11418                                          APInt(64, 1ULL << 63)));
11419  else
11420    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
11421                                          APInt(32, 1U << 31)));
11422  C = ConstantVector::getSplat(NumElts, C);
11423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11424  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
11425  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
11426  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11427                             MachinePointerInfo::getConstantPool(),
11428                             false, false, false, Alignment);
11429  if (VT.isVector()) {
11430    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
11431    return DAG.getNode(ISD::BITCAST, dl, VT,
11432                       DAG.getNode(ISD::XOR, dl, XORVT,
11433                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
11434                                               Op.getOperand(0)),
11435                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
11436  }
11437
11438  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
11439}
11440
11441static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
11442  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11443  LLVMContext *Context = DAG.getContext();
11444  SDValue Op0 = Op.getOperand(0);
11445  SDValue Op1 = Op.getOperand(1);
11446  SDLoc dl(Op);
11447  MVT VT = Op.getSimpleValueType();
11448  MVT SrcVT = Op1.getSimpleValueType();
11449
11450  // If second operand is smaller, extend it first.
11451  if (SrcVT.bitsLT(VT)) {
11452    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
11453    SrcVT = VT;
11454  }
11455  // And if it is bigger, shrink it first.
11456  if (SrcVT.bitsGT(VT)) {
11457    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
11458    SrcVT = VT;
11459  }
11460
11461  // At this point the operands and the result should have the same
11462  // type, and that won't be f80 since that is not custom lowered.
11463
11464  // First get the sign bit of second operand.
11465  SmallVector<Constant*,4> CV;
11466  if (SrcVT == MVT::f64) {
11467    const fltSemantics &Sem = APFloat::IEEEdouble;
11468    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
11469    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
11470  } else {
11471    const fltSemantics &Sem = APFloat::IEEEsingle;
11472    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
11473    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11474    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11475    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11476  }
11477  Constant *C = ConstantVector::get(CV);
11478  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
11479  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
11480                              MachinePointerInfo::getConstantPool(),
11481                              false, false, false, 16);
11482  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
11483
11484  // Shift sign bit right or left if the two operands have different types.
11485  if (SrcVT.bitsGT(VT)) {
11486    // Op0 is MVT::f32, Op1 is MVT::f64.
11487    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
11488    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
11489                          DAG.getConstant(32, MVT::i32));
11490    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
11491    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
11492                          DAG.getIntPtrConstant(0));
11493  }
11494
11495  // Clear first operand sign bit.
11496  CV.clear();
11497  if (VT == MVT::f64) {
11498    const fltSemantics &Sem = APFloat::IEEEdouble;
11499    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
11500                                                   APInt(64, ~(1ULL << 63)))));
11501    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
11502  } else {
11503    const fltSemantics &Sem = APFloat::IEEEsingle;
11504    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
11505                                                   APInt(32, ~(1U << 31)))));
11506    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11507    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11508    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
11509  }
11510  C = ConstantVector::get(CV);
11511  CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
11512  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11513                              MachinePointerInfo::getConstantPool(),
11514                              false, false, false, 16);
11515  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
11516
11517  // Or the value with the sign bit.
11518  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
11519}
11520
11521static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
11522  SDValue N0 = Op.getOperand(0);
11523  SDLoc dl(Op);
11524  MVT VT = Op.getSimpleValueType();
11525
11526  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
11527  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
11528                                  DAG.getConstant(1, VT));
11529  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
11530}
11531
11532// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
11533//
11534static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
11535                                      SelectionDAG &DAG) {
11536  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
11537
11538  if (!Subtarget->hasSSE41())
11539    return SDValue();
11540
11541  if (!Op->hasOneUse())
11542    return SDValue();
11543
11544  SDNode *N = Op.getNode();
11545  SDLoc DL(N);
11546
11547  SmallVector<SDValue, 8> Opnds;
11548  DenseMap<SDValue, unsigned> VecInMap;
11549  SmallVector<SDValue, 8> VecIns;
11550  EVT VT = MVT::Other;
11551
11552  // Recognize a special case where a vector is casted into wide integer to
11553  // test all 0s.
11554  Opnds.push_back(N->getOperand(0));
11555  Opnds.push_back(N->getOperand(1));
11556
11557  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
11558    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
11559    // BFS traverse all OR'd operands.
11560    if (I->getOpcode() == ISD::OR) {
11561      Opnds.push_back(I->getOperand(0));
11562      Opnds.push_back(I->getOperand(1));
11563      // Re-evaluate the number of nodes to be traversed.
11564      e += 2; // 2 more nodes (LHS and RHS) are pushed.
11565      continue;
11566    }
11567
11568    // Quit if a non-EXTRACT_VECTOR_ELT
11569    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11570      return SDValue();
11571
11572    // Quit if without a constant index.
11573    SDValue Idx = I->getOperand(1);
11574    if (!isa<ConstantSDNode>(Idx))
11575      return SDValue();
11576
11577    SDValue ExtractedFromVec = I->getOperand(0);
11578    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
11579    if (M == VecInMap.end()) {
11580      VT = ExtractedFromVec.getValueType();
11581      // Quit if not 128/256-bit vector.
11582      if (!VT.is128BitVector() && !VT.is256BitVector())
11583        return SDValue();
11584      // Quit if not the same type.
11585      if (VecInMap.begin() != VecInMap.end() &&
11586          VT != VecInMap.begin()->first.getValueType())
11587        return SDValue();
11588      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
11589      VecIns.push_back(ExtractedFromVec);
11590    }
11591    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
11592  }
11593
11594  assert((VT.is128BitVector() || VT.is256BitVector()) &&
11595         "Not extracted from 128-/256-bit vector.");
11596
11597  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
11598
11599  for (DenseMap<SDValue, unsigned>::const_iterator
11600        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
11601    // Quit if not all elements are used.
11602    if (I->second != FullMask)
11603      return SDValue();
11604  }
11605
11606  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
11607
11608  // Cast all vectors into TestVT for PTEST.
11609  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
11610    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
11611
11612  // If more than one full vectors are evaluated, OR them first before PTEST.
11613  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
11614    // Each iteration will OR 2 nodes and append the result until there is only
11615    // 1 node left, i.e. the final OR'd value of all vectors.
11616    SDValue LHS = VecIns[Slot];
11617    SDValue RHS = VecIns[Slot + 1];
11618    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
11619  }
11620
11621  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
11622                     VecIns.back(), VecIns.back());
11623}
11624
11625/// \brief return true if \c Op has a use that doesn't just read flags.
11626static bool hasNonFlagsUse(SDValue Op) {
11627  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
11628       ++UI) {
11629    SDNode *User = *UI;
11630    unsigned UOpNo = UI.getOperandNo();
11631    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
11632      // Look pass truncate.
11633      UOpNo = User->use_begin().getOperandNo();
11634      User = *User->use_begin();
11635    }
11636
11637    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
11638        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
11639      return true;
11640  }
11641  return false;
11642}
11643
11644/// Emit nodes that will be selected as "test Op0,Op0", or something
11645/// equivalent.
11646SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
11647                                    SelectionDAG &DAG) const {
11648  if (Op.getValueType() == MVT::i1)
11649    // KORTEST instruction should be selected
11650    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
11651                       DAG.getConstant(0, Op.getValueType()));
11652
11653  // CF and OF aren't always set the way we want. Determine which
11654  // of these we need.
11655  bool NeedCF = false;
11656  bool NeedOF = false;
11657  switch (X86CC) {
11658  default: break;
11659  case X86::COND_A: case X86::COND_AE:
11660  case X86::COND_B: case X86::COND_BE:
11661    NeedCF = true;
11662    break;
11663  case X86::COND_G: case X86::COND_GE:
11664  case X86::COND_L: case X86::COND_LE:
11665  case X86::COND_O: case X86::COND_NO: {
11666    // Check if we really need to set the
11667    // Overflow flag. If NoSignedWrap is present
11668    // that is not actually needed.
11669    switch (Op->getOpcode()) {
11670    case ISD::ADD:
11671    case ISD::SUB:
11672    case ISD::MUL:
11673    case ISD::SHL: {
11674      const BinaryWithFlagsSDNode *BinNode =
11675          cast<BinaryWithFlagsSDNode>(Op.getNode());
11676      if (BinNode->hasNoSignedWrap())
11677        break;
11678    }
11679    default:
11680      NeedOF = true;
11681      break;
11682    }
11683    break;
11684  }
11685  }
11686  // See if we can use the EFLAGS value from the operand instead of
11687  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
11688  // we prove that the arithmetic won't overflow, we can't use OF or CF.
11689  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
11690    // Emit a CMP with 0, which is the TEST pattern.
11691    //if (Op.getValueType() == MVT::i1)
11692    //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
11693    //                     DAG.getConstant(0, MVT::i1));
11694    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
11695                       DAG.getConstant(0, Op.getValueType()));
11696  }
11697  unsigned Opcode = 0;
11698  unsigned NumOperands = 0;
11699
11700  // Truncate operations may prevent the merge of the SETCC instruction
11701  // and the arithmetic instruction before it. Attempt to truncate the operands
11702  // of the arithmetic instruction and use a reduced bit-width instruction.
11703  bool NeedTruncation = false;
11704  SDValue ArithOp = Op;
11705  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
11706    SDValue Arith = Op->getOperand(0);
11707    // Both the trunc and the arithmetic op need to have one user each.
11708    if (Arith->hasOneUse())
11709      switch (Arith.getOpcode()) {
11710        default: break;
11711        case ISD::ADD:
11712        case ISD::SUB:
11713        case ISD::AND:
11714        case ISD::OR:
11715        case ISD::XOR: {
11716          NeedTruncation = true;
11717          ArithOp = Arith;
11718        }
11719      }
11720  }
11721
11722  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
11723  // which may be the result of a CAST.  We use the variable 'Op', which is the
11724  // non-casted variable when we check for possible users.
11725  switch (ArithOp.getOpcode()) {
11726  case ISD::ADD:
11727    // Due to an isel shortcoming, be conservative if this add is likely to be
11728    // selected as part of a load-modify-store instruction. When the root node
11729    // in a match is a store, isel doesn't know how to remap non-chain non-flag
11730    // uses of other nodes in the match, such as the ADD in this case. This
11731    // leads to the ADD being left around and reselected, with the result being
11732    // two adds in the output.  Alas, even if none our users are stores, that
11733    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
11734    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
11735    // climbing the DAG back to the root, and it doesn't seem to be worth the
11736    // effort.
11737    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11738         UE = Op.getNode()->use_end(); UI != UE; ++UI)
11739      if (UI->getOpcode() != ISD::CopyToReg &&
11740          UI->getOpcode() != ISD::SETCC &&
11741          UI->getOpcode() != ISD::STORE)
11742        goto default_case;
11743
11744    if (ConstantSDNode *C =
11745        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
11746      // An add of one will be selected as an INC.
11747      if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
11748        Opcode = X86ISD::INC;
11749        NumOperands = 1;
11750        break;
11751      }
11752
11753      // An add of negative one (subtract of one) will be selected as a DEC.
11754      if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
11755        Opcode = X86ISD::DEC;
11756        NumOperands = 1;
11757        break;
11758      }
11759    }
11760
11761    // Otherwise use a regular EFLAGS-setting add.
11762    Opcode = X86ISD::ADD;
11763    NumOperands = 2;
11764    break;
11765  case ISD::SHL:
11766  case ISD::SRL:
11767    // If we have a constant logical shift that's only used in a comparison
11768    // against zero turn it into an equivalent AND. This allows turning it into
11769    // a TEST instruction later.
11770    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
11771        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
11772      EVT VT = Op.getValueType();
11773      unsigned BitWidth = VT.getSizeInBits();
11774      unsigned ShAmt = Op->getConstantOperandVal(1);
11775      if (ShAmt >= BitWidth) // Avoid undefined shifts.
11776        break;
11777      APInt Mask = ArithOp.getOpcode() == ISD::SRL
11778                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
11779                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
11780      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
11781        break;
11782      SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
11783                                DAG.getConstant(Mask, VT));
11784      DAG.ReplaceAllUsesWith(Op, New);
11785      Op = New;
11786    }
11787    break;
11788
11789  case ISD::AND:
11790    // If the primary and result isn't used, don't bother using X86ISD::AND,
11791    // because a TEST instruction will be better.
11792    if (!hasNonFlagsUse(Op))
11793      break;
11794    // FALL THROUGH
11795  case ISD::SUB:
11796  case ISD::OR:
11797  case ISD::XOR:
11798    // Due to the ISEL shortcoming noted above, be conservative if this op is
11799    // likely to be selected as part of a load-modify-store instruction.
11800    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11801           UE = Op.getNode()->use_end(); UI != UE; ++UI)
11802      if (UI->getOpcode() == ISD::STORE)
11803        goto default_case;
11804
11805    // Otherwise use a regular EFLAGS-setting instruction.
11806    switch (ArithOp.getOpcode()) {
11807    default: llvm_unreachable("unexpected operator!");
11808    case ISD::SUB: Opcode = X86ISD::SUB; break;
11809    case ISD::XOR: Opcode = X86ISD::XOR; break;
11810    case ISD::AND: Opcode = X86ISD::AND; break;
11811    case ISD::OR: {
11812      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
11813        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
11814        if (EFLAGS.getNode())
11815          return EFLAGS;
11816      }
11817      Opcode = X86ISD::OR;
11818      break;
11819    }
11820    }
11821
11822    NumOperands = 2;
11823    break;
11824  case X86ISD::ADD:
11825  case X86ISD::SUB:
11826  case X86ISD::INC:
11827  case X86ISD::DEC:
11828  case X86ISD::OR:
11829  case X86ISD::XOR:
11830  case X86ISD::AND:
11831    return SDValue(Op.getNode(), 1);
11832  default:
11833  default_case:
11834    break;
11835  }
11836
11837  // If we found that truncation is beneficial, perform the truncation and
11838  // update 'Op'.
11839  if (NeedTruncation) {
11840    EVT VT = Op.getValueType();
11841    SDValue WideVal = Op->getOperand(0);
11842    EVT WideVT = WideVal.getValueType();
11843    unsigned ConvertedOp = 0;
11844    // Use a target machine opcode to prevent further DAGCombine
11845    // optimizations that may separate the arithmetic operations
11846    // from the setcc node.
11847    switch (WideVal.getOpcode()) {
11848      default: break;
11849      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
11850      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
11851      case ISD::AND: ConvertedOp = X86ISD::AND; break;
11852      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
11853      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
11854    }
11855
11856    if (ConvertedOp) {
11857      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11858      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
11859        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
11860        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
11861        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
11862      }
11863    }
11864  }
11865
11866  if (Opcode == 0)
11867    // Emit a CMP with 0, which is the TEST pattern.
11868    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
11869                       DAG.getConstant(0, Op.getValueType()));
11870
11871  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11872  SmallVector<SDValue, 4> Ops;
11873  for (unsigned i = 0; i != NumOperands; ++i)
11874    Ops.push_back(Op.getOperand(i));
11875
11876  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
11877  DAG.ReplaceAllUsesWith(Op, New);
11878  return SDValue(New.getNode(), 1);
11879}
11880
11881/// Emit nodes that will be selected as "cmp Op0,Op1", or something
11882/// equivalent.
11883SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
11884                                   SDLoc dl, SelectionDAG &DAG) const {
11885  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
11886    if (C->getAPIntValue() == 0)
11887      return EmitTest(Op0, X86CC, dl, DAG);
11888
11889     if (Op0.getValueType() == MVT::i1)
11890       llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
11891  }
11892
11893  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
11894       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
11895    // Do the comparison at i32 if it's smaller, besides the Atom case.
11896    // This avoids subregister aliasing issues. Keep the smaller reference
11897    // if we're optimizing for size, however, as that'll allow better folding
11898    // of memory operations.
11899    if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
11900        !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
11901             AttributeSet::FunctionIndex, Attribute::MinSize) &&
11902        !Subtarget->isAtom()) {
11903      unsigned ExtendOp =
11904          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
11905      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
11906      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
11907    }
11908    // Use SUB instead of CMP to enable CSE between SUB and CMP.
11909    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
11910    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
11911                              Op0, Op1);
11912    return SDValue(Sub.getNode(), 1);
11913  }
11914  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
11915}
11916
11917/// Convert a comparison if required by the subtarget.
11918SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
11919                                                 SelectionDAG &DAG) const {
11920  // If the subtarget does not support the FUCOMI instruction, floating-point
11921  // comparisons have to be converted.
11922  if (Subtarget->hasCMov() ||
11923      Cmp.getOpcode() != X86ISD::CMP ||
11924      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
11925      !Cmp.getOperand(1).getValueType().isFloatingPoint())
11926    return Cmp;
11927
11928  // The instruction selector will select an FUCOM instruction instead of
11929  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
11930  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
11931  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
11932  SDLoc dl(Cmp);
11933  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
11934  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
11935  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
11936                            DAG.getConstant(8, MVT::i8));
11937  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
11938  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
11939}
11940
11941static bool isAllOnes(SDValue V) {
11942  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
11943  return C && C->isAllOnesValue();
11944}
11945
11946/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
11947/// if it's possible.
11948SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
11949                                     SDLoc dl, SelectionDAG &DAG) const {
11950  SDValue Op0 = And.getOperand(0);
11951  SDValue Op1 = And.getOperand(1);
11952  if (Op0.getOpcode() == ISD::TRUNCATE)
11953    Op0 = Op0.getOperand(0);
11954  if (Op1.getOpcode() == ISD::TRUNCATE)
11955    Op1 = Op1.getOperand(0);
11956
11957  SDValue LHS, RHS;
11958  if (Op1.getOpcode() == ISD::SHL)
11959    std::swap(Op0, Op1);
11960  if (Op0.getOpcode() == ISD::SHL) {
11961    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
11962      if (And00C->getZExtValue() == 1) {
11963        // If we looked past a truncate, check that it's only truncating away
11964        // known zeros.
11965        unsigned BitWidth = Op0.getValueSizeInBits();
11966        unsigned AndBitWidth = And.getValueSizeInBits();
11967        if (BitWidth > AndBitWidth) {
11968          APInt Zeros, Ones;
11969          DAG.computeKnownBits(Op0, Zeros, Ones);
11970          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
11971            return SDValue();
11972        }
11973        LHS = Op1;
11974        RHS = Op0.getOperand(1);
11975      }
11976  } else if (Op1.getOpcode() == ISD::Constant) {
11977    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
11978    uint64_t AndRHSVal = AndRHS->getZExtValue();
11979    SDValue AndLHS = Op0;
11980
11981    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
11982      LHS = AndLHS.getOperand(0);
11983      RHS = AndLHS.getOperand(1);
11984    }
11985
11986    // Use BT if the immediate can't be encoded in a TEST instruction.
11987    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
11988      LHS = AndLHS;
11989      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
11990    }
11991  }
11992
11993  if (LHS.getNode()) {
11994    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
11995    // instruction.  Since the shift amount is in-range-or-undefined, we know
11996    // that doing a bittest on the i32 value is ok.  We extend to i32 because
11997    // the encoding for the i16 version is larger than the i32 version.
11998    // Also promote i16 to i32 for performance / code size reason.
11999    if (LHS.getValueType() == MVT::i8 ||
12000        LHS.getValueType() == MVT::i16)
12001      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12002
12003    // If the operand types disagree, extend the shift amount to match.  Since
12004    // BT ignores high bits (like shifts) we can use anyextend.
12005    if (LHS.getValueType() != RHS.getValueType())
12006      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
12007
12008    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
12009    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
12010    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12011                       DAG.getConstant(Cond, MVT::i8), BT);
12012  }
12013
12014  return SDValue();
12015}
12016
12017/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
12018/// mask CMPs.
12019static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
12020                              SDValue &Op1) {
12021  unsigned SSECC;
12022  bool Swap = false;
12023
12024  // SSE Condition code mapping:
12025  //  0 - EQ
12026  //  1 - LT
12027  //  2 - LE
12028  //  3 - UNORD
12029  //  4 - NEQ
12030  //  5 - NLT
12031  //  6 - NLE
12032  //  7 - ORD
12033  switch (SetCCOpcode) {
12034  default: llvm_unreachable("Unexpected SETCC condition");
12035  case ISD::SETOEQ:
12036  case ISD::SETEQ:  SSECC = 0; break;
12037  case ISD::SETOGT:
12038  case ISD::SETGT:  Swap = true; // Fallthrough
12039  case ISD::SETLT:
12040  case ISD::SETOLT: SSECC = 1; break;
12041  case ISD::SETOGE:
12042  case ISD::SETGE:  Swap = true; // Fallthrough
12043  case ISD::SETLE:
12044  case ISD::SETOLE: SSECC = 2; break;
12045  case ISD::SETUO:  SSECC = 3; break;
12046  case ISD::SETUNE:
12047  case ISD::SETNE:  SSECC = 4; break;
12048  case ISD::SETULE: Swap = true; // Fallthrough
12049  case ISD::SETUGE: SSECC = 5; break;
12050  case ISD::SETULT: Swap = true; // Fallthrough
12051  case ISD::SETUGT: SSECC = 6; break;
12052  case ISD::SETO:   SSECC = 7; break;
12053  case ISD::SETUEQ:
12054  case ISD::SETONE: SSECC = 8; break;
12055  }
12056  if (Swap)
12057    std::swap(Op0, Op1);
12058
12059  return SSECC;
12060}
12061
12062// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
12063// ones, and then concatenate the result back.
12064static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
12065  MVT VT = Op.getSimpleValueType();
12066
12067  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
12068         "Unsupported value type for operation");
12069
12070  unsigned NumElems = VT.getVectorNumElements();
12071  SDLoc dl(Op);
12072  SDValue CC = Op.getOperand(2);
12073
12074  // Extract the LHS vectors
12075  SDValue LHS = Op.getOperand(0);
12076  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12077  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12078
12079  // Extract the RHS vectors
12080  SDValue RHS = Op.getOperand(1);
12081  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12082  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12083
12084  // Issue the operation on the smaller types and concatenate the result back
12085  MVT EltVT = VT.getVectorElementType();
12086  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12087  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12088                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
12089                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
12090}
12091
12092static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
12093                                     const X86Subtarget *Subtarget) {
12094  SDValue Op0 = Op.getOperand(0);
12095  SDValue Op1 = Op.getOperand(1);
12096  SDValue CC = Op.getOperand(2);
12097  MVT VT = Op.getSimpleValueType();
12098  SDLoc dl(Op);
12099
12100  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
12101         Op.getValueType().getScalarType() == MVT::i1 &&
12102         "Cannot set masked compare for this operation");
12103
12104  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
12105  unsigned  Opc = 0;
12106  bool Unsigned = false;
12107  bool Swap = false;
12108  unsigned SSECC;
12109  switch (SetCCOpcode) {
12110  default: llvm_unreachable("Unexpected SETCC condition");
12111  case ISD::SETNE:  SSECC = 4; break;
12112  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
12113  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
12114  case ISD::SETLT:  Swap = true; //fall-through
12115  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
12116  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
12117  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
12118  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
12119  case ISD::SETULE: Unsigned = true; //fall-through
12120  case ISD::SETLE:  SSECC = 2; break;
12121  }
12122
12123  if (Swap)
12124    std::swap(Op0, Op1);
12125  if (Opc)
12126    return DAG.getNode(Opc, dl, VT, Op0, Op1);
12127  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
12128  return DAG.getNode(Opc, dl, VT, Op0, Op1,
12129                     DAG.getConstant(SSECC, MVT::i8));
12130}
12131
12132/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
12133/// operand \p Op1.  If non-trivial (for example because it's not constant)
12134/// return an empty value.
12135static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
12136{
12137  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
12138  if (!BV)
12139    return SDValue();
12140
12141  MVT VT = Op1.getSimpleValueType();
12142  MVT EVT = VT.getVectorElementType();
12143  unsigned n = VT.getVectorNumElements();
12144  SmallVector<SDValue, 8> ULTOp1;
12145
12146  for (unsigned i = 0; i < n; ++i) {
12147    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
12148    if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
12149      return SDValue();
12150
12151    // Avoid underflow.
12152    APInt Val = Elt->getAPIntValue();
12153    if (Val == 0)
12154      return SDValue();
12155
12156    ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
12157  }
12158
12159  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
12160}
12161
12162static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
12163                           SelectionDAG &DAG) {
12164  SDValue Op0 = Op.getOperand(0);
12165  SDValue Op1 = Op.getOperand(1);
12166  SDValue CC = Op.getOperand(2);
12167  MVT VT = Op.getSimpleValueType();
12168  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
12169  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
12170  SDLoc dl(Op);
12171
12172  if (isFP) {
12173#ifndef NDEBUG
12174    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
12175    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
12176#endif
12177
12178    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
12179    unsigned Opc = X86ISD::CMPP;
12180    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
12181      assert(VT.getVectorNumElements() <= 16);
12182      Opc = X86ISD::CMPM;
12183    }
12184    // In the two special cases we can't handle, emit two comparisons.
12185    if (SSECC == 8) {
12186      unsigned CC0, CC1;
12187      unsigned CombineOpc;
12188      if (SetCCOpcode == ISD::SETUEQ) {
12189        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
12190      } else {
12191        assert(SetCCOpcode == ISD::SETONE);
12192        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
12193      }
12194
12195      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
12196                                 DAG.getConstant(CC0, MVT::i8));
12197      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
12198                                 DAG.getConstant(CC1, MVT::i8));
12199      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
12200    }
12201    // Handle all other FP comparisons here.
12202    return DAG.getNode(Opc, dl, VT, Op0, Op1,
12203                       DAG.getConstant(SSECC, MVT::i8));
12204  }
12205
12206  // Break 256-bit integer vector compare into smaller ones.
12207  if (VT.is256BitVector() && !Subtarget->hasInt256())
12208    return Lower256IntVSETCC(Op, DAG);
12209
12210  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
12211  EVT OpVT = Op1.getValueType();
12212  if (Subtarget->hasAVX512()) {
12213    if (Op1.getValueType().is512BitVector() ||
12214        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
12215      return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
12216
12217    // In AVX-512 architecture setcc returns mask with i1 elements,
12218    // But there is no compare instruction for i8 and i16 elements.
12219    // We are not talking about 512-bit operands in this case, these
12220    // types are illegal.
12221    if (MaskResult &&
12222        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
12223         OpVT.getVectorElementType().getSizeInBits() >= 8))
12224      return DAG.getNode(ISD::TRUNCATE, dl, VT,
12225                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
12226  }
12227
12228  // We are handling one of the integer comparisons here.  Since SSE only has
12229  // GT and EQ comparisons for integer, swapping operands and multiple
12230  // operations may be required for some comparisons.
12231  unsigned Opc;
12232  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
12233  bool Subus = false;
12234
12235  switch (SetCCOpcode) {
12236  default: llvm_unreachable("Unexpected SETCC condition");
12237  case ISD::SETNE:  Invert = true;
12238  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
12239  case ISD::SETLT:  Swap = true;
12240  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
12241  case ISD::SETGE:  Swap = true;
12242  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
12243                    Invert = true; break;
12244  case ISD::SETULT: Swap = true;
12245  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
12246                    FlipSigns = true; break;
12247  case ISD::SETUGE: Swap = true;
12248  case ISD::SETULE: Opc = X86ISD::PCMPGT;
12249                    FlipSigns = true; Invert = true; break;
12250  }
12251
12252  // Special case: Use min/max operations for SETULE/SETUGE
12253  MVT VET = VT.getVectorElementType();
12254  bool hasMinMax =
12255       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
12256    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
12257
12258  if (hasMinMax) {
12259    switch (SetCCOpcode) {
12260    default: break;
12261    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
12262    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
12263    }
12264
12265    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
12266  }
12267
12268  bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
12269  if (!MinMax && hasSubus) {
12270    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
12271    // Op0 u<= Op1:
12272    //   t = psubus Op0, Op1
12273    //   pcmpeq t, <0..0>
12274    switch (SetCCOpcode) {
12275    default: break;
12276    case ISD::SETULT: {
12277      // If the comparison is against a constant we can turn this into a
12278      // setule.  With psubus, setule does not require a swap.  This is
12279      // beneficial because the constant in the register is no longer
12280      // destructed as the destination so it can be hoisted out of a loop.
12281      // Only do this pre-AVX since vpcmp* is no longer destructive.
12282      if (Subtarget->hasAVX())
12283        break;
12284      SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
12285      if (ULEOp1.getNode()) {
12286        Op1 = ULEOp1;
12287        Subus = true; Invert = false; Swap = false;
12288      }
12289      break;
12290    }
12291    // Psubus is better than flip-sign because it requires no inversion.
12292    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
12293    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
12294    }
12295
12296    if (Subus) {
12297      Opc = X86ISD::SUBUS;
12298      FlipSigns = false;
12299    }
12300  }
12301
12302  if (Swap)
12303    std::swap(Op0, Op1);
12304
12305  // Check that the operation in question is available (most are plain SSE2,
12306  // but PCMPGTQ and PCMPEQQ have different requirements).
12307  if (VT == MVT::v2i64) {
12308    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
12309      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
12310
12311      // First cast everything to the right type.
12312      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
12313      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
12314
12315      // Since SSE has no unsigned integer comparisons, we need to flip the sign
12316      // bits of the inputs before performing those operations. The lower
12317      // compare is always unsigned.
12318      SDValue SB;
12319      if (FlipSigns) {
12320        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
12321      } else {
12322        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
12323        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
12324        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
12325                         Sign, Zero, Sign, Zero);
12326      }
12327      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
12328      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
12329
12330      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
12331      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
12332      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
12333
12334      // Create masks for only the low parts/high parts of the 64 bit integers.
12335      static const int MaskHi[] = { 1, 1, 3, 3 };
12336      static const int MaskLo[] = { 0, 0, 2, 2 };
12337      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
12338      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
12339      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
12340
12341      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
12342      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
12343
12344      if (Invert)
12345        Result = DAG.getNOT(dl, Result, MVT::v4i32);
12346
12347      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12348    }
12349
12350    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
12351      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
12352      // pcmpeqd + pshufd + pand.
12353      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
12354
12355      // First cast everything to the right type.
12356      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
12357      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
12358
12359      // Do the compare.
12360      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
12361
12362      // Make sure the lower and upper halves are both all-ones.
12363      static const int Mask[] = { 1, 0, 3, 2 };
12364      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
12365      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
12366
12367      if (Invert)
12368        Result = DAG.getNOT(dl, Result, MVT::v4i32);
12369
12370      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12371    }
12372  }
12373
12374  // Since SSE has no unsigned integer comparisons, we need to flip the sign
12375  // bits of the inputs before performing those operations.
12376  if (FlipSigns) {
12377    EVT EltVT = VT.getVectorElementType();
12378    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
12379    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
12380    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
12381  }
12382
12383  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
12384
12385  // If the logical-not of the result is required, perform that now.
12386  if (Invert)
12387    Result = DAG.getNOT(dl, Result, VT);
12388
12389  if (MinMax)
12390    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
12391
12392  if (Subus)
12393    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
12394                         getZeroVector(VT, Subtarget, DAG, dl));
12395
12396  return Result;
12397}
12398
12399SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
12400
12401  MVT VT = Op.getSimpleValueType();
12402
12403  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
12404
12405  assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
12406         && "SetCC type must be 8-bit or 1-bit integer");
12407  SDValue Op0 = Op.getOperand(0);
12408  SDValue Op1 = Op.getOperand(1);
12409  SDLoc dl(Op);
12410  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
12411
12412  // Optimize to BT if possible.
12413  // Lower (X & (1 << N)) == 0 to BT(X, N).
12414  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
12415  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
12416  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
12417      Op1.getOpcode() == ISD::Constant &&
12418      cast<ConstantSDNode>(Op1)->isNullValue() &&
12419      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
12420    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
12421    if (NewSetCC.getNode())
12422      return NewSetCC;
12423  }
12424
12425  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
12426  // these.
12427  if (Op1.getOpcode() == ISD::Constant &&
12428      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
12429       cast<ConstantSDNode>(Op1)->isNullValue()) &&
12430      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
12431
12432    // If the input is a setcc, then reuse the input setcc or use a new one with
12433    // the inverted condition.
12434    if (Op0.getOpcode() == X86ISD::SETCC) {
12435      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
12436      bool Invert = (CC == ISD::SETNE) ^
12437        cast<ConstantSDNode>(Op1)->isNullValue();
12438      if (!Invert)
12439        return Op0;
12440
12441      CCode = X86::GetOppositeBranchCondition(CCode);
12442      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12443                                  DAG.getConstant(CCode, MVT::i8),
12444                                  Op0.getOperand(1));
12445      if (VT == MVT::i1)
12446        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
12447      return SetCC;
12448    }
12449  }
12450  if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
12451      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
12452      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
12453
12454    ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
12455    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
12456  }
12457
12458  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
12459  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
12460  if (X86CC == X86::COND_INVALID)
12461    return SDValue();
12462
12463  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
12464  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
12465  SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12466                              DAG.getConstant(X86CC, MVT::i8), EFLAGS);
12467  if (VT == MVT::i1)
12468    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
12469  return SetCC;
12470}
12471
12472// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
12473static bool isX86LogicalCmp(SDValue Op) {
12474  unsigned Opc = Op.getNode()->getOpcode();
12475  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
12476      Opc == X86ISD::SAHF)
12477    return true;
12478  if (Op.getResNo() == 1 &&
12479      (Opc == X86ISD::ADD ||
12480       Opc == X86ISD::SUB ||
12481       Opc == X86ISD::ADC ||
12482       Opc == X86ISD::SBB ||
12483       Opc == X86ISD::SMUL ||
12484       Opc == X86ISD::UMUL ||
12485       Opc == X86ISD::INC ||
12486       Opc == X86ISD::DEC ||
12487       Opc == X86ISD::OR ||
12488       Opc == X86ISD::XOR ||
12489       Opc == X86ISD::AND))
12490    return true;
12491
12492  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
12493    return true;
12494
12495  return false;
12496}
12497
12498static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
12499  if (V.getOpcode() != ISD::TRUNCATE)
12500    return false;
12501
12502  SDValue VOp0 = V.getOperand(0);
12503  unsigned InBits = VOp0.getValueSizeInBits();
12504  unsigned Bits = V.getValueSizeInBits();
12505  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
12506}
12507
12508SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
12509  bool addTest = true;
12510  SDValue Cond  = Op.getOperand(0);
12511  SDValue Op1 = Op.getOperand(1);
12512  SDValue Op2 = Op.getOperand(2);
12513  SDLoc DL(Op);
12514  EVT VT = Op1.getValueType();
12515  SDValue CC;
12516
12517  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
12518  // are available. Otherwise fp cmovs get lowered into a less efficient branch
12519  // sequence later on.
12520  if (Cond.getOpcode() == ISD::SETCC &&
12521      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
12522       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
12523      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
12524    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
12525    int SSECC = translateX86FSETCC(
12526        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
12527
12528    if (SSECC != 8) {
12529      if (Subtarget->hasAVX512()) {
12530        SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
12531                                  DAG.getConstant(SSECC, MVT::i8));
12532        return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
12533      }
12534      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
12535                                DAG.getConstant(SSECC, MVT::i8));
12536      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
12537      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
12538      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
12539    }
12540  }
12541
12542  if (Cond.getOpcode() == ISD::SETCC) {
12543    SDValue NewCond = LowerSETCC(Cond, DAG);
12544    if (NewCond.getNode())
12545      Cond = NewCond;
12546  }
12547
12548  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
12549  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
12550  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
12551  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
12552  if (Cond.getOpcode() == X86ISD::SETCC &&
12553      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
12554      isZero(Cond.getOperand(1).getOperand(1))) {
12555    SDValue Cmp = Cond.getOperand(1);
12556
12557    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
12558
12559    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
12560        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
12561      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
12562
12563      SDValue CmpOp0 = Cmp.getOperand(0);
12564      // Apply further optimizations for special cases
12565      // (select (x != 0), -1, 0) -> neg & sbb
12566      // (select (x == 0), 0, -1) -> neg & sbb
12567      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
12568        if (YC->isNullValue() &&
12569            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
12570          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
12571          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
12572                                    DAG.getConstant(0, CmpOp0.getValueType()),
12573                                    CmpOp0);
12574          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
12575                                    DAG.getConstant(X86::COND_B, MVT::i8),
12576                                    SDValue(Neg.getNode(), 1));
12577          return Res;
12578        }
12579
12580      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
12581                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
12582      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
12583
12584      SDValue Res =   // Res = 0 or -1.
12585        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
12586                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
12587
12588      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
12589        Res = DAG.getNOT(DL, Res, Res.getValueType());
12590
12591      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
12592      if (!N2C || !N2C->isNullValue())
12593        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
12594      return Res;
12595    }
12596  }
12597
12598  // Look past (and (setcc_carry (cmp ...)), 1).
12599  if (Cond.getOpcode() == ISD::AND &&
12600      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
12601    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
12602    if (C && C->getAPIntValue() == 1)
12603      Cond = Cond.getOperand(0);
12604  }
12605
12606  // If condition flag is set by a X86ISD::CMP, then use it as the condition
12607  // setting operand in place of the X86ISD::SETCC.
12608  unsigned CondOpcode = Cond.getOpcode();
12609  if (CondOpcode == X86ISD::SETCC ||
12610      CondOpcode == X86ISD::SETCC_CARRY) {
12611    CC = Cond.getOperand(0);
12612
12613    SDValue Cmp = Cond.getOperand(1);
12614    unsigned Opc = Cmp.getOpcode();
12615    MVT VT = Op.getSimpleValueType();
12616
12617    bool IllegalFPCMov = false;
12618    if (VT.isFloatingPoint() && !VT.isVector() &&
12619        !isScalarFPTypeInSSEReg(VT))  // FPStack?
12620      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
12621
12622    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
12623        Opc == X86ISD::BT) { // FIXME
12624      Cond = Cmp;
12625      addTest = false;
12626    }
12627  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
12628             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
12629             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
12630              Cond.getOperand(0).getValueType() != MVT::i8)) {
12631    SDValue LHS = Cond.getOperand(0);
12632    SDValue RHS = Cond.getOperand(1);
12633    unsigned X86Opcode;
12634    unsigned X86Cond;
12635    SDVTList VTs;
12636    switch (CondOpcode) {
12637    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
12638    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
12639    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
12640    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
12641    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
12642    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
12643    default: llvm_unreachable("unexpected overflowing operator");
12644    }
12645    if (CondOpcode == ISD::UMULO)
12646      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
12647                          MVT::i32);
12648    else
12649      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
12650
12651    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
12652
12653    if (CondOpcode == ISD::UMULO)
12654      Cond = X86Op.getValue(2);
12655    else
12656      Cond = X86Op.getValue(1);
12657
12658    CC = DAG.getConstant(X86Cond, MVT::i8);
12659    addTest = false;
12660  }
12661
12662  if (addTest) {
12663    // Look pass the truncate if the high bits are known zero.
12664    if (isTruncWithZeroHighBitsInput(Cond, DAG))
12665        Cond = Cond.getOperand(0);
12666
12667    // We know the result of AND is compared against zero. Try to match
12668    // it to BT.
12669    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
12670      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
12671      if (NewSetCC.getNode()) {
12672        CC = NewSetCC.getOperand(0);
12673        Cond = NewSetCC.getOperand(1);
12674        addTest = false;
12675      }
12676    }
12677  }
12678
12679  if (addTest) {
12680    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
12681    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
12682  }
12683
12684  // a <  b ? -1 :  0 -> RES = ~setcc_carry
12685  // a <  b ?  0 : -1 -> RES = setcc_carry
12686  // a >= b ? -1 :  0 -> RES = setcc_carry
12687  // a >= b ?  0 : -1 -> RES = ~setcc_carry
12688  if (Cond.getOpcode() == X86ISD::SUB) {
12689    Cond = ConvertCmpIfNecessary(Cond, DAG);
12690    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
12691
12692    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
12693        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
12694      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
12695                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
12696      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
12697        return DAG.getNOT(DL, Res, Res.getValueType());
12698      return Res;
12699    }
12700  }
12701
12702  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
12703  // widen the cmov and push the truncate through. This avoids introducing a new
12704  // branch during isel and doesn't add any extensions.
12705  if (Op.getValueType() == MVT::i8 &&
12706      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
12707    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
12708    if (T1.getValueType() == T2.getValueType() &&
12709        // Blacklist CopyFromReg to avoid partial register stalls.
12710        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
12711      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
12712      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
12713      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
12714    }
12715  }
12716
12717  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
12718  // condition is true.
12719  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
12720  SDValue Ops[] = { Op2, Op1, CC, Cond };
12721  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
12722}
12723
12724static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
12725  MVT VT = Op->getSimpleValueType(0);
12726  SDValue In = Op->getOperand(0);
12727  MVT InVT = In.getSimpleValueType();
12728  SDLoc dl(Op);
12729
12730  unsigned int NumElts = VT.getVectorNumElements();
12731  if (NumElts != 8 && NumElts != 16)
12732    return SDValue();
12733
12734  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
12735    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
12736
12737  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12738  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
12739
12740  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
12741  Constant *C = ConstantInt::get(*DAG.getContext(),
12742    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
12743
12744  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
12745  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
12746  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
12747                          MachinePointerInfo::getConstantPool(),
12748                          false, false, false, Alignment);
12749  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
12750  if (VT.is512BitVector())
12751    return Brcst;
12752  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
12753}
12754
12755static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
12756                                SelectionDAG &DAG) {
12757  MVT VT = Op->getSimpleValueType(0);
12758  SDValue In = Op->getOperand(0);
12759  MVT InVT = In.getSimpleValueType();
12760  SDLoc dl(Op);
12761
12762  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
12763    return LowerSIGN_EXTEND_AVX512(Op, DAG);
12764
12765  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
12766      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
12767      (VT != MVT::v16i16 || InVT != MVT::v16i8))
12768    return SDValue();
12769
12770  if (Subtarget->hasInt256())
12771    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
12772
12773  // Optimize vectors in AVX mode
12774  // Sign extend  v8i16 to v8i32 and
12775  //              v4i32 to v4i64
12776  //
12777  // Divide input vector into two parts
12778  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
12779  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
12780  // concat the vectors to original VT
12781
12782  unsigned NumElems = InVT.getVectorNumElements();
12783  SDValue Undef = DAG.getUNDEF(InVT);
12784
12785  SmallVector<int,8> ShufMask1(NumElems, -1);
12786  for (unsigned i = 0; i != NumElems/2; ++i)
12787    ShufMask1[i] = i;
12788
12789  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
12790
12791  SmallVector<int,8> ShufMask2(NumElems, -1);
12792  for (unsigned i = 0; i != NumElems/2; ++i)
12793    ShufMask2[i] = i + NumElems/2;
12794
12795  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
12796
12797  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
12798                                VT.getVectorNumElements()/2);
12799
12800  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
12801  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
12802
12803  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
12804}
12805
12806// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
12807// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
12808// from the AND / OR.
12809static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
12810  Opc = Op.getOpcode();
12811  if (Opc != ISD::OR && Opc != ISD::AND)
12812    return false;
12813  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
12814          Op.getOperand(0).hasOneUse() &&
12815          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
12816          Op.getOperand(1).hasOneUse());
12817}
12818
12819// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
12820// 1 and that the SETCC node has a single use.
12821static bool isXor1OfSetCC(SDValue Op) {
12822  if (Op.getOpcode() != ISD::XOR)
12823    return false;
12824  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
12825  if (N1C && N1C->getAPIntValue() == 1) {
12826    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
12827      Op.getOperand(0).hasOneUse();
12828  }
12829  return false;
12830}
12831
12832SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
12833  bool addTest = true;
12834  SDValue Chain = Op.getOperand(0);
12835  SDValue Cond  = Op.getOperand(1);
12836  SDValue Dest  = Op.getOperand(2);
12837  SDLoc dl(Op);
12838  SDValue CC;
12839  bool Inverted = false;
12840
12841  if (Cond.getOpcode() == ISD::SETCC) {
12842    // Check for setcc([su]{add,sub,mul}o == 0).
12843    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
12844        isa<ConstantSDNode>(Cond.getOperand(1)) &&
12845        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
12846        Cond.getOperand(0).getResNo() == 1 &&
12847        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
12848         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
12849         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
12850         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
12851         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
12852         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
12853      Inverted = true;
12854      Cond = Cond.getOperand(0);
12855    } else {
12856      SDValue NewCond = LowerSETCC(Cond, DAG);
12857      if (NewCond.getNode())
12858        Cond = NewCond;
12859    }
12860  }
12861#if 0
12862  // FIXME: LowerXALUO doesn't handle these!!
12863  else if (Cond.getOpcode() == X86ISD::ADD  ||
12864           Cond.getOpcode() == X86ISD::SUB  ||
12865           Cond.getOpcode() == X86ISD::SMUL ||
12866           Cond.getOpcode() == X86ISD::UMUL)
12867    Cond = LowerXALUO(Cond, DAG);
12868#endif
12869
12870  // Look pass (and (setcc_carry (cmp ...)), 1).
12871  if (Cond.getOpcode() == ISD::AND &&
12872      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
12873    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
12874    if (C && C->getAPIntValue() == 1)
12875      Cond = Cond.getOperand(0);
12876  }
12877
12878  // If condition flag is set by a X86ISD::CMP, then use it as the condition
12879  // setting operand in place of the X86ISD::SETCC.
12880  unsigned CondOpcode = Cond.getOpcode();
12881  if (CondOpcode == X86ISD::SETCC ||
12882      CondOpcode == X86ISD::SETCC_CARRY) {
12883    CC = Cond.getOperand(0);
12884
12885    SDValue Cmp = Cond.getOperand(1);
12886    unsigned Opc = Cmp.getOpcode();
12887    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
12888    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
12889      Cond = Cmp;
12890      addTest = false;
12891    } else {
12892      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
12893      default: break;
12894      case X86::COND_O:
12895      case X86::COND_B:
12896        // These can only come from an arithmetic instruction with overflow,
12897        // e.g. SADDO, UADDO.
12898        Cond = Cond.getNode()->getOperand(1);
12899        addTest = false;
12900        break;
12901      }
12902    }
12903  }
12904  CondOpcode = Cond.getOpcode();
12905  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
12906      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
12907      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
12908       Cond.getOperand(0).getValueType() != MVT::i8)) {
12909    SDValue LHS = Cond.getOperand(0);
12910    SDValue RHS = Cond.getOperand(1);
12911    unsigned X86Opcode;
12912    unsigned X86Cond;
12913    SDVTList VTs;
12914    // Keep this in sync with LowerXALUO, otherwise we might create redundant
12915    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
12916    // X86ISD::INC).
12917    switch (CondOpcode) {
12918    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
12919    case ISD::SADDO:
12920      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12921        if (C->isOne()) {
12922          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
12923          break;
12924        }
12925      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
12926    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
12927    case ISD::SSUBO:
12928      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12929        if (C->isOne()) {
12930          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
12931          break;
12932        }
12933      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
12934    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
12935    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
12936    default: llvm_unreachable("unexpected overflowing operator");
12937    }
12938    if (Inverted)
12939      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
12940    if (CondOpcode == ISD::UMULO)
12941      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
12942                          MVT::i32);
12943    else
12944      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
12945
12946    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
12947
12948    if (CondOpcode == ISD::UMULO)
12949      Cond = X86Op.getValue(2);
12950    else
12951      Cond = X86Op.getValue(1);
12952
12953    CC = DAG.getConstant(X86Cond, MVT::i8);
12954    addTest = false;
12955  } else {
12956    unsigned CondOpc;
12957    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
12958      SDValue Cmp = Cond.getOperand(0).getOperand(1);
12959      if (CondOpc == ISD::OR) {
12960        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
12961        // two branches instead of an explicit OR instruction with a
12962        // separate test.
12963        if (Cmp == Cond.getOperand(1).getOperand(1) &&
12964            isX86LogicalCmp(Cmp)) {
12965          CC = Cond.getOperand(0).getOperand(0);
12966          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
12967                              Chain, Dest, CC, Cmp);
12968          CC = Cond.getOperand(1).getOperand(0);
12969          Cond = Cmp;
12970          addTest = false;
12971        }
12972      } else { // ISD::AND
12973        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
12974        // two branches instead of an explicit AND instruction with a
12975        // separate test. However, we only do this if this block doesn't
12976        // have a fall-through edge, because this requires an explicit
12977        // jmp when the condition is false.
12978        if (Cmp == Cond.getOperand(1).getOperand(1) &&
12979            isX86LogicalCmp(Cmp) &&
12980            Op.getNode()->hasOneUse()) {
12981          X86::CondCode CCode =
12982            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
12983          CCode = X86::GetOppositeBranchCondition(CCode);
12984          CC = DAG.getConstant(CCode, MVT::i8);
12985          SDNode *User = *Op.getNode()->use_begin();
12986          // Look for an unconditional branch following this conditional branch.
12987          // We need this because we need to reverse the successors in order
12988          // to implement FCMP_OEQ.
12989          if (User->getOpcode() == ISD::BR) {
12990            SDValue FalseBB = User->getOperand(1);
12991            SDNode *NewBR =
12992              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
12993            assert(NewBR == User);
12994            (void)NewBR;
12995            Dest = FalseBB;
12996
12997            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
12998                                Chain, Dest, CC, Cmp);
12999            X86::CondCode CCode =
13000              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
13001            CCode = X86::GetOppositeBranchCondition(CCode);
13002            CC = DAG.getConstant(CCode, MVT::i8);
13003            Cond = Cmp;
13004            addTest = false;
13005          }
13006        }
13007      }
13008    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
13009      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
13010      // It should be transformed during dag combiner except when the condition
13011      // is set by a arithmetics with overflow node.
13012      X86::CondCode CCode =
13013        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
13014      CCode = X86::GetOppositeBranchCondition(CCode);
13015      CC = DAG.getConstant(CCode, MVT::i8);
13016      Cond = Cond.getOperand(0).getOperand(1);
13017      addTest = false;
13018    } else if (Cond.getOpcode() == ISD::SETCC &&
13019               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
13020      // For FCMP_OEQ, we can emit
13021      // two branches instead of an explicit AND instruction with a
13022      // separate test. However, we only do this if this block doesn't
13023      // have a fall-through edge, because this requires an explicit
13024      // jmp when the condition is false.
13025      if (Op.getNode()->hasOneUse()) {
13026        SDNode *User = *Op.getNode()->use_begin();
13027        // Look for an unconditional branch following this conditional branch.
13028        // We need this because we need to reverse the successors in order
13029        // to implement FCMP_OEQ.
13030        if (User->getOpcode() == ISD::BR) {
13031          SDValue FalseBB = User->getOperand(1);
13032          SDNode *NewBR =
13033            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
13034          assert(NewBR == User);
13035          (void)NewBR;
13036          Dest = FalseBB;
13037
13038          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
13039                                    Cond.getOperand(0), Cond.getOperand(1));
13040          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
13041          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
13042          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
13043                              Chain, Dest, CC, Cmp);
13044          CC = DAG.getConstant(X86::COND_P, MVT::i8);
13045          Cond = Cmp;
13046          addTest = false;
13047        }
13048      }
13049    } else if (Cond.getOpcode() == ISD::SETCC &&
13050               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
13051      // For FCMP_UNE, we can emit
13052      // two branches instead of an explicit AND instruction with a
13053      // separate test. However, we only do this if this block doesn't
13054      // have a fall-through edge, because this requires an explicit
13055      // jmp when the condition is false.
13056      if (Op.getNode()->hasOneUse()) {
13057        SDNode *User = *Op.getNode()->use_begin();
13058        // Look for an unconditional branch following this conditional branch.
13059        // We need this because we need to reverse the successors in order
13060        // to implement FCMP_UNE.
13061        if (User->getOpcode() == ISD::BR) {
13062          SDValue FalseBB = User->getOperand(1);
13063          SDNode *NewBR =
13064            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
13065          assert(NewBR == User);
13066          (void)NewBR;
13067
13068          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
13069                                    Cond.getOperand(0), Cond.getOperand(1));
13070          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
13071          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
13072          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
13073                              Chain, Dest, CC, Cmp);
13074          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
13075          Cond = Cmp;
13076          addTest = false;
13077          Dest = FalseBB;
13078        }
13079      }
13080    }
13081  }
13082
13083  if (addTest) {
13084    // Look pass the truncate if the high bits are known zero.
13085    if (isTruncWithZeroHighBitsInput(Cond, DAG))
13086        Cond = Cond.getOperand(0);
13087
13088    // We know the result of AND is compared against zero. Try to match
13089    // it to BT.
13090    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
13091      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
13092      if (NewSetCC.getNode()) {
13093        CC = NewSetCC.getOperand(0);
13094        Cond = NewSetCC.getOperand(1);
13095        addTest = false;
13096      }
13097    }
13098  }
13099
13100  if (addTest) {
13101    X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
13102    CC = DAG.getConstant(X86Cond, MVT::i8);
13103    Cond = EmitTest(Cond, X86Cond, dl, DAG);
13104  }
13105  Cond = ConvertCmpIfNecessary(Cond, DAG);
13106  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
13107                     Chain, Dest, CC, Cond);
13108}
13109
13110// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
13111// Calls to _alloca is needed to probe the stack when allocating more than 4k
13112// bytes in one go. Touching the stack at 4K increments is necessary to ensure
13113// that the guard pages used by the OS virtual memory manager are allocated in
13114// correct sequence.
13115SDValue
13116X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
13117                                           SelectionDAG &DAG) const {
13118  MachineFunction &MF = DAG.getMachineFunction();
13119  bool SplitStack = MF.shouldSplitStack();
13120  bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
13121               SplitStack;
13122  SDLoc dl(Op);
13123
13124  if (!Lower) {
13125    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13126    SDNode* Node = Op.getNode();
13127
13128    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
13129    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
13130        " not tell us which reg is the stack pointer!");
13131    EVT VT = Node->getValueType(0);
13132    SDValue Tmp1 = SDValue(Node, 0);
13133    SDValue Tmp2 = SDValue(Node, 1);
13134    SDValue Tmp3 = Node->getOperand(2);
13135    SDValue Chain = Tmp1.getOperand(0);
13136
13137    // Chain the dynamic stack allocation so that it doesn't modify the stack
13138    // pointer when other instructions are using the stack.
13139    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
13140        SDLoc(Node));
13141
13142    SDValue Size = Tmp2.getOperand(1);
13143    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
13144    Chain = SP.getValue(1);
13145    unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
13146    const TargetFrameLowering &TFI = *DAG.getTarget().getFrameLowering();
13147    unsigned StackAlign = TFI.getStackAlignment();
13148    Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
13149    if (Align > StackAlign)
13150      Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
13151          DAG.getConstant(-(uint64_t)Align, VT));
13152    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
13153
13154    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
13155        DAG.getIntPtrConstant(0, true), SDValue(),
13156        SDLoc(Node));
13157
13158    SDValue Ops[2] = { Tmp1, Tmp2 };
13159    return DAG.getMergeValues(Ops, dl);
13160  }
13161
13162  // Get the inputs.
13163  SDValue Chain = Op.getOperand(0);
13164  SDValue Size  = Op.getOperand(1);
13165  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
13166  EVT VT = Op.getNode()->getValueType(0);
13167
13168  bool Is64Bit = Subtarget->is64Bit();
13169  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
13170
13171  if (SplitStack) {
13172    MachineRegisterInfo &MRI = MF.getRegInfo();
13173
13174    if (Is64Bit) {
13175      // The 64 bit implementation of segmented stacks needs to clobber both r10
13176      // r11. This makes it impossible to use it along with nested parameters.
13177      const Function *F = MF.getFunction();
13178
13179      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
13180           I != E; ++I)
13181        if (I->hasNestAttr())
13182          report_fatal_error("Cannot use segmented stacks with functions that "
13183                             "have nested arguments.");
13184    }
13185
13186    const TargetRegisterClass *AddrRegClass =
13187      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
13188    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
13189    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
13190    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
13191                                DAG.getRegister(Vreg, SPTy));
13192    SDValue Ops1[2] = { Value, Chain };
13193    return DAG.getMergeValues(Ops1, dl);
13194  } else {
13195    SDValue Flag;
13196    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
13197
13198    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
13199    Flag = Chain.getValue(1);
13200    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
13201
13202    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
13203
13204    const X86RegisterInfo *RegInfo =
13205      static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
13206    unsigned SPReg = RegInfo->getStackRegister();
13207    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
13208    Chain = SP.getValue(1);
13209
13210    if (Align) {
13211      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
13212                       DAG.getConstant(-(uint64_t)Align, VT));
13213      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
13214    }
13215
13216    SDValue Ops1[2] = { SP, Chain };
13217    return DAG.getMergeValues(Ops1, dl);
13218  }
13219}
13220
13221SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
13222  MachineFunction &MF = DAG.getMachineFunction();
13223  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
13224
13225  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
13226  SDLoc DL(Op);
13227
13228  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
13229    // vastart just stores the address of the VarArgsFrameIndex slot into the
13230    // memory location argument.
13231    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
13232                                   getPointerTy());
13233    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
13234                        MachinePointerInfo(SV), false, false, 0);
13235  }
13236
13237  // __va_list_tag:
13238  //   gp_offset         (0 - 6 * 8)
13239  //   fp_offset         (48 - 48 + 8 * 16)
13240  //   overflow_arg_area (point to parameters coming in memory).
13241  //   reg_save_area
13242  SmallVector<SDValue, 8> MemOps;
13243  SDValue FIN = Op.getOperand(1);
13244  // Store gp_offset
13245  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
13246                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
13247                                               MVT::i32),
13248                               FIN, MachinePointerInfo(SV), false, false, 0);
13249  MemOps.push_back(Store);
13250
13251  // Store fp_offset
13252  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
13253                    FIN, DAG.getIntPtrConstant(4));
13254  Store = DAG.getStore(Op.getOperand(0), DL,
13255                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
13256                                       MVT::i32),
13257                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
13258  MemOps.push_back(Store);
13259
13260  // Store ptr to overflow_arg_area
13261  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
13262                    FIN, DAG.getIntPtrConstant(4));
13263  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
13264                                    getPointerTy());
13265  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
13266                       MachinePointerInfo(SV, 8),
13267                       false, false, 0);
13268  MemOps.push_back(Store);
13269
13270  // Store ptr to reg_save_area.
13271  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
13272                    FIN, DAG.getIntPtrConstant(8));
13273  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
13274                                    getPointerTy());
13275  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
13276                       MachinePointerInfo(SV, 16), false, false, 0);
13277  MemOps.push_back(Store);
13278  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
13279}
13280
13281SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
13282  assert(Subtarget->is64Bit() &&
13283         "LowerVAARG only handles 64-bit va_arg!");
13284  assert((Subtarget->isTargetLinux() ||
13285          Subtarget->isTargetDarwin()) &&
13286          "Unhandled target in LowerVAARG");
13287  assert(Op.getNode()->getNumOperands() == 4);
13288  SDValue Chain = Op.getOperand(0);
13289  SDValue SrcPtr = Op.getOperand(1);
13290  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
13291  unsigned Align = Op.getConstantOperandVal(3);
13292  SDLoc dl(Op);
13293
13294  EVT ArgVT = Op.getNode()->getValueType(0);
13295  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13296  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
13297  uint8_t ArgMode;
13298
13299  // Decide which area this value should be read from.
13300  // TODO: Implement the AMD64 ABI in its entirety. This simple
13301  // selection mechanism works only for the basic types.
13302  if (ArgVT == MVT::f80) {
13303    llvm_unreachable("va_arg for f80 not yet implemented");
13304  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
13305    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
13306  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
13307    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
13308  } else {
13309    llvm_unreachable("Unhandled argument type in LowerVAARG");
13310  }
13311
13312  if (ArgMode == 2) {
13313    // Sanity Check: Make sure using fp_offset makes sense.
13314    assert(!DAG.getTarget().Options.UseSoftFloat &&
13315           !(DAG.getMachineFunction()
13316                .getFunction()->getAttributes()
13317                .hasAttribute(AttributeSet::FunctionIndex,
13318                              Attribute::NoImplicitFloat)) &&
13319           Subtarget->hasSSE1());
13320  }
13321
13322  // Insert VAARG_64 node into the DAG
13323  // VAARG_64 returns two values: Variable Argument Address, Chain
13324  SmallVector<SDValue, 11> InstOps;
13325  InstOps.push_back(Chain);
13326  InstOps.push_back(SrcPtr);
13327  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
13328  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
13329  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
13330  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
13331  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
13332                                          VTs, InstOps, MVT::i64,
13333                                          MachinePointerInfo(SV),
13334                                          /*Align=*/0,
13335                                          /*Volatile=*/false,
13336                                          /*ReadMem=*/true,
13337                                          /*WriteMem=*/true);
13338  Chain = VAARG.getValue(1);
13339
13340  // Load the next argument and return it
13341  return DAG.getLoad(ArgVT, dl,
13342                     Chain,
13343                     VAARG,
13344                     MachinePointerInfo(),
13345                     false, false, false, 0);
13346}
13347
13348static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
13349                           SelectionDAG &DAG) {
13350  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
13351  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
13352  SDValue Chain = Op.getOperand(0);
13353  SDValue DstPtr = Op.getOperand(1);
13354  SDValue SrcPtr = Op.getOperand(2);
13355  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
13356  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
13357  SDLoc DL(Op);
13358
13359  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
13360                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
13361                       false,
13362                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
13363}
13364
13365// getTargetVShiftByConstNode - Handle vector element shifts where the shift
13366// amount is a constant. Takes immediate version of shift as input.
13367static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
13368                                          SDValue SrcOp, uint64_t ShiftAmt,
13369                                          SelectionDAG &DAG) {
13370  MVT ElementType = VT.getVectorElementType();
13371
13372  // Fold this packed shift into its first operand if ShiftAmt is 0.
13373  if (ShiftAmt == 0)
13374    return SrcOp;
13375
13376  // Check for ShiftAmt >= element width
13377  if (ShiftAmt >= ElementType.getSizeInBits()) {
13378    if (Opc == X86ISD::VSRAI)
13379      ShiftAmt = ElementType.getSizeInBits() - 1;
13380    else
13381      return DAG.getConstant(0, VT);
13382  }
13383
13384  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
13385         && "Unknown target vector shift-by-constant node");
13386
13387  // Fold this packed vector shift into a build vector if SrcOp is a
13388  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
13389  if (VT == SrcOp.getSimpleValueType() &&
13390      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
13391    SmallVector<SDValue, 8> Elts;
13392    unsigned NumElts = SrcOp->getNumOperands();
13393    ConstantSDNode *ND;
13394
13395    switch(Opc) {
13396    default: llvm_unreachable(nullptr);
13397    case X86ISD::VSHLI:
13398      for (unsigned i=0; i!=NumElts; ++i) {
13399        SDValue CurrentOp = SrcOp->getOperand(i);
13400        if (CurrentOp->getOpcode() == ISD::UNDEF) {
13401          Elts.push_back(CurrentOp);
13402          continue;
13403        }
13404        ND = cast<ConstantSDNode>(CurrentOp);
13405        const APInt &C = ND->getAPIntValue();
13406        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
13407      }
13408      break;
13409    case X86ISD::VSRLI:
13410      for (unsigned i=0; i!=NumElts; ++i) {
13411        SDValue CurrentOp = SrcOp->getOperand(i);
13412        if (CurrentOp->getOpcode() == ISD::UNDEF) {
13413          Elts.push_back(CurrentOp);
13414          continue;
13415        }
13416        ND = cast<ConstantSDNode>(CurrentOp);
13417        const APInt &C = ND->getAPIntValue();
13418        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
13419      }
13420      break;
13421    case X86ISD::VSRAI:
13422      for (unsigned i=0; i!=NumElts; ++i) {
13423        SDValue CurrentOp = SrcOp->getOperand(i);
13424        if (CurrentOp->getOpcode() == ISD::UNDEF) {
13425          Elts.push_back(CurrentOp);
13426          continue;
13427        }
13428        ND = cast<ConstantSDNode>(CurrentOp);
13429        const APInt &C = ND->getAPIntValue();
13430        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
13431      }
13432      break;
13433    }
13434
13435    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
13436  }
13437
13438  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
13439}
13440
13441// getTargetVShiftNode - Handle vector element shifts where the shift amount
13442// may or may not be a constant. Takes immediate version of shift as input.
13443static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
13444                                   SDValue SrcOp, SDValue ShAmt,
13445                                   SelectionDAG &DAG) {
13446  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
13447
13448  // Catch shift-by-constant.
13449  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
13450    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
13451                                      CShAmt->getZExtValue(), DAG);
13452
13453  // Change opcode to non-immediate version
13454  switch (Opc) {
13455    default: llvm_unreachable("Unknown target vector shift node");
13456    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
13457    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
13458    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
13459  }
13460
13461  // Need to build a vector containing shift amount
13462  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
13463  SDValue ShOps[4];
13464  ShOps[0] = ShAmt;
13465  ShOps[1] = DAG.getConstant(0, MVT::i32);
13466  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
13467  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
13468
13469  // The return type has to be a 128-bit type with the same element
13470  // type as the input type.
13471  MVT EltVT = VT.getVectorElementType();
13472  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
13473
13474  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
13475  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
13476}
13477
13478static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
13479  SDLoc dl(Op);
13480  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13481  switch (IntNo) {
13482  default: return SDValue();    // Don't custom lower most intrinsics.
13483  // Comparison intrinsics.
13484  case Intrinsic::x86_sse_comieq_ss:
13485  case Intrinsic::x86_sse_comilt_ss:
13486  case Intrinsic::x86_sse_comile_ss:
13487  case Intrinsic::x86_sse_comigt_ss:
13488  case Intrinsic::x86_sse_comige_ss:
13489  case Intrinsic::x86_sse_comineq_ss:
13490  case Intrinsic::x86_sse_ucomieq_ss:
13491  case Intrinsic::x86_sse_ucomilt_ss:
13492  case Intrinsic::x86_sse_ucomile_ss:
13493  case Intrinsic::x86_sse_ucomigt_ss:
13494  case Intrinsic::x86_sse_ucomige_ss:
13495  case Intrinsic::x86_sse_ucomineq_ss:
13496  case Intrinsic::x86_sse2_comieq_sd:
13497  case Intrinsic::x86_sse2_comilt_sd:
13498  case Intrinsic::x86_sse2_comile_sd:
13499  case Intrinsic::x86_sse2_comigt_sd:
13500  case Intrinsic::x86_sse2_comige_sd:
13501  case Intrinsic::x86_sse2_comineq_sd:
13502  case Intrinsic::x86_sse2_ucomieq_sd:
13503  case Intrinsic::x86_sse2_ucomilt_sd:
13504  case Intrinsic::x86_sse2_ucomile_sd:
13505  case Intrinsic::x86_sse2_ucomigt_sd:
13506  case Intrinsic::x86_sse2_ucomige_sd:
13507  case Intrinsic::x86_sse2_ucomineq_sd: {
13508    unsigned Opc;
13509    ISD::CondCode CC;
13510    switch (IntNo) {
13511    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13512    case Intrinsic::x86_sse_comieq_ss:
13513    case Intrinsic::x86_sse2_comieq_sd:
13514      Opc = X86ISD::COMI;
13515      CC = ISD::SETEQ;
13516      break;
13517    case Intrinsic::x86_sse_comilt_ss:
13518    case Intrinsic::x86_sse2_comilt_sd:
13519      Opc = X86ISD::COMI;
13520      CC = ISD::SETLT;
13521      break;
13522    case Intrinsic::x86_sse_comile_ss:
13523    case Intrinsic::x86_sse2_comile_sd:
13524      Opc = X86ISD::COMI;
13525      CC = ISD::SETLE;
13526      break;
13527    case Intrinsic::x86_sse_comigt_ss:
13528    case Intrinsic::x86_sse2_comigt_sd:
13529      Opc = X86ISD::COMI;
13530      CC = ISD::SETGT;
13531      break;
13532    case Intrinsic::x86_sse_comige_ss:
13533    case Intrinsic::x86_sse2_comige_sd:
13534      Opc = X86ISD::COMI;
13535      CC = ISD::SETGE;
13536      break;
13537    case Intrinsic::x86_sse_comineq_ss:
13538    case Intrinsic::x86_sse2_comineq_sd:
13539      Opc = X86ISD::COMI;
13540      CC = ISD::SETNE;
13541      break;
13542    case Intrinsic::x86_sse_ucomieq_ss:
13543    case Intrinsic::x86_sse2_ucomieq_sd:
13544      Opc = X86ISD::UCOMI;
13545      CC = ISD::SETEQ;
13546      break;
13547    case Intrinsic::x86_sse_ucomilt_ss:
13548    case Intrinsic::x86_sse2_ucomilt_sd:
13549      Opc = X86ISD::UCOMI;
13550      CC = ISD::SETLT;
13551      break;
13552    case Intrinsic::x86_sse_ucomile_ss:
13553    case Intrinsic::x86_sse2_ucomile_sd:
13554      Opc = X86ISD::UCOMI;
13555      CC = ISD::SETLE;
13556      break;
13557    case Intrinsic::x86_sse_ucomigt_ss:
13558    case Intrinsic::x86_sse2_ucomigt_sd:
13559      Opc = X86ISD::UCOMI;
13560      CC = ISD::SETGT;
13561      break;
13562    case Intrinsic::x86_sse_ucomige_ss:
13563    case Intrinsic::x86_sse2_ucomige_sd:
13564      Opc = X86ISD::UCOMI;
13565      CC = ISD::SETGE;
13566      break;
13567    case Intrinsic::x86_sse_ucomineq_ss:
13568    case Intrinsic::x86_sse2_ucomineq_sd:
13569      Opc = X86ISD::UCOMI;
13570      CC = ISD::SETNE;
13571      break;
13572    }
13573
13574    SDValue LHS = Op.getOperand(1);
13575    SDValue RHS = Op.getOperand(2);
13576    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
13577    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
13578    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
13579    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
13580                                DAG.getConstant(X86CC, MVT::i8), Cond);
13581    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
13582  }
13583
13584  // Arithmetic intrinsics.
13585  case Intrinsic::x86_sse2_pmulu_dq:
13586  case Intrinsic::x86_avx2_pmulu_dq:
13587    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
13588                       Op.getOperand(1), Op.getOperand(2));
13589
13590  case Intrinsic::x86_sse41_pmuldq:
13591  case Intrinsic::x86_avx2_pmul_dq:
13592    return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
13593                       Op.getOperand(1), Op.getOperand(2));
13594
13595  case Intrinsic::x86_sse2_pmulhu_w:
13596  case Intrinsic::x86_avx2_pmulhu_w:
13597    return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
13598                       Op.getOperand(1), Op.getOperand(2));
13599
13600  case Intrinsic::x86_sse2_pmulh_w:
13601  case Intrinsic::x86_avx2_pmulh_w:
13602    return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
13603                       Op.getOperand(1), Op.getOperand(2));
13604
13605  // SSE2/AVX2 sub with unsigned saturation intrinsics
13606  case Intrinsic::x86_sse2_psubus_b:
13607  case Intrinsic::x86_sse2_psubus_w:
13608  case Intrinsic::x86_avx2_psubus_b:
13609  case Intrinsic::x86_avx2_psubus_w:
13610    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
13611                       Op.getOperand(1), Op.getOperand(2));
13612
13613  // SSE3/AVX horizontal add/sub intrinsics
13614  case Intrinsic::x86_sse3_hadd_ps:
13615  case Intrinsic::x86_sse3_hadd_pd:
13616  case Intrinsic::x86_avx_hadd_ps_256:
13617  case Intrinsic::x86_avx_hadd_pd_256:
13618  case Intrinsic::x86_sse3_hsub_ps:
13619  case Intrinsic::x86_sse3_hsub_pd:
13620  case Intrinsic::x86_avx_hsub_ps_256:
13621  case Intrinsic::x86_avx_hsub_pd_256:
13622  case Intrinsic::x86_ssse3_phadd_w_128:
13623  case Intrinsic::x86_ssse3_phadd_d_128:
13624  case Intrinsic::x86_avx2_phadd_w:
13625  case Intrinsic::x86_avx2_phadd_d:
13626  case Intrinsic::x86_ssse3_phsub_w_128:
13627  case Intrinsic::x86_ssse3_phsub_d_128:
13628  case Intrinsic::x86_avx2_phsub_w:
13629  case Intrinsic::x86_avx2_phsub_d: {
13630    unsigned Opcode;
13631    switch (IntNo) {
13632    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13633    case Intrinsic::x86_sse3_hadd_ps:
13634    case Intrinsic::x86_sse3_hadd_pd:
13635    case Intrinsic::x86_avx_hadd_ps_256:
13636    case Intrinsic::x86_avx_hadd_pd_256:
13637      Opcode = X86ISD::FHADD;
13638      break;
13639    case Intrinsic::x86_sse3_hsub_ps:
13640    case Intrinsic::x86_sse3_hsub_pd:
13641    case Intrinsic::x86_avx_hsub_ps_256:
13642    case Intrinsic::x86_avx_hsub_pd_256:
13643      Opcode = X86ISD::FHSUB;
13644      break;
13645    case Intrinsic::x86_ssse3_phadd_w_128:
13646    case Intrinsic::x86_ssse3_phadd_d_128:
13647    case Intrinsic::x86_avx2_phadd_w:
13648    case Intrinsic::x86_avx2_phadd_d:
13649      Opcode = X86ISD::HADD;
13650      break;
13651    case Intrinsic::x86_ssse3_phsub_w_128:
13652    case Intrinsic::x86_ssse3_phsub_d_128:
13653    case Intrinsic::x86_avx2_phsub_w:
13654    case Intrinsic::x86_avx2_phsub_d:
13655      Opcode = X86ISD::HSUB;
13656      break;
13657    }
13658    return DAG.getNode(Opcode, dl, Op.getValueType(),
13659                       Op.getOperand(1), Op.getOperand(2));
13660  }
13661
13662  // SSE2/SSE41/AVX2 integer max/min intrinsics.
13663  case Intrinsic::x86_sse2_pmaxu_b:
13664  case Intrinsic::x86_sse41_pmaxuw:
13665  case Intrinsic::x86_sse41_pmaxud:
13666  case Intrinsic::x86_avx2_pmaxu_b:
13667  case Intrinsic::x86_avx2_pmaxu_w:
13668  case Intrinsic::x86_avx2_pmaxu_d:
13669  case Intrinsic::x86_sse2_pminu_b:
13670  case Intrinsic::x86_sse41_pminuw:
13671  case Intrinsic::x86_sse41_pminud:
13672  case Intrinsic::x86_avx2_pminu_b:
13673  case Intrinsic::x86_avx2_pminu_w:
13674  case Intrinsic::x86_avx2_pminu_d:
13675  case Intrinsic::x86_sse41_pmaxsb:
13676  case Intrinsic::x86_sse2_pmaxs_w:
13677  case Intrinsic::x86_sse41_pmaxsd:
13678  case Intrinsic::x86_avx2_pmaxs_b:
13679  case Intrinsic::x86_avx2_pmaxs_w:
13680  case Intrinsic::x86_avx2_pmaxs_d:
13681  case Intrinsic::x86_sse41_pminsb:
13682  case Intrinsic::x86_sse2_pmins_w:
13683  case Intrinsic::x86_sse41_pminsd:
13684  case Intrinsic::x86_avx2_pmins_b:
13685  case Intrinsic::x86_avx2_pmins_w:
13686  case Intrinsic::x86_avx2_pmins_d: {
13687    unsigned Opcode;
13688    switch (IntNo) {
13689    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13690    case Intrinsic::x86_sse2_pmaxu_b:
13691    case Intrinsic::x86_sse41_pmaxuw:
13692    case Intrinsic::x86_sse41_pmaxud:
13693    case Intrinsic::x86_avx2_pmaxu_b:
13694    case Intrinsic::x86_avx2_pmaxu_w:
13695    case Intrinsic::x86_avx2_pmaxu_d:
13696      Opcode = X86ISD::UMAX;
13697      break;
13698    case Intrinsic::x86_sse2_pminu_b:
13699    case Intrinsic::x86_sse41_pminuw:
13700    case Intrinsic::x86_sse41_pminud:
13701    case Intrinsic::x86_avx2_pminu_b:
13702    case Intrinsic::x86_avx2_pminu_w:
13703    case Intrinsic::x86_avx2_pminu_d:
13704      Opcode = X86ISD::UMIN;
13705      break;
13706    case Intrinsic::x86_sse41_pmaxsb:
13707    case Intrinsic::x86_sse2_pmaxs_w:
13708    case Intrinsic::x86_sse41_pmaxsd:
13709    case Intrinsic::x86_avx2_pmaxs_b:
13710    case Intrinsic::x86_avx2_pmaxs_w:
13711    case Intrinsic::x86_avx2_pmaxs_d:
13712      Opcode = X86ISD::SMAX;
13713      break;
13714    case Intrinsic::x86_sse41_pminsb:
13715    case Intrinsic::x86_sse2_pmins_w:
13716    case Intrinsic::x86_sse41_pminsd:
13717    case Intrinsic::x86_avx2_pmins_b:
13718    case Intrinsic::x86_avx2_pmins_w:
13719    case Intrinsic::x86_avx2_pmins_d:
13720      Opcode = X86ISD::SMIN;
13721      break;
13722    }
13723    return DAG.getNode(Opcode, dl, Op.getValueType(),
13724                       Op.getOperand(1), Op.getOperand(2));
13725  }
13726
13727  // SSE/SSE2/AVX floating point max/min intrinsics.
13728  case Intrinsic::x86_sse_max_ps:
13729  case Intrinsic::x86_sse2_max_pd:
13730  case Intrinsic::x86_avx_max_ps_256:
13731  case Intrinsic::x86_avx_max_pd_256:
13732  case Intrinsic::x86_sse_min_ps:
13733  case Intrinsic::x86_sse2_min_pd:
13734  case Intrinsic::x86_avx_min_ps_256:
13735  case Intrinsic::x86_avx_min_pd_256: {
13736    unsigned Opcode;
13737    switch (IntNo) {
13738    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13739    case Intrinsic::x86_sse_max_ps:
13740    case Intrinsic::x86_sse2_max_pd:
13741    case Intrinsic::x86_avx_max_ps_256:
13742    case Intrinsic::x86_avx_max_pd_256:
13743      Opcode = X86ISD::FMAX;
13744      break;
13745    case Intrinsic::x86_sse_min_ps:
13746    case Intrinsic::x86_sse2_min_pd:
13747    case Intrinsic::x86_avx_min_ps_256:
13748    case Intrinsic::x86_avx_min_pd_256:
13749      Opcode = X86ISD::FMIN;
13750      break;
13751    }
13752    return DAG.getNode(Opcode, dl, Op.getValueType(),
13753                       Op.getOperand(1), Op.getOperand(2));
13754  }
13755
13756  // AVX2 variable shift intrinsics
13757  case Intrinsic::x86_avx2_psllv_d:
13758  case Intrinsic::x86_avx2_psllv_q:
13759  case Intrinsic::x86_avx2_psllv_d_256:
13760  case Intrinsic::x86_avx2_psllv_q_256:
13761  case Intrinsic::x86_avx2_psrlv_d:
13762  case Intrinsic::x86_avx2_psrlv_q:
13763  case Intrinsic::x86_avx2_psrlv_d_256:
13764  case Intrinsic::x86_avx2_psrlv_q_256:
13765  case Intrinsic::x86_avx2_psrav_d:
13766  case Intrinsic::x86_avx2_psrav_d_256: {
13767    unsigned Opcode;
13768    switch (IntNo) {
13769    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13770    case Intrinsic::x86_avx2_psllv_d:
13771    case Intrinsic::x86_avx2_psllv_q:
13772    case Intrinsic::x86_avx2_psllv_d_256:
13773    case Intrinsic::x86_avx2_psllv_q_256:
13774      Opcode = ISD::SHL;
13775      break;
13776    case Intrinsic::x86_avx2_psrlv_d:
13777    case Intrinsic::x86_avx2_psrlv_q:
13778    case Intrinsic::x86_avx2_psrlv_d_256:
13779    case Intrinsic::x86_avx2_psrlv_q_256:
13780      Opcode = ISD::SRL;
13781      break;
13782    case Intrinsic::x86_avx2_psrav_d:
13783    case Intrinsic::x86_avx2_psrav_d_256:
13784      Opcode = ISD::SRA;
13785      break;
13786    }
13787    return DAG.getNode(Opcode, dl, Op.getValueType(),
13788                       Op.getOperand(1), Op.getOperand(2));
13789  }
13790
13791  case Intrinsic::x86_sse2_packssdw_128:
13792  case Intrinsic::x86_sse2_packsswb_128:
13793  case Intrinsic::x86_avx2_packssdw:
13794  case Intrinsic::x86_avx2_packsswb:
13795    return DAG.getNode(X86ISD::PACKSS, dl, Op.getValueType(),
13796                       Op.getOperand(1), Op.getOperand(2));
13797
13798  case Intrinsic::x86_sse2_packuswb_128:
13799  case Intrinsic::x86_sse41_packusdw:
13800  case Intrinsic::x86_avx2_packuswb:
13801  case Intrinsic::x86_avx2_packusdw:
13802    return DAG.getNode(X86ISD::PACKUS, dl, Op.getValueType(),
13803                       Op.getOperand(1), Op.getOperand(2));
13804
13805  case Intrinsic::x86_ssse3_pshuf_b_128:
13806  case Intrinsic::x86_avx2_pshuf_b:
13807    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
13808                       Op.getOperand(1), Op.getOperand(2));
13809
13810  case Intrinsic::x86_sse2_pshuf_d:
13811    return DAG.getNode(X86ISD::PSHUFD, dl, Op.getValueType(),
13812                       Op.getOperand(1), Op.getOperand(2));
13813
13814  case Intrinsic::x86_sse2_pshufl_w:
13815    return DAG.getNode(X86ISD::PSHUFLW, dl, Op.getValueType(),
13816                       Op.getOperand(1), Op.getOperand(2));
13817
13818  case Intrinsic::x86_sse2_pshufh_w:
13819    return DAG.getNode(X86ISD::PSHUFHW, dl, Op.getValueType(),
13820                       Op.getOperand(1), Op.getOperand(2));
13821
13822  case Intrinsic::x86_ssse3_psign_b_128:
13823  case Intrinsic::x86_ssse3_psign_w_128:
13824  case Intrinsic::x86_ssse3_psign_d_128:
13825  case Intrinsic::x86_avx2_psign_b:
13826  case Intrinsic::x86_avx2_psign_w:
13827  case Intrinsic::x86_avx2_psign_d:
13828    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
13829                       Op.getOperand(1), Op.getOperand(2));
13830
13831  case Intrinsic::x86_sse41_insertps:
13832    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
13833                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
13834
13835  case Intrinsic::x86_avx_vperm2f128_ps_256:
13836  case Intrinsic::x86_avx_vperm2f128_pd_256:
13837  case Intrinsic::x86_avx_vperm2f128_si_256:
13838  case Intrinsic::x86_avx2_vperm2i128:
13839    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
13840                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
13841
13842  case Intrinsic::x86_avx2_permd:
13843  case Intrinsic::x86_avx2_permps:
13844    // Operands intentionally swapped. Mask is last operand to intrinsic,
13845    // but second operand for node/instruction.
13846    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
13847                       Op.getOperand(2), Op.getOperand(1));
13848
13849  case Intrinsic::x86_sse_sqrt_ps:
13850  case Intrinsic::x86_sse2_sqrt_pd:
13851  case Intrinsic::x86_avx_sqrt_ps_256:
13852  case Intrinsic::x86_avx_sqrt_pd_256:
13853    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
13854
13855  // ptest and testp intrinsics. The intrinsic these come from are designed to
13856  // return an integer value, not just an instruction so lower it to the ptest
13857  // or testp pattern and a setcc for the result.
13858  case Intrinsic::x86_sse41_ptestz:
13859  case Intrinsic::x86_sse41_ptestc:
13860  case Intrinsic::x86_sse41_ptestnzc:
13861  case Intrinsic::x86_avx_ptestz_256:
13862  case Intrinsic::x86_avx_ptestc_256:
13863  case Intrinsic::x86_avx_ptestnzc_256:
13864  case Intrinsic::x86_avx_vtestz_ps:
13865  case Intrinsic::x86_avx_vtestc_ps:
13866  case Intrinsic::x86_avx_vtestnzc_ps:
13867  case Intrinsic::x86_avx_vtestz_pd:
13868  case Intrinsic::x86_avx_vtestc_pd:
13869  case Intrinsic::x86_avx_vtestnzc_pd:
13870  case Intrinsic::x86_avx_vtestz_ps_256:
13871  case Intrinsic::x86_avx_vtestc_ps_256:
13872  case Intrinsic::x86_avx_vtestnzc_ps_256:
13873  case Intrinsic::x86_avx_vtestz_pd_256:
13874  case Intrinsic::x86_avx_vtestc_pd_256:
13875  case Intrinsic::x86_avx_vtestnzc_pd_256: {
13876    bool IsTestPacked = false;
13877    unsigned X86CC;
13878    switch (IntNo) {
13879    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
13880    case Intrinsic::x86_avx_vtestz_ps:
13881    case Intrinsic::x86_avx_vtestz_pd:
13882    case Intrinsic::x86_avx_vtestz_ps_256:
13883    case Intrinsic::x86_avx_vtestz_pd_256:
13884      IsTestPacked = true; // Fallthrough
13885    case Intrinsic::x86_sse41_ptestz:
13886    case Intrinsic::x86_avx_ptestz_256:
13887      // ZF = 1
13888      X86CC = X86::COND_E;
13889      break;
13890    case Intrinsic::x86_avx_vtestc_ps:
13891    case Intrinsic::x86_avx_vtestc_pd:
13892    case Intrinsic::x86_avx_vtestc_ps_256:
13893    case Intrinsic::x86_avx_vtestc_pd_256:
13894      IsTestPacked = true; // Fallthrough
13895    case Intrinsic::x86_sse41_ptestc:
13896    case Intrinsic::x86_avx_ptestc_256:
13897      // CF = 1
13898      X86CC = X86::COND_B;
13899      break;
13900    case Intrinsic::x86_avx_vtestnzc_ps:
13901    case Intrinsic::x86_avx_vtestnzc_pd:
13902    case Intrinsic::x86_avx_vtestnzc_ps_256:
13903    case Intrinsic::x86_avx_vtestnzc_pd_256:
13904      IsTestPacked = true; // Fallthrough
13905    case Intrinsic::x86_sse41_ptestnzc:
13906    case Intrinsic::x86_avx_ptestnzc_256:
13907      // ZF and CF = 0
13908      X86CC = X86::COND_A;
13909      break;
13910    }
13911
13912    SDValue LHS = Op.getOperand(1);
13913    SDValue RHS = Op.getOperand(2);
13914    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
13915    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
13916    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
13917    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
13918    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
13919  }
13920  case Intrinsic::x86_avx512_kortestz_w:
13921  case Intrinsic::x86_avx512_kortestc_w: {
13922    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
13923    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
13924    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
13925    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
13926    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
13927    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
13928    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
13929  }
13930
13931  // SSE/AVX shift intrinsics
13932  case Intrinsic::x86_sse2_psll_w:
13933  case Intrinsic::x86_sse2_psll_d:
13934  case Intrinsic::x86_sse2_psll_q:
13935  case Intrinsic::x86_avx2_psll_w:
13936  case Intrinsic::x86_avx2_psll_d:
13937  case Intrinsic::x86_avx2_psll_q:
13938  case Intrinsic::x86_sse2_psrl_w:
13939  case Intrinsic::x86_sse2_psrl_d:
13940  case Intrinsic::x86_sse2_psrl_q:
13941  case Intrinsic::x86_avx2_psrl_w:
13942  case Intrinsic::x86_avx2_psrl_d:
13943  case Intrinsic::x86_avx2_psrl_q:
13944  case Intrinsic::x86_sse2_psra_w:
13945  case Intrinsic::x86_sse2_psra_d:
13946  case Intrinsic::x86_avx2_psra_w:
13947  case Intrinsic::x86_avx2_psra_d: {
13948    unsigned Opcode;
13949    switch (IntNo) {
13950    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13951    case Intrinsic::x86_sse2_psll_w:
13952    case Intrinsic::x86_sse2_psll_d:
13953    case Intrinsic::x86_sse2_psll_q:
13954    case Intrinsic::x86_avx2_psll_w:
13955    case Intrinsic::x86_avx2_psll_d:
13956    case Intrinsic::x86_avx2_psll_q:
13957      Opcode = X86ISD::VSHL;
13958      break;
13959    case Intrinsic::x86_sse2_psrl_w:
13960    case Intrinsic::x86_sse2_psrl_d:
13961    case Intrinsic::x86_sse2_psrl_q:
13962    case Intrinsic::x86_avx2_psrl_w:
13963    case Intrinsic::x86_avx2_psrl_d:
13964    case Intrinsic::x86_avx2_psrl_q:
13965      Opcode = X86ISD::VSRL;
13966      break;
13967    case Intrinsic::x86_sse2_psra_w:
13968    case Intrinsic::x86_sse2_psra_d:
13969    case Intrinsic::x86_avx2_psra_w:
13970    case Intrinsic::x86_avx2_psra_d:
13971      Opcode = X86ISD::VSRA;
13972      break;
13973    }
13974    return DAG.getNode(Opcode, dl, Op.getValueType(),
13975                       Op.getOperand(1), Op.getOperand(2));
13976  }
13977
13978  // SSE/AVX immediate shift intrinsics
13979  case Intrinsic::x86_sse2_pslli_w:
13980  case Intrinsic::x86_sse2_pslli_d:
13981  case Intrinsic::x86_sse2_pslli_q:
13982  case Intrinsic::x86_avx2_pslli_w:
13983  case Intrinsic::x86_avx2_pslli_d:
13984  case Intrinsic::x86_avx2_pslli_q:
13985  case Intrinsic::x86_sse2_psrli_w:
13986  case Intrinsic::x86_sse2_psrli_d:
13987  case Intrinsic::x86_sse2_psrli_q:
13988  case Intrinsic::x86_avx2_psrli_w:
13989  case Intrinsic::x86_avx2_psrli_d:
13990  case Intrinsic::x86_avx2_psrli_q:
13991  case Intrinsic::x86_sse2_psrai_w:
13992  case Intrinsic::x86_sse2_psrai_d:
13993  case Intrinsic::x86_avx2_psrai_w:
13994  case Intrinsic::x86_avx2_psrai_d: {
13995    unsigned Opcode;
13996    switch (IntNo) {
13997    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13998    case Intrinsic::x86_sse2_pslli_w:
13999    case Intrinsic::x86_sse2_pslli_d:
14000    case Intrinsic::x86_sse2_pslli_q:
14001    case Intrinsic::x86_avx2_pslli_w:
14002    case Intrinsic::x86_avx2_pslli_d:
14003    case Intrinsic::x86_avx2_pslli_q:
14004      Opcode = X86ISD::VSHLI;
14005      break;
14006    case Intrinsic::x86_sse2_psrli_w:
14007    case Intrinsic::x86_sse2_psrli_d:
14008    case Intrinsic::x86_sse2_psrli_q:
14009    case Intrinsic::x86_avx2_psrli_w:
14010    case Intrinsic::x86_avx2_psrli_d:
14011    case Intrinsic::x86_avx2_psrli_q:
14012      Opcode = X86ISD::VSRLI;
14013      break;
14014    case Intrinsic::x86_sse2_psrai_w:
14015    case Intrinsic::x86_sse2_psrai_d:
14016    case Intrinsic::x86_avx2_psrai_w:
14017    case Intrinsic::x86_avx2_psrai_d:
14018      Opcode = X86ISD::VSRAI;
14019      break;
14020    }
14021    return getTargetVShiftNode(Opcode, dl, Op.getSimpleValueType(),
14022                               Op.getOperand(1), Op.getOperand(2), DAG);
14023  }
14024
14025  case Intrinsic::x86_sse42_pcmpistria128:
14026  case Intrinsic::x86_sse42_pcmpestria128:
14027  case Intrinsic::x86_sse42_pcmpistric128:
14028  case Intrinsic::x86_sse42_pcmpestric128:
14029  case Intrinsic::x86_sse42_pcmpistrio128:
14030  case Intrinsic::x86_sse42_pcmpestrio128:
14031  case Intrinsic::x86_sse42_pcmpistris128:
14032  case Intrinsic::x86_sse42_pcmpestris128:
14033  case Intrinsic::x86_sse42_pcmpistriz128:
14034  case Intrinsic::x86_sse42_pcmpestriz128: {
14035    unsigned Opcode;
14036    unsigned X86CC;
14037    switch (IntNo) {
14038    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14039    case Intrinsic::x86_sse42_pcmpistria128:
14040      Opcode = X86ISD::PCMPISTRI;
14041      X86CC = X86::COND_A;
14042      break;
14043    case Intrinsic::x86_sse42_pcmpestria128:
14044      Opcode = X86ISD::PCMPESTRI;
14045      X86CC = X86::COND_A;
14046      break;
14047    case Intrinsic::x86_sse42_pcmpistric128:
14048      Opcode = X86ISD::PCMPISTRI;
14049      X86CC = X86::COND_B;
14050      break;
14051    case Intrinsic::x86_sse42_pcmpestric128:
14052      Opcode = X86ISD::PCMPESTRI;
14053      X86CC = X86::COND_B;
14054      break;
14055    case Intrinsic::x86_sse42_pcmpistrio128:
14056      Opcode = X86ISD::PCMPISTRI;
14057      X86CC = X86::COND_O;
14058      break;
14059    case Intrinsic::x86_sse42_pcmpestrio128:
14060      Opcode = X86ISD::PCMPESTRI;
14061      X86CC = X86::COND_O;
14062      break;
14063    case Intrinsic::x86_sse42_pcmpistris128:
14064      Opcode = X86ISD::PCMPISTRI;
14065      X86CC = X86::COND_S;
14066      break;
14067    case Intrinsic::x86_sse42_pcmpestris128:
14068      Opcode = X86ISD::PCMPESTRI;
14069      X86CC = X86::COND_S;
14070      break;
14071    case Intrinsic::x86_sse42_pcmpistriz128:
14072      Opcode = X86ISD::PCMPISTRI;
14073      X86CC = X86::COND_E;
14074      break;
14075    case Intrinsic::x86_sse42_pcmpestriz128:
14076      Opcode = X86ISD::PCMPESTRI;
14077      X86CC = X86::COND_E;
14078      break;
14079    }
14080    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
14081    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
14082    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
14083    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14084                                DAG.getConstant(X86CC, MVT::i8),
14085                                SDValue(PCMP.getNode(), 1));
14086    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14087  }
14088
14089  case Intrinsic::x86_sse42_pcmpistri128:
14090  case Intrinsic::x86_sse42_pcmpestri128: {
14091    unsigned Opcode;
14092    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
14093      Opcode = X86ISD::PCMPISTRI;
14094    else
14095      Opcode = X86ISD::PCMPESTRI;
14096
14097    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
14098    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
14099    return DAG.getNode(Opcode, dl, VTs, NewOps);
14100  }
14101  case Intrinsic::x86_fma_vfmadd_ps:
14102  case Intrinsic::x86_fma_vfmadd_pd:
14103  case Intrinsic::x86_fma_vfmsub_ps:
14104  case Intrinsic::x86_fma_vfmsub_pd:
14105  case Intrinsic::x86_fma_vfnmadd_ps:
14106  case Intrinsic::x86_fma_vfnmadd_pd:
14107  case Intrinsic::x86_fma_vfnmsub_ps:
14108  case Intrinsic::x86_fma_vfnmsub_pd:
14109  case Intrinsic::x86_fma_vfmaddsub_ps:
14110  case Intrinsic::x86_fma_vfmaddsub_pd:
14111  case Intrinsic::x86_fma_vfmsubadd_ps:
14112  case Intrinsic::x86_fma_vfmsubadd_pd:
14113  case Intrinsic::x86_fma_vfmadd_ps_256:
14114  case Intrinsic::x86_fma_vfmadd_pd_256:
14115  case Intrinsic::x86_fma_vfmsub_ps_256:
14116  case Intrinsic::x86_fma_vfmsub_pd_256:
14117  case Intrinsic::x86_fma_vfnmadd_ps_256:
14118  case Intrinsic::x86_fma_vfnmadd_pd_256:
14119  case Intrinsic::x86_fma_vfnmsub_ps_256:
14120  case Intrinsic::x86_fma_vfnmsub_pd_256:
14121  case Intrinsic::x86_fma_vfmaddsub_ps_256:
14122  case Intrinsic::x86_fma_vfmaddsub_pd_256:
14123  case Intrinsic::x86_fma_vfmsubadd_ps_256:
14124  case Intrinsic::x86_fma_vfmsubadd_pd_256:
14125  case Intrinsic::x86_fma_vfmadd_ps_512:
14126  case Intrinsic::x86_fma_vfmadd_pd_512:
14127  case Intrinsic::x86_fma_vfmsub_ps_512:
14128  case Intrinsic::x86_fma_vfmsub_pd_512:
14129  case Intrinsic::x86_fma_vfnmadd_ps_512:
14130  case Intrinsic::x86_fma_vfnmadd_pd_512:
14131  case Intrinsic::x86_fma_vfnmsub_ps_512:
14132  case Intrinsic::x86_fma_vfnmsub_pd_512:
14133  case Intrinsic::x86_fma_vfmaddsub_ps_512:
14134  case Intrinsic::x86_fma_vfmaddsub_pd_512:
14135  case Intrinsic::x86_fma_vfmsubadd_ps_512:
14136  case Intrinsic::x86_fma_vfmsubadd_pd_512: {
14137    unsigned Opc;
14138    switch (IntNo) {
14139    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14140    case Intrinsic::x86_fma_vfmadd_ps:
14141    case Intrinsic::x86_fma_vfmadd_pd:
14142    case Intrinsic::x86_fma_vfmadd_ps_256:
14143    case Intrinsic::x86_fma_vfmadd_pd_256:
14144    case Intrinsic::x86_fma_vfmadd_ps_512:
14145    case Intrinsic::x86_fma_vfmadd_pd_512:
14146      Opc = X86ISD::FMADD;
14147      break;
14148    case Intrinsic::x86_fma_vfmsub_ps:
14149    case Intrinsic::x86_fma_vfmsub_pd:
14150    case Intrinsic::x86_fma_vfmsub_ps_256:
14151    case Intrinsic::x86_fma_vfmsub_pd_256:
14152    case Intrinsic::x86_fma_vfmsub_ps_512:
14153    case Intrinsic::x86_fma_vfmsub_pd_512:
14154      Opc = X86ISD::FMSUB;
14155      break;
14156    case Intrinsic::x86_fma_vfnmadd_ps:
14157    case Intrinsic::x86_fma_vfnmadd_pd:
14158    case Intrinsic::x86_fma_vfnmadd_ps_256:
14159    case Intrinsic::x86_fma_vfnmadd_pd_256:
14160    case Intrinsic::x86_fma_vfnmadd_ps_512:
14161    case Intrinsic::x86_fma_vfnmadd_pd_512:
14162      Opc = X86ISD::FNMADD;
14163      break;
14164    case Intrinsic::x86_fma_vfnmsub_ps:
14165    case Intrinsic::x86_fma_vfnmsub_pd:
14166    case Intrinsic::x86_fma_vfnmsub_ps_256:
14167    case Intrinsic::x86_fma_vfnmsub_pd_256:
14168    case Intrinsic::x86_fma_vfnmsub_ps_512:
14169    case Intrinsic::x86_fma_vfnmsub_pd_512:
14170      Opc = X86ISD::FNMSUB;
14171      break;
14172    case Intrinsic::x86_fma_vfmaddsub_ps:
14173    case Intrinsic::x86_fma_vfmaddsub_pd:
14174    case Intrinsic::x86_fma_vfmaddsub_ps_256:
14175    case Intrinsic::x86_fma_vfmaddsub_pd_256:
14176    case Intrinsic::x86_fma_vfmaddsub_ps_512:
14177    case Intrinsic::x86_fma_vfmaddsub_pd_512:
14178      Opc = X86ISD::FMADDSUB;
14179      break;
14180    case Intrinsic::x86_fma_vfmsubadd_ps:
14181    case Intrinsic::x86_fma_vfmsubadd_pd:
14182    case Intrinsic::x86_fma_vfmsubadd_ps_256:
14183    case Intrinsic::x86_fma_vfmsubadd_pd_256:
14184    case Intrinsic::x86_fma_vfmsubadd_ps_512:
14185    case Intrinsic::x86_fma_vfmsubadd_pd_512:
14186      Opc = X86ISD::FMSUBADD;
14187      break;
14188    }
14189
14190    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
14191                       Op.getOperand(2), Op.getOperand(3));
14192  }
14193  }
14194}
14195
14196static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
14197                              SDValue Src, SDValue Mask, SDValue Base,
14198                              SDValue Index, SDValue ScaleOp, SDValue Chain,
14199                              const X86Subtarget * Subtarget) {
14200  SDLoc dl(Op);
14201  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
14202  assert(C && "Invalid scale type");
14203  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
14204  EVT MaskVT = MVT::getVectorVT(MVT::i1,
14205                             Index.getSimpleValueType().getVectorNumElements());
14206  SDValue MaskInReg;
14207  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
14208  if (MaskC)
14209    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
14210  else
14211    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
14212  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
14213  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
14214  SDValue Segment = DAG.getRegister(0, MVT::i32);
14215  if (Src.getOpcode() == ISD::UNDEF)
14216    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
14217  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
14218  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
14219  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
14220  return DAG.getMergeValues(RetOps, dl);
14221}
14222
14223static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
14224                               SDValue Src, SDValue Mask, SDValue Base,
14225                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
14226  SDLoc dl(Op);
14227  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
14228  assert(C && "Invalid scale type");
14229  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
14230  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
14231  SDValue Segment = DAG.getRegister(0, MVT::i32);
14232  EVT MaskVT = MVT::getVectorVT(MVT::i1,
14233                             Index.getSimpleValueType().getVectorNumElements());
14234  SDValue MaskInReg;
14235  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
14236  if (MaskC)
14237    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
14238  else
14239    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
14240  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
14241  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
14242  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
14243  return SDValue(Res, 1);
14244}
14245
14246static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
14247                               SDValue Mask, SDValue Base, SDValue Index,
14248                               SDValue ScaleOp, SDValue Chain) {
14249  SDLoc dl(Op);
14250  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
14251  assert(C && "Invalid scale type");
14252  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
14253  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
14254  SDValue Segment = DAG.getRegister(0, MVT::i32);
14255  EVT MaskVT =
14256    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
14257  SDValue MaskInReg;
14258  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
14259  if (MaskC)
14260    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
14261  else
14262    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
14263  //SDVTList VTs = DAG.getVTList(MVT::Other);
14264  SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
14265  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
14266  return SDValue(Res, 0);
14267}
14268
14269// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
14270// read performance monitor counters (x86_rdpmc).
14271static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
14272                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
14273                              SmallVectorImpl<SDValue> &Results) {
14274  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
14275  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
14276  SDValue LO, HI;
14277
14278  // The ECX register is used to select the index of the performance counter
14279  // to read.
14280  SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
14281                                   N->getOperand(2));
14282  SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
14283
14284  // Reads the content of a 64-bit performance counter and returns it in the
14285  // registers EDX:EAX.
14286  if (Subtarget->is64Bit()) {
14287    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
14288    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
14289                            LO.getValue(2));
14290  } else {
14291    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
14292    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
14293                            LO.getValue(2));
14294  }
14295  Chain = HI.getValue(1);
14296
14297  if (Subtarget->is64Bit()) {
14298    // The EAX register is loaded with the low-order 32 bits. The EDX register
14299    // is loaded with the supported high-order bits of the counter.
14300    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
14301                              DAG.getConstant(32, MVT::i8));
14302    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
14303    Results.push_back(Chain);
14304    return;
14305  }
14306
14307  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
14308  SDValue Ops[] = { LO, HI };
14309  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
14310  Results.push_back(Pair);
14311  Results.push_back(Chain);
14312}
14313
14314// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
14315// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
14316// also used to custom lower READCYCLECOUNTER nodes.
14317static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
14318                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
14319                              SmallVectorImpl<SDValue> &Results) {
14320  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
14321  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
14322  SDValue LO, HI;
14323
14324  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
14325  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
14326  // and the EAX register is loaded with the low-order 32 bits.
14327  if (Subtarget->is64Bit()) {
14328    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
14329    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
14330                            LO.getValue(2));
14331  } else {
14332    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
14333    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
14334                            LO.getValue(2));
14335  }
14336  SDValue Chain = HI.getValue(1);
14337
14338  if (Opcode == X86ISD::RDTSCP_DAG) {
14339    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
14340
14341    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
14342    // the ECX register. Add 'ecx' explicitly to the chain.
14343    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
14344                                     HI.getValue(2));
14345    // Explicitly store the content of ECX at the location passed in input
14346    // to the 'rdtscp' intrinsic.
14347    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
14348                         MachinePointerInfo(), false, false, 0);
14349  }
14350
14351  if (Subtarget->is64Bit()) {
14352    // The EDX register is loaded with the high-order 32 bits of the MSR, and
14353    // the EAX register is loaded with the low-order 32 bits.
14354    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
14355                              DAG.getConstant(32, MVT::i8));
14356    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
14357    Results.push_back(Chain);
14358    return;
14359  }
14360
14361  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
14362  SDValue Ops[] = { LO, HI };
14363  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
14364  Results.push_back(Pair);
14365  Results.push_back(Chain);
14366}
14367
14368static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
14369                                     SelectionDAG &DAG) {
14370  SmallVector<SDValue, 2> Results;
14371  SDLoc DL(Op);
14372  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
14373                          Results);
14374  return DAG.getMergeValues(Results, DL);
14375}
14376
14377enum IntrinsicType {
14378  GATHER, SCATTER, PREFETCH, RDSEED, RDRAND, RDPMC, RDTSC, XTEST
14379};
14380
14381struct IntrinsicData {
14382  IntrinsicData(IntrinsicType IType, unsigned IOpc0, unsigned IOpc1)
14383    :Type(IType), Opc0(IOpc0), Opc1(IOpc1) {}
14384  IntrinsicType Type;
14385  unsigned      Opc0;
14386  unsigned      Opc1;
14387};
14388
14389std::map < unsigned, IntrinsicData> IntrMap;
14390static void InitIntinsicsMap() {
14391  static bool Initialized = false;
14392  if (Initialized)
14393    return;
14394  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
14395                                IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
14396  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
14397                                IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
14398  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpd_512,
14399                                IntrinsicData(GATHER, X86::VGATHERQPDZrm, 0)));
14400  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpd_512,
14401                                IntrinsicData(GATHER, X86::VGATHERDPDZrm, 0)));
14402  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dps_512,
14403                                IntrinsicData(GATHER, X86::VGATHERDPSZrm, 0)));
14404  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpi_512,
14405                                IntrinsicData(GATHER, X86::VPGATHERQDZrm, 0)));
14406  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpq_512,
14407                                IntrinsicData(GATHER, X86::VPGATHERQQZrm, 0)));
14408  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpi_512,
14409                                IntrinsicData(GATHER, X86::VPGATHERDDZrm, 0)));
14410  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpq_512,
14411                                IntrinsicData(GATHER, X86::VPGATHERDQZrm, 0)));
14412
14413  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qps_512,
14414                                IntrinsicData(SCATTER, X86::VSCATTERQPSZmr, 0)));
14415  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpd_512,
14416                                IntrinsicData(SCATTER, X86::VSCATTERQPDZmr, 0)));
14417  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpd_512,
14418                                IntrinsicData(SCATTER, X86::VSCATTERDPDZmr, 0)));
14419  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dps_512,
14420                                IntrinsicData(SCATTER, X86::VSCATTERDPSZmr, 0)));
14421  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpi_512,
14422                                IntrinsicData(SCATTER, X86::VPSCATTERQDZmr, 0)));
14423  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpq_512,
14424                                IntrinsicData(SCATTER, X86::VPSCATTERQQZmr, 0)));
14425  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpi_512,
14426                                IntrinsicData(SCATTER, X86::VPSCATTERDDZmr, 0)));
14427  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpq_512,
14428                                IntrinsicData(SCATTER, X86::VPSCATTERDQZmr, 0)));
14429
14430  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qps_512,
14431                                IntrinsicData(PREFETCH, X86::VGATHERPF0QPSm,
14432                                                        X86::VGATHERPF1QPSm)));
14433  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qpd_512,
14434                                IntrinsicData(PREFETCH, X86::VGATHERPF0QPDm,
14435                                                        X86::VGATHERPF1QPDm)));
14436  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dpd_512,
14437                                IntrinsicData(PREFETCH, X86::VGATHERPF0DPDm,
14438                                                        X86::VGATHERPF1DPDm)));
14439  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dps_512,
14440                                IntrinsicData(PREFETCH, X86::VGATHERPF0DPSm,
14441                                                        X86::VGATHERPF1DPSm)));
14442  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qps_512,
14443                                IntrinsicData(PREFETCH, X86::VSCATTERPF0QPSm,
14444                                                        X86::VSCATTERPF1QPSm)));
14445  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qpd_512,
14446                                IntrinsicData(PREFETCH, X86::VSCATTERPF0QPDm,
14447                                                        X86::VSCATTERPF1QPDm)));
14448  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dpd_512,
14449                                IntrinsicData(PREFETCH, X86::VSCATTERPF0DPDm,
14450                                                        X86::VSCATTERPF1DPDm)));
14451  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dps_512,
14452                                IntrinsicData(PREFETCH, X86::VSCATTERPF0DPSm,
14453                                                        X86::VSCATTERPF1DPSm)));
14454  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_16,
14455                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
14456  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_32,
14457                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
14458  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_64,
14459                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
14460  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_16,
14461                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
14462  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_32,
14463                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
14464  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_64,
14465                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
14466  IntrMap.insert(std::make_pair(Intrinsic::x86_xtest,
14467                                IntrinsicData(XTEST,  X86ISD::XTEST,  0)));
14468  IntrMap.insert(std::make_pair(Intrinsic::x86_rdtsc,
14469                                IntrinsicData(RDTSC,  X86ISD::RDTSC_DAG, 0)));
14470  IntrMap.insert(std::make_pair(Intrinsic::x86_rdtscp,
14471                                IntrinsicData(RDTSC,  X86ISD::RDTSCP_DAG, 0)));
14472  IntrMap.insert(std::make_pair(Intrinsic::x86_rdpmc,
14473                                IntrinsicData(RDPMC,  X86ISD::RDPMC_DAG, 0)));
14474  Initialized = true;
14475}
14476
14477static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
14478                                      SelectionDAG &DAG) {
14479  InitIntinsicsMap();
14480  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
14481  std::map < unsigned, IntrinsicData>::const_iterator itr = IntrMap.find(IntNo);
14482  if (itr == IntrMap.end())
14483    return SDValue();
14484
14485  SDLoc dl(Op);
14486  IntrinsicData Intr = itr->second;
14487  switch(Intr.Type) {
14488  case RDSEED:
14489  case RDRAND: {
14490    // Emit the node with the right value type.
14491    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
14492    SDValue Result = DAG.getNode(Intr.Opc0, dl, VTs, Op.getOperand(0));
14493
14494    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
14495    // Otherwise return the value from Rand, which is always 0, casted to i32.
14496    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
14497                      DAG.getConstant(1, Op->getValueType(1)),
14498                      DAG.getConstant(X86::COND_B, MVT::i32),
14499                      SDValue(Result.getNode(), 1) };
14500    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
14501                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
14502                                  Ops);
14503
14504    // Return { result, isValid, chain }.
14505    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
14506                       SDValue(Result.getNode(), 2));
14507  }
14508  case GATHER: {
14509  //gather(v1, mask, index, base, scale);
14510    SDValue Chain = Op.getOperand(0);
14511    SDValue Src   = Op.getOperand(2);
14512    SDValue Base  = Op.getOperand(3);
14513    SDValue Index = Op.getOperand(4);
14514    SDValue Mask  = Op.getOperand(5);
14515    SDValue Scale = Op.getOperand(6);
14516    return getGatherNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
14517                          Subtarget);
14518  }
14519  case SCATTER: {
14520  //scatter(base, mask, index, v1, scale);
14521    SDValue Chain = Op.getOperand(0);
14522    SDValue Base  = Op.getOperand(2);
14523    SDValue Mask  = Op.getOperand(3);
14524    SDValue Index = Op.getOperand(4);
14525    SDValue Src   = Op.getOperand(5);
14526    SDValue Scale = Op.getOperand(6);
14527    return getScatterNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
14528  }
14529  case PREFETCH: {
14530    SDValue Hint = Op.getOperand(6);
14531    unsigned HintVal;
14532    if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
14533        (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
14534      llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
14535    unsigned Opcode = (HintVal ? Intr.Opc1 : Intr.Opc0);
14536    SDValue Chain = Op.getOperand(0);
14537    SDValue Mask  = Op.getOperand(2);
14538    SDValue Index = Op.getOperand(3);
14539    SDValue Base  = Op.getOperand(4);
14540    SDValue Scale = Op.getOperand(5);
14541    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
14542  }
14543  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
14544  case RDTSC: {
14545    SmallVector<SDValue, 2> Results;
14546    getReadTimeStampCounter(Op.getNode(), dl, Intr.Opc0, DAG, Subtarget, Results);
14547    return DAG.getMergeValues(Results, dl);
14548  }
14549  // Read Performance Monitoring Counters.
14550  case RDPMC: {
14551    SmallVector<SDValue, 2> Results;
14552    getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
14553    return DAG.getMergeValues(Results, dl);
14554  }
14555  // XTEST intrinsics.
14556  case XTEST: {
14557    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
14558    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
14559    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14560                                DAG.getConstant(X86::COND_NE, MVT::i8),
14561                                InTrans);
14562    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
14563    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
14564                       Ret, SDValue(InTrans.getNode(), 1));
14565  }
14566  }
14567  llvm_unreachable("Unknown Intrinsic Type");
14568}
14569
14570SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
14571                                           SelectionDAG &DAG) const {
14572  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
14573  MFI->setReturnAddressIsTaken(true);
14574
14575  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14576    return SDValue();
14577
14578  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14579  SDLoc dl(Op);
14580  EVT PtrVT = getPointerTy();
14581
14582  if (Depth > 0) {
14583    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14584    const X86RegisterInfo *RegInfo =
14585      static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
14586    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
14587    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14588                       DAG.getNode(ISD::ADD, dl, PtrVT,
14589                                   FrameAddr, Offset),
14590                       MachinePointerInfo(), false, false, false, 0);
14591  }
14592
14593  // Just load the return address.
14594  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
14595  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14596                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
14597}
14598
14599SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
14600  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
14601  MFI->setFrameAddressIsTaken(true);
14602
14603  EVT VT = Op.getValueType();
14604  SDLoc dl(Op);  // FIXME probably not meaningful
14605  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14606  const X86RegisterInfo *RegInfo =
14607    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
14608  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
14609  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
14610          (FrameReg == X86::EBP && VT == MVT::i32)) &&
14611         "Invalid Frame Register!");
14612  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
14613  while (Depth--)
14614    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
14615                            MachinePointerInfo(),
14616                            false, false, false, 0);
14617  return FrameAddr;
14618}
14619
14620// FIXME? Maybe this could be a TableGen attribute on some registers and
14621// this table could be generated automatically from RegInfo.
14622unsigned X86TargetLowering::getRegisterByName(const char* RegName,
14623                                              EVT VT) const {
14624  unsigned Reg = StringSwitch<unsigned>(RegName)
14625                       .Case("esp", X86::ESP)
14626                       .Case("rsp", X86::RSP)
14627                       .Default(0);
14628  if (Reg)
14629    return Reg;
14630  report_fatal_error("Invalid register name global variable");
14631}
14632
14633SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
14634                                                     SelectionDAG &DAG) const {
14635  const X86RegisterInfo *RegInfo =
14636    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
14637  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
14638}
14639
14640SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
14641  SDValue Chain     = Op.getOperand(0);
14642  SDValue Offset    = Op.getOperand(1);
14643  SDValue Handler   = Op.getOperand(2);
14644  SDLoc dl      (Op);
14645
14646  EVT PtrVT = getPointerTy();
14647  const X86RegisterInfo *RegInfo =
14648    static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
14649  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
14650  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
14651          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
14652         "Invalid Frame Register!");
14653  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
14654  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
14655
14656  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
14657                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
14658  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
14659  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
14660                       false, false, 0);
14661  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
14662
14663  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
14664                     DAG.getRegister(StoreAddrReg, PtrVT));
14665}
14666
14667SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
14668                                               SelectionDAG &DAG) const {
14669  SDLoc DL(Op);
14670  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
14671                     DAG.getVTList(MVT::i32, MVT::Other),
14672                     Op.getOperand(0), Op.getOperand(1));
14673}
14674
14675SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
14676                                                SelectionDAG &DAG) const {
14677  SDLoc DL(Op);
14678  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
14679                     Op.getOperand(0), Op.getOperand(1));
14680}
14681
14682static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
14683  return Op.getOperand(0);
14684}
14685
14686SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
14687                                                SelectionDAG &DAG) const {
14688  SDValue Root = Op.getOperand(0);
14689  SDValue Trmp = Op.getOperand(1); // trampoline
14690  SDValue FPtr = Op.getOperand(2); // nested function
14691  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
14692  SDLoc dl (Op);
14693
14694  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
14695  const TargetRegisterInfo* TRI = DAG.getTarget().getRegisterInfo();
14696
14697  if (Subtarget->is64Bit()) {
14698    SDValue OutChains[6];
14699
14700    // Large code-model.
14701    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
14702    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
14703
14704    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
14705    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
14706
14707    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
14708
14709    // Load the pointer to the nested function into R11.
14710    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
14711    SDValue Addr = Trmp;
14712    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
14713                                Addr, MachinePointerInfo(TrmpAddr),
14714                                false, false, 0);
14715
14716    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
14717                       DAG.getConstant(2, MVT::i64));
14718    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
14719                                MachinePointerInfo(TrmpAddr, 2),
14720                                false, false, 2);
14721
14722    // Load the 'nest' parameter value into R10.
14723    // R10 is specified in X86CallingConv.td
14724    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
14725    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
14726                       DAG.getConstant(10, MVT::i64));
14727    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
14728                                Addr, MachinePointerInfo(TrmpAddr, 10),
14729                                false, false, 0);
14730
14731    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
14732                       DAG.getConstant(12, MVT::i64));
14733    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
14734                                MachinePointerInfo(TrmpAddr, 12),
14735                                false, false, 2);
14736
14737    // Jump to the nested function.
14738    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
14739    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
14740                       DAG.getConstant(20, MVT::i64));
14741    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
14742                                Addr, MachinePointerInfo(TrmpAddr, 20),
14743                                false, false, 0);
14744
14745    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
14746    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
14747                       DAG.getConstant(22, MVT::i64));
14748    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
14749                                MachinePointerInfo(TrmpAddr, 22),
14750                                false, false, 0);
14751
14752    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
14753  } else {
14754    const Function *Func =
14755      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
14756    CallingConv::ID CC = Func->getCallingConv();
14757    unsigned NestReg;
14758
14759    switch (CC) {
14760    default:
14761      llvm_unreachable("Unsupported calling convention");
14762    case CallingConv::C:
14763    case CallingConv::X86_StdCall: {
14764      // Pass 'nest' parameter in ECX.
14765      // Must be kept in sync with X86CallingConv.td
14766      NestReg = X86::ECX;
14767
14768      // Check that ECX wasn't needed by an 'inreg' parameter.
14769      FunctionType *FTy = Func->getFunctionType();
14770      const AttributeSet &Attrs = Func->getAttributes();
14771
14772      if (!Attrs.isEmpty() && !Func->isVarArg()) {
14773        unsigned InRegCount = 0;
14774        unsigned Idx = 1;
14775
14776        for (FunctionType::param_iterator I = FTy->param_begin(),
14777             E = FTy->param_end(); I != E; ++I, ++Idx)
14778          if (Attrs.hasAttribute(Idx, Attribute::InReg))
14779            // FIXME: should only count parameters that are lowered to integers.
14780            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
14781
14782        if (InRegCount > 2) {
14783          report_fatal_error("Nest register in use - reduce number of inreg"
14784                             " parameters!");
14785        }
14786      }
14787      break;
14788    }
14789    case CallingConv::X86_FastCall:
14790    case CallingConv::X86_ThisCall:
14791    case CallingConv::Fast:
14792      // Pass 'nest' parameter in EAX.
14793      // Must be kept in sync with X86CallingConv.td
14794      NestReg = X86::EAX;
14795      break;
14796    }
14797
14798    SDValue OutChains[4];
14799    SDValue Addr, Disp;
14800
14801    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
14802                       DAG.getConstant(10, MVT::i32));
14803    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
14804
14805    // This is storing the opcode for MOV32ri.
14806    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
14807    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
14808    OutChains[0] = DAG.getStore(Root, dl,
14809                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
14810                                Trmp, MachinePointerInfo(TrmpAddr),
14811                                false, false, 0);
14812
14813    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
14814                       DAG.getConstant(1, MVT::i32));
14815    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
14816                                MachinePointerInfo(TrmpAddr, 1),
14817                                false, false, 1);
14818
14819    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
14820    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
14821                       DAG.getConstant(5, MVT::i32));
14822    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
14823                                MachinePointerInfo(TrmpAddr, 5),
14824                                false, false, 1);
14825
14826    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
14827                       DAG.getConstant(6, MVT::i32));
14828    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
14829                                MachinePointerInfo(TrmpAddr, 6),
14830                                false, false, 1);
14831
14832    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
14833  }
14834}
14835
14836SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
14837                                            SelectionDAG &DAG) const {
14838  /*
14839   The rounding mode is in bits 11:10 of FPSR, and has the following
14840   settings:
14841     00 Round to nearest
14842     01 Round to -inf
14843     10 Round to +inf
14844     11 Round to 0
14845
14846  FLT_ROUNDS, on the other hand, expects the following:
14847    -1 Undefined
14848     0 Round to 0
14849     1 Round to nearest
14850     2 Round to +inf
14851     3 Round to -inf
14852
14853  To perform the conversion, we do:
14854    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
14855  */
14856
14857  MachineFunction &MF = DAG.getMachineFunction();
14858  const TargetMachine &TM = MF.getTarget();
14859  const TargetFrameLowering &TFI = *TM.getFrameLowering();
14860  unsigned StackAlignment = TFI.getStackAlignment();
14861  MVT VT = Op.getSimpleValueType();
14862  SDLoc DL(Op);
14863
14864  // Save FP Control Word to stack slot
14865  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
14866  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
14867
14868  MachineMemOperand *MMO =
14869   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
14870                           MachineMemOperand::MOStore, 2, 2);
14871
14872  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
14873  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
14874                                          DAG.getVTList(MVT::Other),
14875                                          Ops, MVT::i16, MMO);
14876
14877  // Load FP Control Word from stack slot
14878  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
14879                            MachinePointerInfo(), false, false, false, 0);
14880
14881  // Transform as necessary
14882  SDValue CWD1 =
14883    DAG.getNode(ISD::SRL, DL, MVT::i16,
14884                DAG.getNode(ISD::AND, DL, MVT::i16,
14885                            CWD, DAG.getConstant(0x800, MVT::i16)),
14886                DAG.getConstant(11, MVT::i8));
14887  SDValue CWD2 =
14888    DAG.getNode(ISD::SRL, DL, MVT::i16,
14889                DAG.getNode(ISD::AND, DL, MVT::i16,
14890                            CWD, DAG.getConstant(0x400, MVT::i16)),
14891                DAG.getConstant(9, MVT::i8));
14892
14893  SDValue RetVal =
14894    DAG.getNode(ISD::AND, DL, MVT::i16,
14895                DAG.getNode(ISD::ADD, DL, MVT::i16,
14896                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
14897                            DAG.getConstant(1, MVT::i16)),
14898                DAG.getConstant(3, MVT::i16));
14899
14900  return DAG.getNode((VT.getSizeInBits() < 16 ?
14901                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
14902}
14903
14904static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
14905  MVT VT = Op.getSimpleValueType();
14906  EVT OpVT = VT;
14907  unsigned NumBits = VT.getSizeInBits();
14908  SDLoc dl(Op);
14909
14910  Op = Op.getOperand(0);
14911  if (VT == MVT::i8) {
14912    // Zero extend to i32 since there is not an i8 bsr.
14913    OpVT = MVT::i32;
14914    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
14915  }
14916
14917  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
14918  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
14919  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
14920
14921  // If src is zero (i.e. bsr sets ZF), returns NumBits.
14922  SDValue Ops[] = {
14923    Op,
14924    DAG.getConstant(NumBits+NumBits-1, OpVT),
14925    DAG.getConstant(X86::COND_E, MVT::i8),
14926    Op.getValue(1)
14927  };
14928  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
14929
14930  // Finally xor with NumBits-1.
14931  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
14932
14933  if (VT == MVT::i8)
14934    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
14935  return Op;
14936}
14937
14938static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
14939  MVT VT = Op.getSimpleValueType();
14940  EVT OpVT = VT;
14941  unsigned NumBits = VT.getSizeInBits();
14942  SDLoc dl(Op);
14943
14944  Op = Op.getOperand(0);
14945  if (VT == MVT::i8) {
14946    // Zero extend to i32 since there is not an i8 bsr.
14947    OpVT = MVT::i32;
14948    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
14949  }
14950
14951  // Issue a bsr (scan bits in reverse).
14952  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
14953  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
14954
14955  // And xor with NumBits-1.
14956  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
14957
14958  if (VT == MVT::i8)
14959    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
14960  return Op;
14961}
14962
14963static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
14964  MVT VT = Op.getSimpleValueType();
14965  unsigned NumBits = VT.getSizeInBits();
14966  SDLoc dl(Op);
14967  Op = Op.getOperand(0);
14968
14969  // Issue a bsf (scan bits forward) which also sets EFLAGS.
14970  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14971  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
14972
14973  // If src is zero (i.e. bsf sets ZF), returns NumBits.
14974  SDValue Ops[] = {
14975    Op,
14976    DAG.getConstant(NumBits, VT),
14977    DAG.getConstant(X86::COND_E, MVT::i8),
14978    Op.getValue(1)
14979  };
14980  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
14981}
14982
14983// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
14984// ones, and then concatenate the result back.
14985static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
14986  MVT VT = Op.getSimpleValueType();
14987
14988  assert(VT.is256BitVector() && VT.isInteger() &&
14989         "Unsupported value type for operation");
14990
14991  unsigned NumElems = VT.getVectorNumElements();
14992  SDLoc dl(Op);
14993
14994  // Extract the LHS vectors
14995  SDValue LHS = Op.getOperand(0);
14996  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
14997  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
14998
14999  // Extract the RHS vectors
15000  SDValue RHS = Op.getOperand(1);
15001  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
15002  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
15003
15004  MVT EltVT = VT.getVectorElementType();
15005  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
15006
15007  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
15008                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
15009                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
15010}
15011
15012static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
15013  assert(Op.getSimpleValueType().is256BitVector() &&
15014         Op.getSimpleValueType().isInteger() &&
15015         "Only handle AVX 256-bit vector integer operation");
15016  return Lower256IntArith(Op, DAG);
15017}
15018
15019static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
15020  assert(Op.getSimpleValueType().is256BitVector() &&
15021         Op.getSimpleValueType().isInteger() &&
15022         "Only handle AVX 256-bit vector integer operation");
15023  return Lower256IntArith(Op, DAG);
15024}
15025
15026static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
15027                        SelectionDAG &DAG) {
15028  SDLoc dl(Op);
15029  MVT VT = Op.getSimpleValueType();
15030
15031  // Decompose 256-bit ops into smaller 128-bit ops.
15032  if (VT.is256BitVector() && !Subtarget->hasInt256())
15033    return Lower256IntArith(Op, DAG);
15034
15035  SDValue A = Op.getOperand(0);
15036  SDValue B = Op.getOperand(1);
15037
15038  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
15039  if (VT == MVT::v4i32) {
15040    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
15041           "Should not custom lower when pmuldq is available!");
15042
15043    // Extract the odd parts.
15044    static const int UnpackMask[] = { 1, -1, 3, -1 };
15045    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
15046    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
15047
15048    // Multiply the even parts.
15049    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
15050    // Now multiply odd parts.
15051    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
15052
15053    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
15054    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
15055
15056    // Merge the two vectors back together with a shuffle. This expands into 2
15057    // shuffles.
15058    static const int ShufMask[] = { 0, 4, 2, 6 };
15059    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
15060  }
15061
15062  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
15063         "Only know how to lower V2I64/V4I64/V8I64 multiply");
15064
15065  //  Ahi = psrlqi(a, 32);
15066  //  Bhi = psrlqi(b, 32);
15067  //
15068  //  AloBlo = pmuludq(a, b);
15069  //  AloBhi = pmuludq(a, Bhi);
15070  //  AhiBlo = pmuludq(Ahi, b);
15071
15072  //  AloBhi = psllqi(AloBhi, 32);
15073  //  AhiBlo = psllqi(AhiBlo, 32);
15074  //  return AloBlo + AloBhi + AhiBlo;
15075
15076  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
15077  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
15078
15079  // Bit cast to 32-bit vectors for MULUDQ
15080  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
15081                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
15082  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
15083  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
15084  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
15085  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
15086
15087  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
15088  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
15089  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
15090
15091  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
15092  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
15093
15094  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
15095  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
15096}
15097
15098SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
15099  assert(Subtarget->isTargetWin64() && "Unexpected target");
15100  EVT VT = Op.getValueType();
15101  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
15102         "Unexpected return type for lowering");
15103
15104  RTLIB::Libcall LC;
15105  bool isSigned;
15106  switch (Op->getOpcode()) {
15107  default: llvm_unreachable("Unexpected request for libcall!");
15108  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
15109  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
15110  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
15111  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
15112  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
15113  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
15114  }
15115
15116  SDLoc dl(Op);
15117  SDValue InChain = DAG.getEntryNode();
15118
15119  TargetLowering::ArgListTy Args;
15120  TargetLowering::ArgListEntry Entry;
15121  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
15122    EVT ArgVT = Op->getOperand(i).getValueType();
15123    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
15124           "Unexpected argument type for lowering");
15125    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
15126    Entry.Node = StackPtr;
15127    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
15128                           false, false, 16);
15129    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
15130    Entry.Ty = PointerType::get(ArgTy,0);
15131    Entry.isSExt = false;
15132    Entry.isZExt = false;
15133    Args.push_back(Entry);
15134  }
15135
15136  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15137                                         getPointerTy());
15138
15139  TargetLowering::CallLoweringInfo CLI(DAG);
15140  CLI.setDebugLoc(dl).setChain(InChain)
15141    .setCallee(getLibcallCallingConv(LC),
15142               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
15143               Callee, std::move(Args), 0)
15144    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
15145
15146  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
15147  return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
15148}
15149
15150static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
15151                             SelectionDAG &DAG) {
15152  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
15153  EVT VT = Op0.getValueType();
15154  SDLoc dl(Op);
15155
15156  assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
15157         (VT == MVT::v8i32 && Subtarget->hasInt256()));
15158
15159  // Get the high parts.
15160  const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
15161  SDValue Hi0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
15162  SDValue Hi1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
15163
15164  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
15165  // ints.
15166  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
15167  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
15168  unsigned Opcode =
15169      (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
15170  SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
15171                             DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
15172  SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
15173                             DAG.getNode(Opcode, dl, MulVT, Hi0, Hi1));
15174
15175  // Shuffle it back into the right order.
15176  SDValue Highs, Lows;
15177  if (VT == MVT::v8i32) {
15178    const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
15179    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
15180    const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
15181    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
15182  } else {
15183    const int HighMask[] = {1, 5, 3, 7};
15184    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
15185    const int LowMask[] = {0, 4, 2, 6};
15186    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
15187  }
15188
15189  // If we have a signed multiply but no PMULDQ fix up the high parts of a
15190  // unsigned multiply.
15191  if (IsSigned && !Subtarget->hasSSE41()) {
15192    SDValue ShAmt =
15193        DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
15194    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
15195                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
15196    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
15197                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
15198
15199    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
15200    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
15201  }
15202
15203  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getValueType(), Highs, Lows);
15204}
15205
15206static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
15207                                         const X86Subtarget *Subtarget) {
15208  MVT VT = Op.getSimpleValueType();
15209  SDLoc dl(Op);
15210  SDValue R = Op.getOperand(0);
15211  SDValue Amt = Op.getOperand(1);
15212
15213  // Optimize shl/srl/sra with constant shift amount.
15214  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
15215    if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
15216      uint64_t ShiftAmt = ShiftConst->getZExtValue();
15217
15218      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
15219          (Subtarget->hasInt256() &&
15220           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
15221          (Subtarget->hasAVX512() &&
15222           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
15223        if (Op.getOpcode() == ISD::SHL)
15224          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
15225                                            DAG);
15226        if (Op.getOpcode() == ISD::SRL)
15227          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
15228                                            DAG);
15229        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
15230          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
15231                                            DAG);
15232      }
15233
15234      if (VT == MVT::v16i8) {
15235        if (Op.getOpcode() == ISD::SHL) {
15236          // Make a large shift.
15237          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
15238                                                   MVT::v8i16, R, ShiftAmt,
15239                                                   DAG);
15240          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
15241          // Zero out the rightmost bits.
15242          SmallVector<SDValue, 16> V(16,
15243                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
15244                                                     MVT::i8));
15245          return DAG.getNode(ISD::AND, dl, VT, SHL,
15246                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
15247        }
15248        if (Op.getOpcode() == ISD::SRL) {
15249          // Make a large shift.
15250          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
15251                                                   MVT::v8i16, R, ShiftAmt,
15252                                                   DAG);
15253          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
15254          // Zero out the leftmost bits.
15255          SmallVector<SDValue, 16> V(16,
15256                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
15257                                                     MVT::i8));
15258          return DAG.getNode(ISD::AND, dl, VT, SRL,
15259                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
15260        }
15261        if (Op.getOpcode() == ISD::SRA) {
15262          if (ShiftAmt == 7) {
15263            // R s>> 7  ===  R s< 0
15264            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15265            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
15266          }
15267
15268          // R s>> a === ((R u>> a) ^ m) - m
15269          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
15270          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
15271                                                         MVT::i8));
15272          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
15273          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
15274          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
15275          return Res;
15276        }
15277        llvm_unreachable("Unknown shift opcode.");
15278      }
15279
15280      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
15281        if (Op.getOpcode() == ISD::SHL) {
15282          // Make a large shift.
15283          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
15284                                                   MVT::v16i16, R, ShiftAmt,
15285                                                   DAG);
15286          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
15287          // Zero out the rightmost bits.
15288          SmallVector<SDValue, 32> V(32,
15289                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
15290                                                     MVT::i8));
15291          return DAG.getNode(ISD::AND, dl, VT, SHL,
15292                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
15293        }
15294        if (Op.getOpcode() == ISD::SRL) {
15295          // Make a large shift.
15296          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
15297                                                   MVT::v16i16, R, ShiftAmt,
15298                                                   DAG);
15299          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
15300          // Zero out the leftmost bits.
15301          SmallVector<SDValue, 32> V(32,
15302                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
15303                                                     MVT::i8));
15304          return DAG.getNode(ISD::AND, dl, VT, SRL,
15305                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
15306        }
15307        if (Op.getOpcode() == ISD::SRA) {
15308          if (ShiftAmt == 7) {
15309            // R s>> 7  ===  R s< 0
15310            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15311            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
15312          }
15313
15314          // R s>> a === ((R u>> a) ^ m) - m
15315          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
15316          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
15317                                                         MVT::i8));
15318          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
15319          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
15320          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
15321          return Res;
15322        }
15323        llvm_unreachable("Unknown shift opcode.");
15324      }
15325    }
15326  }
15327
15328  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
15329  if (!Subtarget->is64Bit() &&
15330      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
15331      Amt.getOpcode() == ISD::BITCAST &&
15332      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
15333    Amt = Amt.getOperand(0);
15334    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
15335                     VT.getVectorNumElements();
15336    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
15337    uint64_t ShiftAmt = 0;
15338    for (unsigned i = 0; i != Ratio; ++i) {
15339      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
15340      if (!C)
15341        return SDValue();
15342      // 6 == Log2(64)
15343      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
15344    }
15345    // Check remaining shift amounts.
15346    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
15347      uint64_t ShAmt = 0;
15348      for (unsigned j = 0; j != Ratio; ++j) {
15349        ConstantSDNode *C =
15350          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
15351        if (!C)
15352          return SDValue();
15353        // 6 == Log2(64)
15354        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
15355      }
15356      if (ShAmt != ShiftAmt)
15357        return SDValue();
15358    }
15359    switch (Op.getOpcode()) {
15360    default:
15361      llvm_unreachable("Unknown shift opcode!");
15362    case ISD::SHL:
15363      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
15364                                        DAG);
15365    case ISD::SRL:
15366      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
15367                                        DAG);
15368    case ISD::SRA:
15369      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
15370                                        DAG);
15371    }
15372  }
15373
15374  return SDValue();
15375}
15376
15377static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
15378                                        const X86Subtarget* Subtarget) {
15379  MVT VT = Op.getSimpleValueType();
15380  SDLoc dl(Op);
15381  SDValue R = Op.getOperand(0);
15382  SDValue Amt = Op.getOperand(1);
15383
15384  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
15385      VT == MVT::v4i32 || VT == MVT::v8i16 ||
15386      (Subtarget->hasInt256() &&
15387       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
15388        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
15389       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
15390    SDValue BaseShAmt;
15391    EVT EltVT = VT.getVectorElementType();
15392
15393    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
15394      unsigned NumElts = VT.getVectorNumElements();
15395      unsigned i, j;
15396      for (i = 0; i != NumElts; ++i) {
15397        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
15398          continue;
15399        break;
15400      }
15401      for (j = i; j != NumElts; ++j) {
15402        SDValue Arg = Amt.getOperand(j);
15403        if (Arg.getOpcode() == ISD::UNDEF) continue;
15404        if (Arg != Amt.getOperand(i))
15405          break;
15406      }
15407      if (i != NumElts && j == NumElts)
15408        BaseShAmt = Amt.getOperand(i);
15409    } else {
15410      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
15411        Amt = Amt.getOperand(0);
15412      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
15413               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
15414        SDValue InVec = Amt.getOperand(0);
15415        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15416          unsigned NumElts = InVec.getValueType().getVectorNumElements();
15417          unsigned i = 0;
15418          for (; i != NumElts; ++i) {
15419            SDValue Arg = InVec.getOperand(i);
15420            if (Arg.getOpcode() == ISD::UNDEF) continue;
15421            BaseShAmt = Arg;
15422            break;
15423          }
15424        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15425           if (ConstantSDNode *C =
15426               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15427             unsigned SplatIdx =
15428               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
15429             if (C->getZExtValue() == SplatIdx)
15430               BaseShAmt = InVec.getOperand(1);
15431           }
15432        }
15433        if (!BaseShAmt.getNode())
15434          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
15435                                  DAG.getIntPtrConstant(0));
15436      }
15437    }
15438
15439    if (BaseShAmt.getNode()) {
15440      if (EltVT.bitsGT(MVT::i32))
15441        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
15442      else if (EltVT.bitsLT(MVT::i32))
15443        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
15444
15445      switch (Op.getOpcode()) {
15446      default:
15447        llvm_unreachable("Unknown shift opcode!");
15448      case ISD::SHL:
15449        switch (VT.SimpleTy) {
15450        default: return SDValue();
15451        case MVT::v2i64:
15452        case MVT::v4i32:
15453        case MVT::v8i16:
15454        case MVT::v4i64:
15455        case MVT::v8i32:
15456        case MVT::v16i16:
15457        case MVT::v16i32:
15458        case MVT::v8i64:
15459          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
15460        }
15461      case ISD::SRA:
15462        switch (VT.SimpleTy) {
15463        default: return SDValue();
15464        case MVT::v4i32:
15465        case MVT::v8i16:
15466        case MVT::v8i32:
15467        case MVT::v16i16:
15468        case MVT::v16i32:
15469        case MVT::v8i64:
15470          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
15471        }
15472      case ISD::SRL:
15473        switch (VT.SimpleTy) {
15474        default: return SDValue();
15475        case MVT::v2i64:
15476        case MVT::v4i32:
15477        case MVT::v8i16:
15478        case MVT::v4i64:
15479        case MVT::v8i32:
15480        case MVT::v16i16:
15481        case MVT::v16i32:
15482        case MVT::v8i64:
15483          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
15484        }
15485      }
15486    }
15487  }
15488
15489  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
15490  if (!Subtarget->is64Bit() &&
15491      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
15492      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
15493      Amt.getOpcode() == ISD::BITCAST &&
15494      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
15495    Amt = Amt.getOperand(0);
15496    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
15497                     VT.getVectorNumElements();
15498    std::vector<SDValue> Vals(Ratio);
15499    for (unsigned i = 0; i != Ratio; ++i)
15500      Vals[i] = Amt.getOperand(i);
15501    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
15502      for (unsigned j = 0; j != Ratio; ++j)
15503        if (Vals[j] != Amt.getOperand(i + j))
15504          return SDValue();
15505    }
15506    switch (Op.getOpcode()) {
15507    default:
15508      llvm_unreachable("Unknown shift opcode!");
15509    case ISD::SHL:
15510      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
15511    case ISD::SRL:
15512      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
15513    case ISD::SRA:
15514      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
15515    }
15516  }
15517
15518  return SDValue();
15519}
15520
15521static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
15522                          SelectionDAG &DAG) {
15523  MVT VT = Op.getSimpleValueType();
15524  SDLoc dl(Op);
15525  SDValue R = Op.getOperand(0);
15526  SDValue Amt = Op.getOperand(1);
15527  SDValue V;
15528
15529  assert(VT.isVector() && "Custom lowering only for vector shifts!");
15530  assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
15531
15532  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
15533  if (V.getNode())
15534    return V;
15535
15536  V = LowerScalarVariableShift(Op, DAG, Subtarget);
15537  if (V.getNode())
15538      return V;
15539
15540  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
15541    return Op;
15542  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
15543  if (Subtarget->hasInt256()) {
15544    if (Op.getOpcode() == ISD::SRL &&
15545        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
15546         VT == MVT::v4i64 || VT == MVT::v8i32))
15547      return Op;
15548    if (Op.getOpcode() == ISD::SHL &&
15549        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
15550         VT == MVT::v4i64 || VT == MVT::v8i32))
15551      return Op;
15552    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
15553      return Op;
15554  }
15555
15556  // If possible, lower this packed shift into a vector multiply instead of
15557  // expanding it into a sequence of scalar shifts.
15558  // Do this only if the vector shift count is a constant build_vector.
15559  if (Op.getOpcode() == ISD::SHL &&
15560      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
15561       (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
15562      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
15563    SmallVector<SDValue, 8> Elts;
15564    EVT SVT = VT.getScalarType();
15565    unsigned SVTBits = SVT.getSizeInBits();
15566    const APInt &One = APInt(SVTBits, 1);
15567    unsigned NumElems = VT.getVectorNumElements();
15568
15569    for (unsigned i=0; i !=NumElems; ++i) {
15570      SDValue Op = Amt->getOperand(i);
15571      if (Op->getOpcode() == ISD::UNDEF) {
15572        Elts.push_back(Op);
15573        continue;
15574      }
15575
15576      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
15577      const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
15578      uint64_t ShAmt = C.getZExtValue();
15579      if (ShAmt >= SVTBits) {
15580        Elts.push_back(DAG.getUNDEF(SVT));
15581        continue;
15582      }
15583      Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
15584    }
15585    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
15586    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
15587  }
15588
15589  // Lower SHL with variable shift amount.
15590  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
15591    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
15592
15593    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
15594    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
15595    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
15596    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
15597  }
15598
15599  // If possible, lower this shift as a sequence of two shifts by
15600  // constant plus a MOVSS/MOVSD instead of scalarizing it.
15601  // Example:
15602  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
15603  //
15604  // Could be rewritten as:
15605  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
15606  //
15607  // The advantage is that the two shifts from the example would be
15608  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
15609  // the vector shift into four scalar shifts plus four pairs of vector
15610  // insert/extract.
15611  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
15612      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
15613    unsigned TargetOpcode = X86ISD::MOVSS;
15614    bool CanBeSimplified;
15615    // The splat value for the first packed shift (the 'X' from the example).
15616    SDValue Amt1 = Amt->getOperand(0);
15617    // The splat value for the second packed shift (the 'Y' from the example).
15618    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
15619                                        Amt->getOperand(2);
15620
15621    // See if it is possible to replace this node with a sequence of
15622    // two shifts followed by a MOVSS/MOVSD
15623    if (VT == MVT::v4i32) {
15624      // Check if it is legal to use a MOVSS.
15625      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
15626                        Amt2 == Amt->getOperand(3);
15627      if (!CanBeSimplified) {
15628        // Otherwise, check if we can still simplify this node using a MOVSD.
15629        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
15630                          Amt->getOperand(2) == Amt->getOperand(3);
15631        TargetOpcode = X86ISD::MOVSD;
15632        Amt2 = Amt->getOperand(2);
15633      }
15634    } else {
15635      // Do similar checks for the case where the machine value type
15636      // is MVT::v8i16.
15637      CanBeSimplified = Amt1 == Amt->getOperand(1);
15638      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
15639        CanBeSimplified = Amt2 == Amt->getOperand(i);
15640
15641      if (!CanBeSimplified) {
15642        TargetOpcode = X86ISD::MOVSD;
15643        CanBeSimplified = true;
15644        Amt2 = Amt->getOperand(4);
15645        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
15646          CanBeSimplified = Amt1 == Amt->getOperand(i);
15647        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
15648          CanBeSimplified = Amt2 == Amt->getOperand(j);
15649      }
15650    }
15651
15652    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
15653        isa<ConstantSDNode>(Amt2)) {
15654      // Replace this node with two shifts followed by a MOVSS/MOVSD.
15655      EVT CastVT = MVT::v4i32;
15656      SDValue Splat1 =
15657        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
15658      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
15659      SDValue Splat2 =
15660        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
15661      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
15662      if (TargetOpcode == X86ISD::MOVSD)
15663        CastVT = MVT::v2i64;
15664      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
15665      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
15666      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
15667                                            BitCast1, DAG);
15668      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
15669    }
15670  }
15671
15672  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
15673    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
15674
15675    // a = a << 5;
15676    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
15677    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
15678
15679    // Turn 'a' into a mask suitable for VSELECT
15680    SDValue VSelM = DAG.getConstant(0x80, VT);
15681    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
15682    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
15683
15684    SDValue CM1 = DAG.getConstant(0x0f, VT);
15685    SDValue CM2 = DAG.getConstant(0x3f, VT);
15686
15687    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
15688    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
15689    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
15690    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
15691    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
15692
15693    // a += a
15694    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
15695    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
15696    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
15697
15698    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
15699    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
15700    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
15701    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
15702    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
15703
15704    // a += a
15705    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
15706    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
15707    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
15708
15709    // return VSELECT(r, r+r, a);
15710    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
15711                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
15712    return R;
15713  }
15714
15715  // It's worth extending once and using the v8i32 shifts for 16-bit types, but
15716  // the extra overheads to get from v16i8 to v8i32 make the existing SSE
15717  // solution better.
15718  if (Subtarget->hasInt256() && VT == MVT::v8i16) {
15719    MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
15720    unsigned ExtOpc =
15721        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
15722    R = DAG.getNode(ExtOpc, dl, NewVT, R);
15723    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
15724    return DAG.getNode(ISD::TRUNCATE, dl, VT,
15725                       DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
15726    }
15727
15728  // Decompose 256-bit shifts into smaller 128-bit shifts.
15729  if (VT.is256BitVector()) {
15730    unsigned NumElems = VT.getVectorNumElements();
15731    MVT EltVT = VT.getVectorElementType();
15732    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
15733
15734    // Extract the two vectors
15735    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
15736    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
15737
15738    // Recreate the shift amount vectors
15739    SDValue Amt1, Amt2;
15740    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
15741      // Constant shift amount
15742      SmallVector<SDValue, 4> Amt1Csts;
15743      SmallVector<SDValue, 4> Amt2Csts;
15744      for (unsigned i = 0; i != NumElems/2; ++i)
15745        Amt1Csts.push_back(Amt->getOperand(i));
15746      for (unsigned i = NumElems/2; i != NumElems; ++i)
15747        Amt2Csts.push_back(Amt->getOperand(i));
15748
15749      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
15750      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
15751    } else {
15752      // Variable shift amount
15753      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
15754      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
15755    }
15756
15757    // Issue new vector shifts for the smaller types
15758    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
15759    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
15760
15761    // Concatenate the result back
15762    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
15763  }
15764
15765  return SDValue();
15766}
15767
15768static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
15769  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
15770  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
15771  // looks for this combo and may remove the "setcc" instruction if the "setcc"
15772  // has only one use.
15773  SDNode *N = Op.getNode();
15774  SDValue LHS = N->getOperand(0);
15775  SDValue RHS = N->getOperand(1);
15776  unsigned BaseOp = 0;
15777  unsigned Cond = 0;
15778  SDLoc DL(Op);
15779  switch (Op.getOpcode()) {
15780  default: llvm_unreachable("Unknown ovf instruction!");
15781  case ISD::SADDO:
15782    // A subtract of one will be selected as a INC. Note that INC doesn't
15783    // set CF, so we can't do this for UADDO.
15784    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
15785      if (C->isOne()) {
15786        BaseOp = X86ISD::INC;
15787        Cond = X86::COND_O;
15788        break;
15789      }
15790    BaseOp = X86ISD::ADD;
15791    Cond = X86::COND_O;
15792    break;
15793  case ISD::UADDO:
15794    BaseOp = X86ISD::ADD;
15795    Cond = X86::COND_B;
15796    break;
15797  case ISD::SSUBO:
15798    // A subtract of one will be selected as a DEC. Note that DEC doesn't
15799    // set CF, so we can't do this for USUBO.
15800    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
15801      if (C->isOne()) {
15802        BaseOp = X86ISD::DEC;
15803        Cond = X86::COND_O;
15804        break;
15805      }
15806    BaseOp = X86ISD::SUB;
15807    Cond = X86::COND_O;
15808    break;
15809  case ISD::USUBO:
15810    BaseOp = X86ISD::SUB;
15811    Cond = X86::COND_B;
15812    break;
15813  case ISD::SMULO:
15814    BaseOp = X86ISD::SMUL;
15815    Cond = X86::COND_O;
15816    break;
15817  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
15818    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
15819                                 MVT::i32);
15820    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
15821
15822    SDValue SetCC =
15823      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15824                  DAG.getConstant(X86::COND_O, MVT::i32),
15825                  SDValue(Sum.getNode(), 2));
15826
15827    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
15828  }
15829  }
15830
15831  // Also sets EFLAGS.
15832  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
15833  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
15834
15835  SDValue SetCC =
15836    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
15837                DAG.getConstant(Cond, MVT::i32),
15838                SDValue(Sum.getNode(), 1));
15839
15840  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
15841}
15842
15843SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
15844                                                  SelectionDAG &DAG) const {
15845  SDLoc dl(Op);
15846  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
15847  MVT VT = Op.getSimpleValueType();
15848
15849  if (!Subtarget->hasSSE2() || !VT.isVector())
15850    return SDValue();
15851
15852  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
15853                      ExtraVT.getScalarType().getSizeInBits();
15854
15855  switch (VT.SimpleTy) {
15856    default: return SDValue();
15857    case MVT::v8i32:
15858    case MVT::v16i16:
15859      if (!Subtarget->hasFp256())
15860        return SDValue();
15861      if (!Subtarget->hasInt256()) {
15862        // needs to be split
15863        unsigned NumElems = VT.getVectorNumElements();
15864
15865        // Extract the LHS vectors
15866        SDValue LHS = Op.getOperand(0);
15867        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
15868        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
15869
15870        MVT EltVT = VT.getVectorElementType();
15871        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
15872
15873        EVT ExtraEltVT = ExtraVT.getVectorElementType();
15874        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
15875        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
15876                                   ExtraNumElems/2);
15877        SDValue Extra = DAG.getValueType(ExtraVT);
15878
15879        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
15880        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
15881
15882        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
15883      }
15884      // fall through
15885    case MVT::v4i32:
15886    case MVT::v8i16: {
15887      SDValue Op0 = Op.getOperand(0);
15888      SDValue Op00 = Op0.getOperand(0);
15889      SDValue Tmp1;
15890      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
15891      if (Op0.getOpcode() == ISD::BITCAST &&
15892          Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
15893        // (sext (vzext x)) -> (vsext x)
15894        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
15895        if (Tmp1.getNode()) {
15896          EVT ExtraEltVT = ExtraVT.getVectorElementType();
15897          // This folding is only valid when the in-reg type is a vector of i8,
15898          // i16, or i32.
15899          if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
15900              ExtraEltVT == MVT::i32) {
15901            SDValue Tmp1Op0 = Tmp1.getOperand(0);
15902            assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
15903                   "This optimization is invalid without a VZEXT.");
15904            return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
15905          }
15906          Op0 = Tmp1;
15907        }
15908      }
15909
15910      // If the above didn't work, then just use Shift-Left + Shift-Right.
15911      Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
15912                                        DAG);
15913      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
15914                                        DAG);
15915    }
15916  }
15917}
15918
15919static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
15920                                 SelectionDAG &DAG) {
15921  SDLoc dl(Op);
15922  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
15923    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
15924  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
15925    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
15926
15927  // The only fence that needs an instruction is a sequentially-consistent
15928  // cross-thread fence.
15929  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
15930    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
15931    // no-sse2). There isn't any reason to disable it if the target processor
15932    // supports it.
15933    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
15934      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
15935
15936    SDValue Chain = Op.getOperand(0);
15937    SDValue Zero = DAG.getConstant(0, MVT::i32);
15938    SDValue Ops[] = {
15939      DAG.getRegister(X86::ESP, MVT::i32), // Base
15940      DAG.getTargetConstant(1, MVT::i8),   // Scale
15941      DAG.getRegister(0, MVT::i32),        // Index
15942      DAG.getTargetConstant(0, MVT::i32),  // Disp
15943      DAG.getRegister(0, MVT::i32),        // Segment.
15944      Zero,
15945      Chain
15946    };
15947    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
15948    return SDValue(Res, 0);
15949  }
15950
15951  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
15952  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
15953}
15954
15955static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
15956                             SelectionDAG &DAG) {
15957  MVT T = Op.getSimpleValueType();
15958  SDLoc DL(Op);
15959  unsigned Reg = 0;
15960  unsigned size = 0;
15961  switch(T.SimpleTy) {
15962  default: llvm_unreachable("Invalid value type!");
15963  case MVT::i8:  Reg = X86::AL;  size = 1; break;
15964  case MVT::i16: Reg = X86::AX;  size = 2; break;
15965  case MVT::i32: Reg = X86::EAX; size = 4; break;
15966  case MVT::i64:
15967    assert(Subtarget->is64Bit() && "Node not type legal!");
15968    Reg = X86::RAX; size = 8;
15969    break;
15970  }
15971  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
15972                                  Op.getOperand(2), SDValue());
15973  SDValue Ops[] = { cpIn.getValue(0),
15974                    Op.getOperand(1),
15975                    Op.getOperand(3),
15976                    DAG.getTargetConstant(size, MVT::i8),
15977                    cpIn.getValue(1) };
15978  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
15979  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
15980  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
15981                                           Ops, T, MMO);
15982
15983  SDValue cpOut =
15984    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
15985  SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
15986                                      MVT::i32, cpOut.getValue(2));
15987  SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
15988                                DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
15989
15990  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
15991  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
15992  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
15993  return SDValue();
15994}
15995
15996static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
15997                            SelectionDAG &DAG) {
15998  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
15999  MVT DstVT = Op.getSimpleValueType();
16000
16001  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
16002    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
16003    if (DstVT != MVT::f64)
16004      // This conversion needs to be expanded.
16005      return SDValue();
16006
16007    SDValue InVec = Op->getOperand(0);
16008    SDLoc dl(Op);
16009    unsigned NumElts = SrcVT.getVectorNumElements();
16010    EVT SVT = SrcVT.getVectorElementType();
16011
16012    // Widen the vector in input in the case of MVT::v2i32.
16013    // Example: from MVT::v2i32 to MVT::v4i32.
16014    SmallVector<SDValue, 16> Elts;
16015    for (unsigned i = 0, e = NumElts; i != e; ++i)
16016      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
16017                                 DAG.getIntPtrConstant(i)));
16018
16019    // Explicitly mark the extra elements as Undef.
16020    SDValue Undef = DAG.getUNDEF(SVT);
16021    for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i)
16022      Elts.push_back(Undef);
16023
16024    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
16025    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
16026    SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
16027    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
16028                       DAG.getIntPtrConstant(0));
16029  }
16030
16031  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
16032         Subtarget->hasMMX() && "Unexpected custom BITCAST");
16033  assert((DstVT == MVT::i64 ||
16034          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
16035         "Unexpected custom BITCAST");
16036  // i64 <=> MMX conversions are Legal.
16037  if (SrcVT==MVT::i64 && DstVT.isVector())
16038    return Op;
16039  if (DstVT==MVT::i64 && SrcVT.isVector())
16040    return Op;
16041  // MMX <=> MMX conversions are Legal.
16042  if (SrcVT.isVector() && DstVT.isVector())
16043    return Op;
16044  // All other conversions need to be expanded.
16045  return SDValue();
16046}
16047
16048static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
16049  SDNode *Node = Op.getNode();
16050  SDLoc dl(Node);
16051  EVT T = Node->getValueType(0);
16052  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
16053                              DAG.getConstant(0, T), Node->getOperand(2));
16054  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
16055                       cast<AtomicSDNode>(Node)->getMemoryVT(),
16056                       Node->getOperand(0),
16057                       Node->getOperand(1), negOp,
16058                       cast<AtomicSDNode>(Node)->getMemOperand(),
16059                       cast<AtomicSDNode>(Node)->getOrdering(),
16060                       cast<AtomicSDNode>(Node)->getSynchScope());
16061}
16062
16063static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
16064  SDNode *Node = Op.getNode();
16065  SDLoc dl(Node);
16066  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
16067
16068  // Convert seq_cst store -> xchg
16069  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
16070  // FIXME: On 32-bit, store -> fist or movq would be more efficient
16071  //        (The only way to get a 16-byte store is cmpxchg16b)
16072  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
16073  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
16074      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16075    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
16076                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
16077                                 Node->getOperand(0),
16078                                 Node->getOperand(1), Node->getOperand(2),
16079                                 cast<AtomicSDNode>(Node)->getMemOperand(),
16080                                 cast<AtomicSDNode>(Node)->getOrdering(),
16081                                 cast<AtomicSDNode>(Node)->getSynchScope());
16082    return Swap.getValue(1);
16083  }
16084  // Other atomic stores have a simple pattern.
16085  return Op;
16086}
16087
16088static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
16089  EVT VT = Op.getNode()->getSimpleValueType(0);
16090
16091  // Let legalize expand this if it isn't a legal type yet.
16092  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
16093    return SDValue();
16094
16095  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16096
16097  unsigned Opc;
16098  bool ExtraOp = false;
16099  switch (Op.getOpcode()) {
16100  default: llvm_unreachable("Invalid code");
16101  case ISD::ADDC: Opc = X86ISD::ADD; break;
16102  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
16103  case ISD::SUBC: Opc = X86ISD::SUB; break;
16104  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
16105  }
16106
16107  if (!ExtraOp)
16108    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
16109                       Op.getOperand(1));
16110  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
16111                     Op.getOperand(1), Op.getOperand(2));
16112}
16113
16114static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
16115                            SelectionDAG &DAG) {
16116  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
16117
16118  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
16119  // which returns the values as { float, float } (in XMM0) or
16120  // { double, double } (which is returned in XMM0, XMM1).
16121  SDLoc dl(Op);
16122  SDValue Arg = Op.getOperand(0);
16123  EVT ArgVT = Arg.getValueType();
16124  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
16125
16126  TargetLowering::ArgListTy Args;
16127  TargetLowering::ArgListEntry Entry;
16128
16129  Entry.Node = Arg;
16130  Entry.Ty = ArgTy;
16131  Entry.isSExt = false;
16132  Entry.isZExt = false;
16133  Args.push_back(Entry);
16134
16135  bool isF64 = ArgVT == MVT::f64;
16136  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
16137  // the small struct {f32, f32} is returned in (eax, edx). For f64,
16138  // the results are returned via SRet in memory.
16139  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
16140  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16141  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
16142
16143  Type *RetTy = isF64
16144    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
16145    : (Type*)VectorType::get(ArgTy, 4);
16146
16147  TargetLowering::CallLoweringInfo CLI(DAG);
16148  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
16149    .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
16150
16151  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
16152
16153  if (isF64)
16154    // Returned in xmm0 and xmm1.
16155    return CallResult.first;
16156
16157  // Returned in bits 0:31 and 32:64 xmm0.
16158  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
16159                               CallResult.first, DAG.getIntPtrConstant(0));
16160  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
16161                               CallResult.first, DAG.getIntPtrConstant(1));
16162  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
16163  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
16164}
16165
16166/// LowerOperation - Provide custom lowering hooks for some operations.
16167///
16168SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
16169  switch (Op.getOpcode()) {
16170  default: llvm_unreachable("Should not custom lower this!");
16171  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
16172  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
16173  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
16174    return LowerCMP_SWAP(Op, Subtarget, DAG);
16175  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
16176  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
16177  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
16178  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
16179  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
16180  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
16181  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
16182  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
16183  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
16184  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
16185  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
16186  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
16187  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
16188  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
16189  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
16190  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
16191  case ISD::SHL_PARTS:
16192  case ISD::SRA_PARTS:
16193  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
16194  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
16195  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
16196  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
16197  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
16198  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
16199  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
16200  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
16201  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
16202  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
16203  case ISD::FABS:               return LowerFABS(Op, DAG);
16204  case ISD::FNEG:               return LowerFNEG(Op, DAG);
16205  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
16206  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
16207  case ISD::SETCC:              return LowerSETCC(Op, DAG);
16208  case ISD::SELECT:             return LowerSELECT(Op, DAG);
16209  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
16210  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
16211  case ISD::VASTART:            return LowerVASTART(Op, DAG);
16212  case ISD::VAARG:              return LowerVAARG(Op, DAG);
16213  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
16214  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
16215  case ISD::INTRINSIC_VOID:
16216  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
16217  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
16218  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
16219  case ISD::FRAME_TO_ARGS_OFFSET:
16220                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
16221  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
16222  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
16223  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
16224  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
16225  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
16226  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
16227  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
16228  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
16229  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
16230  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
16231  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
16232  case ISD::UMUL_LOHI:
16233  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
16234  case ISD::SRA:
16235  case ISD::SRL:
16236  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
16237  case ISD::SADDO:
16238  case ISD::UADDO:
16239  case ISD::SSUBO:
16240  case ISD::USUBO:
16241  case ISD::SMULO:
16242  case ISD::UMULO:              return LowerXALUO(Op, DAG);
16243  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
16244  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
16245  case ISD::ADDC:
16246  case ISD::ADDE:
16247  case ISD::SUBC:
16248  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
16249  case ISD::ADD:                return LowerADD(Op, DAG);
16250  case ISD::SUB:                return LowerSUB(Op, DAG);
16251  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
16252  }
16253}
16254
16255static void ReplaceATOMIC_LOAD(SDNode *Node,
16256                               SmallVectorImpl<SDValue> &Results,
16257                               SelectionDAG &DAG) {
16258  SDLoc dl(Node);
16259  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
16260
16261  // Convert wide load -> cmpxchg8b/cmpxchg16b
16262  // FIXME: On 32-bit, load -> fild or movq would be more efficient
16263  //        (The only way to get a 16-byte load is cmpxchg16b)
16264  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
16265  SDValue Zero = DAG.getConstant(0, VT);
16266  SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
16267  SDValue Swap =
16268      DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, VT, VTs,
16269                           Node->getOperand(0), Node->getOperand(1), Zero, Zero,
16270                           cast<AtomicSDNode>(Node)->getMemOperand(),
16271                           cast<AtomicSDNode>(Node)->getOrdering(),
16272                           cast<AtomicSDNode>(Node)->getOrdering(),
16273                           cast<AtomicSDNode>(Node)->getSynchScope());
16274  Results.push_back(Swap.getValue(0));
16275  Results.push_back(Swap.getValue(2));
16276}
16277
16278/// ReplaceNodeResults - Replace a node with an illegal result type
16279/// with a new node built out of custom code.
16280void X86TargetLowering::ReplaceNodeResults(SDNode *N,
16281                                           SmallVectorImpl<SDValue>&Results,
16282                                           SelectionDAG &DAG) const {
16283  SDLoc dl(N);
16284  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16285  switch (N->getOpcode()) {
16286  default:
16287    llvm_unreachable("Do not know how to custom type legalize this operation!");
16288  case ISD::SIGN_EXTEND_INREG:
16289  case ISD::ADDC:
16290  case ISD::ADDE:
16291  case ISD::SUBC:
16292  case ISD::SUBE:
16293    // We don't want to expand or promote these.
16294    return;
16295  case ISD::SDIV:
16296  case ISD::UDIV:
16297  case ISD::SREM:
16298  case ISD::UREM:
16299  case ISD::SDIVREM:
16300  case ISD::UDIVREM: {
16301    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
16302    Results.push_back(V);
16303    return;
16304  }
16305  case ISD::FP_TO_SINT:
16306  case ISD::FP_TO_UINT: {
16307    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
16308
16309    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
16310      return;
16311
16312    std::pair<SDValue,SDValue> Vals =
16313        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
16314    SDValue FIST = Vals.first, StackSlot = Vals.second;
16315    if (FIST.getNode()) {
16316      EVT VT = N->getValueType(0);
16317      // Return a load from the stack slot.
16318      if (StackSlot.getNode())
16319        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
16320                                      MachinePointerInfo(),
16321                                      false, false, false, 0));
16322      else
16323        Results.push_back(FIST);
16324    }
16325    return;
16326  }
16327  case ISD::UINT_TO_FP: {
16328    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
16329    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
16330        N->getValueType(0) != MVT::v2f32)
16331      return;
16332    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
16333                                 N->getOperand(0));
16334    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
16335                                     MVT::f64);
16336    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
16337    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
16338                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
16339    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
16340    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
16341    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
16342    return;
16343  }
16344  case ISD::FP_ROUND: {
16345    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
16346        return;
16347    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
16348    Results.push_back(V);
16349    return;
16350  }
16351  case ISD::INTRINSIC_W_CHAIN: {
16352    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
16353    switch (IntNo) {
16354    default : llvm_unreachable("Do not know how to custom type "
16355                               "legalize this intrinsic operation!");
16356    case Intrinsic::x86_rdtsc:
16357      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
16358                                     Results);
16359    case Intrinsic::x86_rdtscp:
16360      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
16361                                     Results);
16362    case Intrinsic::x86_rdpmc:
16363      return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
16364    }
16365  }
16366  case ISD::READCYCLECOUNTER: {
16367    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
16368                                   Results);
16369  }
16370  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
16371    EVT T = N->getValueType(0);
16372    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
16373    bool Regs64bit = T == MVT::i128;
16374    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
16375    SDValue cpInL, cpInH;
16376    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
16377                        DAG.getConstant(0, HalfT));
16378    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
16379                        DAG.getConstant(1, HalfT));
16380    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
16381                             Regs64bit ? X86::RAX : X86::EAX,
16382                             cpInL, SDValue());
16383    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
16384                             Regs64bit ? X86::RDX : X86::EDX,
16385                             cpInH, cpInL.getValue(1));
16386    SDValue swapInL, swapInH;
16387    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
16388                          DAG.getConstant(0, HalfT));
16389    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
16390                          DAG.getConstant(1, HalfT));
16391    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
16392                               Regs64bit ? X86::RBX : X86::EBX,
16393                               swapInL, cpInH.getValue(1));
16394    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
16395                               Regs64bit ? X86::RCX : X86::ECX,
16396                               swapInH, swapInL.getValue(1));
16397    SDValue Ops[] = { swapInH.getValue(0),
16398                      N->getOperand(1),
16399                      swapInH.getValue(1) };
16400    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
16401    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
16402    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
16403                                  X86ISD::LCMPXCHG8_DAG;
16404    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
16405    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
16406                                        Regs64bit ? X86::RAX : X86::EAX,
16407                                        HalfT, Result.getValue(1));
16408    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
16409                                        Regs64bit ? X86::RDX : X86::EDX,
16410                                        HalfT, cpOutL.getValue(2));
16411    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
16412
16413    SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
16414                                        MVT::i32, cpOutH.getValue(2));
16415    SDValue Success =
16416        DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16417                    DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
16418    Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
16419
16420    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
16421    Results.push_back(Success);
16422    Results.push_back(EFLAGS.getValue(1));
16423    return;
16424  }
16425  case ISD::ATOMIC_SWAP:
16426  case ISD::ATOMIC_LOAD_ADD:
16427  case ISD::ATOMIC_LOAD_SUB:
16428  case ISD::ATOMIC_LOAD_AND:
16429  case ISD::ATOMIC_LOAD_OR:
16430  case ISD::ATOMIC_LOAD_XOR:
16431  case ISD::ATOMIC_LOAD_NAND:
16432  case ISD::ATOMIC_LOAD_MIN:
16433  case ISD::ATOMIC_LOAD_MAX:
16434  case ISD::ATOMIC_LOAD_UMIN:
16435  case ISD::ATOMIC_LOAD_UMAX:
16436    // Delegate to generic TypeLegalization. Situations we can really handle
16437    // should have already been dealt with by X86AtomicExpand.cpp.
16438    break;
16439  case ISD::ATOMIC_LOAD: {
16440    ReplaceATOMIC_LOAD(N, Results, DAG);
16441    return;
16442  }
16443  case ISD::BITCAST: {
16444    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
16445    EVT DstVT = N->getValueType(0);
16446    EVT SrcVT = N->getOperand(0)->getValueType(0);
16447
16448    if (SrcVT != MVT::f64 ||
16449        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
16450      return;
16451
16452    unsigned NumElts = DstVT.getVectorNumElements();
16453    EVT SVT = DstVT.getVectorElementType();
16454    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
16455    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
16456                                   MVT::v2f64, N->getOperand(0));
16457    SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
16458
16459    if (ExperimentalVectorWideningLegalization) {
16460      // If we are legalizing vectors by widening, we already have the desired
16461      // legal vector type, just return it.
16462      Results.push_back(ToVecInt);
16463      return;
16464    }
16465
16466    SmallVector<SDValue, 8> Elts;
16467    for (unsigned i = 0, e = NumElts; i != e; ++i)
16468      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
16469                                   ToVecInt, DAG.getIntPtrConstant(i)));
16470
16471    Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
16472  }
16473  }
16474}
16475
16476const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
16477  switch (Opcode) {
16478  default: return nullptr;
16479  case X86ISD::BSF:                return "X86ISD::BSF";
16480  case X86ISD::BSR:                return "X86ISD::BSR";
16481  case X86ISD::SHLD:               return "X86ISD::SHLD";
16482  case X86ISD::SHRD:               return "X86ISD::SHRD";
16483  case X86ISD::FAND:               return "X86ISD::FAND";
16484  case X86ISD::FANDN:              return "X86ISD::FANDN";
16485  case X86ISD::FOR:                return "X86ISD::FOR";
16486  case X86ISD::FXOR:               return "X86ISD::FXOR";
16487  case X86ISD::FSRL:               return "X86ISD::FSRL";
16488  case X86ISD::FILD:               return "X86ISD::FILD";
16489  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
16490  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
16491  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
16492  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
16493  case X86ISD::FLD:                return "X86ISD::FLD";
16494  case X86ISD::FST:                return "X86ISD::FST";
16495  case X86ISD::CALL:               return "X86ISD::CALL";
16496  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
16497  case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG";
16498  case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG";
16499  case X86ISD::BT:                 return "X86ISD::BT";
16500  case X86ISD::CMP:                return "X86ISD::CMP";
16501  case X86ISD::COMI:               return "X86ISD::COMI";
16502  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
16503  case X86ISD::CMPM:               return "X86ISD::CMPM";
16504  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
16505  case X86ISD::SETCC:              return "X86ISD::SETCC";
16506  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
16507  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
16508  case X86ISD::CMOV:               return "X86ISD::CMOV";
16509  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
16510  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
16511  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
16512  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
16513  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
16514  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
16515  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
16516  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
16517  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
16518  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
16519  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
16520  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
16521  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
16522  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
16523  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
16524  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
16525  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
16526  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
16527  case X86ISD::HADD:               return "X86ISD::HADD";
16528  case X86ISD::HSUB:               return "X86ISD::HSUB";
16529  case X86ISD::FHADD:              return "X86ISD::FHADD";
16530  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
16531  case X86ISD::UMAX:               return "X86ISD::UMAX";
16532  case X86ISD::UMIN:               return "X86ISD::UMIN";
16533  case X86ISD::SMAX:               return "X86ISD::SMAX";
16534  case X86ISD::SMIN:               return "X86ISD::SMIN";
16535  case X86ISD::FMAX:               return "X86ISD::FMAX";
16536  case X86ISD::FMIN:               return "X86ISD::FMIN";
16537  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
16538  case X86ISD::FMINC:              return "X86ISD::FMINC";
16539  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
16540  case X86ISD::FRCP:               return "X86ISD::FRCP";
16541  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
16542  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
16543  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
16544  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
16545  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
16546  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
16547  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
16548  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
16549  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
16550  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
16551  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
16552  case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
16553  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
16554  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
16555  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
16556  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
16557  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
16558  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
16559  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
16560  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
16561  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
16562  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
16563  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
16564  case X86ISD::VSHL:               return "X86ISD::VSHL";
16565  case X86ISD::VSRL:               return "X86ISD::VSRL";
16566  case X86ISD::VSRA:               return "X86ISD::VSRA";
16567  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
16568  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
16569  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
16570  case X86ISD::CMPP:               return "X86ISD::CMPP";
16571  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
16572  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
16573  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
16574  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
16575  case X86ISD::ADD:                return "X86ISD::ADD";
16576  case X86ISD::SUB:                return "X86ISD::SUB";
16577  case X86ISD::ADC:                return "X86ISD::ADC";
16578  case X86ISD::SBB:                return "X86ISD::SBB";
16579  case X86ISD::SMUL:               return "X86ISD::SMUL";
16580  case X86ISD::UMUL:               return "X86ISD::UMUL";
16581  case X86ISD::INC:                return "X86ISD::INC";
16582  case X86ISD::DEC:                return "X86ISD::DEC";
16583  case X86ISD::OR:                 return "X86ISD::OR";
16584  case X86ISD::XOR:                return "X86ISD::XOR";
16585  case X86ISD::AND:                return "X86ISD::AND";
16586  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
16587  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
16588  case X86ISD::PTEST:              return "X86ISD::PTEST";
16589  case X86ISD::TESTP:              return "X86ISD::TESTP";
16590  case X86ISD::TESTM:              return "X86ISD::TESTM";
16591  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
16592  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
16593  case X86ISD::PACKSS:             return "X86ISD::PACKSS";
16594  case X86ISD::PACKUS:             return "X86ISD::PACKUS";
16595  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
16596  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
16597  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
16598  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
16599  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
16600  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
16601  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
16602  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
16603  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
16604  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
16605  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
16606  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
16607  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
16608  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
16609  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
16610  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
16611  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
16612  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
16613  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
16614  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
16615  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
16616  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
16617  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
16618  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
16619  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
16620  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
16621  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
16622  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
16623  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
16624  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
16625  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
16626  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
16627  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
16628  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
16629  case X86ISD::SAHF:               return "X86ISD::SAHF";
16630  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
16631  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
16632  case X86ISD::FMADD:              return "X86ISD::FMADD";
16633  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
16634  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
16635  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
16636  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
16637  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
16638  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
16639  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
16640  case X86ISD::XTEST:              return "X86ISD::XTEST";
16641  }
16642}
16643
16644// isLegalAddressingMode - Return true if the addressing mode represented
16645// by AM is legal for this target, for a load/store of the specified type.
16646bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
16647                                              Type *Ty) const {
16648  // X86 supports extremely general addressing modes.
16649  CodeModel::Model M = getTargetMachine().getCodeModel();
16650  Reloc::Model R = getTargetMachine().getRelocationModel();
16651
16652  // X86 allows a sign-extended 32-bit immediate field as a displacement.
16653  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
16654    return false;
16655
16656  if (AM.BaseGV) {
16657    unsigned GVFlags =
16658      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
16659
16660    // If a reference to this global requires an extra load, we can't fold it.
16661    if (isGlobalStubReference(GVFlags))
16662      return false;
16663
16664    // If BaseGV requires a register for the PIC base, we cannot also have a
16665    // BaseReg specified.
16666    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
16667      return false;
16668
16669    // If lower 4G is not available, then we must use rip-relative addressing.
16670    if ((M != CodeModel::Small || R != Reloc::Static) &&
16671        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
16672      return false;
16673  }
16674
16675  switch (AM.Scale) {
16676  case 0:
16677  case 1:
16678  case 2:
16679  case 4:
16680  case 8:
16681    // These scales always work.
16682    break;
16683  case 3:
16684  case 5:
16685  case 9:
16686    // These scales are formed with basereg+scalereg.  Only accept if there is
16687    // no basereg yet.
16688    if (AM.HasBaseReg)
16689      return false;
16690    break;
16691  default:  // Other stuff never works.
16692    return false;
16693  }
16694
16695  return true;
16696}
16697
16698bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
16699  unsigned Bits = Ty->getScalarSizeInBits();
16700
16701  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
16702  // particularly cheaper than those without.
16703  if (Bits == 8)
16704    return false;
16705
16706  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
16707  // variable shifts just as cheap as scalar ones.
16708  if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
16709    return false;
16710
16711  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
16712  // fully general vector.
16713  return true;
16714}
16715
16716bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16717  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16718    return false;
16719  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16720  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16721  return NumBits1 > NumBits2;
16722}
16723
16724bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
16725  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16726    return false;
16727
16728  if (!isTypeLegal(EVT::getEVT(Ty1)))
16729    return false;
16730
16731  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
16732
16733  // Assuming the caller doesn't have a zeroext or signext return parameter,
16734  // truncation all the way down to i1 is valid.
16735  return true;
16736}
16737
16738bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16739  return isInt<32>(Imm);
16740}
16741
16742bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
16743  // Can also use sub to handle negated immediates.
16744  return isInt<32>(Imm);
16745}
16746
16747bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16748  if (!VT1.isInteger() || !VT2.isInteger())
16749    return false;
16750  unsigned NumBits1 = VT1.getSizeInBits();
16751  unsigned NumBits2 = VT2.getSizeInBits();
16752  return NumBits1 > NumBits2;
16753}
16754
16755bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
16756  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
16757  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
16758}
16759
16760bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
16761  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
16762  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
16763}
16764
16765bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16766  EVT VT1 = Val.getValueType();
16767  if (isZExtFree(VT1, VT2))
16768    return true;
16769
16770  if (Val.getOpcode() != ISD::LOAD)
16771    return false;
16772
16773  if (!VT1.isSimple() || !VT1.isInteger() ||
16774      !VT2.isSimple() || !VT2.isInteger())
16775    return false;
16776
16777  switch (VT1.getSimpleVT().SimpleTy) {
16778  default: break;
16779  case MVT::i8:
16780  case MVT::i16:
16781  case MVT::i32:
16782    // X86 has 8, 16, and 32-bit zero-extending loads.
16783    return true;
16784  }
16785
16786  return false;
16787}
16788
16789bool
16790X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
16791  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
16792    return false;
16793
16794  VT = VT.getScalarType();
16795
16796  if (!VT.isSimple())
16797    return false;
16798
16799  switch (VT.getSimpleVT().SimpleTy) {
16800  case MVT::f32:
16801  case MVT::f64:
16802    return true;
16803  default:
16804    break;
16805  }
16806
16807  return false;
16808}
16809
16810bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
16811  // i16 instructions are longer (0x66 prefix) and potentially slower.
16812  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
16813}
16814
16815/// isShuffleMaskLegal - Targets can use this to indicate that they only
16816/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
16817/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
16818/// are assumed to be legal.
16819bool
16820X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
16821                                      EVT VT) const {
16822  if (!VT.isSimple())
16823    return false;
16824
16825  MVT SVT = VT.getSimpleVT();
16826
16827  // Very little shuffling can be done for 64-bit vectors right now.
16828  if (VT.getSizeInBits() == 64)
16829    return false;
16830
16831  // If this is a single-input shuffle with no 128 bit lane crossings we can
16832  // lower it into pshufb.
16833  if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
16834      (SVT.is256BitVector() && Subtarget->hasInt256())) {
16835    bool isLegal = true;
16836    for (unsigned I = 0, E = M.size(); I != E; ++I) {
16837      if (M[I] >= (int)SVT.getVectorNumElements() ||
16838          ShuffleCrosses128bitLane(SVT, I, M[I])) {
16839        isLegal = false;
16840        break;
16841      }
16842    }
16843    if (isLegal)
16844      return true;
16845  }
16846
16847  // FIXME: blends, shifts.
16848  return (SVT.getVectorNumElements() == 2 ||
16849          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
16850          isMOVLMask(M, SVT) ||
16851          isSHUFPMask(M, SVT) ||
16852          isPSHUFDMask(M, SVT) ||
16853          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
16854          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
16855          isPALIGNRMask(M, SVT, Subtarget) ||
16856          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
16857          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
16858          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
16859          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
16860          isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()));
16861}
16862
16863bool
16864X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
16865                                          EVT VT) const {
16866  if (!VT.isSimple())
16867    return false;
16868
16869  MVT SVT = VT.getSimpleVT();
16870  unsigned NumElts = SVT.getVectorNumElements();
16871  // FIXME: This collection of masks seems suspect.
16872  if (NumElts == 2)
16873    return true;
16874  if (NumElts == 4 && SVT.is128BitVector()) {
16875    return (isMOVLMask(Mask, SVT)  ||
16876            isCommutedMOVLMask(Mask, SVT, true) ||
16877            isSHUFPMask(Mask, SVT) ||
16878            isSHUFPMask(Mask, SVT, /* Commuted */ true));
16879  }
16880  return false;
16881}
16882
16883//===----------------------------------------------------------------------===//
16884//                           X86 Scheduler Hooks
16885//===----------------------------------------------------------------------===//
16886
16887/// Utility function to emit xbegin specifying the start of an RTM region.
16888static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
16889                                     const TargetInstrInfo *TII) {
16890  DebugLoc DL = MI->getDebugLoc();
16891
16892  const BasicBlock *BB = MBB->getBasicBlock();
16893  MachineFunction::iterator I = MBB;
16894  ++I;
16895
16896  // For the v = xbegin(), we generate
16897  //
16898  // thisMBB:
16899  //  xbegin sinkMBB
16900  //
16901  // mainMBB:
16902  //  eax = -1
16903  //
16904  // sinkMBB:
16905  //  v = eax
16906
16907  MachineBasicBlock *thisMBB = MBB;
16908  MachineFunction *MF = MBB->getParent();
16909  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
16910  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
16911  MF->insert(I, mainMBB);
16912  MF->insert(I, sinkMBB);
16913
16914  // Transfer the remainder of BB and its successor edges to sinkMBB.
16915  sinkMBB->splice(sinkMBB->begin(), MBB,
16916                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
16917  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
16918
16919  // thisMBB:
16920  //  xbegin sinkMBB
16921  //  # fallthrough to mainMBB
16922  //  # abortion to sinkMBB
16923  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
16924  thisMBB->addSuccessor(mainMBB);
16925  thisMBB->addSuccessor(sinkMBB);
16926
16927  // mainMBB:
16928  //  EAX = -1
16929  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
16930  mainMBB->addSuccessor(sinkMBB);
16931
16932  // sinkMBB:
16933  // EAX is live into the sinkMBB
16934  sinkMBB->addLiveIn(X86::EAX);
16935  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
16936          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
16937    .addReg(X86::EAX);
16938
16939  MI->eraseFromParent();
16940  return sinkMBB;
16941}
16942
16943// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
16944// or XMM0_V32I8 in AVX all of this code can be replaced with that
16945// in the .td file.
16946static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
16947                                       const TargetInstrInfo *TII) {
16948  unsigned Opc;
16949  switch (MI->getOpcode()) {
16950  default: llvm_unreachable("illegal opcode!");
16951  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
16952  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
16953  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
16954  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
16955  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
16956  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
16957  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
16958  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
16959  }
16960
16961  DebugLoc dl = MI->getDebugLoc();
16962  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
16963
16964  unsigned NumArgs = MI->getNumOperands();
16965  for (unsigned i = 1; i < NumArgs; ++i) {
16966    MachineOperand &Op = MI->getOperand(i);
16967    if (!(Op.isReg() && Op.isImplicit()))
16968      MIB.addOperand(Op);
16969  }
16970  if (MI->hasOneMemOperand())
16971    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
16972
16973  BuildMI(*BB, MI, dl,
16974    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
16975    .addReg(X86::XMM0);
16976
16977  MI->eraseFromParent();
16978  return BB;
16979}
16980
16981// FIXME: Custom handling because TableGen doesn't support multiple implicit
16982// defs in an instruction pattern
16983static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
16984                                       const TargetInstrInfo *TII) {
16985  unsigned Opc;
16986  switch (MI->getOpcode()) {
16987  default: llvm_unreachable("illegal opcode!");
16988  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
16989  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
16990  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
16991  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
16992  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
16993  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
16994  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
16995  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
16996  }
16997
16998  DebugLoc dl = MI->getDebugLoc();
16999  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
17000
17001  unsigned NumArgs = MI->getNumOperands(); // remove the results
17002  for (unsigned i = 1; i < NumArgs; ++i) {
17003    MachineOperand &Op = MI->getOperand(i);
17004    if (!(Op.isReg() && Op.isImplicit()))
17005      MIB.addOperand(Op);
17006  }
17007  if (MI->hasOneMemOperand())
17008    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
17009
17010  BuildMI(*BB, MI, dl,
17011    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17012    .addReg(X86::ECX);
17013
17014  MI->eraseFromParent();
17015  return BB;
17016}
17017
17018static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
17019                                       const TargetInstrInfo *TII,
17020                                       const X86Subtarget* Subtarget) {
17021  DebugLoc dl = MI->getDebugLoc();
17022
17023  // Address into RAX/EAX, other two args into ECX, EDX.
17024  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
17025  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
17026  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
17027  for (int i = 0; i < X86::AddrNumOperands; ++i)
17028    MIB.addOperand(MI->getOperand(i));
17029
17030  unsigned ValOps = X86::AddrNumOperands;
17031  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
17032    .addReg(MI->getOperand(ValOps).getReg());
17033  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
17034    .addReg(MI->getOperand(ValOps+1).getReg());
17035
17036  // The instruction doesn't actually take any operands though.
17037  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
17038
17039  MI->eraseFromParent(); // The pseudo is gone now.
17040  return BB;
17041}
17042
17043MachineBasicBlock *
17044X86TargetLowering::EmitVAARG64WithCustomInserter(
17045                   MachineInstr *MI,
17046                   MachineBasicBlock *MBB) const {
17047  // Emit va_arg instruction on X86-64.
17048
17049  // Operands to this pseudo-instruction:
17050  // 0  ) Output        : destination address (reg)
17051  // 1-5) Input         : va_list address (addr, i64mem)
17052  // 6  ) ArgSize       : Size (in bytes) of vararg type
17053  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
17054  // 8  ) Align         : Alignment of type
17055  // 9  ) EFLAGS (implicit-def)
17056
17057  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
17058  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
17059
17060  unsigned DestReg = MI->getOperand(0).getReg();
17061  MachineOperand &Base = MI->getOperand(1);
17062  MachineOperand &Scale = MI->getOperand(2);
17063  MachineOperand &Index = MI->getOperand(3);
17064  MachineOperand &Disp = MI->getOperand(4);
17065  MachineOperand &Segment = MI->getOperand(5);
17066  unsigned ArgSize = MI->getOperand(6).getImm();
17067  unsigned ArgMode = MI->getOperand(7).getImm();
17068  unsigned Align = MI->getOperand(8).getImm();
17069
17070  // Memory Reference
17071  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
17072  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
17073  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
17074
17075  // Machine Information
17076  const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
17077  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
17078  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
17079  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
17080  DebugLoc DL = MI->getDebugLoc();
17081
17082  // struct va_list {
17083  //   i32   gp_offset
17084  //   i32   fp_offset
17085  //   i64   overflow_area (address)
17086  //   i64   reg_save_area (address)
17087  // }
17088  // sizeof(va_list) = 24
17089  // alignment(va_list) = 8
17090
17091  unsigned TotalNumIntRegs = 6;
17092  unsigned TotalNumXMMRegs = 8;
17093  bool UseGPOffset = (ArgMode == 1);
17094  bool UseFPOffset = (ArgMode == 2);
17095  unsigned MaxOffset = TotalNumIntRegs * 8 +
17096                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
17097
17098  /* Align ArgSize to a multiple of 8 */
17099  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
17100  bool NeedsAlign = (Align > 8);
17101
17102  MachineBasicBlock *thisMBB = MBB;
17103  MachineBasicBlock *overflowMBB;
17104  MachineBasicBlock *offsetMBB;
17105  MachineBasicBlock *endMBB;
17106
17107  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
17108  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
17109  unsigned OffsetReg = 0;
17110
17111  if (!UseGPOffset && !UseFPOffset) {
17112    // If we only pull from the overflow region, we don't create a branch.
17113    // We don't need to alter control flow.
17114    OffsetDestReg = 0; // unused
17115    OverflowDestReg = DestReg;
17116
17117    offsetMBB = nullptr;
17118    overflowMBB = thisMBB;
17119    endMBB = thisMBB;
17120  } else {
17121    // First emit code to check if gp_offset (or fp_offset) is below the bound.
17122    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
17123    // If not, pull from overflow_area. (branch to overflowMBB)
17124    //
17125    //       thisMBB
17126    //         |     .
17127    //         |        .
17128    //     offsetMBB   overflowMBB
17129    //         |        .
17130    //         |     .
17131    //        endMBB
17132
17133    // Registers for the PHI in endMBB
17134    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
17135    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
17136
17137    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
17138    MachineFunction *MF = MBB->getParent();
17139    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17140    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17141    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17142
17143    MachineFunction::iterator MBBIter = MBB;
17144    ++MBBIter;
17145
17146    // Insert the new basic blocks
17147    MF->insert(MBBIter, offsetMBB);
17148    MF->insert(MBBIter, overflowMBB);
17149    MF->insert(MBBIter, endMBB);
17150
17151    // Transfer the remainder of MBB and its successor edges to endMBB.
17152    endMBB->splice(endMBB->begin(), thisMBB,
17153                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
17154    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
17155
17156    // Make offsetMBB and overflowMBB successors of thisMBB
17157    thisMBB->addSuccessor(offsetMBB);
17158    thisMBB->addSuccessor(overflowMBB);
17159
17160    // endMBB is a successor of both offsetMBB and overflowMBB
17161    offsetMBB->addSuccessor(endMBB);
17162    overflowMBB->addSuccessor(endMBB);
17163
17164    // Load the offset value into a register
17165    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
17166    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
17167      .addOperand(Base)
17168      .addOperand(Scale)
17169      .addOperand(Index)
17170      .addDisp(Disp, UseFPOffset ? 4 : 0)
17171      .addOperand(Segment)
17172      .setMemRefs(MMOBegin, MMOEnd);
17173
17174    // Check if there is enough room left to pull this argument.
17175    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
17176      .addReg(OffsetReg)
17177      .addImm(MaxOffset + 8 - ArgSizeA8);
17178
17179    // Branch to "overflowMBB" if offset >= max
17180    // Fall through to "offsetMBB" otherwise
17181    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
17182      .addMBB(overflowMBB);
17183  }
17184
17185  // In offsetMBB, emit code to use the reg_save_area.
17186  if (offsetMBB) {
17187    assert(OffsetReg != 0);
17188
17189    // Read the reg_save_area address.
17190    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
17191    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
17192      .addOperand(Base)
17193      .addOperand(Scale)
17194      .addOperand(Index)
17195      .addDisp(Disp, 16)
17196      .addOperand(Segment)
17197      .setMemRefs(MMOBegin, MMOEnd);
17198
17199    // Zero-extend the offset
17200    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
17201      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
17202        .addImm(0)
17203        .addReg(OffsetReg)
17204        .addImm(X86::sub_32bit);
17205
17206    // Add the offset to the reg_save_area to get the final address.
17207    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
17208      .addReg(OffsetReg64)
17209      .addReg(RegSaveReg);
17210
17211    // Compute the offset for the next argument
17212    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
17213    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
17214      .addReg(OffsetReg)
17215      .addImm(UseFPOffset ? 16 : 8);
17216
17217    // Store it back into the va_list.
17218    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
17219      .addOperand(Base)
17220      .addOperand(Scale)
17221      .addOperand(Index)
17222      .addDisp(Disp, UseFPOffset ? 4 : 0)
17223      .addOperand(Segment)
17224      .addReg(NextOffsetReg)
17225      .setMemRefs(MMOBegin, MMOEnd);
17226
17227    // Jump to endMBB
17228    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
17229      .addMBB(endMBB);
17230  }
17231
17232  //
17233  // Emit code to use overflow area
17234  //
17235
17236  // Load the overflow_area address into a register.
17237  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
17238  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
17239    .addOperand(Base)
17240    .addOperand(Scale)
17241    .addOperand(Index)
17242    .addDisp(Disp, 8)
17243    .addOperand(Segment)
17244    .setMemRefs(MMOBegin, MMOEnd);
17245
17246  // If we need to align it, do so. Otherwise, just copy the address
17247  // to OverflowDestReg.
17248  if (NeedsAlign) {
17249    // Align the overflow address
17250    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
17251    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
17252
17253    // aligned_addr = (addr + (align-1)) & ~(align-1)
17254    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
17255      .addReg(OverflowAddrReg)
17256      .addImm(Align-1);
17257
17258    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
17259      .addReg(TmpReg)
17260      .addImm(~(uint64_t)(Align-1));
17261  } else {
17262    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
17263      .addReg(OverflowAddrReg);
17264  }
17265
17266  // Compute the next overflow address after this argument.
17267  // (the overflow address should be kept 8-byte aligned)
17268  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
17269  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
17270    .addReg(OverflowDestReg)
17271    .addImm(ArgSizeA8);
17272
17273  // Store the new overflow address.
17274  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
17275    .addOperand(Base)
17276    .addOperand(Scale)
17277    .addOperand(Index)
17278    .addDisp(Disp, 8)
17279    .addOperand(Segment)
17280    .addReg(NextAddrReg)
17281    .setMemRefs(MMOBegin, MMOEnd);
17282
17283  // If we branched, emit the PHI to the front of endMBB.
17284  if (offsetMBB) {
17285    BuildMI(*endMBB, endMBB->begin(), DL,
17286            TII->get(X86::PHI), DestReg)
17287      .addReg(OffsetDestReg).addMBB(offsetMBB)
17288      .addReg(OverflowDestReg).addMBB(overflowMBB);
17289  }
17290
17291  // Erase the pseudo instruction
17292  MI->eraseFromParent();
17293
17294  return endMBB;
17295}
17296
17297MachineBasicBlock *
17298X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
17299                                                 MachineInstr *MI,
17300                                                 MachineBasicBlock *MBB) const {
17301  // Emit code to save XMM registers to the stack. The ABI says that the
17302  // number of registers to save is given in %al, so it's theoretically
17303  // possible to do an indirect jump trick to avoid saving all of them,
17304  // however this code takes a simpler approach and just executes all
17305  // of the stores if %al is non-zero. It's less code, and it's probably
17306  // easier on the hardware branch predictor, and stores aren't all that
17307  // expensive anyway.
17308
17309  // Create the new basic blocks. One block contains all the XMM stores,
17310  // and one block is the final destination regardless of whether any
17311  // stores were performed.
17312  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
17313  MachineFunction *F = MBB->getParent();
17314  MachineFunction::iterator MBBIter = MBB;
17315  ++MBBIter;
17316  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
17317  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
17318  F->insert(MBBIter, XMMSaveMBB);
17319  F->insert(MBBIter, EndMBB);
17320
17321  // Transfer the remainder of MBB and its successor edges to EndMBB.
17322  EndMBB->splice(EndMBB->begin(), MBB,
17323                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
17324  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
17325
17326  // The original block will now fall through to the XMM save block.
17327  MBB->addSuccessor(XMMSaveMBB);
17328  // The XMMSaveMBB will fall through to the end block.
17329  XMMSaveMBB->addSuccessor(EndMBB);
17330
17331  // Now add the instructions.
17332  const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
17333  DebugLoc DL = MI->getDebugLoc();
17334
17335  unsigned CountReg = MI->getOperand(0).getReg();
17336  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
17337  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
17338
17339  if (!Subtarget->isTargetWin64()) {
17340    // If %al is 0, branch around the XMM save block.
17341    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
17342    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
17343    MBB->addSuccessor(EndMBB);
17344  }
17345
17346  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
17347  // that was just emitted, but clearly shouldn't be "saved".
17348  assert((MI->getNumOperands() <= 3 ||
17349          !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
17350          MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
17351         && "Expected last argument to be EFLAGS");
17352  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
17353  // In the XMM save block, save all the XMM argument registers.
17354  for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
17355    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
17356    MachineMemOperand *MMO =
17357      F->getMachineMemOperand(
17358          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
17359        MachineMemOperand::MOStore,
17360        /*Size=*/16, /*Align=*/16);
17361    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
17362      .addFrameIndex(RegSaveFrameIndex)
17363      .addImm(/*Scale=*/1)
17364      .addReg(/*IndexReg=*/0)
17365      .addImm(/*Disp=*/Offset)
17366      .addReg(/*Segment=*/0)
17367      .addReg(MI->getOperand(i).getReg())
17368      .addMemOperand(MMO);
17369  }
17370
17371  MI->eraseFromParent();   // The pseudo instruction is gone now.
17372
17373  return EndMBB;
17374}
17375
17376// The EFLAGS operand of SelectItr might be missing a kill marker
17377// because there were multiple uses of EFLAGS, and ISel didn't know
17378// which to mark. Figure out whether SelectItr should have had a
17379// kill marker, and set it if it should. Returns the correct kill
17380// marker value.
17381static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
17382                                     MachineBasicBlock* BB,
17383                                     const TargetRegisterInfo* TRI) {
17384  // Scan forward through BB for a use/def of EFLAGS.
17385  MachineBasicBlock::iterator miI(std::next(SelectItr));
17386  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
17387    const MachineInstr& mi = *miI;
17388    if (mi.readsRegister(X86::EFLAGS))
17389      return false;
17390    if (mi.definesRegister(X86::EFLAGS))
17391      break; // Should have kill-flag - update below.
17392  }
17393
17394  // If we hit the end of the block, check whether EFLAGS is live into a
17395  // successor.
17396  if (miI == BB->end()) {
17397    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
17398                                          sEnd = BB->succ_end();
17399         sItr != sEnd; ++sItr) {
17400      MachineBasicBlock* succ = *sItr;
17401      if (succ->isLiveIn(X86::EFLAGS))
17402        return false;
17403    }
17404  }
17405
17406  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
17407  // out. SelectMI should have a kill flag on EFLAGS.
17408  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
17409  return true;
17410}
17411
17412MachineBasicBlock *
17413X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
17414                                     MachineBasicBlock *BB) const {
17415  const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
17416  DebugLoc DL = MI->getDebugLoc();
17417
17418  // To "insert" a SELECT_CC instruction, we actually have to insert the
17419  // diamond control-flow pattern.  The incoming instruction knows the
17420  // destination vreg to set, the condition code register to branch on, the
17421  // true/false values to select between, and a branch opcode to use.
17422  const BasicBlock *LLVM_BB = BB->getBasicBlock();
17423  MachineFunction::iterator It = BB;
17424  ++It;
17425
17426  //  thisMBB:
17427  //  ...
17428  //   TrueVal = ...
17429  //   cmpTY ccX, r1, r2
17430  //   bCC copy1MBB
17431  //   fallthrough --> copy0MBB
17432  MachineBasicBlock *thisMBB = BB;
17433  MachineFunction *F = BB->getParent();
17434  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
17435  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
17436  F->insert(It, copy0MBB);
17437  F->insert(It, sinkMBB);
17438
17439  // If the EFLAGS register isn't dead in the terminator, then claim that it's
17440  // live into the sink and copy blocks.
17441  const TargetRegisterInfo* TRI = BB->getParent()->getTarget().getRegisterInfo();
17442  if (!MI->killsRegister(X86::EFLAGS) &&
17443      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
17444    copy0MBB->addLiveIn(X86::EFLAGS);
17445    sinkMBB->addLiveIn(X86::EFLAGS);
17446  }
17447
17448  // Transfer the remainder of BB and its successor edges to sinkMBB.
17449  sinkMBB->splice(sinkMBB->begin(), BB,
17450                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
17451  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
17452
17453  // Add the true and fallthrough blocks as its successors.
17454  BB->addSuccessor(copy0MBB);
17455  BB->addSuccessor(sinkMBB);
17456
17457  // Create the conditional branch instruction.
17458  unsigned Opc =
17459    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
17460  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
17461
17462  //  copy0MBB:
17463  //   %FalseValue = ...
17464  //   # fallthrough to sinkMBB
17465  copy0MBB->addSuccessor(sinkMBB);
17466
17467  //  sinkMBB:
17468  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
17469  //  ...
17470  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
17471          TII->get(X86::PHI), MI->getOperand(0).getReg())
17472    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
17473    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
17474
17475  MI->eraseFromParent();   // The pseudo instruction is gone now.
17476  return sinkMBB;
17477}
17478
17479MachineBasicBlock *
17480X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
17481                                        bool Is64Bit) const {
17482  MachineFunction *MF = BB->getParent();
17483  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
17484  DebugLoc DL = MI->getDebugLoc();
17485  const BasicBlock *LLVM_BB = BB->getBasicBlock();
17486
17487  assert(MF->shouldSplitStack());
17488
17489  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
17490  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
17491
17492  // BB:
17493  //  ... [Till the alloca]
17494  // If stacklet is not large enough, jump to mallocMBB
17495  //
17496  // bumpMBB:
17497  //  Allocate by subtracting from RSP
17498  //  Jump to continueMBB
17499  //
17500  // mallocMBB:
17501  //  Allocate by call to runtime
17502  //
17503  // continueMBB:
17504  //  ...
17505  //  [rest of original BB]
17506  //
17507
17508  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17509  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17510  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
17511
17512  MachineRegisterInfo &MRI = MF->getRegInfo();
17513  const TargetRegisterClass *AddrRegClass =
17514    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
17515
17516  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
17517    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
17518    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
17519    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
17520    sizeVReg = MI->getOperand(1).getReg(),
17521    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
17522
17523  MachineFunction::iterator MBBIter = BB;
17524  ++MBBIter;
17525
17526  MF->insert(MBBIter, bumpMBB);
17527  MF->insert(MBBIter, mallocMBB);
17528  MF->insert(MBBIter, continueMBB);
17529
17530  continueMBB->splice(continueMBB->begin(), BB,
17531                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
17532  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
17533
17534  // Add code to the main basic block to check if the stack limit has been hit,
17535  // and if so, jump to mallocMBB otherwise to bumpMBB.
17536  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
17537  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
17538    .addReg(tmpSPVReg).addReg(sizeVReg);
17539  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
17540    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
17541    .addReg(SPLimitVReg);
17542  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
17543
17544  // bumpMBB simply decreases the stack pointer, since we know the current
17545  // stacklet has enough space.
17546  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
17547    .addReg(SPLimitVReg);
17548  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
17549    .addReg(SPLimitVReg);
17550  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
17551
17552  // Calls into a routine in libgcc to allocate more space from the heap.
17553  const uint32_t *RegMask =
17554    MF->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
17555  if (Is64Bit) {
17556    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
17557      .addReg(sizeVReg);
17558    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
17559      .addExternalSymbol("__morestack_allocate_stack_space")
17560      .addRegMask(RegMask)
17561      .addReg(X86::RDI, RegState::Implicit)
17562      .addReg(X86::RAX, RegState::ImplicitDefine);
17563  } else {
17564    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
17565      .addImm(12);
17566    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
17567    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
17568      .addExternalSymbol("__morestack_allocate_stack_space")
17569      .addRegMask(RegMask)
17570      .addReg(X86::EAX, RegState::ImplicitDefine);
17571  }
17572
17573  if (!Is64Bit)
17574    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
17575      .addImm(16);
17576
17577  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
17578    .addReg(Is64Bit ? X86::RAX : X86::EAX);
17579  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
17580
17581  // Set up the CFG correctly.
17582  BB->addSuccessor(bumpMBB);
17583  BB->addSuccessor(mallocMBB);
17584  mallocMBB->addSuccessor(continueMBB);
17585  bumpMBB->addSuccessor(continueMBB);
17586
17587  // Take care of the PHI nodes.
17588  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
17589          MI->getOperand(0).getReg())
17590    .addReg(mallocPtrVReg).addMBB(mallocMBB)
17591    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
17592
17593  // Delete the original pseudo instruction.
17594  MI->eraseFromParent();
17595
17596  // And we're done.
17597  return continueMBB;
17598}
17599
17600MachineBasicBlock *
17601X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
17602                                        MachineBasicBlock *BB) const {
17603  const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
17604  DebugLoc DL = MI->getDebugLoc();
17605
17606  assert(!Subtarget->isTargetMacho());
17607
17608  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
17609  // non-trivial part is impdef of ESP.
17610
17611  if (Subtarget->isTargetWin64()) {
17612    if (Subtarget->isTargetCygMing()) {
17613      // ___chkstk(Mingw64):
17614      // Clobbers R10, R11, RAX and EFLAGS.
17615      // Updates RSP.
17616      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
17617        .addExternalSymbol("___chkstk")
17618        .addReg(X86::RAX, RegState::Implicit)
17619        .addReg(X86::RSP, RegState::Implicit)
17620        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
17621        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
17622        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
17623    } else {
17624      // __chkstk(MSVCRT): does not update stack pointer.
17625      // Clobbers R10, R11 and EFLAGS.
17626      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
17627        .addExternalSymbol("__chkstk")
17628        .addReg(X86::RAX, RegState::Implicit)
17629        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
17630      // RAX has the offset to be subtracted from RSP.
17631      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
17632        .addReg(X86::RSP)
17633        .addReg(X86::RAX);
17634    }
17635  } else {
17636    const char *StackProbeSymbol =
17637      Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca";
17638
17639    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
17640      .addExternalSymbol(StackProbeSymbol)
17641      .addReg(X86::EAX, RegState::Implicit)
17642      .addReg(X86::ESP, RegState::Implicit)
17643      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
17644      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
17645      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
17646  }
17647
17648  MI->eraseFromParent();   // The pseudo instruction is gone now.
17649  return BB;
17650}
17651
17652MachineBasicBlock *
17653X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
17654                                      MachineBasicBlock *BB) const {
17655  // This is pretty easy.  We're taking the value that we received from
17656  // our load from the relocation, sticking it in either RDI (x86-64)
17657  // or EAX and doing an indirect call.  The return value will then
17658  // be in the normal return register.
17659  MachineFunction *F = BB->getParent();
17660  const X86InstrInfo *TII
17661    = static_cast<const X86InstrInfo*>(F->getTarget().getInstrInfo());
17662  DebugLoc DL = MI->getDebugLoc();
17663
17664  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
17665  assert(MI->getOperand(3).isGlobal() && "This should be a global");
17666
17667  // Get a register mask for the lowered call.
17668  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
17669  // proper register mask.
17670  const uint32_t *RegMask =
17671    F->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
17672  if (Subtarget->is64Bit()) {
17673    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
17674                                      TII->get(X86::MOV64rm), X86::RDI)
17675    .addReg(X86::RIP)
17676    .addImm(0).addReg(0)
17677    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
17678                      MI->getOperand(3).getTargetFlags())
17679    .addReg(0);
17680    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
17681    addDirectMem(MIB, X86::RDI);
17682    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
17683  } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
17684    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
17685                                      TII->get(X86::MOV32rm), X86::EAX)
17686    .addReg(0)
17687    .addImm(0).addReg(0)
17688    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
17689                      MI->getOperand(3).getTargetFlags())
17690    .addReg(0);
17691    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
17692    addDirectMem(MIB, X86::EAX);
17693    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
17694  } else {
17695    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
17696                                      TII->get(X86::MOV32rm), X86::EAX)
17697    .addReg(TII->getGlobalBaseReg(F))
17698    .addImm(0).addReg(0)
17699    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
17700                      MI->getOperand(3).getTargetFlags())
17701    .addReg(0);
17702    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
17703    addDirectMem(MIB, X86::EAX);
17704    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
17705  }
17706
17707  MI->eraseFromParent(); // The pseudo instruction is gone now.
17708  return BB;
17709}
17710
17711MachineBasicBlock *
17712X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
17713                                    MachineBasicBlock *MBB) const {
17714  DebugLoc DL = MI->getDebugLoc();
17715  MachineFunction *MF = MBB->getParent();
17716  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
17717  MachineRegisterInfo &MRI = MF->getRegInfo();
17718
17719  const BasicBlock *BB = MBB->getBasicBlock();
17720  MachineFunction::iterator I = MBB;
17721  ++I;
17722
17723  // Memory Reference
17724  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
17725  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
17726
17727  unsigned DstReg;
17728  unsigned MemOpndSlot = 0;
17729
17730  unsigned CurOp = 0;
17731
17732  DstReg = MI->getOperand(CurOp++).getReg();
17733  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
17734  assert(RC->hasType(MVT::i32) && "Invalid destination!");
17735  unsigned mainDstReg = MRI.createVirtualRegister(RC);
17736  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
17737
17738  MemOpndSlot = CurOp;
17739
17740  MVT PVT = getPointerTy();
17741  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
17742         "Invalid Pointer Size!");
17743
17744  // For v = setjmp(buf), we generate
17745  //
17746  // thisMBB:
17747  //  buf[LabelOffset] = restoreMBB
17748  //  SjLjSetup restoreMBB
17749  //
17750  // mainMBB:
17751  //  v_main = 0
17752  //
17753  // sinkMBB:
17754  //  v = phi(main, restore)
17755  //
17756  // restoreMBB:
17757  //  v_restore = 1
17758
17759  MachineBasicBlock *thisMBB = MBB;
17760  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
17761  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
17762  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
17763  MF->insert(I, mainMBB);
17764  MF->insert(I, sinkMBB);
17765  MF->push_back(restoreMBB);
17766
17767  MachineInstrBuilder MIB;
17768
17769  // Transfer the remainder of BB and its successor edges to sinkMBB.
17770  sinkMBB->splice(sinkMBB->begin(), MBB,
17771                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
17772  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
17773
17774  // thisMBB:
17775  unsigned PtrStoreOpc = 0;
17776  unsigned LabelReg = 0;
17777  const int64_t LabelOffset = 1 * PVT.getStoreSize();
17778  Reloc::Model RM = MF->getTarget().getRelocationModel();
17779  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
17780                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
17781
17782  // Prepare IP either in reg or imm.
17783  if (!UseImmLabel) {
17784    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
17785    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
17786    LabelReg = MRI.createVirtualRegister(PtrRC);
17787    if (Subtarget->is64Bit()) {
17788      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
17789              .addReg(X86::RIP)
17790              .addImm(0)
17791              .addReg(0)
17792              .addMBB(restoreMBB)
17793              .addReg(0);
17794    } else {
17795      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
17796      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
17797              .addReg(XII->getGlobalBaseReg(MF))
17798              .addImm(0)
17799              .addReg(0)
17800              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
17801              .addReg(0);
17802    }
17803  } else
17804    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
17805  // Store IP
17806  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
17807  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
17808    if (i == X86::AddrDisp)
17809      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
17810    else
17811      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
17812  }
17813  if (!UseImmLabel)
17814    MIB.addReg(LabelReg);
17815  else
17816    MIB.addMBB(restoreMBB);
17817  MIB.setMemRefs(MMOBegin, MMOEnd);
17818  // Setup
17819  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
17820          .addMBB(restoreMBB);
17821
17822  const X86RegisterInfo *RegInfo =
17823    static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
17824  MIB.addRegMask(RegInfo->getNoPreservedMask());
17825  thisMBB->addSuccessor(mainMBB);
17826  thisMBB->addSuccessor(restoreMBB);
17827
17828  // mainMBB:
17829  //  EAX = 0
17830  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
17831  mainMBB->addSuccessor(sinkMBB);
17832
17833  // sinkMBB:
17834  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
17835          TII->get(X86::PHI), DstReg)
17836    .addReg(mainDstReg).addMBB(mainMBB)
17837    .addReg(restoreDstReg).addMBB(restoreMBB);
17838
17839  // restoreMBB:
17840  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
17841  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
17842  restoreMBB->addSuccessor(sinkMBB);
17843
17844  MI->eraseFromParent();
17845  return sinkMBB;
17846}
17847
17848MachineBasicBlock *
17849X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
17850                                     MachineBasicBlock *MBB) const {
17851  DebugLoc DL = MI->getDebugLoc();
17852  MachineFunction *MF = MBB->getParent();
17853  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
17854  MachineRegisterInfo &MRI = MF->getRegInfo();
17855
17856  // Memory Reference
17857  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
17858  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
17859
17860  MVT PVT = getPointerTy();
17861  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
17862         "Invalid Pointer Size!");
17863
17864  const TargetRegisterClass *RC =
17865    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
17866  unsigned Tmp = MRI.createVirtualRegister(RC);
17867  // Since FP is only updated here but NOT referenced, it's treated as GPR.
17868  const X86RegisterInfo *RegInfo =
17869    static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
17870  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
17871  unsigned SP = RegInfo->getStackRegister();
17872
17873  MachineInstrBuilder MIB;
17874
17875  const int64_t LabelOffset = 1 * PVT.getStoreSize();
17876  const int64_t SPOffset = 2 * PVT.getStoreSize();
17877
17878  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
17879  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
17880
17881  // Reload FP
17882  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
17883  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
17884    MIB.addOperand(MI->getOperand(i));
17885  MIB.setMemRefs(MMOBegin, MMOEnd);
17886  // Reload IP
17887  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
17888  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
17889    if (i == X86::AddrDisp)
17890      MIB.addDisp(MI->getOperand(i), LabelOffset);
17891    else
17892      MIB.addOperand(MI->getOperand(i));
17893  }
17894  MIB.setMemRefs(MMOBegin, MMOEnd);
17895  // Reload SP
17896  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
17897  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
17898    if (i == X86::AddrDisp)
17899      MIB.addDisp(MI->getOperand(i), SPOffset);
17900    else
17901      MIB.addOperand(MI->getOperand(i));
17902  }
17903  MIB.setMemRefs(MMOBegin, MMOEnd);
17904  // Jump
17905  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
17906
17907  MI->eraseFromParent();
17908  return MBB;
17909}
17910
17911// Replace 213-type (isel default) FMA3 instructions with 231-type for
17912// accumulator loops. Writing back to the accumulator allows the coalescer
17913// to remove extra copies in the loop.
17914MachineBasicBlock *
17915X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
17916                                 MachineBasicBlock *MBB) const {
17917  MachineOperand &AddendOp = MI->getOperand(3);
17918
17919  // Bail out early if the addend isn't a register - we can't switch these.
17920  if (!AddendOp.isReg())
17921    return MBB;
17922
17923  MachineFunction &MF = *MBB->getParent();
17924  MachineRegisterInfo &MRI = MF.getRegInfo();
17925
17926  // Check whether the addend is defined by a PHI:
17927  assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
17928  MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
17929  if (!AddendDef.isPHI())
17930    return MBB;
17931
17932  // Look for the following pattern:
17933  // loop:
17934  //   %addend = phi [%entry, 0], [%loop, %result]
17935  //   ...
17936  //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
17937
17938  // Replace with:
17939  //   loop:
17940  //   %addend = phi [%entry, 0], [%loop, %result]
17941  //   ...
17942  //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
17943
17944  for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
17945    assert(AddendDef.getOperand(i).isReg());
17946    MachineOperand PHISrcOp = AddendDef.getOperand(i);
17947    MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
17948    if (&PHISrcInst == MI) {
17949      // Found a matching instruction.
17950      unsigned NewFMAOpc = 0;
17951      switch (MI->getOpcode()) {
17952        case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
17953        case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
17954        case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
17955        case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
17956        case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
17957        case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
17958        case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
17959        case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
17960        case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
17961        case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
17962        case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
17963        case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
17964        case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
17965        case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
17966        case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
17967        case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
17968        case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
17969        case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
17970        case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
17971        case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
17972        case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
17973        case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
17974        case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
17975        case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
17976        default: llvm_unreachable("Unrecognized FMA variant.");
17977      }
17978
17979      const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
17980      MachineInstrBuilder MIB =
17981        BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
17982        .addOperand(MI->getOperand(0))
17983        .addOperand(MI->getOperand(3))
17984        .addOperand(MI->getOperand(2))
17985        .addOperand(MI->getOperand(1));
17986      MBB->insert(MachineBasicBlock::iterator(MI), MIB);
17987      MI->eraseFromParent();
17988    }
17989  }
17990
17991  return MBB;
17992}
17993
17994MachineBasicBlock *
17995X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
17996                                               MachineBasicBlock *BB) const {
17997  switch (MI->getOpcode()) {
17998  default: llvm_unreachable("Unexpected instr type to insert");
17999  case X86::TAILJMPd64:
18000  case X86::TAILJMPr64:
18001  case X86::TAILJMPm64:
18002    llvm_unreachable("TAILJMP64 would not be touched here.");
18003  case X86::TCRETURNdi64:
18004  case X86::TCRETURNri64:
18005  case X86::TCRETURNmi64:
18006    return BB;
18007  case X86::WIN_ALLOCA:
18008    return EmitLoweredWinAlloca(MI, BB);
18009  case X86::SEG_ALLOCA_32:
18010    return EmitLoweredSegAlloca(MI, BB, false);
18011  case X86::SEG_ALLOCA_64:
18012    return EmitLoweredSegAlloca(MI, BB, true);
18013  case X86::TLSCall_32:
18014  case X86::TLSCall_64:
18015    return EmitLoweredTLSCall(MI, BB);
18016  case X86::CMOV_GR8:
18017  case X86::CMOV_FR32:
18018  case X86::CMOV_FR64:
18019  case X86::CMOV_V4F32:
18020  case X86::CMOV_V2F64:
18021  case X86::CMOV_V2I64:
18022  case X86::CMOV_V8F32:
18023  case X86::CMOV_V4F64:
18024  case X86::CMOV_V4I64:
18025  case X86::CMOV_V16F32:
18026  case X86::CMOV_V8F64:
18027  case X86::CMOV_V8I64:
18028  case X86::CMOV_GR16:
18029  case X86::CMOV_GR32:
18030  case X86::CMOV_RFP32:
18031  case X86::CMOV_RFP64:
18032  case X86::CMOV_RFP80:
18033    return EmitLoweredSelect(MI, BB);
18034
18035  case X86::FP32_TO_INT16_IN_MEM:
18036  case X86::FP32_TO_INT32_IN_MEM:
18037  case X86::FP32_TO_INT64_IN_MEM:
18038  case X86::FP64_TO_INT16_IN_MEM:
18039  case X86::FP64_TO_INT32_IN_MEM:
18040  case X86::FP64_TO_INT64_IN_MEM:
18041  case X86::FP80_TO_INT16_IN_MEM:
18042  case X86::FP80_TO_INT32_IN_MEM:
18043  case X86::FP80_TO_INT64_IN_MEM: {
18044    MachineFunction *F = BB->getParent();
18045    const TargetInstrInfo *TII = F->getTarget().getInstrInfo();
18046    DebugLoc DL = MI->getDebugLoc();
18047
18048    // Change the floating point control register to use "round towards zero"
18049    // mode when truncating to an integer value.
18050    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
18051    addFrameReference(BuildMI(*BB, MI, DL,
18052                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
18053
18054    // Load the old value of the high byte of the control word...
18055    unsigned OldCW =
18056      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
18057    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
18058                      CWFrameIdx);
18059
18060    // Set the high part to be round to zero...
18061    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
18062      .addImm(0xC7F);
18063
18064    // Reload the modified control word now...
18065    addFrameReference(BuildMI(*BB, MI, DL,
18066                              TII->get(X86::FLDCW16m)), CWFrameIdx);
18067
18068    // Restore the memory image of control word to original value
18069    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
18070      .addReg(OldCW);
18071
18072    // Get the X86 opcode to use.
18073    unsigned Opc;
18074    switch (MI->getOpcode()) {
18075    default: llvm_unreachable("illegal opcode!");
18076    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
18077    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
18078    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
18079    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
18080    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
18081    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
18082    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
18083    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
18084    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
18085    }
18086
18087    X86AddressMode AM;
18088    MachineOperand &Op = MI->getOperand(0);
18089    if (Op.isReg()) {
18090      AM.BaseType = X86AddressMode::RegBase;
18091      AM.Base.Reg = Op.getReg();
18092    } else {
18093      AM.BaseType = X86AddressMode::FrameIndexBase;
18094      AM.Base.FrameIndex = Op.getIndex();
18095    }
18096    Op = MI->getOperand(1);
18097    if (Op.isImm())
18098      AM.Scale = Op.getImm();
18099    Op = MI->getOperand(2);
18100    if (Op.isImm())
18101      AM.IndexReg = Op.getImm();
18102    Op = MI->getOperand(3);
18103    if (Op.isGlobal()) {
18104      AM.GV = Op.getGlobal();
18105    } else {
18106      AM.Disp = Op.getImm();
18107    }
18108    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
18109                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
18110
18111    // Reload the original control word now.
18112    addFrameReference(BuildMI(*BB, MI, DL,
18113                              TII->get(X86::FLDCW16m)), CWFrameIdx);
18114
18115    MI->eraseFromParent();   // The pseudo instruction is gone now.
18116    return BB;
18117  }
18118    // String/text processing lowering.
18119  case X86::PCMPISTRM128REG:
18120  case X86::VPCMPISTRM128REG:
18121  case X86::PCMPISTRM128MEM:
18122  case X86::VPCMPISTRM128MEM:
18123  case X86::PCMPESTRM128REG:
18124  case X86::VPCMPESTRM128REG:
18125  case X86::PCMPESTRM128MEM:
18126  case X86::VPCMPESTRM128MEM:
18127    assert(Subtarget->hasSSE42() &&
18128           "Target must have SSE4.2 or AVX features enabled");
18129    return EmitPCMPSTRM(MI, BB, BB->getParent()->getTarget().getInstrInfo());
18130
18131  // String/text processing lowering.
18132  case X86::PCMPISTRIREG:
18133  case X86::VPCMPISTRIREG:
18134  case X86::PCMPISTRIMEM:
18135  case X86::VPCMPISTRIMEM:
18136  case X86::PCMPESTRIREG:
18137  case X86::VPCMPESTRIREG:
18138  case X86::PCMPESTRIMEM:
18139  case X86::VPCMPESTRIMEM:
18140    assert(Subtarget->hasSSE42() &&
18141           "Target must have SSE4.2 or AVX features enabled");
18142    return EmitPCMPSTRI(MI, BB, BB->getParent()->getTarget().getInstrInfo());
18143
18144  // Thread synchronization.
18145  case X86::MONITOR:
18146    return EmitMonitor(MI, BB, BB->getParent()->getTarget().getInstrInfo(), Subtarget);
18147
18148  // xbegin
18149  case X86::XBEGIN:
18150    return EmitXBegin(MI, BB, BB->getParent()->getTarget().getInstrInfo());
18151
18152  case X86::VASTART_SAVE_XMM_REGS:
18153    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
18154
18155  case X86::VAARG_64:
18156    return EmitVAARG64WithCustomInserter(MI, BB);
18157
18158  case X86::EH_SjLj_SetJmp32:
18159  case X86::EH_SjLj_SetJmp64:
18160    return emitEHSjLjSetJmp(MI, BB);
18161
18162  case X86::EH_SjLj_LongJmp32:
18163  case X86::EH_SjLj_LongJmp64:
18164    return emitEHSjLjLongJmp(MI, BB);
18165
18166  case TargetOpcode::STACKMAP:
18167  case TargetOpcode::PATCHPOINT:
18168    return emitPatchPoint(MI, BB);
18169
18170  case X86::VFMADDPDr213r:
18171  case X86::VFMADDPSr213r:
18172  case X86::VFMADDSDr213r:
18173  case X86::VFMADDSSr213r:
18174  case X86::VFMSUBPDr213r:
18175  case X86::VFMSUBPSr213r:
18176  case X86::VFMSUBSDr213r:
18177  case X86::VFMSUBSSr213r:
18178  case X86::VFNMADDPDr213r:
18179  case X86::VFNMADDPSr213r:
18180  case X86::VFNMADDSDr213r:
18181  case X86::VFNMADDSSr213r:
18182  case X86::VFNMSUBPDr213r:
18183  case X86::VFNMSUBPSr213r:
18184  case X86::VFNMSUBSDr213r:
18185  case X86::VFNMSUBSSr213r:
18186  case X86::VFMADDPDr213rY:
18187  case X86::VFMADDPSr213rY:
18188  case X86::VFMSUBPDr213rY:
18189  case X86::VFMSUBPSr213rY:
18190  case X86::VFNMADDPDr213rY:
18191  case X86::VFNMADDPSr213rY:
18192  case X86::VFNMSUBPDr213rY:
18193  case X86::VFNMSUBPSr213rY:
18194    return emitFMA3Instr(MI, BB);
18195  }
18196}
18197
18198//===----------------------------------------------------------------------===//
18199//                           X86 Optimization Hooks
18200//===----------------------------------------------------------------------===//
18201
18202void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
18203                                                      APInt &KnownZero,
18204                                                      APInt &KnownOne,
18205                                                      const SelectionDAG &DAG,
18206                                                      unsigned Depth) const {
18207  unsigned BitWidth = KnownZero.getBitWidth();
18208  unsigned Opc = Op.getOpcode();
18209  assert((Opc >= ISD::BUILTIN_OP_END ||
18210          Opc == ISD::INTRINSIC_WO_CHAIN ||
18211          Opc == ISD::INTRINSIC_W_CHAIN ||
18212          Opc == ISD::INTRINSIC_VOID) &&
18213         "Should use MaskedValueIsZero if you don't know whether Op"
18214         " is a target node!");
18215
18216  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
18217  switch (Opc) {
18218  default: break;
18219  case X86ISD::ADD:
18220  case X86ISD::SUB:
18221  case X86ISD::ADC:
18222  case X86ISD::SBB:
18223  case X86ISD::SMUL:
18224  case X86ISD::UMUL:
18225  case X86ISD::INC:
18226  case X86ISD::DEC:
18227  case X86ISD::OR:
18228  case X86ISD::XOR:
18229  case X86ISD::AND:
18230    // These nodes' second result is a boolean.
18231    if (Op.getResNo() == 0)
18232      break;
18233    // Fallthrough
18234  case X86ISD::SETCC:
18235    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
18236    break;
18237  case ISD::INTRINSIC_WO_CHAIN: {
18238    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
18239    unsigned NumLoBits = 0;
18240    switch (IntId) {
18241    default: break;
18242    case Intrinsic::x86_sse_movmsk_ps:
18243    case Intrinsic::x86_avx_movmsk_ps_256:
18244    case Intrinsic::x86_sse2_movmsk_pd:
18245    case Intrinsic::x86_avx_movmsk_pd_256:
18246    case Intrinsic::x86_mmx_pmovmskb:
18247    case Intrinsic::x86_sse2_pmovmskb_128:
18248    case Intrinsic::x86_avx2_pmovmskb: {
18249      // High bits of movmskp{s|d}, pmovmskb are known zero.
18250      switch (IntId) {
18251        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
18252        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
18253        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
18254        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
18255        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
18256        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
18257        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
18258        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
18259      }
18260      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
18261      break;
18262    }
18263    }
18264    break;
18265  }
18266  }
18267}
18268
18269unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
18270  SDValue Op,
18271  const SelectionDAG &,
18272  unsigned Depth) const {
18273  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
18274  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
18275    return Op.getValueType().getScalarType().getSizeInBits();
18276
18277  // Fallback case.
18278  return 1;
18279}
18280
18281/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
18282/// node is a GlobalAddress + offset.
18283bool X86TargetLowering::isGAPlusOffset(SDNode *N,
18284                                       const GlobalValue* &GA,
18285                                       int64_t &Offset) const {
18286  if (N->getOpcode() == X86ISD::Wrapper) {
18287    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
18288      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
18289      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
18290      return true;
18291    }
18292  }
18293  return TargetLowering::isGAPlusOffset(N, GA, Offset);
18294}
18295
18296/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
18297/// same as extracting the high 128-bit part of 256-bit vector and then
18298/// inserting the result into the low part of a new 256-bit vector
18299static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
18300  EVT VT = SVOp->getValueType(0);
18301  unsigned NumElems = VT.getVectorNumElements();
18302
18303  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
18304  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
18305    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
18306        SVOp->getMaskElt(j) >= 0)
18307      return false;
18308
18309  return true;
18310}
18311
18312/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
18313/// same as extracting the low 128-bit part of 256-bit vector and then
18314/// inserting the result into the high part of a new 256-bit vector
18315static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
18316  EVT VT = SVOp->getValueType(0);
18317  unsigned NumElems = VT.getVectorNumElements();
18318
18319  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
18320  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
18321    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
18322        SVOp->getMaskElt(j) >= 0)
18323      return false;
18324
18325  return true;
18326}
18327
18328/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
18329static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
18330                                        TargetLowering::DAGCombinerInfo &DCI,
18331                                        const X86Subtarget* Subtarget) {
18332  SDLoc dl(N);
18333  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
18334  SDValue V1 = SVOp->getOperand(0);
18335  SDValue V2 = SVOp->getOperand(1);
18336  EVT VT = SVOp->getValueType(0);
18337  unsigned NumElems = VT.getVectorNumElements();
18338
18339  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
18340      V2.getOpcode() == ISD::CONCAT_VECTORS) {
18341    //
18342    //                   0,0,0,...
18343    //                      |
18344    //    V      UNDEF    BUILD_VECTOR    UNDEF
18345    //     \      /           \           /
18346    //  CONCAT_VECTOR         CONCAT_VECTOR
18347    //         \                  /
18348    //          \                /
18349    //          RESULT: V + zero extended
18350    //
18351    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
18352        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
18353        V1.getOperand(1).getOpcode() != ISD::UNDEF)
18354      return SDValue();
18355
18356    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
18357      return SDValue();
18358
18359    // To match the shuffle mask, the first half of the mask should
18360    // be exactly the first vector, and all the rest a splat with the
18361    // first element of the second one.
18362    for (unsigned i = 0; i != NumElems/2; ++i)
18363      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
18364          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
18365        return SDValue();
18366
18367    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
18368    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
18369      if (Ld->hasNUsesOfValue(1, 0)) {
18370        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
18371        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
18372        SDValue ResNode =
18373          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
18374                                  Ld->getMemoryVT(),
18375                                  Ld->getPointerInfo(),
18376                                  Ld->getAlignment(),
18377                                  false/*isVolatile*/, true/*ReadMem*/,
18378                                  false/*WriteMem*/);
18379
18380        // Make sure the newly-created LOAD is in the same position as Ld in
18381        // terms of dependency. We create a TokenFactor for Ld and ResNode,
18382        // and update uses of Ld's output chain to use the TokenFactor.
18383        if (Ld->hasAnyUseOfValue(1)) {
18384          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18385                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
18386          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
18387          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
18388                                 SDValue(ResNode.getNode(), 1));
18389        }
18390
18391        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
18392      }
18393    }
18394
18395    // Emit a zeroed vector and insert the desired subvector on its
18396    // first half.
18397    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
18398    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
18399    return DCI.CombineTo(N, InsV);
18400  }
18401
18402  //===--------------------------------------------------------------------===//
18403  // Combine some shuffles into subvector extracts and inserts:
18404  //
18405
18406  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
18407  if (isShuffleHigh128VectorInsertLow(SVOp)) {
18408    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
18409    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
18410    return DCI.CombineTo(N, InsV);
18411  }
18412
18413  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
18414  if (isShuffleLow128VectorInsertHigh(SVOp)) {
18415    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
18416    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
18417    return DCI.CombineTo(N, InsV);
18418  }
18419
18420  return SDValue();
18421}
18422
18423/// \brief Get the PSHUF-style mask from PSHUF node.
18424///
18425/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
18426/// PSHUF-style masks that can be reused with such instructions.
18427static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
18428  SmallVector<int, 4> Mask;
18429  bool IsUnary;
18430  bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary);
18431  (void)HaveMask;
18432  assert(HaveMask);
18433
18434  switch (N.getOpcode()) {
18435  case X86ISD::PSHUFD:
18436    return Mask;
18437  case X86ISD::PSHUFLW:
18438    Mask.resize(4);
18439    return Mask;
18440  case X86ISD::PSHUFHW:
18441    Mask.erase(Mask.begin(), Mask.begin() + 4);
18442    for (int &M : Mask)
18443      M -= 4;
18444    return Mask;
18445  default:
18446    llvm_unreachable("No valid shuffle instruction found!");
18447  }
18448}
18449
18450/// \brief Search for a combinable shuffle across a chain ending in pshufd.
18451///
18452/// We walk up the chain and look for a combinable shuffle, skipping over
18453/// shuffles that we could hoist this shuffle's transformation past without
18454/// altering anything.
18455static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
18456                                         SelectionDAG &DAG,
18457                                         TargetLowering::DAGCombinerInfo &DCI) {
18458  assert(N.getOpcode() == X86ISD::PSHUFD &&
18459         "Called with something other than an x86 128-bit half shuffle!");
18460  SDLoc DL(N);
18461
18462  // Walk up a single-use chain looking for a combinable shuffle.
18463  SDValue V = N.getOperand(0);
18464  for (; V.hasOneUse(); V = V.getOperand(0)) {
18465    switch (V.getOpcode()) {
18466    default:
18467      return false; // Nothing combined!
18468
18469    case ISD::BITCAST:
18470      // Skip bitcasts as we always know the type for the target specific
18471      // instructions.
18472      continue;
18473
18474    case X86ISD::PSHUFD:
18475      // Found another dword shuffle.
18476      break;
18477
18478    case X86ISD::PSHUFLW:
18479      // Check that the low words (being shuffled) are the identity in the
18480      // dword shuffle, and the high words are self-contained.
18481      if (Mask[0] != 0 || Mask[1] != 1 ||
18482          !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
18483        return false;
18484
18485      continue;
18486
18487    case X86ISD::PSHUFHW:
18488      // Check that the high words (being shuffled) are the identity in the
18489      // dword shuffle, and the low words are self-contained.
18490      if (Mask[2] != 2 || Mask[3] != 3 ||
18491          !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
18492        return false;
18493
18494      continue;
18495
18496    case X86ISD::UNPCKL:
18497    case X86ISD::UNPCKH:
18498      // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
18499      // shuffle into a preceding word shuffle.
18500      if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
18501        return false;
18502
18503      // Search for a half-shuffle which we can combine with.
18504      unsigned CombineOp =
18505          V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
18506      if (V.getOperand(0) != V.getOperand(1) ||
18507          !V->isOnlyUserOf(V.getOperand(0).getNode()))
18508        return false;
18509      V = V.getOperand(0);
18510      do {
18511        switch (V.getOpcode()) {
18512        default:
18513          return false; // Nothing to combine.
18514
18515        case X86ISD::PSHUFLW:
18516        case X86ISD::PSHUFHW:
18517          if (V.getOpcode() == CombineOp)
18518            break;
18519
18520          // Fallthrough!
18521        case ISD::BITCAST:
18522          V = V.getOperand(0);
18523          continue;
18524        }
18525        break;
18526      } while (V.hasOneUse());
18527      break;
18528    }
18529    // Break out of the loop if we break out of the switch.
18530    break;
18531  }
18532
18533  if (!V.hasOneUse())
18534    // We fell out of the loop without finding a viable combining instruction.
18535    return false;
18536
18537  // Record the old value to use in RAUW-ing.
18538  SDValue Old = V;
18539
18540  // Merge this node's mask and our incoming mask.
18541  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
18542  for (int &M : Mask)
18543    M = VMask[M];
18544  V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
18545                  getV4X86ShuffleImm8ForMask(Mask, DAG));
18546
18547  // It is possible that one of the combinable shuffles was completely absorbed
18548  // by the other, just replace it and revisit all users in that case.
18549  if (Old.getNode() == V.getNode()) {
18550    DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo=*/true);
18551    return true;
18552  }
18553
18554  // Replace N with its operand as we're going to combine that shuffle away.
18555  DAG.ReplaceAllUsesWith(N, N.getOperand(0));
18556
18557  // Replace the combinable shuffle with the combined one, updating all users
18558  // so that we re-evaluate the chain here.
18559  DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
18560  return true;
18561}
18562
18563/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
18564///
18565/// We walk up the chain, skipping shuffles of the other half and looking
18566/// through shuffles which switch halves trying to find a shuffle of the same
18567/// pair of dwords.
18568static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
18569                                        SelectionDAG &DAG,
18570                                        TargetLowering::DAGCombinerInfo &DCI) {
18571  assert(
18572      (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
18573      "Called with something other than an x86 128-bit half shuffle!");
18574  SDLoc DL(N);
18575  unsigned CombineOpcode = N.getOpcode();
18576
18577  // Walk up a single-use chain looking for a combinable shuffle.
18578  SDValue V = N.getOperand(0);
18579  for (; V.hasOneUse(); V = V.getOperand(0)) {
18580    switch (V.getOpcode()) {
18581    default:
18582      return false; // Nothing combined!
18583
18584    case ISD::BITCAST:
18585      // Skip bitcasts as we always know the type for the target specific
18586      // instructions.
18587      continue;
18588
18589    case X86ISD::PSHUFLW:
18590    case X86ISD::PSHUFHW:
18591      if (V.getOpcode() == CombineOpcode)
18592        break;
18593
18594      // Other-half shuffles are no-ops.
18595      continue;
18596
18597    case X86ISD::PSHUFD: {
18598      // We can only handle pshufd if the half we are combining either stays in
18599      // its half, or switches to the other half. Bail if one of these isn't
18600      // true.
18601      SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
18602      int DOffset = CombineOpcode == X86ISD::PSHUFLW ? 0 : 2;
18603      if (!((VMask[DOffset + 0] < 2 && VMask[DOffset + 1] < 2) ||
18604            (VMask[DOffset + 0] >= 2 && VMask[DOffset + 1] >= 2)))
18605        return false;
18606
18607      // Map the mask through the pshufd and keep walking up the chain.
18608      for (int i = 0; i < 4; ++i)
18609        Mask[i] = 2 * (VMask[DOffset + Mask[i] / 2] % 2) + Mask[i] % 2;
18610
18611      // Switch halves if the pshufd does.
18612      CombineOpcode =
18613          VMask[DOffset + Mask[0] / 2] < 2 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
18614      continue;
18615    }
18616    }
18617    // Break out of the loop if we break out of the switch.
18618    break;
18619  }
18620
18621  if (!V.hasOneUse())
18622    // We fell out of the loop without finding a viable combining instruction.
18623    return false;
18624
18625  // Record the old value to use in RAUW-ing.
18626  SDValue Old = V;
18627
18628  // Merge this node's mask and our incoming mask (adjusted to account for all
18629  // the pshufd instructions encountered).
18630  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
18631  for (int &M : Mask)
18632    M = VMask[M];
18633  V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
18634                  getV4X86ShuffleImm8ForMask(Mask, DAG));
18635
18636  // Replace N with its operand as we're going to combine that shuffle away.
18637  DAG.ReplaceAllUsesWith(N, N.getOperand(0));
18638
18639  // Replace the combinable shuffle with the combined one, updating all users
18640  // so that we re-evaluate the chain here.
18641  DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
18642  return true;
18643}
18644
18645/// \brief Try to combine x86 target specific shuffles.
18646static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
18647                                           TargetLowering::DAGCombinerInfo &DCI,
18648                                           const X86Subtarget *Subtarget) {
18649  SDLoc DL(N);
18650  MVT VT = N.getSimpleValueType();
18651  SmallVector<int, 4> Mask;
18652
18653  switch (N.getOpcode()) {
18654  case X86ISD::PSHUFD:
18655  case X86ISD::PSHUFLW:
18656  case X86ISD::PSHUFHW:
18657    Mask = getPSHUFShuffleMask(N);
18658    assert(Mask.size() == 4);
18659    break;
18660  default:
18661    return SDValue();
18662  }
18663
18664  // Nuke no-op shuffles that show up after combining.
18665  if (isNoopShuffleMask(Mask))
18666    return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
18667
18668  // Look for simplifications involving one or two shuffle instructions.
18669  SDValue V = N.getOperand(0);
18670  switch (N.getOpcode()) {
18671  default:
18672    break;
18673  case X86ISD::PSHUFLW:
18674  case X86ISD::PSHUFHW:
18675    assert(VT == MVT::v8i16);
18676    (void)VT;
18677
18678    if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
18679      return SDValue(); // We combined away this shuffle, so we're done.
18680
18681    // See if this reduces to a PSHUFD which is no more expensive and can
18682    // combine with more operations.
18683    if (Mask[0] % 2 == 0 && Mask[2] % 2 == 0 &&
18684        areAdjacentMasksSequential(Mask)) {
18685      int DMask[] = {-1, -1, -1, -1};
18686      int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
18687      DMask[DOffset + 0] = DOffset + Mask[0] / 2;
18688      DMask[DOffset + 1] = DOffset + Mask[2] / 2;
18689      V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
18690      DCI.AddToWorklist(V.getNode());
18691      V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
18692                      getV4X86ShuffleImm8ForMask(DMask, DAG));
18693      DCI.AddToWorklist(V.getNode());
18694      return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
18695    }
18696
18697    // Look for shuffle patterns which can be implemented as a single unpack.
18698    // FIXME: This doesn't handle the location of the PSHUFD generically, and
18699    // only works when we have a PSHUFD followed by two half-shuffles.
18700    if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
18701        (V.getOpcode() == X86ISD::PSHUFLW ||
18702         V.getOpcode() == X86ISD::PSHUFHW) &&
18703        V.getOpcode() != N.getOpcode() &&
18704        V.hasOneUse()) {
18705      SDValue D = V.getOperand(0);
18706      while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
18707        D = D.getOperand(0);
18708      if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
18709        SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
18710        SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
18711        int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
18712        int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
18713        int WordMask[8];
18714        for (int i = 0; i < 4; ++i) {
18715          WordMask[i + NOffset] = Mask[i] + NOffset;
18716          WordMask[i + VOffset] = VMask[i] + VOffset;
18717        }
18718        // Map the word mask through the DWord mask.
18719        int MappedMask[8];
18720        for (int i = 0; i < 8; ++i)
18721          MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
18722        const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3};
18723        const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7};
18724        if (std::equal(std::begin(MappedMask), std::end(MappedMask),
18725                       std::begin(UnpackLoMask)) ||
18726            std::equal(std::begin(MappedMask), std::end(MappedMask),
18727                       std::begin(UnpackHiMask))) {
18728          // We can replace all three shuffles with an unpack.
18729          V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0));
18730          DCI.AddToWorklist(V.getNode());
18731          return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
18732                                                : X86ISD::UNPCKH,
18733                             DL, MVT::v8i16, V, V);
18734        }
18735      }
18736    }
18737
18738    break;
18739
18740  case X86ISD::PSHUFD:
18741    if (combineRedundantDWordShuffle(N, Mask, DAG, DCI))
18742      return SDValue(); // We combined away this shuffle.
18743
18744    break;
18745  }
18746
18747  return SDValue();
18748}
18749
18750/// PerformShuffleCombine - Performs several different shuffle combines.
18751static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
18752                                     TargetLowering::DAGCombinerInfo &DCI,
18753                                     const X86Subtarget *Subtarget) {
18754  SDLoc dl(N);
18755  SDValue N0 = N->getOperand(0);
18756  SDValue N1 = N->getOperand(1);
18757  EVT VT = N->getValueType(0);
18758
18759  // Canonicalize shuffles that perform 'addsub' on packed float vectors
18760  // according to the rule:
18761  //  (shuffle (FADD A, B), (FSUB A, B), Mask) ->
18762  //  (shuffle (FSUB A, -B), (FADD A, -B), Mask)
18763  //
18764  // Where 'Mask' is:
18765  //  <0,5,2,7>             -- for v4f32 and v4f64 shuffles;
18766  //  <0,3>                 -- for v2f64 shuffles;
18767  //  <0,9,2,11,4,13,6,15>  -- for v8f32 shuffles.
18768  //
18769  // This helps pattern-matching more SSE3/AVX ADDSUB instructions
18770  // during ISel stage.
18771  if (N->getOpcode() == ISD::VECTOR_SHUFFLE &&
18772      ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18773       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18774      N0->getOpcode() == ISD::FADD && N1->getOpcode() == ISD::FSUB &&
18775      // Operands to the FADD and FSUB must be the same.
18776      ((N0->getOperand(0) == N1->getOperand(0) &&
18777        N0->getOperand(1) == N1->getOperand(1)) ||
18778       // FADD is commutable. See if by commuting the operands of the FADD
18779       // we would still be able to match the operands of the FSUB dag node.
18780       (N0->getOperand(1) == N1->getOperand(0) &&
18781        N0->getOperand(0) == N1->getOperand(1))) &&
18782      N0->getOperand(0)->getOpcode() != ISD::UNDEF &&
18783      N0->getOperand(1)->getOpcode() != ISD::UNDEF) {
18784
18785    ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
18786    unsigned NumElts = VT.getVectorNumElements();
18787    ArrayRef<int> Mask = SV->getMask();
18788    bool CanFold = true;
18789
18790    for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i)
18791      CanFold = Mask[i] == (int)((i & 1) ? i + NumElts : i);
18792
18793    if (CanFold) {
18794      SDValue Op0 = N1->getOperand(0);
18795      SDValue Op1 = DAG.getNode(ISD::FNEG, dl, VT, N1->getOperand(1));
18796      SDValue Sub = DAG.getNode(ISD::FSUB, dl, VT, Op0, Op1);
18797      SDValue Add = DAG.getNode(ISD::FADD, dl, VT, Op0, Op1);
18798      return DAG.getVectorShuffle(VT, dl, Sub, Add, Mask);
18799    }
18800  }
18801
18802  // Don't create instructions with illegal types after legalize types has run.
18803  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18804  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
18805    return SDValue();
18806
18807  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
18808  if (Subtarget->hasFp256() && VT.is256BitVector() &&
18809      N->getOpcode() == ISD::VECTOR_SHUFFLE)
18810    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
18811
18812  // During Type Legalization, when promoting illegal vector types,
18813  // the backend might introduce new shuffle dag nodes and bitcasts.
18814  //
18815  // This code performs the following transformation:
18816  // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
18817  //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
18818  //
18819  // We do this only if both the bitcast and the BINOP dag nodes have
18820  // one use. Also, perform this transformation only if the new binary
18821  // operation is legal. This is to avoid introducing dag nodes that
18822  // potentially need to be further expanded (or custom lowered) into a
18823  // less optimal sequence of dag nodes.
18824  if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
18825      N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
18826      N0.getOpcode() == ISD::BITCAST) {
18827    SDValue BC0 = N0.getOperand(0);
18828    EVT SVT = BC0.getValueType();
18829    unsigned Opcode = BC0.getOpcode();
18830    unsigned NumElts = VT.getVectorNumElements();
18831
18832    if (BC0.hasOneUse() && SVT.isVector() &&
18833        SVT.getVectorNumElements() * 2 == NumElts &&
18834        TLI.isOperationLegal(Opcode, VT)) {
18835      bool CanFold = false;
18836      switch (Opcode) {
18837      default : break;
18838      case ISD::ADD :
18839      case ISD::FADD :
18840      case ISD::SUB :
18841      case ISD::FSUB :
18842      case ISD::MUL :
18843      case ISD::FMUL :
18844        CanFold = true;
18845      }
18846
18847      unsigned SVTNumElts = SVT.getVectorNumElements();
18848      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
18849      for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
18850        CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
18851      for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
18852        CanFold = SVOp->getMaskElt(i) < 0;
18853
18854      if (CanFold) {
18855        SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
18856        SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
18857        SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
18858        return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
18859      }
18860    }
18861  }
18862
18863  // Only handle 128 wide vector from here on.
18864  if (!VT.is128BitVector())
18865    return SDValue();
18866
18867  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
18868  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
18869  // consecutive, non-overlapping, and in the right order.
18870  SmallVector<SDValue, 16> Elts;
18871  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
18872    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
18873
18874  SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
18875  if (LD.getNode())
18876    return LD;
18877
18878  if (isTargetShuffle(N->getOpcode())) {
18879    SDValue Shuffle =
18880        PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
18881    if (Shuffle.getNode())
18882      return Shuffle;
18883  }
18884
18885  return SDValue();
18886}
18887
18888/// PerformTruncateCombine - Converts truncate operation to
18889/// a sequence of vector shuffle operations.
18890/// It is possible when we truncate 256-bit vector to 128-bit vector
18891static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
18892                                      TargetLowering::DAGCombinerInfo &DCI,
18893                                      const X86Subtarget *Subtarget)  {
18894  return SDValue();
18895}
18896
18897/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
18898/// specific shuffle of a load can be folded into a single element load.
18899/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
18900/// shuffles have been customed lowered so we need to handle those here.
18901static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
18902                                         TargetLowering::DAGCombinerInfo &DCI) {
18903  if (DCI.isBeforeLegalizeOps())
18904    return SDValue();
18905
18906  SDValue InVec = N->getOperand(0);
18907  SDValue EltNo = N->getOperand(1);
18908
18909  if (!isa<ConstantSDNode>(EltNo))
18910    return SDValue();
18911
18912  EVT VT = InVec.getValueType();
18913
18914  bool HasShuffleIntoBitcast = false;
18915  if (InVec.getOpcode() == ISD::BITCAST) {
18916    // Don't duplicate a load with other uses.
18917    if (!InVec.hasOneUse())
18918      return SDValue();
18919    EVT BCVT = InVec.getOperand(0).getValueType();
18920    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
18921      return SDValue();
18922    InVec = InVec.getOperand(0);
18923    HasShuffleIntoBitcast = true;
18924  }
18925
18926  if (!isTargetShuffle(InVec.getOpcode()))
18927    return SDValue();
18928
18929  // Don't duplicate a load with other uses.
18930  if (!InVec.hasOneUse())
18931    return SDValue();
18932
18933  SmallVector<int, 16> ShuffleMask;
18934  bool UnaryShuffle;
18935  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
18936                            UnaryShuffle))
18937    return SDValue();
18938
18939  // Select the input vector, guarding against out of range extract vector.
18940  unsigned NumElems = VT.getVectorNumElements();
18941  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
18942  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
18943  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
18944                                         : InVec.getOperand(1);
18945
18946  // If inputs to shuffle are the same for both ops, then allow 2 uses
18947  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
18948
18949  if (LdNode.getOpcode() == ISD::BITCAST) {
18950    // Don't duplicate a load with other uses.
18951    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
18952      return SDValue();
18953
18954    AllowedUses = 1; // only allow 1 load use if we have a bitcast
18955    LdNode = LdNode.getOperand(0);
18956  }
18957
18958  if (!ISD::isNormalLoad(LdNode.getNode()))
18959    return SDValue();
18960
18961  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
18962
18963  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
18964    return SDValue();
18965
18966  if (HasShuffleIntoBitcast) {
18967    // If there's a bitcast before the shuffle, check if the load type and
18968    // alignment is valid.
18969    unsigned Align = LN0->getAlignment();
18970    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18971    unsigned NewAlign = TLI.getDataLayout()->
18972      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
18973
18974    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
18975      return SDValue();
18976  }
18977
18978  // All checks match so transform back to vector_shuffle so that DAG combiner
18979  // can finish the job
18980  SDLoc dl(N);
18981
18982  // Create shuffle node taking into account the case that its a unary shuffle
18983  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
18984  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
18985                                 InVec.getOperand(0), Shuffle,
18986                                 &ShuffleMask[0]);
18987  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
18988  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
18989                     EltNo);
18990}
18991
18992/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
18993/// generation and convert it from being a bunch of shuffles and extracts
18994/// to a simple store and scalar loads to extract the elements.
18995static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
18996                                         TargetLowering::DAGCombinerInfo &DCI) {
18997  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
18998  if (NewOp.getNode())
18999    return NewOp;
19000
19001  SDValue InputVector = N->getOperand(0);
19002
19003  // Detect whether we are trying to convert from mmx to i32 and the bitcast
19004  // from mmx to v2i32 has a single usage.
19005  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
19006      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
19007      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
19008    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
19009                       N->getValueType(0),
19010                       InputVector.getNode()->getOperand(0));
19011
19012  // Only operate on vectors of 4 elements, where the alternative shuffling
19013  // gets to be more expensive.
19014  if (InputVector.getValueType() != MVT::v4i32)
19015    return SDValue();
19016
19017  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
19018  // single use which is a sign-extend or zero-extend, and all elements are
19019  // used.
19020  SmallVector<SDNode *, 4> Uses;
19021  unsigned ExtractedElements = 0;
19022  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
19023       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
19024    if (UI.getUse().getResNo() != InputVector.getResNo())
19025      return SDValue();
19026
19027    SDNode *Extract = *UI;
19028    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
19029      return SDValue();
19030
19031    if (Extract->getValueType(0) != MVT::i32)
19032      return SDValue();
19033    if (!Extract->hasOneUse())
19034      return SDValue();
19035    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
19036        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
19037      return SDValue();
19038    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
19039      return SDValue();
19040
19041    // Record which element was extracted.
19042    ExtractedElements |=
19043      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
19044
19045    Uses.push_back(Extract);
19046  }
19047
19048  // If not all the elements were used, this may not be worthwhile.
19049  if (ExtractedElements != 15)
19050    return SDValue();
19051
19052  // Ok, we've now decided to do the transformation.
19053  SDLoc dl(InputVector);
19054
19055  // Store the value to a temporary stack slot.
19056  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
19057  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
19058                            MachinePointerInfo(), false, false, 0);
19059
19060  // Replace each use (extract) with a load of the appropriate element.
19061  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
19062       UE = Uses.end(); UI != UE; ++UI) {
19063    SDNode *Extract = *UI;
19064
19065    // cOMpute the element's address.
19066    SDValue Idx = Extract->getOperand(1);
19067    unsigned EltSize =
19068        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
19069    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
19070    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19071    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
19072
19073    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
19074                                     StackPtr, OffsetVal);
19075
19076    // Load the scalar.
19077    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
19078                                     ScalarAddr, MachinePointerInfo(),
19079                                     false, false, false, 0);
19080
19081    // Replace the exact with the load.
19082    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
19083  }
19084
19085  // The replacement was made in place; don't return anything.
19086  return SDValue();
19087}
19088
19089/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
19090static std::pair<unsigned, bool>
19091matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
19092                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
19093  if (!VT.isVector())
19094    return std::make_pair(0, false);
19095
19096  bool NeedSplit = false;
19097  switch (VT.getSimpleVT().SimpleTy) {
19098  default: return std::make_pair(0, false);
19099  case MVT::v32i8:
19100  case MVT::v16i16:
19101  case MVT::v8i32:
19102    if (!Subtarget->hasAVX2())
19103      NeedSplit = true;
19104    if (!Subtarget->hasAVX())
19105      return std::make_pair(0, false);
19106    break;
19107  case MVT::v16i8:
19108  case MVT::v8i16:
19109  case MVT::v4i32:
19110    if (!Subtarget->hasSSE2())
19111      return std::make_pair(0, false);
19112  }
19113
19114  // SSE2 has only a small subset of the operations.
19115  bool hasUnsigned = Subtarget->hasSSE41() ||
19116                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
19117  bool hasSigned = Subtarget->hasSSE41() ||
19118                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
19119
19120  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
19121
19122  unsigned Opc = 0;
19123  // Check for x CC y ? x : y.
19124  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
19125      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
19126    switch (CC) {
19127    default: break;
19128    case ISD::SETULT:
19129    case ISD::SETULE:
19130      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
19131    case ISD::SETUGT:
19132    case ISD::SETUGE:
19133      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
19134    case ISD::SETLT:
19135    case ISD::SETLE:
19136      Opc = hasSigned ? X86ISD::SMIN : 0; break;
19137    case ISD::SETGT:
19138    case ISD::SETGE:
19139      Opc = hasSigned ? X86ISD::SMAX : 0; break;
19140    }
19141  // Check for x CC y ? y : x -- a min/max with reversed arms.
19142  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
19143             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
19144    switch (CC) {
19145    default: break;
19146    case ISD::SETULT:
19147    case ISD::SETULE:
19148      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
19149    case ISD::SETUGT:
19150    case ISD::SETUGE:
19151      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
19152    case ISD::SETLT:
19153    case ISD::SETLE:
19154      Opc = hasSigned ? X86ISD::SMAX : 0; break;
19155    case ISD::SETGT:
19156    case ISD::SETGE:
19157      Opc = hasSigned ? X86ISD::SMIN : 0; break;
19158    }
19159  }
19160
19161  return std::make_pair(Opc, NeedSplit);
19162}
19163
19164static SDValue
19165TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
19166                                      const X86Subtarget *Subtarget) {
19167  SDLoc dl(N);
19168  SDValue Cond = N->getOperand(0);
19169  SDValue LHS = N->getOperand(1);
19170  SDValue RHS = N->getOperand(2);
19171
19172  if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
19173    SDValue CondSrc = Cond->getOperand(0);
19174    if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
19175      Cond = CondSrc->getOperand(0);
19176  }
19177
19178  MVT VT = N->getSimpleValueType(0);
19179  MVT EltVT = VT.getVectorElementType();
19180  unsigned NumElems = VT.getVectorNumElements();
19181  // There is no blend with immediate in AVX-512.
19182  if (VT.is512BitVector())
19183    return SDValue();
19184
19185  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
19186    return SDValue();
19187  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
19188    return SDValue();
19189
19190  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
19191    return SDValue();
19192
19193  unsigned MaskValue = 0;
19194  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
19195    return SDValue();
19196
19197  SmallVector<int, 8> ShuffleMask(NumElems, -1);
19198  for (unsigned i = 0; i < NumElems; ++i) {
19199    // Be sure we emit undef where we can.
19200    if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
19201      ShuffleMask[i] = -1;
19202    else
19203      ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
19204  }
19205
19206  return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
19207}
19208
19209/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
19210/// nodes.
19211static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
19212                                    TargetLowering::DAGCombinerInfo &DCI,
19213                                    const X86Subtarget *Subtarget) {
19214  SDLoc DL(N);
19215  SDValue Cond = N->getOperand(0);
19216  // Get the LHS/RHS of the select.
19217  SDValue LHS = N->getOperand(1);
19218  SDValue RHS = N->getOperand(2);
19219  EVT VT = LHS.getValueType();
19220  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19221
19222  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
19223  // instructions match the semantics of the common C idiom x<y?x:y but not
19224  // x<=y?x:y, because of how they handle negative zero (which can be
19225  // ignored in unsafe-math mode).
19226  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
19227      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
19228      (Subtarget->hasSSE2() ||
19229       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
19230    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
19231
19232    unsigned Opcode = 0;
19233    // Check for x CC y ? x : y.
19234    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
19235        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
19236      switch (CC) {
19237      default: break;
19238      case ISD::SETULT:
19239        // Converting this to a min would handle NaNs incorrectly, and swapping
19240        // the operands would cause it to handle comparisons between positive
19241        // and negative zero incorrectly.
19242        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
19243          if (!DAG.getTarget().Options.UnsafeFPMath &&
19244              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
19245            break;
19246          std::swap(LHS, RHS);
19247        }
19248        Opcode = X86ISD::FMIN;
19249        break;
19250      case ISD::SETOLE:
19251        // Converting this to a min would handle comparisons between positive
19252        // and negative zero incorrectly.
19253        if (!DAG.getTarget().Options.UnsafeFPMath &&
19254            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
19255          break;
19256        Opcode = X86ISD::FMIN;
19257        break;
19258      case ISD::SETULE:
19259        // Converting this to a min would handle both negative zeros and NaNs
19260        // incorrectly, but we can swap the operands to fix both.
19261        std::swap(LHS, RHS);
19262      case ISD::SETOLT:
19263      case ISD::SETLT:
19264      case ISD::SETLE:
19265        Opcode = X86ISD::FMIN;
19266        break;
19267
19268      case ISD::SETOGE:
19269        // Converting this to a max would handle comparisons between positive
19270        // and negative zero incorrectly.
19271        if (!DAG.getTarget().Options.UnsafeFPMath &&
19272            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
19273          break;
19274        Opcode = X86ISD::FMAX;
19275        break;
19276      case ISD::SETUGT:
19277        // Converting this to a max would handle NaNs incorrectly, and swapping
19278        // the operands would cause it to handle comparisons between positive
19279        // and negative zero incorrectly.
19280        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
19281          if (!DAG.getTarget().Options.UnsafeFPMath &&
19282              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
19283            break;
19284          std::swap(LHS, RHS);
19285        }
19286        Opcode = X86ISD::FMAX;
19287        break;
19288      case ISD::SETUGE:
19289        // Converting this to a max would handle both negative zeros and NaNs
19290        // incorrectly, but we can swap the operands to fix both.
19291        std::swap(LHS, RHS);
19292      case ISD::SETOGT:
19293      case ISD::SETGT:
19294      case ISD::SETGE:
19295        Opcode = X86ISD::FMAX;
19296        break;
19297      }
19298    // Check for x CC y ? y : x -- a min/max with reversed arms.
19299    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
19300               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
19301      switch (CC) {
19302      default: break;
19303      case ISD::SETOGE:
19304        // Converting this to a min would handle comparisons between positive
19305        // and negative zero incorrectly, and swapping the operands would
19306        // cause it to handle NaNs incorrectly.
19307        if (!DAG.getTarget().Options.UnsafeFPMath &&
19308            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
19309          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
19310            break;
19311          std::swap(LHS, RHS);
19312        }
19313        Opcode = X86ISD::FMIN;
19314        break;
19315      case ISD::SETUGT:
19316        // Converting this to a min would handle NaNs incorrectly.
19317        if (!DAG.getTarget().Options.UnsafeFPMath &&
19318            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
19319          break;
19320        Opcode = X86ISD::FMIN;
19321        break;
19322      case ISD::SETUGE:
19323        // Converting this to a min would handle both negative zeros and NaNs
19324        // incorrectly, but we can swap the operands to fix both.
19325        std::swap(LHS, RHS);
19326      case ISD::SETOGT:
19327      case ISD::SETGT:
19328      case ISD::SETGE:
19329        Opcode = X86ISD::FMIN;
19330        break;
19331
19332      case ISD::SETULT:
19333        // Converting this to a max would handle NaNs incorrectly.
19334        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
19335          break;
19336        Opcode = X86ISD::FMAX;
19337        break;
19338      case ISD::SETOLE:
19339        // Converting this to a max would handle comparisons between positive
19340        // and negative zero incorrectly, and swapping the operands would
19341        // cause it to handle NaNs incorrectly.
19342        if (!DAG.getTarget().Options.UnsafeFPMath &&
19343            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
19344          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
19345            break;
19346          std::swap(LHS, RHS);
19347        }
19348        Opcode = X86ISD::FMAX;
19349        break;
19350      case ISD::SETULE:
19351        // Converting this to a max would handle both negative zeros and NaNs
19352        // incorrectly, but we can swap the operands to fix both.
19353        std::swap(LHS, RHS);
19354      case ISD::SETOLT:
19355      case ISD::SETLT:
19356      case ISD::SETLE:
19357        Opcode = X86ISD::FMAX;
19358        break;
19359      }
19360    }
19361
19362    if (Opcode)
19363      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
19364  }
19365
19366  EVT CondVT = Cond.getValueType();
19367  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
19368      CondVT.getVectorElementType() == MVT::i1) {
19369    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
19370    // lowering on AVX-512. In this case we convert it to
19371    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
19372    // The same situation for all 128 and 256-bit vectors of i8 and i16
19373    EVT OpVT = LHS.getValueType();
19374    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
19375        (OpVT.getVectorElementType() == MVT::i8 ||
19376         OpVT.getVectorElementType() == MVT::i16)) {
19377      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
19378      DCI.AddToWorklist(Cond.getNode());
19379      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
19380    }
19381  }
19382  // If this is a select between two integer constants, try to do some
19383  // optimizations.
19384  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
19385    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
19386      // Don't do this for crazy integer types.
19387      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
19388        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
19389        // so that TrueC (the true value) is larger than FalseC.
19390        bool NeedsCondInvert = false;
19391
19392        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
19393            // Efficiently invertible.
19394            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
19395             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
19396              isa<ConstantSDNode>(Cond.getOperand(1))))) {
19397          NeedsCondInvert = true;
19398          std::swap(TrueC, FalseC);
19399        }
19400
19401        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
19402        if (FalseC->getAPIntValue() == 0 &&
19403            TrueC->getAPIntValue().isPowerOf2()) {
19404          if (NeedsCondInvert) // Invert the condition if needed.
19405            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
19406                               DAG.getConstant(1, Cond.getValueType()));
19407
19408          // Zero extend the condition if needed.
19409          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
19410
19411          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
19412          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
19413                             DAG.getConstant(ShAmt, MVT::i8));
19414        }
19415
19416        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
19417        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
19418          if (NeedsCondInvert) // Invert the condition if needed.
19419            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
19420                               DAG.getConstant(1, Cond.getValueType()));
19421
19422          // Zero extend the condition if needed.
19423          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
19424                             FalseC->getValueType(0), Cond);
19425          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
19426                             SDValue(FalseC, 0));
19427        }
19428
19429        // Optimize cases that will turn into an LEA instruction.  This requires
19430        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
19431        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
19432          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
19433          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
19434
19435          bool isFastMultiplier = false;
19436          if (Diff < 10) {
19437            switch ((unsigned char)Diff) {
19438              default: break;
19439              case 1:  // result = add base, cond
19440              case 2:  // result = lea base(    , cond*2)
19441              case 3:  // result = lea base(cond, cond*2)
19442              case 4:  // result = lea base(    , cond*4)
19443              case 5:  // result = lea base(cond, cond*4)
19444              case 8:  // result = lea base(    , cond*8)
19445              case 9:  // result = lea base(cond, cond*8)
19446                isFastMultiplier = true;
19447                break;
19448            }
19449          }
19450
19451          if (isFastMultiplier) {
19452            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
19453            if (NeedsCondInvert) // Invert the condition if needed.
19454              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
19455                                 DAG.getConstant(1, Cond.getValueType()));
19456
19457            // Zero extend the condition if needed.
19458            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
19459                               Cond);
19460            // Scale the condition by the difference.
19461            if (Diff != 1)
19462              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
19463                                 DAG.getConstant(Diff, Cond.getValueType()));
19464
19465            // Add the base if non-zero.
19466            if (FalseC->getAPIntValue() != 0)
19467              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
19468                                 SDValue(FalseC, 0));
19469            return Cond;
19470          }
19471        }
19472      }
19473  }
19474
19475  // Canonicalize max and min:
19476  // (x > y) ? x : y -> (x >= y) ? x : y
19477  // (x < y) ? x : y -> (x <= y) ? x : y
19478  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
19479  // the need for an extra compare
19480  // against zero. e.g.
19481  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
19482  // subl   %esi, %edi
19483  // testl  %edi, %edi
19484  // movl   $0, %eax
19485  // cmovgl %edi, %eax
19486  // =>
19487  // xorl   %eax, %eax
19488  // subl   %esi, $edi
19489  // cmovsl %eax, %edi
19490  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
19491      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
19492      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
19493    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
19494    switch (CC) {
19495    default: break;
19496    case ISD::SETLT:
19497    case ISD::SETGT: {
19498      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
19499      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
19500                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
19501      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
19502    }
19503    }
19504  }
19505
19506  // Early exit check
19507  if (!TLI.isTypeLegal(VT))
19508    return SDValue();
19509
19510  // Match VSELECTs into subs with unsigned saturation.
19511  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
19512      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
19513      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
19514       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
19515    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
19516
19517    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
19518    // left side invert the predicate to simplify logic below.
19519    SDValue Other;
19520    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
19521      Other = RHS;
19522      CC = ISD::getSetCCInverse(CC, true);
19523    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
19524      Other = LHS;
19525    }
19526
19527    if (Other.getNode() && Other->getNumOperands() == 2 &&
19528        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
19529      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
19530      SDValue CondRHS = Cond->getOperand(1);
19531
19532      // Look for a general sub with unsigned saturation first.
19533      // x >= y ? x-y : 0 --> subus x, y
19534      // x >  y ? x-y : 0 --> subus x, y
19535      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
19536          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
19537        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
19538
19539      if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
19540        if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
19541          if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
19542            if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
19543              // If the RHS is a constant we have to reverse the const
19544              // canonicalization.
19545              // x > C-1 ? x+-C : 0 --> subus x, C
19546              if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
19547                  CondRHSConst->getAPIntValue() ==
19548                      (-OpRHSConst->getAPIntValue() - 1))
19549                return DAG.getNode(
19550                    X86ISD::SUBUS, DL, VT, OpLHS,
19551                    DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
19552
19553          // Another special case: If C was a sign bit, the sub has been
19554          // canonicalized into a xor.
19555          // FIXME: Would it be better to use computeKnownBits to determine
19556          //        whether it's safe to decanonicalize the xor?
19557          // x s< 0 ? x^C : 0 --> subus x, C
19558          if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
19559              ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
19560              OpRHSConst->getAPIntValue().isSignBit())
19561            // Note that we have to rebuild the RHS constant here to ensure we
19562            // don't rely on particular values of undef lanes.
19563            return DAG.getNode(
19564                X86ISD::SUBUS, DL, VT, OpLHS,
19565                DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
19566        }
19567    }
19568  }
19569
19570  // Try to match a min/max vector operation.
19571  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
19572    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
19573    unsigned Opc = ret.first;
19574    bool NeedSplit = ret.second;
19575
19576    if (Opc && NeedSplit) {
19577      unsigned NumElems = VT.getVectorNumElements();
19578      // Extract the LHS vectors
19579      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
19580      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
19581
19582      // Extract the RHS vectors
19583      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
19584      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
19585
19586      // Create min/max for each subvector
19587      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
19588      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
19589
19590      // Merge the result
19591      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
19592    } else if (Opc)
19593      return DAG.getNode(Opc, DL, VT, LHS, RHS);
19594  }
19595
19596  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
19597  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
19598      // Check if SETCC has already been promoted
19599      TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT &&
19600      // Check that condition value type matches vselect operand type
19601      CondVT == VT) {
19602
19603    assert(Cond.getValueType().isVector() &&
19604           "vector select expects a vector selector!");
19605
19606    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
19607    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
19608
19609    if (!TValIsAllOnes && !FValIsAllZeros) {
19610      // Try invert the condition if true value is not all 1s and false value
19611      // is not all 0s.
19612      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
19613      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
19614
19615      if (TValIsAllZeros || FValIsAllOnes) {
19616        SDValue CC = Cond.getOperand(2);
19617        ISD::CondCode NewCC =
19618          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
19619                               Cond.getOperand(0).getValueType().isInteger());
19620        Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
19621        std::swap(LHS, RHS);
19622        TValIsAllOnes = FValIsAllOnes;
19623        FValIsAllZeros = TValIsAllZeros;
19624      }
19625    }
19626
19627    if (TValIsAllOnes || FValIsAllZeros) {
19628      SDValue Ret;
19629
19630      if (TValIsAllOnes && FValIsAllZeros)
19631        Ret = Cond;
19632      else if (TValIsAllOnes)
19633        Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
19634                          DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
19635      else if (FValIsAllZeros)
19636        Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
19637                          DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
19638
19639      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
19640    }
19641  }
19642
19643  // Try to fold this VSELECT into a MOVSS/MOVSD
19644  if (N->getOpcode() == ISD::VSELECT &&
19645      Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) {
19646    if (VT == MVT::v4i32 || VT == MVT::v4f32 ||
19647        (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) {
19648      bool CanFold = false;
19649      unsigned NumElems = Cond.getNumOperands();
19650      SDValue A = LHS;
19651      SDValue B = RHS;
19652
19653      if (isZero(Cond.getOperand(0))) {
19654        CanFold = true;
19655
19656        // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B)
19657        // fold (vselect <0,-1> -> (movsd A, B)
19658        for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
19659          CanFold = isAllOnes(Cond.getOperand(i));
19660      } else if (isAllOnes(Cond.getOperand(0))) {
19661        CanFold = true;
19662        std::swap(A, B);
19663
19664        // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A)
19665        // fold (vselect <-1,0> -> (movsd B, A)
19666        for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
19667          CanFold = isZero(Cond.getOperand(i));
19668      }
19669
19670      if (CanFold) {
19671        if (VT == MVT::v4i32 || VT == MVT::v4f32)
19672          return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG);
19673        return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG);
19674      }
19675
19676      if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) {
19677        // fold (v4i32: vselect <0,0,-1,-1>, A, B) ->
19678        //      (v4i32 (bitcast (movsd (v2i64 (bitcast A)),
19679        //                             (v2i64 (bitcast B)))))
19680        //
19681        // fold (v4f32: vselect <0,0,-1,-1>, A, B) ->
19682        //      (v4f32 (bitcast (movsd (v2f64 (bitcast A)),
19683        //                             (v2f64 (bitcast B)))))
19684        //
19685        // fold (v4i32: vselect <-1,-1,0,0>, A, B) ->
19686        //      (v4i32 (bitcast (movsd (v2i64 (bitcast B)),
19687        //                             (v2i64 (bitcast A)))))
19688        //
19689        // fold (v4f32: vselect <-1,-1,0,0>, A, B) ->
19690        //      (v4f32 (bitcast (movsd (v2f64 (bitcast B)),
19691        //                             (v2f64 (bitcast A)))))
19692
19693        CanFold = (isZero(Cond.getOperand(0)) &&
19694                   isZero(Cond.getOperand(1)) &&
19695                   isAllOnes(Cond.getOperand(2)) &&
19696                   isAllOnes(Cond.getOperand(3)));
19697
19698        if (!CanFold && isAllOnes(Cond.getOperand(0)) &&
19699            isAllOnes(Cond.getOperand(1)) &&
19700            isZero(Cond.getOperand(2)) &&
19701            isZero(Cond.getOperand(3))) {
19702          CanFold = true;
19703          std::swap(LHS, RHS);
19704        }
19705
19706        if (CanFold) {
19707          EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64;
19708          SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS);
19709          SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS);
19710          SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA,
19711                                                NewB, DAG);
19712          return DAG.getNode(ISD::BITCAST, DL, VT, Select);
19713        }
19714      }
19715    }
19716  }
19717
19718  // If we know that this node is legal then we know that it is going to be
19719  // matched by one of the SSE/AVX BLEND instructions. These instructions only
19720  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
19721  // to simplify previous instructions.
19722  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
19723      !DCI.isBeforeLegalize() &&
19724      // We explicitly check against v8i16 and v16i16 because, although
19725      // they're marked as Custom, they might only be legal when Cond is a
19726      // build_vector of constants. This will be taken care in a later
19727      // condition.
19728      (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
19729       VT != MVT::v8i16)) {
19730    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
19731
19732    // Don't optimize vector selects that map to mask-registers.
19733    if (BitWidth == 1)
19734      return SDValue();
19735
19736    // Check all uses of that condition operand to check whether it will be
19737    // consumed by non-BLEND instructions, which may depend on all bits are set
19738    // properly.
19739    for (SDNode::use_iterator I = Cond->use_begin(),
19740                              E = Cond->use_end(); I != E; ++I)
19741      if (I->getOpcode() != ISD::VSELECT)
19742        // TODO: Add other opcodes eventually lowered into BLEND.
19743        return SDValue();
19744
19745    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
19746    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
19747
19748    APInt KnownZero, KnownOne;
19749    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
19750                                          DCI.isBeforeLegalizeOps());
19751    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
19752        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
19753      DCI.CommitTargetLoweringOpt(TLO);
19754  }
19755
19756  // We should generate an X86ISD::BLENDI from a vselect if its argument
19757  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
19758  // constants. This specific pattern gets generated when we split a
19759  // selector for a 512 bit vector in a machine without AVX512 (but with
19760  // 256-bit vectors), during legalization:
19761  //
19762  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
19763  //
19764  // Iff we find this pattern and the build_vectors are built from
19765  // constants, we translate the vselect into a shuffle_vector that we
19766  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
19767  if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalize()) {
19768    SDValue Shuffle = TransformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
19769    if (Shuffle.getNode())
19770      return Shuffle;
19771  }
19772
19773  return SDValue();
19774}
19775
19776// Check whether a boolean test is testing a boolean value generated by
19777// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
19778// code.
19779//
19780// Simplify the following patterns:
19781// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
19782// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
19783// to (Op EFLAGS Cond)
19784//
19785// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
19786// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
19787// to (Op EFLAGS !Cond)
19788//
19789// where Op could be BRCOND or CMOV.
19790//
19791static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
19792  // Quit if not CMP and SUB with its value result used.
19793  if (Cmp.getOpcode() != X86ISD::CMP &&
19794      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
19795      return SDValue();
19796
19797  // Quit if not used as a boolean value.
19798  if (CC != X86::COND_E && CC != X86::COND_NE)
19799    return SDValue();
19800
19801  // Check CMP operands. One of them should be 0 or 1 and the other should be
19802  // an SetCC or extended from it.
19803  SDValue Op1 = Cmp.getOperand(0);
19804  SDValue Op2 = Cmp.getOperand(1);
19805
19806  SDValue SetCC;
19807  const ConstantSDNode* C = nullptr;
19808  bool needOppositeCond = (CC == X86::COND_E);
19809  bool checkAgainstTrue = false; // Is it a comparison against 1?
19810
19811  if ((C = dyn_cast<ConstantSDNode>(Op1)))
19812    SetCC = Op2;
19813  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
19814    SetCC = Op1;
19815  else // Quit if all operands are not constants.
19816    return SDValue();
19817
19818  if (C->getZExtValue() == 1) {
19819    needOppositeCond = !needOppositeCond;
19820    checkAgainstTrue = true;
19821  } else if (C->getZExtValue() != 0)
19822    // Quit if the constant is neither 0 or 1.
19823    return SDValue();
19824
19825  bool truncatedToBoolWithAnd = false;
19826  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
19827  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
19828         SetCC.getOpcode() == ISD::TRUNCATE ||
19829         SetCC.getOpcode() == ISD::AND) {
19830    if (SetCC.getOpcode() == ISD::AND) {
19831      int OpIdx = -1;
19832      ConstantSDNode *CS;
19833      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
19834          CS->getZExtValue() == 1)
19835        OpIdx = 1;
19836      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
19837          CS->getZExtValue() == 1)
19838        OpIdx = 0;
19839      if (OpIdx == -1)
19840        break;
19841      SetCC = SetCC.getOperand(OpIdx);
19842      truncatedToBoolWithAnd = true;
19843    } else
19844      SetCC = SetCC.getOperand(0);
19845  }
19846
19847  switch (SetCC.getOpcode()) {
19848  case X86ISD::SETCC_CARRY:
19849    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
19850    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
19851    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
19852    // truncated to i1 using 'and'.
19853    if (checkAgainstTrue && !truncatedToBoolWithAnd)
19854      break;
19855    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
19856           "Invalid use of SETCC_CARRY!");
19857    // FALL THROUGH
19858  case X86ISD::SETCC:
19859    // Set the condition code or opposite one if necessary.
19860    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
19861    if (needOppositeCond)
19862      CC = X86::GetOppositeBranchCondition(CC);
19863    return SetCC.getOperand(1);
19864  case X86ISD::CMOV: {
19865    // Check whether false/true value has canonical one, i.e. 0 or 1.
19866    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
19867    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
19868    // Quit if true value is not a constant.
19869    if (!TVal)
19870      return SDValue();
19871    // Quit if false value is not a constant.
19872    if (!FVal) {
19873      SDValue Op = SetCC.getOperand(0);
19874      // Skip 'zext' or 'trunc' node.
19875      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
19876          Op.getOpcode() == ISD::TRUNCATE)
19877        Op = Op.getOperand(0);
19878      // A special case for rdrand/rdseed, where 0 is set if false cond is
19879      // found.
19880      if ((Op.getOpcode() != X86ISD::RDRAND &&
19881           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
19882        return SDValue();
19883    }
19884    // Quit if false value is not the constant 0 or 1.
19885    bool FValIsFalse = true;
19886    if (FVal && FVal->getZExtValue() != 0) {
19887      if (FVal->getZExtValue() != 1)
19888        return SDValue();
19889      // If FVal is 1, opposite cond is needed.
19890      needOppositeCond = !needOppositeCond;
19891      FValIsFalse = false;
19892    }
19893    // Quit if TVal is not the constant opposite of FVal.
19894    if (FValIsFalse && TVal->getZExtValue() != 1)
19895      return SDValue();
19896    if (!FValIsFalse && TVal->getZExtValue() != 0)
19897      return SDValue();
19898    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
19899    if (needOppositeCond)
19900      CC = X86::GetOppositeBranchCondition(CC);
19901    return SetCC.getOperand(3);
19902  }
19903  }
19904
19905  return SDValue();
19906}
19907
19908/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
19909static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
19910                                  TargetLowering::DAGCombinerInfo &DCI,
19911                                  const X86Subtarget *Subtarget) {
19912  SDLoc DL(N);
19913
19914  // If the flag operand isn't dead, don't touch this CMOV.
19915  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
19916    return SDValue();
19917
19918  SDValue FalseOp = N->getOperand(0);
19919  SDValue TrueOp = N->getOperand(1);
19920  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
19921  SDValue Cond = N->getOperand(3);
19922
19923  if (CC == X86::COND_E || CC == X86::COND_NE) {
19924    switch (Cond.getOpcode()) {
19925    default: break;
19926    case X86ISD::BSR:
19927    case X86ISD::BSF:
19928      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
19929      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
19930        return (CC == X86::COND_E) ? FalseOp : TrueOp;
19931    }
19932  }
19933
19934  SDValue Flags;
19935
19936  Flags = checkBoolTestSetCCCombine(Cond, CC);
19937  if (Flags.getNode() &&
19938      // Extra check as FCMOV only supports a subset of X86 cond.
19939      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
19940    SDValue Ops[] = { FalseOp, TrueOp,
19941                      DAG.getConstant(CC, MVT::i8), Flags };
19942    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
19943  }
19944
19945  // If this is a select between two integer constants, try to do some
19946  // optimizations.  Note that the operands are ordered the opposite of SELECT
19947  // operands.
19948  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
19949    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
19950      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
19951      // larger than FalseC (the false value).
19952      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
19953        CC = X86::GetOppositeBranchCondition(CC);
19954        std::swap(TrueC, FalseC);
19955        std::swap(TrueOp, FalseOp);
19956      }
19957
19958      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
19959      // This is efficient for any integer data type (including i8/i16) and
19960      // shift amount.
19961      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
19962        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
19963                           DAG.getConstant(CC, MVT::i8), Cond);
19964
19965        // Zero extend the condition if needed.
19966        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
19967
19968        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
19969        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
19970                           DAG.getConstant(ShAmt, MVT::i8));
19971        if (N->getNumValues() == 2)  // Dead flag value?
19972          return DCI.CombineTo(N, Cond, SDValue());
19973        return Cond;
19974      }
19975
19976      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
19977      // for any integer data type, including i8/i16.
19978      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
19979        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
19980                           DAG.getConstant(CC, MVT::i8), Cond);
19981
19982        // Zero extend the condition if needed.
19983        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
19984                           FalseC->getValueType(0), Cond);
19985        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
19986                           SDValue(FalseC, 0));
19987
19988        if (N->getNumValues() == 2)  // Dead flag value?
19989          return DCI.CombineTo(N, Cond, SDValue());
19990        return Cond;
19991      }
19992
19993      // Optimize cases that will turn into an LEA instruction.  This requires
19994      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
19995      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
19996        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
19997        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
19998
19999        bool isFastMultiplier = false;
20000        if (Diff < 10) {
20001          switch ((unsigned char)Diff) {
20002          default: break;
20003          case 1:  // result = add base, cond
20004          case 2:  // result = lea base(    , cond*2)
20005          case 3:  // result = lea base(cond, cond*2)
20006          case 4:  // result = lea base(    , cond*4)
20007          case 5:  // result = lea base(cond, cond*4)
20008          case 8:  // result = lea base(    , cond*8)
20009          case 9:  // result = lea base(cond, cond*8)
20010            isFastMultiplier = true;
20011            break;
20012          }
20013        }
20014
20015        if (isFastMultiplier) {
20016          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
20017          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
20018                             DAG.getConstant(CC, MVT::i8), Cond);
20019          // Zero extend the condition if needed.
20020          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
20021                             Cond);
20022          // Scale the condition by the difference.
20023          if (Diff != 1)
20024            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
20025                               DAG.getConstant(Diff, Cond.getValueType()));
20026
20027          // Add the base if non-zero.
20028          if (FalseC->getAPIntValue() != 0)
20029            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
20030                               SDValue(FalseC, 0));
20031          if (N->getNumValues() == 2)  // Dead flag value?
20032            return DCI.CombineTo(N, Cond, SDValue());
20033          return Cond;
20034        }
20035      }
20036    }
20037  }
20038
20039  // Handle these cases:
20040  //   (select (x != c), e, c) -> select (x != c), e, x),
20041  //   (select (x == c), c, e) -> select (x == c), x, e)
20042  // where the c is an integer constant, and the "select" is the combination
20043  // of CMOV and CMP.
20044  //
20045  // The rationale for this change is that the conditional-move from a constant
20046  // needs two instructions, however, conditional-move from a register needs
20047  // only one instruction.
20048  //
20049  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
20050  //  some instruction-combining opportunities. This opt needs to be
20051  //  postponed as late as possible.
20052  //
20053  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
20054    // the DCI.xxxx conditions are provided to postpone the optimization as
20055    // late as possible.
20056
20057    ConstantSDNode *CmpAgainst = nullptr;
20058    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
20059        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
20060        !isa<ConstantSDNode>(Cond.getOperand(0))) {
20061
20062      if (CC == X86::COND_NE &&
20063          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
20064        CC = X86::GetOppositeBranchCondition(CC);
20065        std::swap(TrueOp, FalseOp);
20066      }
20067
20068      if (CC == X86::COND_E &&
20069          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
20070        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
20071                          DAG.getConstant(CC, MVT::i8), Cond };
20072        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
20073      }
20074    }
20075  }
20076
20077  return SDValue();
20078}
20079
20080static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
20081                                                const X86Subtarget *Subtarget) {
20082  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
20083  switch (IntNo) {
20084  default: return SDValue();
20085  // SSE/AVX/AVX2 blend intrinsics.
20086  case Intrinsic::x86_avx2_pblendvb:
20087  case Intrinsic::x86_avx2_pblendw:
20088  case Intrinsic::x86_avx2_pblendd_128:
20089  case Intrinsic::x86_avx2_pblendd_256:
20090    // Don't try to simplify this intrinsic if we don't have AVX2.
20091    if (!Subtarget->hasAVX2())
20092      return SDValue();
20093    // FALL-THROUGH
20094  case Intrinsic::x86_avx_blend_pd_256:
20095  case Intrinsic::x86_avx_blend_ps_256:
20096  case Intrinsic::x86_avx_blendv_pd_256:
20097  case Intrinsic::x86_avx_blendv_ps_256:
20098    // Don't try to simplify this intrinsic if we don't have AVX.
20099    if (!Subtarget->hasAVX())
20100      return SDValue();
20101    // FALL-THROUGH
20102  case Intrinsic::x86_sse41_pblendw:
20103  case Intrinsic::x86_sse41_blendpd:
20104  case Intrinsic::x86_sse41_blendps:
20105  case Intrinsic::x86_sse41_blendvps:
20106  case Intrinsic::x86_sse41_blendvpd:
20107  case Intrinsic::x86_sse41_pblendvb: {
20108    SDValue Op0 = N->getOperand(1);
20109    SDValue Op1 = N->getOperand(2);
20110    SDValue Mask = N->getOperand(3);
20111
20112    // Don't try to simplify this intrinsic if we don't have SSE4.1.
20113    if (!Subtarget->hasSSE41())
20114      return SDValue();
20115
20116    // fold (blend A, A, Mask) -> A
20117    if (Op0 == Op1)
20118      return Op0;
20119    // fold (blend A, B, allZeros) -> A
20120    if (ISD::isBuildVectorAllZeros(Mask.getNode()))
20121      return Op0;
20122    // fold (blend A, B, allOnes) -> B
20123    if (ISD::isBuildVectorAllOnes(Mask.getNode()))
20124      return Op1;
20125
20126    // Simplify the case where the mask is a constant i32 value.
20127    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
20128      if (C->isNullValue())
20129        return Op0;
20130      if (C->isAllOnesValue())
20131        return Op1;
20132    }
20133
20134    return SDValue();
20135  }
20136
20137  // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
20138  case Intrinsic::x86_sse2_psrai_w:
20139  case Intrinsic::x86_sse2_psrai_d:
20140  case Intrinsic::x86_avx2_psrai_w:
20141  case Intrinsic::x86_avx2_psrai_d:
20142  case Intrinsic::x86_sse2_psra_w:
20143  case Intrinsic::x86_sse2_psra_d:
20144  case Intrinsic::x86_avx2_psra_w:
20145  case Intrinsic::x86_avx2_psra_d: {
20146    SDValue Op0 = N->getOperand(1);
20147    SDValue Op1 = N->getOperand(2);
20148    EVT VT = Op0.getValueType();
20149    assert(VT.isVector() && "Expected a vector type!");
20150
20151    if (isa<BuildVectorSDNode>(Op1))
20152      Op1 = Op1.getOperand(0);
20153
20154    if (!isa<ConstantSDNode>(Op1))
20155      return SDValue();
20156
20157    EVT SVT = VT.getVectorElementType();
20158    unsigned SVTBits = SVT.getSizeInBits();
20159
20160    ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
20161    const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
20162    uint64_t ShAmt = C.getZExtValue();
20163
20164    // Don't try to convert this shift into a ISD::SRA if the shift
20165    // count is bigger than or equal to the element size.
20166    if (ShAmt >= SVTBits)
20167      return SDValue();
20168
20169    // Trivial case: if the shift count is zero, then fold this
20170    // into the first operand.
20171    if (ShAmt == 0)
20172      return Op0;
20173
20174    // Replace this packed shift intrinsic with a target independent
20175    // shift dag node.
20176    SDValue Splat = DAG.getConstant(C, VT);
20177    return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
20178  }
20179  }
20180}
20181
20182/// PerformMulCombine - Optimize a single multiply with constant into two
20183/// in order to implement it with two cheaper instructions, e.g.
20184/// LEA + SHL, LEA + LEA.
20185static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
20186                                 TargetLowering::DAGCombinerInfo &DCI) {
20187  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
20188    return SDValue();
20189
20190  EVT VT = N->getValueType(0);
20191  if (VT != MVT::i64)
20192    return SDValue();
20193
20194  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
20195  if (!C)
20196    return SDValue();
20197  uint64_t MulAmt = C->getZExtValue();
20198  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
20199    return SDValue();
20200
20201  uint64_t MulAmt1 = 0;
20202  uint64_t MulAmt2 = 0;
20203  if ((MulAmt % 9) == 0) {
20204    MulAmt1 = 9;
20205    MulAmt2 = MulAmt / 9;
20206  } else if ((MulAmt % 5) == 0) {
20207    MulAmt1 = 5;
20208    MulAmt2 = MulAmt / 5;
20209  } else if ((MulAmt % 3) == 0) {
20210    MulAmt1 = 3;
20211    MulAmt2 = MulAmt / 3;
20212  }
20213  if (MulAmt2 &&
20214      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
20215    SDLoc DL(N);
20216
20217    if (isPowerOf2_64(MulAmt2) &&
20218        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
20219      // If second multiplifer is pow2, issue it first. We want the multiply by
20220      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
20221      // is an add.
20222      std::swap(MulAmt1, MulAmt2);
20223
20224    SDValue NewMul;
20225    if (isPowerOf2_64(MulAmt1))
20226      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
20227                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
20228    else
20229      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
20230                           DAG.getConstant(MulAmt1, VT));
20231
20232    if (isPowerOf2_64(MulAmt2))
20233      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
20234                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
20235    else
20236      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
20237                           DAG.getConstant(MulAmt2, VT));
20238
20239    // Do not add new nodes to DAG combiner worklist.
20240    DCI.CombineTo(N, NewMul, false);
20241  }
20242  return SDValue();
20243}
20244
20245static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
20246  SDValue N0 = N->getOperand(0);
20247  SDValue N1 = N->getOperand(1);
20248  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
20249  EVT VT = N0.getValueType();
20250
20251  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
20252  // since the result of setcc_c is all zero's or all ones.
20253  if (VT.isInteger() && !VT.isVector() &&
20254      N1C && N0.getOpcode() == ISD::AND &&
20255      N0.getOperand(1).getOpcode() == ISD::Constant) {
20256    SDValue N00 = N0.getOperand(0);
20257    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
20258        ((N00.getOpcode() == ISD::ANY_EXTEND ||
20259          N00.getOpcode() == ISD::ZERO_EXTEND) &&
20260         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
20261      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
20262      APInt ShAmt = N1C->getAPIntValue();
20263      Mask = Mask.shl(ShAmt);
20264      if (Mask != 0)
20265        return DAG.getNode(ISD::AND, SDLoc(N), VT,
20266                           N00, DAG.getConstant(Mask, VT));
20267    }
20268  }
20269
20270  // Hardware support for vector shifts is sparse which makes us scalarize the
20271  // vector operations in many cases. Also, on sandybridge ADD is faster than
20272  // shl.
20273  // (shl V, 1) -> add V,V
20274  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
20275    if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
20276      assert(N0.getValueType().isVector() && "Invalid vector shift type");
20277      // We shift all of the values by one. In many cases we do not have
20278      // hardware support for this operation. This is better expressed as an ADD
20279      // of two values.
20280      if (N1SplatC->getZExtValue() == 1)
20281        return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
20282    }
20283
20284  return SDValue();
20285}
20286
20287/// \brief Returns a vector of 0s if the node in input is a vector logical
20288/// shift by a constant amount which is known to be bigger than or equal
20289/// to the vector element size in bits.
20290static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
20291                                      const X86Subtarget *Subtarget) {
20292  EVT VT = N->getValueType(0);
20293
20294  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
20295      (!Subtarget->hasInt256() ||
20296       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
20297    return SDValue();
20298
20299  SDValue Amt = N->getOperand(1);
20300  SDLoc DL(N);
20301  if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
20302    if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
20303      APInt ShiftAmt = AmtSplat->getAPIntValue();
20304      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
20305
20306      // SSE2/AVX2 logical shifts always return a vector of 0s
20307      // if the shift amount is bigger than or equal to
20308      // the element size. The constant shift amount will be
20309      // encoded as a 8-bit immediate.
20310      if (ShiftAmt.trunc(8).uge(MaxAmount))
20311        return getZeroVector(VT, Subtarget, DAG, DL);
20312    }
20313
20314  return SDValue();
20315}
20316
20317/// PerformShiftCombine - Combine shifts.
20318static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
20319                                   TargetLowering::DAGCombinerInfo &DCI,
20320                                   const X86Subtarget *Subtarget) {
20321  if (N->getOpcode() == ISD::SHL) {
20322    SDValue V = PerformSHLCombine(N, DAG);
20323    if (V.getNode()) return V;
20324  }
20325
20326  if (N->getOpcode() != ISD::SRA) {
20327    // Try to fold this logical shift into a zero vector.
20328    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
20329    if (V.getNode()) return V;
20330  }
20331
20332  return SDValue();
20333}
20334
20335// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
20336// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
20337// and friends.  Likewise for OR -> CMPNEQSS.
20338static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
20339                            TargetLowering::DAGCombinerInfo &DCI,
20340                            const X86Subtarget *Subtarget) {
20341  unsigned opcode;
20342
20343  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
20344  // we're requiring SSE2 for both.
20345  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
20346    SDValue N0 = N->getOperand(0);
20347    SDValue N1 = N->getOperand(1);
20348    SDValue CMP0 = N0->getOperand(1);
20349    SDValue CMP1 = N1->getOperand(1);
20350    SDLoc DL(N);
20351
20352    // The SETCCs should both refer to the same CMP.
20353    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
20354      return SDValue();
20355
20356    SDValue CMP00 = CMP0->getOperand(0);
20357    SDValue CMP01 = CMP0->getOperand(1);
20358    EVT     VT    = CMP00.getValueType();
20359
20360    if (VT == MVT::f32 || VT == MVT::f64) {
20361      bool ExpectingFlags = false;
20362      // Check for any users that want flags:
20363      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
20364           !ExpectingFlags && UI != UE; ++UI)
20365        switch (UI->getOpcode()) {
20366        default:
20367        case ISD::BR_CC:
20368        case ISD::BRCOND:
20369        case ISD::SELECT:
20370          ExpectingFlags = true;
20371          break;
20372        case ISD::CopyToReg:
20373        case ISD::SIGN_EXTEND:
20374        case ISD::ZERO_EXTEND:
20375        case ISD::ANY_EXTEND:
20376          break;
20377        }
20378
20379      if (!ExpectingFlags) {
20380        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
20381        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
20382
20383        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
20384          X86::CondCode tmp = cc0;
20385          cc0 = cc1;
20386          cc1 = tmp;
20387        }
20388
20389        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
20390            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
20391          // FIXME: need symbolic constants for these magic numbers.
20392          // See X86ATTInstPrinter.cpp:printSSECC().
20393          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
20394          if (Subtarget->hasAVX512()) {
20395            SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
20396                                         CMP01, DAG.getConstant(x86cc, MVT::i8));
20397            if (N->getValueType(0) != MVT::i1)
20398              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
20399                                 FSetCC);
20400            return FSetCC;
20401          }
20402          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
20403                                              CMP00.getValueType(), CMP00, CMP01,
20404                                              DAG.getConstant(x86cc, MVT::i8));
20405
20406          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
20407          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
20408
20409          if (is64BitFP && !Subtarget->is64Bit()) {
20410            // On a 32-bit target, we cannot bitcast the 64-bit float to a
20411            // 64-bit integer, since that's not a legal type. Since
20412            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
20413            // bits, but can do this little dance to extract the lowest 32 bits
20414            // and work with those going forward.
20415            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
20416                                           OnesOrZeroesF);
20417            SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
20418                                           Vector64);
20419            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
20420                                        Vector32, DAG.getIntPtrConstant(0));
20421            IntVT = MVT::i32;
20422          }
20423
20424          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
20425          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
20426                                      DAG.getConstant(1, IntVT));
20427          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
20428          return OneBitOfTruth;
20429        }
20430      }
20431    }
20432  }
20433  return SDValue();
20434}
20435
20436/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
20437/// so it can be folded inside ANDNP.
20438static bool CanFoldXORWithAllOnes(const SDNode *N) {
20439  EVT VT = N->getValueType(0);
20440
20441  // Match direct AllOnes for 128 and 256-bit vectors
20442  if (ISD::isBuildVectorAllOnes(N))
20443    return true;
20444
20445  // Look through a bit convert.
20446  if (N->getOpcode() == ISD::BITCAST)
20447    N = N->getOperand(0).getNode();
20448
20449  // Sometimes the operand may come from a insert_subvector building a 256-bit
20450  // allones vector
20451  if (VT.is256BitVector() &&
20452      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
20453    SDValue V1 = N->getOperand(0);
20454    SDValue V2 = N->getOperand(1);
20455
20456    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
20457        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
20458        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
20459        ISD::isBuildVectorAllOnes(V2.getNode()))
20460      return true;
20461  }
20462
20463  return false;
20464}
20465
20466// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
20467// register. In most cases we actually compare or select YMM-sized registers
20468// and mixing the two types creates horrible code. This method optimizes
20469// some of the transition sequences.
20470static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
20471                                 TargetLowering::DAGCombinerInfo &DCI,
20472                                 const X86Subtarget *Subtarget) {
20473  EVT VT = N->getValueType(0);
20474  if (!VT.is256BitVector())
20475    return SDValue();
20476
20477  assert((N->getOpcode() == ISD::ANY_EXTEND ||
20478          N->getOpcode() == ISD::ZERO_EXTEND ||
20479          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
20480
20481  SDValue Narrow = N->getOperand(0);
20482  EVT NarrowVT = Narrow->getValueType(0);
20483  if (!NarrowVT.is128BitVector())
20484    return SDValue();
20485
20486  if (Narrow->getOpcode() != ISD::XOR &&
20487      Narrow->getOpcode() != ISD::AND &&
20488      Narrow->getOpcode() != ISD::OR)
20489    return SDValue();
20490
20491  SDValue N0  = Narrow->getOperand(0);
20492  SDValue N1  = Narrow->getOperand(1);
20493  SDLoc DL(Narrow);
20494
20495  // The Left side has to be a trunc.
20496  if (N0.getOpcode() != ISD::TRUNCATE)
20497    return SDValue();
20498
20499  // The type of the truncated inputs.
20500  EVT WideVT = N0->getOperand(0)->getValueType(0);
20501  if (WideVT != VT)
20502    return SDValue();
20503
20504  // The right side has to be a 'trunc' or a constant vector.
20505  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
20506  ConstantSDNode *RHSConstSplat = nullptr;
20507  if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
20508    RHSConstSplat = RHSBV->getConstantSplatNode();
20509  if (!RHSTrunc && !RHSConstSplat)
20510    return SDValue();
20511
20512  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20513
20514  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
20515    return SDValue();
20516
20517  // Set N0 and N1 to hold the inputs to the new wide operation.
20518  N0 = N0->getOperand(0);
20519  if (RHSConstSplat) {
20520    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
20521                     SDValue(RHSConstSplat, 0));
20522    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
20523    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
20524  } else if (RHSTrunc) {
20525    N1 = N1->getOperand(0);
20526  }
20527
20528  // Generate the wide operation.
20529  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
20530  unsigned Opcode = N->getOpcode();
20531  switch (Opcode) {
20532  case ISD::ANY_EXTEND:
20533    return Op;
20534  case ISD::ZERO_EXTEND: {
20535    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
20536    APInt Mask = APInt::getAllOnesValue(InBits);
20537    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
20538    return DAG.getNode(ISD::AND, DL, VT,
20539                       Op, DAG.getConstant(Mask, VT));
20540  }
20541  case ISD::SIGN_EXTEND:
20542    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
20543                       Op, DAG.getValueType(NarrowVT));
20544  default:
20545    llvm_unreachable("Unexpected opcode");
20546  }
20547}
20548
20549static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
20550                                 TargetLowering::DAGCombinerInfo &DCI,
20551                                 const X86Subtarget *Subtarget) {
20552  EVT VT = N->getValueType(0);
20553  if (DCI.isBeforeLegalizeOps())
20554    return SDValue();
20555
20556  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
20557  if (R.getNode())
20558    return R;
20559
20560  // Create BEXTR instructions
20561  // BEXTR is ((X >> imm) & (2**size-1))
20562  if (VT == MVT::i32 || VT == MVT::i64) {
20563    SDValue N0 = N->getOperand(0);
20564    SDValue N1 = N->getOperand(1);
20565    SDLoc DL(N);
20566
20567    // Check for BEXTR.
20568    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
20569        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
20570      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
20571      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
20572      if (MaskNode && ShiftNode) {
20573        uint64_t Mask = MaskNode->getZExtValue();
20574        uint64_t Shift = ShiftNode->getZExtValue();
20575        if (isMask_64(Mask)) {
20576          uint64_t MaskSize = CountPopulation_64(Mask);
20577          if (Shift + MaskSize <= VT.getSizeInBits())
20578            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
20579                               DAG.getConstant(Shift | (MaskSize << 8), VT));
20580        }
20581      }
20582    } // BEXTR
20583
20584    return SDValue();
20585  }
20586
20587  // Want to form ANDNP nodes:
20588  // 1) In the hopes of then easily combining them with OR and AND nodes
20589  //    to form PBLEND/PSIGN.
20590  // 2) To match ANDN packed intrinsics
20591  if (VT != MVT::v2i64 && VT != MVT::v4i64)
20592    return SDValue();
20593
20594  SDValue N0 = N->getOperand(0);
20595  SDValue N1 = N->getOperand(1);
20596  SDLoc DL(N);
20597
20598  // Check LHS for vnot
20599  if (N0.getOpcode() == ISD::XOR &&
20600      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
20601      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
20602    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
20603
20604  // Check RHS for vnot
20605  if (N1.getOpcode() == ISD::XOR &&
20606      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
20607      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
20608    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
20609
20610  return SDValue();
20611}
20612
20613static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
20614                                TargetLowering::DAGCombinerInfo &DCI,
20615                                const X86Subtarget *Subtarget) {
20616  if (DCI.isBeforeLegalizeOps())
20617    return SDValue();
20618
20619  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
20620  if (R.getNode())
20621    return R;
20622
20623  SDValue N0 = N->getOperand(0);
20624  SDValue N1 = N->getOperand(1);
20625  EVT VT = N->getValueType(0);
20626
20627  // look for psign/blend
20628  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
20629    if (!Subtarget->hasSSSE3() ||
20630        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
20631      return SDValue();
20632
20633    // Canonicalize pandn to RHS
20634    if (N0.getOpcode() == X86ISD::ANDNP)
20635      std::swap(N0, N1);
20636    // or (and (m, y), (pandn m, x))
20637    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
20638      SDValue Mask = N1.getOperand(0);
20639      SDValue X    = N1.getOperand(1);
20640      SDValue Y;
20641      if (N0.getOperand(0) == Mask)
20642        Y = N0.getOperand(1);
20643      if (N0.getOperand(1) == Mask)
20644        Y = N0.getOperand(0);
20645
20646      // Check to see if the mask appeared in both the AND and ANDNP and
20647      if (!Y.getNode())
20648        return SDValue();
20649
20650      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
20651      // Look through mask bitcast.
20652      if (Mask.getOpcode() == ISD::BITCAST)
20653        Mask = Mask.getOperand(0);
20654      if (X.getOpcode() == ISD::BITCAST)
20655        X = X.getOperand(0);
20656      if (Y.getOpcode() == ISD::BITCAST)
20657        Y = Y.getOperand(0);
20658
20659      EVT MaskVT = Mask.getValueType();
20660
20661      // Validate that the Mask operand is a vector sra node.
20662      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
20663      // there is no psrai.b
20664      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
20665      unsigned SraAmt = ~0;
20666      if (Mask.getOpcode() == ISD::SRA) {
20667        if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
20668          if (auto *AmtConst = AmtBV->getConstantSplatNode())
20669            SraAmt = AmtConst->getZExtValue();
20670      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
20671        SDValue SraC = Mask.getOperand(1);
20672        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
20673      }
20674      if ((SraAmt + 1) != EltBits)
20675        return SDValue();
20676
20677      SDLoc DL(N);
20678
20679      // Now we know we at least have a plendvb with the mask val.  See if
20680      // we can form a psignb/w/d.
20681      // psign = x.type == y.type == mask.type && y = sub(0, x);
20682      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
20683          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
20684          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
20685        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
20686               "Unsupported VT for PSIGN");
20687        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
20688        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
20689      }
20690      // PBLENDVB only available on SSE 4.1
20691      if (!Subtarget->hasSSE41())
20692        return SDValue();
20693
20694      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
20695
20696      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
20697      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
20698      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
20699      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
20700      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
20701    }
20702  }
20703
20704  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
20705    return SDValue();
20706
20707  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
20708  MachineFunction &MF = DAG.getMachineFunction();
20709  bool OptForSize = MF.getFunction()->getAttributes().
20710    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
20711
20712  // SHLD/SHRD instructions have lower register pressure, but on some
20713  // platforms they have higher latency than the equivalent
20714  // series of shifts/or that would otherwise be generated.
20715  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
20716  // have higher latencies and we are not optimizing for size.
20717  if (!OptForSize && Subtarget->isSHLDSlow())
20718    return SDValue();
20719
20720  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
20721    std::swap(N0, N1);
20722  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
20723    return SDValue();
20724  if (!N0.hasOneUse() || !N1.hasOneUse())
20725    return SDValue();
20726
20727  SDValue ShAmt0 = N0.getOperand(1);
20728  if (ShAmt0.getValueType() != MVT::i8)
20729    return SDValue();
20730  SDValue ShAmt1 = N1.getOperand(1);
20731  if (ShAmt1.getValueType() != MVT::i8)
20732    return SDValue();
20733  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
20734    ShAmt0 = ShAmt0.getOperand(0);
20735  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
20736    ShAmt1 = ShAmt1.getOperand(0);
20737
20738  SDLoc DL(N);
20739  unsigned Opc = X86ISD::SHLD;
20740  SDValue Op0 = N0.getOperand(0);
20741  SDValue Op1 = N1.getOperand(0);
20742  if (ShAmt0.getOpcode() == ISD::SUB) {
20743    Opc = X86ISD::SHRD;
20744    std::swap(Op0, Op1);
20745    std::swap(ShAmt0, ShAmt1);
20746  }
20747
20748  unsigned Bits = VT.getSizeInBits();
20749  if (ShAmt1.getOpcode() == ISD::SUB) {
20750    SDValue Sum = ShAmt1.getOperand(0);
20751    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
20752      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
20753      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
20754        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
20755      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
20756        return DAG.getNode(Opc, DL, VT,
20757                           Op0, Op1,
20758                           DAG.getNode(ISD::TRUNCATE, DL,
20759                                       MVT::i8, ShAmt0));
20760    }
20761  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
20762    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
20763    if (ShAmt0C &&
20764        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
20765      return DAG.getNode(Opc, DL, VT,
20766                         N0.getOperand(0), N1.getOperand(0),
20767                         DAG.getNode(ISD::TRUNCATE, DL,
20768                                       MVT::i8, ShAmt0));
20769  }
20770
20771  return SDValue();
20772}
20773
20774// Generate NEG and CMOV for integer abs.
20775static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
20776  EVT VT = N->getValueType(0);
20777
20778  // Since X86 does not have CMOV for 8-bit integer, we don't convert
20779  // 8-bit integer abs to NEG and CMOV.
20780  if (VT.isInteger() && VT.getSizeInBits() == 8)
20781    return SDValue();
20782
20783  SDValue N0 = N->getOperand(0);
20784  SDValue N1 = N->getOperand(1);
20785  SDLoc DL(N);
20786
20787  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
20788  // and change it to SUB and CMOV.
20789  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
20790      N0.getOpcode() == ISD::ADD &&
20791      N0.getOperand(1) == N1 &&
20792      N1.getOpcode() == ISD::SRA &&
20793      N1.getOperand(0) == N0.getOperand(0))
20794    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
20795      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
20796        // Generate SUB & CMOV.
20797        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
20798                                  DAG.getConstant(0, VT), N0.getOperand(0));
20799
20800        SDValue Ops[] = { N0.getOperand(0), Neg,
20801                          DAG.getConstant(X86::COND_GE, MVT::i8),
20802                          SDValue(Neg.getNode(), 1) };
20803        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
20804      }
20805  return SDValue();
20806}
20807
20808// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
20809static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
20810                                 TargetLowering::DAGCombinerInfo &DCI,
20811                                 const X86Subtarget *Subtarget) {
20812  if (DCI.isBeforeLegalizeOps())
20813    return SDValue();
20814
20815  if (Subtarget->hasCMov()) {
20816    SDValue RV = performIntegerAbsCombine(N, DAG);
20817    if (RV.getNode())
20818      return RV;
20819  }
20820
20821  return SDValue();
20822}
20823
20824/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
20825static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
20826                                  TargetLowering::DAGCombinerInfo &DCI,
20827                                  const X86Subtarget *Subtarget) {
20828  LoadSDNode *Ld = cast<LoadSDNode>(N);
20829  EVT RegVT = Ld->getValueType(0);
20830  EVT MemVT = Ld->getMemoryVT();
20831  SDLoc dl(Ld);
20832  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20833  unsigned RegSz = RegVT.getSizeInBits();
20834
20835  // On Sandybridge unaligned 256bit loads are inefficient.
20836  ISD::LoadExtType Ext = Ld->getExtensionType();
20837  unsigned Alignment = Ld->getAlignment();
20838  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
20839  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
20840      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
20841    unsigned NumElems = RegVT.getVectorNumElements();
20842    if (NumElems < 2)
20843      return SDValue();
20844
20845    SDValue Ptr = Ld->getBasePtr();
20846    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
20847
20848    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
20849                                  NumElems/2);
20850    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
20851                                Ld->getPointerInfo(), Ld->isVolatile(),
20852                                Ld->isNonTemporal(), Ld->isInvariant(),
20853                                Alignment);
20854    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
20855    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
20856                                Ld->getPointerInfo(), Ld->isVolatile(),
20857                                Ld->isNonTemporal(), Ld->isInvariant(),
20858                                std::min(16U, Alignment));
20859    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
20860                             Load1.getValue(1),
20861                             Load2.getValue(1));
20862
20863    SDValue NewVec = DAG.getUNDEF(RegVT);
20864    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
20865    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
20866    return DCI.CombineTo(N, NewVec, TF, true);
20867  }
20868
20869  // If this is a vector EXT Load then attempt to optimize it using a
20870  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
20871  // expansion is still better than scalar code.
20872  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
20873  // emit a shuffle and a arithmetic shift.
20874  // TODO: It is possible to support ZExt by zeroing the undef values
20875  // during the shuffle phase or after the shuffle.
20876  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
20877      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
20878    assert(MemVT != RegVT && "Cannot extend to the same type");
20879    assert(MemVT.isVector() && "Must load a vector from memory");
20880
20881    unsigned NumElems = RegVT.getVectorNumElements();
20882    unsigned MemSz = MemVT.getSizeInBits();
20883    assert(RegSz > MemSz && "Register size must be greater than the mem size");
20884
20885    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
20886      return SDValue();
20887
20888    // All sizes must be a power of two.
20889    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
20890      return SDValue();
20891
20892    // Attempt to load the original value using scalar loads.
20893    // Find the largest scalar type that divides the total loaded size.
20894    MVT SclrLoadTy = MVT::i8;
20895    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
20896         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
20897      MVT Tp = (MVT::SimpleValueType)tp;
20898      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
20899        SclrLoadTy = Tp;
20900      }
20901    }
20902
20903    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
20904    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
20905        (64 <= MemSz))
20906      SclrLoadTy = MVT::f64;
20907
20908    // Calculate the number of scalar loads that we need to perform
20909    // in order to load our vector from memory.
20910    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
20911    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
20912      return SDValue();
20913
20914    unsigned loadRegZize = RegSz;
20915    if (Ext == ISD::SEXTLOAD && RegSz == 256)
20916      loadRegZize /= 2;
20917
20918    // Represent our vector as a sequence of elements which are the
20919    // largest scalar that we can load.
20920    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
20921      loadRegZize/SclrLoadTy.getSizeInBits());
20922
20923    // Represent the data using the same element type that is stored in
20924    // memory. In practice, we ''widen'' MemVT.
20925    EVT WideVecVT =
20926          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
20927                       loadRegZize/MemVT.getScalarType().getSizeInBits());
20928
20929    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
20930      "Invalid vector type");
20931
20932    // We can't shuffle using an illegal type.
20933    if (!TLI.isTypeLegal(WideVecVT))
20934      return SDValue();
20935
20936    SmallVector<SDValue, 8> Chains;
20937    SDValue Ptr = Ld->getBasePtr();
20938    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
20939                                        TLI.getPointerTy());
20940    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
20941
20942    for (unsigned i = 0; i < NumLoads; ++i) {
20943      // Perform a single load.
20944      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
20945                                       Ptr, Ld->getPointerInfo(),
20946                                       Ld->isVolatile(), Ld->isNonTemporal(),
20947                                       Ld->isInvariant(), Ld->getAlignment());
20948      Chains.push_back(ScalarLoad.getValue(1));
20949      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
20950      // another round of DAGCombining.
20951      if (i == 0)
20952        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
20953      else
20954        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
20955                          ScalarLoad, DAG.getIntPtrConstant(i));
20956
20957      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
20958    }
20959
20960    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
20961
20962    // Bitcast the loaded value to a vector of the original element type, in
20963    // the size of the target vector type.
20964    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
20965    unsigned SizeRatio = RegSz/MemSz;
20966
20967    if (Ext == ISD::SEXTLOAD) {
20968      // If we have SSE4.1 we can directly emit a VSEXT node.
20969      if (Subtarget->hasSSE41()) {
20970        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
20971        return DCI.CombineTo(N, Sext, TF, true);
20972      }
20973
20974      // Otherwise we'll shuffle the small elements in the high bits of the
20975      // larger type and perform an arithmetic shift. If the shift is not legal
20976      // it's better to scalarize.
20977      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
20978        return SDValue();
20979
20980      // Redistribute the loaded elements into the different locations.
20981      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
20982      for (unsigned i = 0; i != NumElems; ++i)
20983        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
20984
20985      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
20986                                           DAG.getUNDEF(WideVecVT),
20987                                           &ShuffleVec[0]);
20988
20989      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
20990
20991      // Build the arithmetic shift.
20992      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
20993                     MemVT.getVectorElementType().getSizeInBits();
20994      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
20995                          DAG.getConstant(Amt, RegVT));
20996
20997      return DCI.CombineTo(N, Shuff, TF, true);
20998    }
20999
21000    // Redistribute the loaded elements into the different locations.
21001    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
21002    for (unsigned i = 0; i != NumElems; ++i)
21003      ShuffleVec[i*SizeRatio] = i;
21004
21005    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
21006                                         DAG.getUNDEF(WideVecVT),
21007                                         &ShuffleVec[0]);
21008
21009    // Bitcast to the requested type.
21010    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
21011    // Replace the original load with the new sequence
21012    // and return the new chain.
21013    return DCI.CombineTo(N, Shuff, TF, true);
21014  }
21015
21016  return SDValue();
21017}
21018
21019/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
21020static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
21021                                   const X86Subtarget *Subtarget) {
21022  StoreSDNode *St = cast<StoreSDNode>(N);
21023  EVT VT = St->getValue().getValueType();
21024  EVT StVT = St->getMemoryVT();
21025  SDLoc dl(St);
21026  SDValue StoredVal = St->getOperand(1);
21027  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21028
21029  // If we are saving a concatenation of two XMM registers, perform two stores.
21030  // On Sandy Bridge, 256-bit memory operations are executed by two
21031  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
21032  // memory  operation.
21033  unsigned Alignment = St->getAlignment();
21034  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
21035  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
21036      StVT == VT && !IsAligned) {
21037    unsigned NumElems = VT.getVectorNumElements();
21038    if (NumElems < 2)
21039      return SDValue();
21040
21041    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
21042    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
21043
21044    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
21045    SDValue Ptr0 = St->getBasePtr();
21046    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
21047
21048    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
21049                                St->getPointerInfo(), St->isVolatile(),
21050                                St->isNonTemporal(), Alignment);
21051    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
21052                                St->getPointerInfo(), St->isVolatile(),
21053                                St->isNonTemporal(),
21054                                std::min(16U, Alignment));
21055    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
21056  }
21057
21058  // Optimize trunc store (of multiple scalars) to shuffle and store.
21059  // First, pack all of the elements in one place. Next, store to memory
21060  // in fewer chunks.
21061  if (St->isTruncatingStore() && VT.isVector()) {
21062    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21063    unsigned NumElems = VT.getVectorNumElements();
21064    assert(StVT != VT && "Cannot truncate to the same type");
21065    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
21066    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
21067
21068    // From, To sizes and ElemCount must be pow of two
21069    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
21070    // We are going to use the original vector elt for storing.
21071    // Accumulated smaller vector elements must be a multiple of the store size.
21072    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
21073
21074    unsigned SizeRatio  = FromSz / ToSz;
21075
21076    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
21077
21078    // Create a type on which we perform the shuffle
21079    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
21080            StVT.getScalarType(), NumElems*SizeRatio);
21081
21082    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
21083
21084    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
21085    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
21086    for (unsigned i = 0; i != NumElems; ++i)
21087      ShuffleVec[i] = i * SizeRatio;
21088
21089    // Can't shuffle using an illegal type.
21090    if (!TLI.isTypeLegal(WideVecVT))
21091      return SDValue();
21092
21093    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
21094                                         DAG.getUNDEF(WideVecVT),
21095                                         &ShuffleVec[0]);
21096    // At this point all of the data is stored at the bottom of the
21097    // register. We now need to save it to mem.
21098
21099    // Find the largest store unit
21100    MVT StoreType = MVT::i8;
21101    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
21102         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
21103      MVT Tp = (MVT::SimpleValueType)tp;
21104      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
21105        StoreType = Tp;
21106    }
21107
21108    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
21109    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
21110        (64 <= NumElems * ToSz))
21111      StoreType = MVT::f64;
21112
21113    // Bitcast the original vector into a vector of store-size units
21114    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
21115            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
21116    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
21117    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
21118    SmallVector<SDValue, 8> Chains;
21119    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
21120                                        TLI.getPointerTy());
21121    SDValue Ptr = St->getBasePtr();
21122
21123    // Perform one or more big stores into memory.
21124    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
21125      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
21126                                   StoreType, ShuffWide,
21127                                   DAG.getIntPtrConstant(i));
21128      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
21129                                St->getPointerInfo(), St->isVolatile(),
21130                                St->isNonTemporal(), St->getAlignment());
21131      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
21132      Chains.push_back(Ch);
21133    }
21134
21135    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
21136  }
21137
21138  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
21139  // the FP state in cases where an emms may be missing.
21140  // A preferable solution to the general problem is to figure out the right
21141  // places to insert EMMS.  This qualifies as a quick hack.
21142
21143  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
21144  if (VT.getSizeInBits() != 64)
21145    return SDValue();
21146
21147  const Function *F = DAG.getMachineFunction().getFunction();
21148  bool NoImplicitFloatOps = F->getAttributes().
21149    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
21150  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
21151                     && Subtarget->hasSSE2();
21152  if ((VT.isVector() ||
21153       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
21154      isa<LoadSDNode>(St->getValue()) &&
21155      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
21156      St->getChain().hasOneUse() && !St->isVolatile()) {
21157    SDNode* LdVal = St->getValue().getNode();
21158    LoadSDNode *Ld = nullptr;
21159    int TokenFactorIndex = -1;
21160    SmallVector<SDValue, 8> Ops;
21161    SDNode* ChainVal = St->getChain().getNode();
21162    // Must be a store of a load.  We currently handle two cases:  the load
21163    // is a direct child, and it's under an intervening TokenFactor.  It is
21164    // possible to dig deeper under nested TokenFactors.
21165    if (ChainVal == LdVal)
21166      Ld = cast<LoadSDNode>(St->getChain());
21167    else if (St->getValue().hasOneUse() &&
21168             ChainVal->getOpcode() == ISD::TokenFactor) {
21169      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
21170        if (ChainVal->getOperand(i).getNode() == LdVal) {
21171          TokenFactorIndex = i;
21172          Ld = cast<LoadSDNode>(St->getValue());
21173        } else
21174          Ops.push_back(ChainVal->getOperand(i));
21175      }
21176    }
21177
21178    if (!Ld || !ISD::isNormalLoad(Ld))
21179      return SDValue();
21180
21181    // If this is not the MMX case, i.e. we are just turning i64 load/store
21182    // into f64 load/store, avoid the transformation if there are multiple
21183    // uses of the loaded value.
21184    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
21185      return SDValue();
21186
21187    SDLoc LdDL(Ld);
21188    SDLoc StDL(N);
21189    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
21190    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
21191    // pair instead.
21192    if (Subtarget->is64Bit() || F64IsLegal) {
21193      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
21194      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
21195                                  Ld->getPointerInfo(), Ld->isVolatile(),
21196                                  Ld->isNonTemporal(), Ld->isInvariant(),
21197                                  Ld->getAlignment());
21198      SDValue NewChain = NewLd.getValue(1);
21199      if (TokenFactorIndex != -1) {
21200        Ops.push_back(NewChain);
21201        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
21202      }
21203      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
21204                          St->getPointerInfo(),
21205                          St->isVolatile(), St->isNonTemporal(),
21206                          St->getAlignment());
21207    }
21208
21209    // Otherwise, lower to two pairs of 32-bit loads / stores.
21210    SDValue LoAddr = Ld->getBasePtr();
21211    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
21212                                 DAG.getConstant(4, MVT::i32));
21213
21214    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
21215                               Ld->getPointerInfo(),
21216                               Ld->isVolatile(), Ld->isNonTemporal(),
21217                               Ld->isInvariant(), Ld->getAlignment());
21218    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
21219                               Ld->getPointerInfo().getWithOffset(4),
21220                               Ld->isVolatile(), Ld->isNonTemporal(),
21221                               Ld->isInvariant(),
21222                               MinAlign(Ld->getAlignment(), 4));
21223
21224    SDValue NewChain = LoLd.getValue(1);
21225    if (TokenFactorIndex != -1) {
21226      Ops.push_back(LoLd);
21227      Ops.push_back(HiLd);
21228      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
21229    }
21230
21231    LoAddr = St->getBasePtr();
21232    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
21233                         DAG.getConstant(4, MVT::i32));
21234
21235    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
21236                                St->getPointerInfo(),
21237                                St->isVolatile(), St->isNonTemporal(),
21238                                St->getAlignment());
21239    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
21240                                St->getPointerInfo().getWithOffset(4),
21241                                St->isVolatile(),
21242                                St->isNonTemporal(),
21243                                MinAlign(St->getAlignment(), 4));
21244    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
21245  }
21246  return SDValue();
21247}
21248
21249/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
21250/// and return the operands for the horizontal operation in LHS and RHS.  A
21251/// horizontal operation performs the binary operation on successive elements
21252/// of its first operand, then on successive elements of its second operand,
21253/// returning the resulting values in a vector.  For example, if
21254///   A = < float a0, float a1, float a2, float a3 >
21255/// and
21256///   B = < float b0, float b1, float b2, float b3 >
21257/// then the result of doing a horizontal operation on A and B is
21258///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
21259/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
21260/// A horizontal-op B, for some already available A and B, and if so then LHS is
21261/// set to A, RHS to B, and the routine returns 'true'.
21262/// Note that the binary operation should have the property that if one of the
21263/// operands is UNDEF then the result is UNDEF.
21264static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
21265  // Look for the following pattern: if
21266  //   A = < float a0, float a1, float a2, float a3 >
21267  //   B = < float b0, float b1, float b2, float b3 >
21268  // and
21269  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
21270  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
21271  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
21272  // which is A horizontal-op B.
21273
21274  // At least one of the operands should be a vector shuffle.
21275  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
21276      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
21277    return false;
21278
21279  MVT VT = LHS.getSimpleValueType();
21280
21281  assert((VT.is128BitVector() || VT.is256BitVector()) &&
21282         "Unsupported vector type for horizontal add/sub");
21283
21284  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
21285  // operate independently on 128-bit lanes.
21286  unsigned NumElts = VT.getVectorNumElements();
21287  unsigned NumLanes = VT.getSizeInBits()/128;
21288  unsigned NumLaneElts = NumElts / NumLanes;
21289  assert((NumLaneElts % 2 == 0) &&
21290         "Vector type should have an even number of elements in each lane");
21291  unsigned HalfLaneElts = NumLaneElts/2;
21292
21293  // View LHS in the form
21294  //   LHS = VECTOR_SHUFFLE A, B, LMask
21295  // If LHS is not a shuffle then pretend it is the shuffle
21296  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
21297  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
21298  // type VT.
21299  SDValue A, B;
21300  SmallVector<int, 16> LMask(NumElts);
21301  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
21302    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
21303      A = LHS.getOperand(0);
21304    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
21305      B = LHS.getOperand(1);
21306    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
21307    std::copy(Mask.begin(), Mask.end(), LMask.begin());
21308  } else {
21309    if (LHS.getOpcode() != ISD::UNDEF)
21310      A = LHS;
21311    for (unsigned i = 0; i != NumElts; ++i)
21312      LMask[i] = i;
21313  }
21314
21315  // Likewise, view RHS in the form
21316  //   RHS = VECTOR_SHUFFLE C, D, RMask
21317  SDValue C, D;
21318  SmallVector<int, 16> RMask(NumElts);
21319  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
21320    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
21321      C = RHS.getOperand(0);
21322    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
21323      D = RHS.getOperand(1);
21324    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
21325    std::copy(Mask.begin(), Mask.end(), RMask.begin());
21326  } else {
21327    if (RHS.getOpcode() != ISD::UNDEF)
21328      C = RHS;
21329    for (unsigned i = 0; i != NumElts; ++i)
21330      RMask[i] = i;
21331  }
21332
21333  // Check that the shuffles are both shuffling the same vectors.
21334  if (!(A == C && B == D) && !(A == D && B == C))
21335    return false;
21336
21337  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
21338  if (!A.getNode() && !B.getNode())
21339    return false;
21340
21341  // If A and B occur in reverse order in RHS, then "swap" them (which means
21342  // rewriting the mask).
21343  if (A != C)
21344    CommuteVectorShuffleMask(RMask, NumElts);
21345
21346  // At this point LHS and RHS are equivalent to
21347  //   LHS = VECTOR_SHUFFLE A, B, LMask
21348  //   RHS = VECTOR_SHUFFLE A, B, RMask
21349  // Check that the masks correspond to performing a horizontal operation.
21350  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
21351    for (unsigned i = 0; i != NumLaneElts; ++i) {
21352      int LIdx = LMask[i+l], RIdx = RMask[i+l];
21353
21354      // Ignore any UNDEF components.
21355      if (LIdx < 0 || RIdx < 0 ||
21356          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
21357          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
21358        continue;
21359
21360      // Check that successive elements are being operated on.  If not, this is
21361      // not a horizontal operation.
21362      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
21363      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
21364      if (!(LIdx == Index && RIdx == Index + 1) &&
21365          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
21366        return false;
21367    }
21368  }
21369
21370  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
21371  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
21372  return true;
21373}
21374
21375/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
21376static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
21377                                  const X86Subtarget *Subtarget) {
21378  EVT VT = N->getValueType(0);
21379  SDValue LHS = N->getOperand(0);
21380  SDValue RHS = N->getOperand(1);
21381
21382  // Try to synthesize horizontal adds from adds of shuffles.
21383  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
21384       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
21385      isHorizontalBinOp(LHS, RHS, true))
21386    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
21387  return SDValue();
21388}
21389
21390/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
21391static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
21392                                  const X86Subtarget *Subtarget) {
21393  EVT VT = N->getValueType(0);
21394  SDValue LHS = N->getOperand(0);
21395  SDValue RHS = N->getOperand(1);
21396
21397  // Try to synthesize horizontal subs from subs of shuffles.
21398  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
21399       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
21400      isHorizontalBinOp(LHS, RHS, false))
21401    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
21402  return SDValue();
21403}
21404
21405/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
21406/// X86ISD::FXOR nodes.
21407static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
21408  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
21409  // F[X]OR(0.0, x) -> x
21410  // F[X]OR(x, 0.0) -> x
21411  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
21412    if (C->getValueAPF().isPosZero())
21413      return N->getOperand(1);
21414  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
21415    if (C->getValueAPF().isPosZero())
21416      return N->getOperand(0);
21417  return SDValue();
21418}
21419
21420/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
21421/// X86ISD::FMAX nodes.
21422static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
21423  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
21424
21425  // Only perform optimizations if UnsafeMath is used.
21426  if (!DAG.getTarget().Options.UnsafeFPMath)
21427    return SDValue();
21428
21429  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
21430  // into FMINC and FMAXC, which are Commutative operations.
21431  unsigned NewOp = 0;
21432  switch (N->getOpcode()) {
21433    default: llvm_unreachable("unknown opcode");
21434    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
21435    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
21436  }
21437
21438  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
21439                     N->getOperand(0), N->getOperand(1));
21440}
21441
21442/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
21443static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
21444  // FAND(0.0, x) -> 0.0
21445  // FAND(x, 0.0) -> 0.0
21446  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
21447    if (C->getValueAPF().isPosZero())
21448      return N->getOperand(0);
21449  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
21450    if (C->getValueAPF().isPosZero())
21451      return N->getOperand(1);
21452  return SDValue();
21453}
21454
21455/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
21456static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
21457  // FANDN(x, 0.0) -> 0.0
21458  // FANDN(0.0, x) -> x
21459  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
21460    if (C->getValueAPF().isPosZero())
21461      return N->getOperand(1);
21462  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
21463    if (C->getValueAPF().isPosZero())
21464      return N->getOperand(1);
21465  return SDValue();
21466}
21467
21468static SDValue PerformBTCombine(SDNode *N,
21469                                SelectionDAG &DAG,
21470                                TargetLowering::DAGCombinerInfo &DCI) {
21471  // BT ignores high bits in the bit index operand.
21472  SDValue Op1 = N->getOperand(1);
21473  if (Op1.hasOneUse()) {
21474    unsigned BitWidth = Op1.getValueSizeInBits();
21475    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
21476    APInt KnownZero, KnownOne;
21477    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
21478                                          !DCI.isBeforeLegalizeOps());
21479    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21480    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
21481        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
21482      DCI.CommitTargetLoweringOpt(TLO);
21483  }
21484  return SDValue();
21485}
21486
21487static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
21488  SDValue Op = N->getOperand(0);
21489  if (Op.getOpcode() == ISD::BITCAST)
21490    Op = Op.getOperand(0);
21491  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
21492  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
21493      VT.getVectorElementType().getSizeInBits() ==
21494      OpVT.getVectorElementType().getSizeInBits()) {
21495    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
21496  }
21497  return SDValue();
21498}
21499
21500static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
21501                                               const X86Subtarget *Subtarget) {
21502  EVT VT = N->getValueType(0);
21503  if (!VT.isVector())
21504    return SDValue();
21505
21506  SDValue N0 = N->getOperand(0);
21507  SDValue N1 = N->getOperand(1);
21508  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
21509  SDLoc dl(N);
21510
21511  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
21512  // both SSE and AVX2 since there is no sign-extended shift right
21513  // operation on a vector with 64-bit elements.
21514  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
21515  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
21516  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
21517      N0.getOpcode() == ISD::SIGN_EXTEND)) {
21518    SDValue N00 = N0.getOperand(0);
21519
21520    // EXTLOAD has a better solution on AVX2,
21521    // it may be replaced with X86ISD::VSEXT node.
21522    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
21523      if (!ISD::isNormalLoad(N00.getNode()))
21524        return SDValue();
21525
21526    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
21527        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
21528                                  N00, N1);
21529      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
21530    }
21531  }
21532  return SDValue();
21533}
21534
21535static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
21536                                  TargetLowering::DAGCombinerInfo &DCI,
21537                                  const X86Subtarget *Subtarget) {
21538  if (!DCI.isBeforeLegalizeOps())
21539    return SDValue();
21540
21541  if (!Subtarget->hasFp256())
21542    return SDValue();
21543
21544  EVT VT = N->getValueType(0);
21545  if (VT.isVector() && VT.getSizeInBits() == 256) {
21546    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
21547    if (R.getNode())
21548      return R;
21549  }
21550
21551  return SDValue();
21552}
21553
21554static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
21555                                 const X86Subtarget* Subtarget) {
21556  SDLoc dl(N);
21557  EVT VT = N->getValueType(0);
21558
21559  // Let legalize expand this if it isn't a legal type yet.
21560  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
21561    return SDValue();
21562
21563  EVT ScalarVT = VT.getScalarType();
21564  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
21565      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
21566    return SDValue();
21567
21568  SDValue A = N->getOperand(0);
21569  SDValue B = N->getOperand(1);
21570  SDValue C = N->getOperand(2);
21571
21572  bool NegA = (A.getOpcode() == ISD::FNEG);
21573  bool NegB = (B.getOpcode() == ISD::FNEG);
21574  bool NegC = (C.getOpcode() == ISD::FNEG);
21575
21576  // Negative multiplication when NegA xor NegB
21577  bool NegMul = (NegA != NegB);
21578  if (NegA)
21579    A = A.getOperand(0);
21580  if (NegB)
21581    B = B.getOperand(0);
21582  if (NegC)
21583    C = C.getOperand(0);
21584
21585  unsigned Opcode;
21586  if (!NegMul)
21587    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
21588  else
21589    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
21590
21591  return DAG.getNode(Opcode, dl, VT, A, B, C);
21592}
21593
21594static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
21595                                  TargetLowering::DAGCombinerInfo &DCI,
21596                                  const X86Subtarget *Subtarget) {
21597  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
21598  //           (and (i32 x86isd::setcc_carry), 1)
21599  // This eliminates the zext. This transformation is necessary because
21600  // ISD::SETCC is always legalized to i8.
21601  SDLoc dl(N);
21602  SDValue N0 = N->getOperand(0);
21603  EVT VT = N->getValueType(0);
21604
21605  if (N0.getOpcode() == ISD::AND &&
21606      N0.hasOneUse() &&
21607      N0.getOperand(0).hasOneUse()) {
21608    SDValue N00 = N0.getOperand(0);
21609    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
21610      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
21611      if (!C || C->getZExtValue() != 1)
21612        return SDValue();
21613      return DAG.getNode(ISD::AND, dl, VT,
21614                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
21615                                     N00.getOperand(0), N00.getOperand(1)),
21616                         DAG.getConstant(1, VT));
21617    }
21618  }
21619
21620  if (N0.getOpcode() == ISD::TRUNCATE &&
21621      N0.hasOneUse() &&
21622      N0.getOperand(0).hasOneUse()) {
21623    SDValue N00 = N0.getOperand(0);
21624    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
21625      return DAG.getNode(ISD::AND, dl, VT,
21626                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
21627                                     N00.getOperand(0), N00.getOperand(1)),
21628                         DAG.getConstant(1, VT));
21629    }
21630  }
21631  if (VT.is256BitVector()) {
21632    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
21633    if (R.getNode())
21634      return R;
21635  }
21636
21637  return SDValue();
21638}
21639
21640// Optimize x == -y --> x+y == 0
21641//          x != -y --> x+y != 0
21642static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
21643                                      const X86Subtarget* Subtarget) {
21644  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
21645  SDValue LHS = N->getOperand(0);
21646  SDValue RHS = N->getOperand(1);
21647  EVT VT = N->getValueType(0);
21648  SDLoc DL(N);
21649
21650  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
21651    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
21652      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
21653        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
21654                                   LHS.getValueType(), RHS, LHS.getOperand(1));
21655        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
21656                            addV, DAG.getConstant(0, addV.getValueType()), CC);
21657      }
21658  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
21659    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
21660      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
21661        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
21662                                   RHS.getValueType(), LHS, RHS.getOperand(1));
21663        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
21664                            addV, DAG.getConstant(0, addV.getValueType()), CC);
21665      }
21666
21667  if (VT.getScalarType() == MVT::i1) {
21668    bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
21669      (LHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
21670    bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
21671    if (!IsSEXT0 && !IsVZero0)
21672      return SDValue();
21673    bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
21674      (RHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
21675    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
21676
21677    if (!IsSEXT1 && !IsVZero1)
21678      return SDValue();
21679
21680    if (IsSEXT0 && IsVZero1) {
21681      assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
21682      if (CC == ISD::SETEQ)
21683        return DAG.getNOT(DL, LHS.getOperand(0), VT);
21684      return LHS.getOperand(0);
21685    }
21686    if (IsSEXT1 && IsVZero0) {
21687      assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
21688      if (CC == ISD::SETEQ)
21689        return DAG.getNOT(DL, RHS.getOperand(0), VT);
21690      return RHS.getOperand(0);
21691    }
21692  }
21693
21694  return SDValue();
21695}
21696
21697static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
21698                                      const X86Subtarget *Subtarget) {
21699  SDLoc dl(N);
21700  MVT VT = N->getOperand(1)->getSimpleValueType(0);
21701  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
21702         "X86insertps is only defined for v4x32");
21703
21704  SDValue Ld = N->getOperand(1);
21705  if (MayFoldLoad(Ld)) {
21706    // Extract the countS bits from the immediate so we can get the proper
21707    // address when narrowing the vector load to a specific element.
21708    // When the second source op is a memory address, interps doesn't use
21709    // countS and just gets an f32 from that address.
21710    unsigned DestIndex =
21711        cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
21712    Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
21713  } else
21714    return SDValue();
21715
21716  // Create this as a scalar to vector to match the instruction pattern.
21717  SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
21718  // countS bits are ignored when loading from memory on insertps, which
21719  // means we don't need to explicitly set them to 0.
21720  return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
21721                     LoadScalarToVector, N->getOperand(2));
21722}
21723
21724// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
21725// as "sbb reg,reg", since it can be extended without zext and produces
21726// an all-ones bit which is more useful than 0/1 in some cases.
21727static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
21728                               MVT VT) {
21729  if (VT == MVT::i8)
21730    return DAG.getNode(ISD::AND, DL, VT,
21731                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
21732                                   DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
21733                       DAG.getConstant(1, VT));
21734  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
21735  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
21736                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
21737                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
21738}
21739
21740// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
21741static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
21742                                   TargetLowering::DAGCombinerInfo &DCI,
21743                                   const X86Subtarget *Subtarget) {
21744  SDLoc DL(N);
21745  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
21746  SDValue EFLAGS = N->getOperand(1);
21747
21748  if (CC == X86::COND_A) {
21749    // Try to convert COND_A into COND_B in an attempt to facilitate
21750    // materializing "setb reg".
21751    //
21752    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
21753    // cannot take an immediate as its first operand.
21754    //
21755    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
21756        EFLAGS.getValueType().isInteger() &&
21757        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
21758      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
21759                                   EFLAGS.getNode()->getVTList(),
21760                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
21761      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
21762      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
21763    }
21764  }
21765
21766  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
21767  // a zext and produces an all-ones bit which is more useful than 0/1 in some
21768  // cases.
21769  if (CC == X86::COND_B)
21770    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
21771
21772  SDValue Flags;
21773
21774  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
21775  if (Flags.getNode()) {
21776    SDValue Cond = DAG.getConstant(CC, MVT::i8);
21777    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
21778  }
21779
21780  return SDValue();
21781}
21782
21783// Optimize branch condition evaluation.
21784//
21785static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
21786                                    TargetLowering::DAGCombinerInfo &DCI,
21787                                    const X86Subtarget *Subtarget) {
21788  SDLoc DL(N);
21789  SDValue Chain = N->getOperand(0);
21790  SDValue Dest = N->getOperand(1);
21791  SDValue EFLAGS = N->getOperand(3);
21792  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
21793
21794  SDValue Flags;
21795
21796  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
21797  if (Flags.getNode()) {
21798    SDValue Cond = DAG.getConstant(CC, MVT::i8);
21799    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
21800                       Flags);
21801  }
21802
21803  return SDValue();
21804}
21805
21806static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
21807                                        const X86TargetLowering *XTLI) {
21808  SDValue Op0 = N->getOperand(0);
21809  EVT InVT = Op0->getValueType(0);
21810
21811  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
21812  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
21813    SDLoc dl(N);
21814    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
21815    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
21816    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
21817  }
21818
21819  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
21820  // a 32-bit target where SSE doesn't support i64->FP operations.
21821  if (Op0.getOpcode() == ISD::LOAD) {
21822    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
21823    EVT VT = Ld->getValueType(0);
21824    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
21825        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
21826        !XTLI->getSubtarget()->is64Bit() &&
21827        VT == MVT::i64) {
21828      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
21829                                          Ld->getChain(), Op0, DAG);
21830      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
21831      return FILDChain;
21832    }
21833  }
21834  return SDValue();
21835}
21836
21837// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
21838static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
21839                                 X86TargetLowering::DAGCombinerInfo &DCI) {
21840  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
21841  // the result is either zero or one (depending on the input carry bit).
21842  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
21843  if (X86::isZeroNode(N->getOperand(0)) &&
21844      X86::isZeroNode(N->getOperand(1)) &&
21845      // We don't have a good way to replace an EFLAGS use, so only do this when
21846      // dead right now.
21847      SDValue(N, 1).use_empty()) {
21848    SDLoc DL(N);
21849    EVT VT = N->getValueType(0);
21850    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
21851    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
21852                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
21853                                           DAG.getConstant(X86::COND_B,MVT::i8),
21854                                           N->getOperand(2)),
21855                               DAG.getConstant(1, VT));
21856    return DCI.CombineTo(N, Res1, CarryOut);
21857  }
21858
21859  return SDValue();
21860}
21861
21862// fold (add Y, (sete  X, 0)) -> adc  0, Y
21863//      (add Y, (setne X, 0)) -> sbb -1, Y
21864//      (sub (sete  X, 0), Y) -> sbb  0, Y
21865//      (sub (setne X, 0), Y) -> adc -1, Y
21866static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
21867  SDLoc DL(N);
21868
21869  // Look through ZExts.
21870  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
21871  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
21872    return SDValue();
21873
21874  SDValue SetCC = Ext.getOperand(0);
21875  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
21876    return SDValue();
21877
21878  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
21879  if (CC != X86::COND_E && CC != X86::COND_NE)
21880    return SDValue();
21881
21882  SDValue Cmp = SetCC.getOperand(1);
21883  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
21884      !X86::isZeroNode(Cmp.getOperand(1)) ||
21885      !Cmp.getOperand(0).getValueType().isInteger())
21886    return SDValue();
21887
21888  SDValue CmpOp0 = Cmp.getOperand(0);
21889  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
21890                               DAG.getConstant(1, CmpOp0.getValueType()));
21891
21892  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
21893  if (CC == X86::COND_NE)
21894    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
21895                       DL, OtherVal.getValueType(), OtherVal,
21896                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
21897  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
21898                     DL, OtherVal.getValueType(), OtherVal,
21899                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
21900}
21901
21902/// PerformADDCombine - Do target-specific dag combines on integer adds.
21903static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
21904                                 const X86Subtarget *Subtarget) {
21905  EVT VT = N->getValueType(0);
21906  SDValue Op0 = N->getOperand(0);
21907  SDValue Op1 = N->getOperand(1);
21908
21909  // Try to synthesize horizontal adds from adds of shuffles.
21910  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
21911       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
21912      isHorizontalBinOp(Op0, Op1, true))
21913    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
21914
21915  return OptimizeConditionalInDecrement(N, DAG);
21916}
21917
21918static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
21919                                 const X86Subtarget *Subtarget) {
21920  SDValue Op0 = N->getOperand(0);
21921  SDValue Op1 = N->getOperand(1);
21922
21923  // X86 can't encode an immediate LHS of a sub. See if we can push the
21924  // negation into a preceding instruction.
21925  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
21926    // If the RHS of the sub is a XOR with one use and a constant, invert the
21927    // immediate. Then add one to the LHS of the sub so we can turn
21928    // X-Y -> X+~Y+1, saving one register.
21929    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
21930        isa<ConstantSDNode>(Op1.getOperand(1))) {
21931      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
21932      EVT VT = Op0.getValueType();
21933      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
21934                                   Op1.getOperand(0),
21935                                   DAG.getConstant(~XorC, VT));
21936      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
21937                         DAG.getConstant(C->getAPIntValue()+1, VT));
21938    }
21939  }
21940
21941  // Try to synthesize horizontal adds from adds of shuffles.
21942  EVT VT = N->getValueType(0);
21943  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
21944       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
21945      isHorizontalBinOp(Op0, Op1, true))
21946    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
21947
21948  return OptimizeConditionalInDecrement(N, DAG);
21949}
21950
21951/// performVZEXTCombine - Performs build vector combines
21952static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
21953                                        TargetLowering::DAGCombinerInfo &DCI,
21954                                        const X86Subtarget *Subtarget) {
21955  // (vzext (bitcast (vzext (x)) -> (vzext x)
21956  SDValue In = N->getOperand(0);
21957  while (In.getOpcode() == ISD::BITCAST)
21958    In = In.getOperand(0);
21959
21960  if (In.getOpcode() != X86ISD::VZEXT)
21961    return SDValue();
21962
21963  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
21964                     In.getOperand(0));
21965}
21966
21967SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
21968                                             DAGCombinerInfo &DCI) const {
21969  SelectionDAG &DAG = DCI.DAG;
21970  switch (N->getOpcode()) {
21971  default: break;
21972  case ISD::EXTRACT_VECTOR_ELT:
21973    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
21974  case ISD::VSELECT:
21975  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
21976  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
21977  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
21978  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
21979  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
21980  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
21981  case ISD::SHL:
21982  case ISD::SRA:
21983  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
21984  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
21985  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
21986  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
21987  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
21988  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
21989  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
21990  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
21991  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
21992  case X86ISD::FXOR:
21993  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
21994  case X86ISD::FMIN:
21995  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
21996  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
21997  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
21998  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
21999  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
22000  case ISD::ANY_EXTEND:
22001  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
22002  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
22003  case ISD::SIGN_EXTEND_INREG:
22004    return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
22005  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
22006  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
22007  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
22008  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
22009  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
22010  case X86ISD::SHUFP:       // Handle all target specific shuffles
22011  case X86ISD::PALIGNR:
22012  case X86ISD::UNPCKH:
22013  case X86ISD::UNPCKL:
22014  case X86ISD::MOVHLPS:
22015  case X86ISD::MOVLHPS:
22016  case X86ISD::PSHUFD:
22017  case X86ISD::PSHUFHW:
22018  case X86ISD::PSHUFLW:
22019  case X86ISD::MOVSS:
22020  case X86ISD::MOVSD:
22021  case X86ISD::VPERMILP:
22022  case X86ISD::VPERM2X128:
22023  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
22024  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
22025  case ISD::INTRINSIC_WO_CHAIN:
22026    return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
22027  case X86ISD::INSERTPS:
22028    return PerformINSERTPSCombine(N, DAG, Subtarget);
22029  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
22030  }
22031
22032  return SDValue();
22033}
22034
22035/// isTypeDesirableForOp - Return true if the target has native support for
22036/// the specified value type and it is 'desirable' to use the type for the
22037/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
22038/// instruction encodings are longer and some i16 instructions are slow.
22039bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
22040  if (!isTypeLegal(VT))
22041    return false;
22042  if (VT != MVT::i16)
22043    return true;
22044
22045  switch (Opc) {
22046  default:
22047    return true;
22048  case ISD::LOAD:
22049  case ISD::SIGN_EXTEND:
22050  case ISD::ZERO_EXTEND:
22051  case ISD::ANY_EXTEND:
22052  case ISD::SHL:
22053  case ISD::SRL:
22054  case ISD::SUB:
22055  case ISD::ADD:
22056  case ISD::MUL:
22057  case ISD::AND:
22058  case ISD::OR:
22059  case ISD::XOR:
22060    return false;
22061  }
22062}
22063
22064/// IsDesirableToPromoteOp - This method query the target whether it is
22065/// beneficial for dag combiner to promote the specified node. If true, it
22066/// should return the desired promotion type by reference.
22067bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
22068  EVT VT = Op.getValueType();
22069  if (VT != MVT::i16)
22070    return false;
22071
22072  bool Promote = false;
22073  bool Commute = false;
22074  switch (Op.getOpcode()) {
22075  default: break;
22076  case ISD::LOAD: {
22077    LoadSDNode *LD = cast<LoadSDNode>(Op);
22078    // If the non-extending load has a single use and it's not live out, then it
22079    // might be folded.
22080    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
22081                                                     Op.hasOneUse()*/) {
22082      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
22083             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
22084        // The only case where we'd want to promote LOAD (rather then it being
22085        // promoted as an operand is when it's only use is liveout.
22086        if (UI->getOpcode() != ISD::CopyToReg)
22087          return false;
22088      }
22089    }
22090    Promote = true;
22091    break;
22092  }
22093  case ISD::SIGN_EXTEND:
22094  case ISD::ZERO_EXTEND:
22095  case ISD::ANY_EXTEND:
22096    Promote = true;
22097    break;
22098  case ISD::SHL:
22099  case ISD::SRL: {
22100    SDValue N0 = Op.getOperand(0);
22101    // Look out for (store (shl (load), x)).
22102    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
22103      return false;
22104    Promote = true;
22105    break;
22106  }
22107  case ISD::ADD:
22108  case ISD::MUL:
22109  case ISD::AND:
22110  case ISD::OR:
22111  case ISD::XOR:
22112    Commute = true;
22113    // fallthrough
22114  case ISD::SUB: {
22115    SDValue N0 = Op.getOperand(0);
22116    SDValue N1 = Op.getOperand(1);
22117    if (!Commute && MayFoldLoad(N1))
22118      return false;
22119    // Avoid disabling potential load folding opportunities.
22120    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
22121      return false;
22122    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
22123      return false;
22124    Promote = true;
22125  }
22126  }
22127
22128  PVT = MVT::i32;
22129  return Promote;
22130}
22131
22132//===----------------------------------------------------------------------===//
22133//                           X86 Inline Assembly Support
22134//===----------------------------------------------------------------------===//
22135
22136namespace {
22137  // Helper to match a string separated by whitespace.
22138  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
22139    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
22140
22141    for (unsigned i = 0, e = args.size(); i != e; ++i) {
22142      StringRef piece(*args[i]);
22143      if (!s.startswith(piece)) // Check if the piece matches.
22144        return false;
22145
22146      s = s.substr(piece.size());
22147      StringRef::size_type pos = s.find_first_not_of(" \t");
22148      if (pos == 0) // We matched a prefix.
22149        return false;
22150
22151      s = s.substr(pos);
22152    }
22153
22154    return s.empty();
22155  }
22156  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
22157}
22158
22159static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
22160
22161  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
22162    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
22163        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
22164        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
22165
22166      if (AsmPieces.size() == 3)
22167        return true;
22168      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
22169        return true;
22170    }
22171  }
22172  return false;
22173}
22174
22175bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
22176  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
22177
22178  std::string AsmStr = IA->getAsmString();
22179
22180  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
22181  if (!Ty || Ty->getBitWidth() % 16 != 0)
22182    return false;
22183
22184  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
22185  SmallVector<StringRef, 4> AsmPieces;
22186  SplitString(AsmStr, AsmPieces, ";\n");
22187
22188  switch (AsmPieces.size()) {
22189  default: return false;
22190  case 1:
22191    // FIXME: this should verify that we are targeting a 486 or better.  If not,
22192    // we will turn this bswap into something that will be lowered to logical
22193    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
22194    // lower so don't worry about this.
22195    // bswap $0
22196    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
22197        matchAsm(AsmPieces[0], "bswapl", "$0") ||
22198        matchAsm(AsmPieces[0], "bswapq", "$0") ||
22199        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
22200        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
22201        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
22202      // No need to check constraints, nothing other than the equivalent of
22203      // "=r,0" would be valid here.
22204      return IntrinsicLowering::LowerToByteSwap(CI);
22205    }
22206
22207    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
22208    if (CI->getType()->isIntegerTy(16) &&
22209        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
22210        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
22211         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
22212      AsmPieces.clear();
22213      const std::string &ConstraintsStr = IA->getConstraintString();
22214      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
22215      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
22216      if (clobbersFlagRegisters(AsmPieces))
22217        return IntrinsicLowering::LowerToByteSwap(CI);
22218    }
22219    break;
22220  case 3:
22221    if (CI->getType()->isIntegerTy(32) &&
22222        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
22223        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
22224        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
22225        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
22226      AsmPieces.clear();
22227      const std::string &ConstraintsStr = IA->getConstraintString();
22228      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
22229      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
22230      if (clobbersFlagRegisters(AsmPieces))
22231        return IntrinsicLowering::LowerToByteSwap(CI);
22232    }
22233
22234    if (CI->getType()->isIntegerTy(64)) {
22235      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
22236      if (Constraints.size() >= 2 &&
22237          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
22238          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
22239        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
22240        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
22241            matchAsm(AsmPieces[1], "bswap", "%edx") &&
22242            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
22243          return IntrinsicLowering::LowerToByteSwap(CI);
22244      }
22245    }
22246    break;
22247  }
22248  return false;
22249}
22250
22251/// getConstraintType - Given a constraint letter, return the type of
22252/// constraint it is for this target.
22253X86TargetLowering::ConstraintType
22254X86TargetLowering::getConstraintType(const std::string &Constraint) const {
22255  if (Constraint.size() == 1) {
22256    switch (Constraint[0]) {
22257    case 'R':
22258    case 'q':
22259    case 'Q':
22260    case 'f':
22261    case 't':
22262    case 'u':
22263    case 'y':
22264    case 'x':
22265    case 'Y':
22266    case 'l':
22267      return C_RegisterClass;
22268    case 'a':
22269    case 'b':
22270    case 'c':
22271    case 'd':
22272    case 'S':
22273    case 'D':
22274    case 'A':
22275      return C_Register;
22276    case 'I':
22277    case 'J':
22278    case 'K':
22279    case 'L':
22280    case 'M':
22281    case 'N':
22282    case 'G':
22283    case 'C':
22284    case 'e':
22285    case 'Z':
22286      return C_Other;
22287    default:
22288      break;
22289    }
22290  }
22291  return TargetLowering::getConstraintType(Constraint);
22292}
22293
22294/// Examine constraint type and operand type and determine a weight value.
22295/// This object must already have been set up with the operand type
22296/// and the current alternative constraint selected.
22297TargetLowering::ConstraintWeight
22298  X86TargetLowering::getSingleConstraintMatchWeight(
22299    AsmOperandInfo &info, const char *constraint) const {
22300  ConstraintWeight weight = CW_Invalid;
22301  Value *CallOperandVal = info.CallOperandVal;
22302    // If we don't have a value, we can't do a match,
22303    // but allow it at the lowest weight.
22304  if (!CallOperandVal)
22305    return CW_Default;
22306  Type *type = CallOperandVal->getType();
22307  // Look at the constraint type.
22308  switch (*constraint) {
22309  default:
22310    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
22311  case 'R':
22312  case 'q':
22313  case 'Q':
22314  case 'a':
22315  case 'b':
22316  case 'c':
22317  case 'd':
22318  case 'S':
22319  case 'D':
22320  case 'A':
22321    if (CallOperandVal->getType()->isIntegerTy())
22322      weight = CW_SpecificReg;
22323    break;
22324  case 'f':
22325  case 't':
22326  case 'u':
22327    if (type->isFloatingPointTy())
22328      weight = CW_SpecificReg;
22329    break;
22330  case 'y':
22331    if (type->isX86_MMXTy() && Subtarget->hasMMX())
22332      weight = CW_SpecificReg;
22333    break;
22334  case 'x':
22335  case 'Y':
22336    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
22337        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
22338      weight = CW_Register;
22339    break;
22340  case 'I':
22341    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
22342      if (C->getZExtValue() <= 31)
22343        weight = CW_Constant;
22344    }
22345    break;
22346  case 'J':
22347    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22348      if (C->getZExtValue() <= 63)
22349        weight = CW_Constant;
22350    }
22351    break;
22352  case 'K':
22353    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22354      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
22355        weight = CW_Constant;
22356    }
22357    break;
22358  case 'L':
22359    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22360      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
22361        weight = CW_Constant;
22362    }
22363    break;
22364  case 'M':
22365    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22366      if (C->getZExtValue() <= 3)
22367        weight = CW_Constant;
22368    }
22369    break;
22370  case 'N':
22371    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22372      if (C->getZExtValue() <= 0xff)
22373        weight = CW_Constant;
22374    }
22375    break;
22376  case 'G':
22377  case 'C':
22378    if (dyn_cast<ConstantFP>(CallOperandVal)) {
22379      weight = CW_Constant;
22380    }
22381    break;
22382  case 'e':
22383    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22384      if ((C->getSExtValue() >= -0x80000000LL) &&
22385          (C->getSExtValue() <= 0x7fffffffLL))
22386        weight = CW_Constant;
22387    }
22388    break;
22389  case 'Z':
22390    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
22391      if (C->getZExtValue() <= 0xffffffff)
22392        weight = CW_Constant;
22393    }
22394    break;
22395  }
22396  return weight;
22397}
22398
22399/// LowerXConstraint - try to replace an X constraint, which matches anything,
22400/// with another that has more specific requirements based on the type of the
22401/// corresponding operand.
22402const char *X86TargetLowering::
22403LowerXConstraint(EVT ConstraintVT) const {
22404  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
22405  // 'f' like normal targets.
22406  if (ConstraintVT.isFloatingPoint()) {
22407    if (Subtarget->hasSSE2())
22408      return "Y";
22409    if (Subtarget->hasSSE1())
22410      return "x";
22411  }
22412
22413  return TargetLowering::LowerXConstraint(ConstraintVT);
22414}
22415
22416/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
22417/// vector.  If it is invalid, don't add anything to Ops.
22418void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
22419                                                     std::string &Constraint,
22420                                                     std::vector<SDValue>&Ops,
22421                                                     SelectionDAG &DAG) const {
22422  SDValue Result;
22423
22424  // Only support length 1 constraints for now.
22425  if (Constraint.length() > 1) return;
22426
22427  char ConstraintLetter = Constraint[0];
22428  switch (ConstraintLetter) {
22429  default: break;
22430  case 'I':
22431    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22432      if (C->getZExtValue() <= 31) {
22433        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
22434        break;
22435      }
22436    }
22437    return;
22438  case 'J':
22439    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22440      if (C->getZExtValue() <= 63) {
22441        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
22442        break;
22443      }
22444    }
22445    return;
22446  case 'K':
22447    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22448      if (isInt<8>(C->getSExtValue())) {
22449        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
22450        break;
22451      }
22452    }
22453    return;
22454  case 'N':
22455    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22456      if (C->getZExtValue() <= 255) {
22457        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
22458        break;
22459      }
22460    }
22461    return;
22462  case 'e': {
22463    // 32-bit signed value
22464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22465      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
22466                                           C->getSExtValue())) {
22467        // Widen to 64 bits here to get it sign extended.
22468        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
22469        break;
22470      }
22471    // FIXME gcc accepts some relocatable values here too, but only in certain
22472    // memory models; it's complicated.
22473    }
22474    return;
22475  }
22476  case 'Z': {
22477    // 32-bit unsigned value
22478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
22479      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
22480                                           C->getZExtValue())) {
22481        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
22482        break;
22483      }
22484    }
22485    // FIXME gcc accepts some relocatable values here too, but only in certain
22486    // memory models; it's complicated.
22487    return;
22488  }
22489  case 'i': {
22490    // Literal immediates are always ok.
22491    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
22492      // Widen to 64 bits here to get it sign extended.
22493      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
22494      break;
22495    }
22496
22497    // In any sort of PIC mode addresses need to be computed at runtime by
22498    // adding in a register or some sort of table lookup.  These can't
22499    // be used as immediates.
22500    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
22501      return;
22502
22503    // If we are in non-pic codegen mode, we allow the address of a global (with
22504    // an optional displacement) to be used with 'i'.
22505    GlobalAddressSDNode *GA = nullptr;
22506    int64_t Offset = 0;
22507
22508    // Match either (GA), (GA+C), (GA+C1+C2), etc.
22509    while (1) {
22510      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
22511        Offset += GA->getOffset();
22512        break;
22513      } else if (Op.getOpcode() == ISD::ADD) {
22514        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
22515          Offset += C->getZExtValue();
22516          Op = Op.getOperand(0);
22517          continue;
22518        }
22519      } else if (Op.getOpcode() == ISD::SUB) {
22520        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
22521          Offset += -C->getZExtValue();
22522          Op = Op.getOperand(0);
22523          continue;
22524        }
22525      }
22526
22527      // Otherwise, this isn't something we can handle, reject it.
22528      return;
22529    }
22530
22531    const GlobalValue *GV = GA->getGlobal();
22532    // If we require an extra load to get this address, as in PIC mode, we
22533    // can't accept it.
22534    if (isGlobalStubReference(
22535            Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
22536      return;
22537
22538    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
22539                                        GA->getValueType(0), Offset);
22540    break;
22541  }
22542  }
22543
22544  if (Result.getNode()) {
22545    Ops.push_back(Result);
22546    return;
22547  }
22548  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
22549}
22550
22551std::pair<unsigned, const TargetRegisterClass*>
22552X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
22553                                                MVT VT) const {
22554  // First, see if this is a constraint that directly corresponds to an LLVM
22555  // register class.
22556  if (Constraint.size() == 1) {
22557    // GCC Constraint Letters
22558    switch (Constraint[0]) {
22559    default: break;
22560      // TODO: Slight differences here in allocation order and leaving
22561      // RIP in the class. Do they matter any more here than they do
22562      // in the normal allocation?
22563    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
22564      if (Subtarget->is64Bit()) {
22565        if (VT == MVT::i32 || VT == MVT::f32)
22566          return std::make_pair(0U, &X86::GR32RegClass);
22567        if (VT == MVT::i16)
22568          return std::make_pair(0U, &X86::GR16RegClass);
22569        if (VT == MVT::i8 || VT == MVT::i1)
22570          return std::make_pair(0U, &X86::GR8RegClass);
22571        if (VT == MVT::i64 || VT == MVT::f64)
22572          return std::make_pair(0U, &X86::GR64RegClass);
22573        break;
22574      }
22575      // 32-bit fallthrough
22576    case 'Q':   // Q_REGS
22577      if (VT == MVT::i32 || VT == MVT::f32)
22578        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
22579      if (VT == MVT::i16)
22580        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
22581      if (VT == MVT::i8 || VT == MVT::i1)
22582        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
22583      if (VT == MVT::i64)
22584        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
22585      break;
22586    case 'r':   // GENERAL_REGS
22587    case 'l':   // INDEX_REGS
22588      if (VT == MVT::i8 || VT == MVT::i1)
22589        return std::make_pair(0U, &X86::GR8RegClass);
22590      if (VT == MVT::i16)
22591        return std::make_pair(0U, &X86::GR16RegClass);
22592      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
22593        return std::make_pair(0U, &X86::GR32RegClass);
22594      return std::make_pair(0U, &X86::GR64RegClass);
22595    case 'R':   // LEGACY_REGS
22596      if (VT == MVT::i8 || VT == MVT::i1)
22597        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
22598      if (VT == MVT::i16)
22599        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
22600      if (VT == MVT::i32 || !Subtarget->is64Bit())
22601        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
22602      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
22603    case 'f':  // FP Stack registers.
22604      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
22605      // value to the correct fpstack register class.
22606      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
22607        return std::make_pair(0U, &X86::RFP32RegClass);
22608      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
22609        return std::make_pair(0U, &X86::RFP64RegClass);
22610      return std::make_pair(0U, &X86::RFP80RegClass);
22611    case 'y':   // MMX_REGS if MMX allowed.
22612      if (!Subtarget->hasMMX()) break;
22613      return std::make_pair(0U, &X86::VR64RegClass);
22614    case 'Y':   // SSE_REGS if SSE2 allowed
22615      if (!Subtarget->hasSSE2()) break;
22616      // FALL THROUGH.
22617    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
22618      if (!Subtarget->hasSSE1()) break;
22619
22620      switch (VT.SimpleTy) {
22621      default: break;
22622      // Scalar SSE types.
22623      case MVT::f32:
22624      case MVT::i32:
22625        return std::make_pair(0U, &X86::FR32RegClass);
22626      case MVT::f64:
22627      case MVT::i64:
22628        return std::make_pair(0U, &X86::FR64RegClass);
22629      // Vector types.
22630      case MVT::v16i8:
22631      case MVT::v8i16:
22632      case MVT::v4i32:
22633      case MVT::v2i64:
22634      case MVT::v4f32:
22635      case MVT::v2f64:
22636        return std::make_pair(0U, &X86::VR128RegClass);
22637      // AVX types.
22638      case MVT::v32i8:
22639      case MVT::v16i16:
22640      case MVT::v8i32:
22641      case MVT::v4i64:
22642      case MVT::v8f32:
22643      case MVT::v4f64:
22644        return std::make_pair(0U, &X86::VR256RegClass);
22645      case MVT::v8f64:
22646      case MVT::v16f32:
22647      case MVT::v16i32:
22648      case MVT::v8i64:
22649        return std::make_pair(0U, &X86::VR512RegClass);
22650      }
22651      break;
22652    }
22653  }
22654
22655  // Use the default implementation in TargetLowering to convert the register
22656  // constraint into a member of a register class.
22657  std::pair<unsigned, const TargetRegisterClass*> Res;
22658  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
22659
22660  // Not found as a standard register?
22661  if (!Res.second) {
22662    // Map st(0) -> st(7) -> ST0
22663    if (Constraint.size() == 7 && Constraint[0] == '{' &&
22664        tolower(Constraint[1]) == 's' &&
22665        tolower(Constraint[2]) == 't' &&
22666        Constraint[3] == '(' &&
22667        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
22668        Constraint[5] == ')' &&
22669        Constraint[6] == '}') {
22670
22671      Res.first = X86::ST0+Constraint[4]-'0';
22672      Res.second = &X86::RFP80RegClass;
22673      return Res;
22674    }
22675
22676    // GCC allows "st(0)" to be called just plain "st".
22677    if (StringRef("{st}").equals_lower(Constraint)) {
22678      Res.first = X86::ST0;
22679      Res.second = &X86::RFP80RegClass;
22680      return Res;
22681    }
22682
22683    // flags -> EFLAGS
22684    if (StringRef("{flags}").equals_lower(Constraint)) {
22685      Res.first = X86::EFLAGS;
22686      Res.second = &X86::CCRRegClass;
22687      return Res;
22688    }
22689
22690    // 'A' means EAX + EDX.
22691    if (Constraint == "A") {
22692      Res.first = X86::EAX;
22693      Res.second = &X86::GR32_ADRegClass;
22694      return Res;
22695    }
22696    return Res;
22697  }
22698
22699  // Otherwise, check to see if this is a register class of the wrong value
22700  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
22701  // turn into {ax},{dx}.
22702  if (Res.second->hasType(VT))
22703    return Res;   // Correct type already, nothing to do.
22704
22705  // All of the single-register GCC register classes map their values onto
22706  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
22707  // really want an 8-bit or 32-bit register, map to the appropriate register
22708  // class and return the appropriate register.
22709  if (Res.second == &X86::GR16RegClass) {
22710    if (VT == MVT::i8 || VT == MVT::i1) {
22711      unsigned DestReg = 0;
22712      switch (Res.first) {
22713      default: break;
22714      case X86::AX: DestReg = X86::AL; break;
22715      case X86::DX: DestReg = X86::DL; break;
22716      case X86::CX: DestReg = X86::CL; break;
22717      case X86::BX: DestReg = X86::BL; break;
22718      }
22719      if (DestReg) {
22720        Res.first = DestReg;
22721        Res.second = &X86::GR8RegClass;
22722      }
22723    } else if (VT == MVT::i32 || VT == MVT::f32) {
22724      unsigned DestReg = 0;
22725      switch (Res.first) {
22726      default: break;
22727      case X86::AX: DestReg = X86::EAX; break;
22728      case X86::DX: DestReg = X86::EDX; break;
22729      case X86::CX: DestReg = X86::ECX; break;
22730      case X86::BX: DestReg = X86::EBX; break;
22731      case X86::SI: DestReg = X86::ESI; break;
22732      case X86::DI: DestReg = X86::EDI; break;
22733      case X86::BP: DestReg = X86::EBP; break;
22734      case X86::SP: DestReg = X86::ESP; break;
22735      }
22736      if (DestReg) {
22737        Res.first = DestReg;
22738        Res.second = &X86::GR32RegClass;
22739      }
22740    } else if (VT == MVT::i64 || VT == MVT::f64) {
22741      unsigned DestReg = 0;
22742      switch (Res.first) {
22743      default: break;
22744      case X86::AX: DestReg = X86::RAX; break;
22745      case X86::DX: DestReg = X86::RDX; break;
22746      case X86::CX: DestReg = X86::RCX; break;
22747      case X86::BX: DestReg = X86::RBX; break;
22748      case X86::SI: DestReg = X86::RSI; break;
22749      case X86::DI: DestReg = X86::RDI; break;
22750      case X86::BP: DestReg = X86::RBP; break;
22751      case X86::SP: DestReg = X86::RSP; break;
22752      }
22753      if (DestReg) {
22754        Res.first = DestReg;
22755        Res.second = &X86::GR64RegClass;
22756      }
22757    }
22758  } else if (Res.second == &X86::FR32RegClass ||
22759             Res.second == &X86::FR64RegClass ||
22760             Res.second == &X86::VR128RegClass ||
22761             Res.second == &X86::VR256RegClass ||
22762             Res.second == &X86::FR32XRegClass ||
22763             Res.second == &X86::FR64XRegClass ||
22764             Res.second == &X86::VR128XRegClass ||
22765             Res.second == &X86::VR256XRegClass ||
22766             Res.second == &X86::VR512RegClass) {
22767    // Handle references to XMM physical registers that got mapped into the
22768    // wrong class.  This can happen with constraints like {xmm0} where the
22769    // target independent register mapper will just pick the first match it can
22770    // find, ignoring the required type.
22771
22772    if (VT == MVT::f32 || VT == MVT::i32)
22773      Res.second = &X86::FR32RegClass;
22774    else if (VT == MVT::f64 || VT == MVT::i64)
22775      Res.second = &X86::FR64RegClass;
22776    else if (X86::VR128RegClass.hasType(VT))
22777      Res.second = &X86::VR128RegClass;
22778    else if (X86::VR256RegClass.hasType(VT))
22779      Res.second = &X86::VR256RegClass;
22780    else if (X86::VR512RegClass.hasType(VT))
22781      Res.second = &X86::VR512RegClass;
22782  }
22783
22784  return Res;
22785}
22786
22787int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
22788                                            Type *Ty) const {
22789  // Scaling factors are not free at all.
22790  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
22791  // will take 2 allocations in the out of order engine instead of 1
22792  // for plain addressing mode, i.e. inst (reg1).
22793  // E.g.,
22794  // vaddps (%rsi,%drx), %ymm0, %ymm1
22795  // Requires two allocations (one for the load, one for the computation)
22796  // whereas:
22797  // vaddps (%rsi), %ymm0, %ymm1
22798  // Requires just 1 allocation, i.e., freeing allocations for other operations
22799  // and having less micro operations to execute.
22800  //
22801  // For some X86 architectures, this is even worse because for instance for
22802  // stores, the complex addressing mode forces the instruction to use the
22803  // "load" ports instead of the dedicated "store" port.
22804  // E.g., on Haswell:
22805  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
22806  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
22807  if (isLegalAddressingMode(AM, Ty))
22808    // Scale represents reg2 * scale, thus account for 1
22809    // as soon as we use a second register.
22810    return AM.Scale != 0;
22811  return -1;
22812}
22813
22814bool X86TargetLowering::isTargetFTOL() const {
22815  return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
22816}
22817